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Basic characteristics of the liquid-glass transition are reviewed, emphasizing its universality and
briefly summarizing the most popular phenomenological models. Discussion is focused on a num-
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I. INTRODUCTION

The earliest glaze known is that on stone beads of the
Badarian age in Egypt, about 12,000 B.C. Green glaze
was applied to powdered quartz for making small fig-
ures about 9,000 B.C. The oldest pure glass is a moulded
amulet of deep lapis lazuli color, of about 7,000 B.C.

(Petrie, 1925). Although glass is the oldest artificial ma-
terial utilized by man, new discoveries and applications
continue to appear. Thus the glassy state of pharma-
ceuticals is being recognized as more effective than the
crystalline form because it dissolves more quickly; in that
regard, the glassy state of a common medicament aspirin
has been recently studied (Johari and Pyke, 2000). An-
other relatively recent realization is that the glass tran-
sition plays a central role in the preservation of food (Le
Meste et al., 2002; Kasapis, 2005). More traditional ap-
plications of glasses and glass science include, e.g., opti-
cal fibres or glass ceramics – and of course glass is still
extensively used for windows and containers, not to men-
tion the beautiful artworks based on a thousand-year old
tradition.

A glass is formed by cooling a liquid fast enough to
avoid crystallization. At continued supercooling the liq-
uid viscosity increases dramatically, and at some point
the liquid freezes continuously into a non-crystalline
solid. This is termed the glass transition, although it
is not a phase transition with a well-defined transition
temperature (Brawer, 1985; Angell, 1991; Debenedetti,
1996).

Many liquids require fast cooling to avoid crystalliza-
tion, e.g., most alloys, but there are also many liquids
that are easily supercooled and, in fact, difficult to crys-
tallize, e.g., silicates and numerous organic liquids. Any
liquid is able to form a glass if cooled rapidly enough
(Tammann, 1925). In view of this universality, the glassy
state may be regarded as the fourth state of conven-
tional matter: Glass is solid as the crystalline state, but
isotropic and without long range order as the liquid state.
This unique combination of properties explains the im-
mense importance of glasses for a variety of applications
(Johari, 1974). Indeed, it is glass’ lack of long-range order
– rather than the traditional properties of transparency,
brittleness, and low electrical conductivity – which is the
defining characteristic of this type of material (Cotterill,
1985).

The glass transition was unknown to most physicists
until a few decades ago, and the glassy state was barely
mentioned in textbooks on condensed matter physics.
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The focus on amorphous semiconductors and spin glasses
of the 1980s led to an increasing interest in glasses
and glass formation. Glassy dynamics of various kinds
showed up repeatedly in quite different contexts, so why
not study the real thing? In the 1990s the research field
“viscous liquids and the glass transition” grew into an
accepted branch of condensed matter physics, catalyzed
by the increasing realization that fundamental problems
remain unsolved.

After giving an overview of the basic experimental facts
and prevailing models, this Colloquium focuses on an al-
ternative approach to understanding a central problem of
the field: How to explain the dramatic temperature de-
pendence of the relaxation time of glass-forming liquids.
This alternative approach, which connects the fast and
slow degrees of freedom, involves several related “elastic”
models. The final section outlines some consequences if
the elastic models are correct.

II. GLASS FORMATION AND THE THREE NON’S

A. The glass transition

Figure 1(a) shows the specific volume of Selenium as a
function of temperature during cooling.

The gradual shrinking of the liquid continues unaf-
fected by the freezing temperature, Tm. At some point
the expansion coefficient – the slope of the curve – de-
creases to a value close to that of the crystalline state.
This is the glass transition, which takes place at a slightly
lower temperature if the cooling is slower. A similar ob-
servation is made for the enthalpy. Figure 1(b) shows
a schematic drawing of the enthalpy during cooling and
subsequent reheating. The glass transition is continuous
and cooling-rate dependent, and there is hysteresis upon
reheating.

