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Using the CTRW approximation the simplest possible nontrivial model of ac hopping conductivity in disordered solids, is 
constructed. The model predicts universality of the frequency-dependent conductivity, independent of temperature, chemical 
composition, and conductivity mechanism, in reasonably good agreement with experiments. It is shown that all qualitative 
features of experimental ac hopping conductivity can be understood within the model. 

Hopping conductivity in disordered solids has been 
studied for several years. The basic characteristic of 
ac hopping conductivity is a power-law frequency de- 
pendence of the real part of the conductivity, a(co), 
at high frequencies, ~o, 

Re a(~o) ~ co*, (1) 

as was first observed by Pollak and Geballe in 1961 
[1]. They found that conductivity in n-type doped 
crystalline silicon is well described by an exponent s 
equal to 0.8. Since then, power-law frequency-depen- 
dent conductivity has been observed in a wide variety 
of disordered solids, including amorphous semicon- 
ductors, organic solids, and oxide glasses [2]. One 
Finds values of s between 0.5 and 1.0, often close to 
one [3]. AC hopping conductivity has been reviewed 
by several authors [3--6]. 

When discussing hopping conductivity one usually 
thinks of electronic or polaronic hopping. For in- 
stance, conductivity in amorphous semiconductors is 
believed to be due to phonon-assisted quantum-mechan- 
ical tunneling of electmns/polarons between localiz- 
ed states in the mobility gap [3]. But hopping con- 
ductivity arises also in the entirely different context 
of ionic conductivity in oxide glasses (reviewed in 
refs. [5,7,8]). Glass ionic conductivity also obeys eq. 
(1). Actually, there seems to be a close relationship 
between ionic and electronic conductivity in oxide 
glasses. Both give rise to exactly identical dielectric 
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loss peaks, as has been emphasized by Isard and by 
Owen [9.5]. This fact is very surprising because ionic 
conductivity is a classical, thermally activated process, 
while electronic hopping conductivity involves quan- 
tum-mechanical tunneling. This "paradox" presents a 
challenge to any theory of hopping conductivity in 
disordered solids. 

An approach which is frequently adopted in the 
calculation of ac loss in amorphous semiconductors, 
is the pair approximation. It is assumed that ac loss is 
mainly due to electron jumps between pairs of local- 
ized states [ 10]. In this model there is an approximate 
power-law behaviour of the conductivity at high fre- 
quencies with the exponent s given by [ 11 ] 

s -- d in Re o(¢o)/d In ¢o = 1 + 4/ln (¢O~rph) . (2) 

Here rph is a characteristic phonon time (or order 
10 -12 s). For usual laboratory frequencies eq. (2) 
yields a value ofs  close to 0.8, which in the early 
days of amorphous physics was thought to be the 
universal exponent of ac hopping conductivity [ 11 ]. 
However, the pair approximation suffers from several 
weaknesses. First or all, the approximation certainly 
does not apply at low frequencies, and the transition 
to dc conductivity cannot be understood within this 
approximation. But even at high frequencies there are 
problems. Eq. (2) predicts that s is a slowly decreas- 
hag function of the frequency. This has never been 
observed, if s varies at all it is an increasing function 
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of the frequency [5]. Also, in order to explain the 
frequently observed s values close to one (e.g. in most 
amorphous sohds at low temperatures) one has to as- 
sume values of ~'ph smaller than 10 -20 s. But this is 
totally unrealistic. 

A sounder approach to hopping conductivity is to 
consider the actual random walk of the charge carriers 
in the disordered solid. This approach was pioneered 
by Scher and Lax in their important papers of 1973 
[12]. They proposed to model the disordered solid as 
a regular lattice with randomly varying jump frequen- 
cies 3,. The frequency-dependent conductivity was 
then calculated by means of the continuous time 
random walk approximation (CTRW). Klafter and 
Silbey have later shown that the CTRW is formally 
rigorous [13]. The approximation in ref. [12] enters 
via the Scher-Lax method to construct the so-called 
hopping-time distribution function. Today, the 
Scher-Lax approach is known to be equivalent to the 
Hartree approximation, the simplest possible nontri- 
vial mean-field approximation [14]. There exist more 
accurate (and more involved) mean-field approxima- 
tions (e.g. EMA [14]), but we shall here use the 
Hartree approximation in which the conductivity is 
given by [14,15] 

a(6o) =K[ - i6o  + ((3, + i6o)-l) -1 ] . (3) 

In eq. (3) K is a constant (depending on charge carrier 
concentration, average jump distance, temperature, 
etc), and ( ) denotes the average over the jump fre- 
quency distribution p(3,). 

By means ofeq.  (3) o(6o) is determined solely by 
p(3,). We now address the problem of deriving the 
simplest possible p(3,) which still contains the essen- 
tial physics of hopping conductivity. In the case of 
electronic tunneling between localized states, the 
jump frequency is essentially given by [16] 

3, ~ r3/ 2 e-2txr e -  W/kT , (4) 

where r is the jump distance, a is the decay parameter 
for the wavefunctions of the localized states, W is the 
energy difference between the two states, k is the 
Boltzmann constant, and Tis the temperature. If W 
varies according to a Boltzmann distribution [p(W) o: 
exp( -  W/kTo)] one arrives at p(3") <x 3,-6 with a non- 
trivial 8 [this, of course, gives a non-trivial s in eq. 
(1)] [17]. Here we shall assume ad hoe that W varies 

completely randomly. If furthermore the jump dis- 
tance probability is given by a geometrical r2-factor, 
it is not hard to see from eq. (4) that P(3') is given by 
3, -1 times some logarithmic terms. If jumps to more 
than one nearest neighbour are allowed, the resulting 
jump frequency distribution is the above distribution 
convoluted with itself a number of times. Again one 
ends up with a 3,-1 -term times some logarithmic terms 
which are not very important. Thus, a good approxi- 
mation to the correct jump frequency distribution is 

p(3 , )=( l l lnX)(1 /3 , ) ,  3,rain < 3' < 3'max , (5) 

where two cut-off's, 3,min and 3,max, have been intro- 
duced, and ~. = 3,max/Train" It is now easy to under- 
stand the surprising similarity between electronic and 
ionic hopping conductivity: A randomly varying ion 
jump activation energy will produce exactly the same 
jump frequency distribution as in the electronic case 
[eq. (5)], and thereby the same o(6o). This is an im- 
portant conclusion of this letter. 

Substituting eq. (5) into eq. (3) we fred 

o(6o) = K { _i6o + i6o in X [ln ( l  +i6o/3'min t l - 1  / 
1 + i6o/3,ma x IJ  ) ('6) 

Eq. (6) implies that the conductivity rises from the 
dc conductivity, o0, to a high frequency conductivity, 
o**, in the frequency-range between 3,rain and "}'max" 
While 3"min is seen experimentally as defining the 
transition from dc to ac conductivity, there is in most 
cases no sign of any leveling off of the conductivity at 
high frequencies. It is therefore desirable to eliminate 
the artificial cut-off at 3,max" But just letting 3,max go 
to infinity does not work since o(6o) diverges in this 
limit. Instead we use the following renormalization 
procedure: The dc conductivity is [from eq. (6)] 
given by 

o 0 = K In X/(3'~d n - 3'mlax) . (7) 

For large X the first term in eq. (6) can be ignored, so 
substituting KIn X from eq. (7) into eq. (6) we find 

0(60) = aoi6o(3"~n -- 3,mlax) 

1 + i6o/3,min 
X [In ( 1 + i6o/3'max ) ]  -1 . (8) 

Now it is possible to let ")'max go to infinity. In this 
limit we finally Fred 
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Fig. 1. Predictions of the model (full curve) and some experimental data for various hopping systems. The phenomenologieal time r 
has been chosen for each data set to fit the curve as well as possible (r varies between 10 -7 s and  10 3 ~;). The data represent hopping 
conductivity in: (1) n-doped crystalline silicon (X) [1 ] (using the universal conductivity curve [12]), (2) sputtered films of arsenic at 
295 K (e) [3], (3) ionicaUy conducting glasses (e.g. sodium silicates etc.) (®) (oo has been calculated using Namikawa's formula 
[19]),[5], (4) glow discharge silicon at 283 K (") [20],(5) silicon monoxide at 241 K (+) [21], (6) amorphous germanium at 88_5 
K (n) [22], (7) Mnl.sNio.6Co0.604 at various temperatures (using the universal curve of fig. 8a of ref. [23]) (v), (8) monolayer of 
stearie acid at 300 K (o) [24]. 

o(w) = o 0 iwr[ln (1 + icor)1-1,  (9) 

where r = 7~dn- The real part of  the conductivity is 
given by 

~ r  arctan (~ r )  
Re o(~)  = o 0 

(In [1 + (oar) 2 ] 1/2)2 + [arctan(~r)]  2(10) 

The model predicts a universal frequency depend- 
ence o f  the conductivity (except for scale transforma- 
tions), independent of  chemical composition and 
temperature. Universality of  a(6o) in suitably reduced 
units has been frequently discussed in connection 
with hopping conductivity [5,9,12,18 ], but always 
in more restricted context. In fig. 1 the predicted real 
part o f  the conductivity is drawn together with data 
(randomly selected from the literature) for various 
hopping systems. A careful inspection o f  fig. 1 reveals 
that the ambitious claim of  complete universality is 

not in agreement with experiment. But the model cer- 
tainly reproduces the overall trend of  the data. At 
high frequencies the conductivity follows an approxi- 
mate power law. The exponent s is from eq. (10) 
given by 

s ~ I - 2 / l n ( w r ) .  (11) 

Exact values of  s for different w r  are given in table 1. 
As in the pair approximation s is always smaller than 
one. Contrary to the pair approximation, but in agree- 
ment with experiment [5], the theory predicts that  
s is a slightly increasing function o f  the frequency. At 
very high frequencies s approaches one. Thus, as a con- 
sequence o f  the universality the theory predicts that 
whenever an exponent s close to one is observed, the 
dc conductivity is very small compared to the mea- 
sured ac conductivity. 
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Table 1 
Model predictions of  the exponent s defined by s = d In Re o(to)/ 
d In to at various toe. Also, the approximate expression of s, 
1 - 2/In (toO, is included [eq. (11)]. 

to¢ s 1 - 2/ln ( too 

102 0.62 0.57 
104 0.79 0.78 
106 0.86 0.86 
10 s 0.89 0.89 
101° 0.91 0.91 
1012 0.93 0.93 
1014 0.94 0.94 
1016 0.95 0.95 

Eq. (7) predicts proportionality between o 0 and 
7rain = r-1 (for 7rain '~ 7max). This proportionality is 
due to the fact that the jump frequency distribution eq. 
(5) strongly emphasizes the smallest jump frequencies, 
which are also the most important for o 0 because 
they partially act as traps. Proportionality between 
tr 0 and the dielectric loss peak frequency (which in 
the present model is of order r -1) has been known 
experimentally for several years [8,9,19]. Actually, 
the constant K is proportional to T -1 [14], so for a 
given sample we have 

o 0 = (p /T ) r  - I  , (12) 

where p is a temperature-independent constant. Sub- 
stituting eq. (12) into eq. (9) we get 

o ( w , T ) = i ~ p  [ T I R ( I +  i~p  '~1-1 To--b-~ / 3 (13) 

In all hopping systems o 0 is zero at zero temperature, 
so from eqs. (11) and (12) we conclude that the 
exponent s (at a definite frequency) goes to one as 
the temperature goes to zero. This is what is always 
observed [3]. Eq. (13) prescribes how to displace the 
universal a(o~)-curve as the temperature varies [12]. 
In fig. 2 is shown the predicted and measured o(t~) 
at some different temperatures for amorphous ger- 
manium. The agreement between theory and experi- 
ments is good. 

In conclusion, a simple model of ac hopping con- 
ductivity has been constructed. The model suggests 
that the physics of ac hopping conductivity may be 
simpler than has hitherto been recognized. The model 
is semi-phenomenological in the sense that the abso- 
lute values of  o 0 and r are not predicted. Three ap- 
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Fig. 2. Comparison between the prediction of eq. (13) (full 
curves) and measurements on amorphous germanium at vari- 
ous temperatures [22]. The universal conductivity curve has 
been fitted to the data at 77 K, and then displaced according 
to eq. (13) to fit the data at the other temperatures. 

proximations are involved in the model: (1) the 
CTRW approximation, (2) a jump frequency distribu- 
tion proportional to 7 -1 , and (3) the existence of a 
sharp cut-off at 7min. As regards the last point, it 
should be noted that in the case of nearest-neighbour 
hopping between localized states, a sharp cut-off is 
indeed realistic. This is a consequence of the expo- 
nential factor in the Hertz nearest-neighbour distance 
distribution: p(r) o: r2exp(_cr  3) [15]. At low tem- 
peratures, when variable-range hopping is believed to 
take place [I 1], the sharp cut-off becomes unrealistic. 
Also, in the case of glass ionic conductivity, a sharp 
jump frequency cut-off may well be questioned. 
However, the cut-off problem only affects the transi- 
tion from dc to ac conductivity. 

The model predicts universality of the frequency- 
dependent conductivity (in suitable units)~ indepen- 
dent of  chemical composition and temperature. Al- 
though exact universality is not observed (fig. 1), the 
claim of universality has a number of  interesting qua- 
litative consequences. First of  all, electronic, polaro- 
nic and ionic hopping conductivity in disordered solids 
should be similar. Any hopping system should have a 
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power-law frequency dependence o f  the ac conductiv- 
i ty.  The exponent  s is predicted to be a slighly in- 
creasing function o f  the frequency, and smaller than 
but  close to one. Considering the temperature-de- 
pendence of  a (w) ,  the universality implies in partic- 
ular temperature-independent dielectric loss peaks. 
Also, s is predicted to be a decreasing function o f  
temperature,  which approaches one as T goes to zero. 
In a l og - log  plot like fig. 1 or fig. 2, the ac conduc- 
tivity is less temperature-dependent  than the dc con- 
ductivity,  and in the limit o f s  = 1 the ac conductivity 
becomes practically temperature-independent.  All o f  
the above predictions are in agreement with experi- 
ments [ 2 - 5 , 2 5 ] .  Thus, the proposed semi-phenome- 
nological model correctly predicts the qualitative fea- 
tures o f  ac hopping conductivity.  

I acknowledge helpful comments and suggestions 
from N.B. Olsen, T. Christensen and K. Snadeflink. 
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