The glass transition is similar to a second order phase
transition in the Ehrenfest sense with continuity of vol-
ume and entropy, but discontinuous changes of their
derivatives (Goldenfeld, 1992). But the “transition” is
continuous and cooling-rate dependent, so it cannot be
a genuine phase transition. What is going on? A clue
is provided by the fact that the viscosity of a liquid ap-
proaching the glass transition always becomes extremely
large.

Recall the definition of viscosity η: When a liquid is
placed between two parallel solid plates of area A moving
with velocity v relative to one another, the force F needed
to sustain the motion is given by F = ηvA/d, where d is
the distance between the plates. The viscosity of ambient
water is 10−3 Pa s. For a glass-forming liquid the viscos-
ity is typically of order 1012 Pa s just above the glass
transition if the liquid is cooled by a rate of a few Kelvin
per minute (this defines the “calorimetric” glass transi-
tion, henceforth just referred to as the glass transition).
This viscosity, incidentally, is so large that conventional
methods for measuring the viscosity completely fail. To

appreciate such high viscosities, let us estimate how long
a time t it takes to empty a cup containing a liquid just
above its glass transition: Substituting v ∼ l/t, F ∼ 10
N, and A/d ∼ l ∼ 0.1 m into the definition of viscosity,
one finds that t ∼ 109 s, roughly 30 years! Such a system
appears absolutely solid, but is still a liquid according
to any reasonable scientific definition as long as it is in
thermal equilibrium.

A system falls out of equilibrium when its relaxation
time is so long that it cannot equilibrate within a given
time. Because of its dependence on gravity and sample
size the above calculation cannot tell us anything about
the equilibration time. The genuine “bulk” relaxation
time τ of a liquid was first identified by James Clerk
Maxwell (1867). He suggested that on a sufficiently short
time scale any liquid is elastic and behaves like a solid
(Lamb, 1978). If x is the relative displacement of the
plates, the shear displacement γ is defined as γ ≡ x/d;
for an elastic solid the shear modulus G is defined by
σ = Gγ, where σ ≡ F/A is the so-called shear stress. In
terms of σ and γ̇ (the time derivative of γ) the definition
of viscosity is σ = ηγ̇. Maxwell proposed extrapolating
between liquid and solid behavior by assuming

γ̇ =
σ

η
+

σ̇

G
. (1)

Clearly, Eq. (1) applies for liquids in a steady-state flow
(σ̇ = 0) as well as for solids (η = ∞).

Consider a sudden shearing displacement starting from
equilibrium, γ̇(t) = γ0δ(t). By integrating Eq. (1) one
finds that immediately after t = 0 one has σ = Gγ0. This
suggests that G should be termed the “instantaneous”
or “infinite-frequency” shear modulus, usually denoted
by G∞. Since γ̇ = 0 for t > 0, the stress subsequently
decays exponentially to zero with relaxation time τ given
by

τ =
η

G∞
. (2)

It is a general property of Eq. (1) that the liquid is solid-
like on time scales much shorter than τ – generic liquid
behavior is only predicted on time scales much longer
than τ .

The Maxwell relaxation time τ provides the key to un-
derstanding the glass transition. Typical values of G∞
are in the 109 Pa s range, so since η ∼ 1012 Pa s at the
glass transition, τ is here of order 1,000 s. Thus the glass
transition takes place when the Maxwell relaxation time
becomes comparable to the cooling time. Noting that
independent of the unit system d lnT is the relative tem-
perature change dT/T , the glass transition temperature
Tg is determined by

∣∣∣∣d lnT

dt

∣∣∣∣
Tg

∼ 1
τ(Tg)

. (3)
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The Maxwell relaxation time not only determines how
fast a macroscopic stress relaxes. Numerous experiments
show that τ also determines the typical time between
molecular displacements or reorientations. This confirms
that the glass transition takes place when the liquid is
unable to equilibrate on the experimental time scale, i.e.,
when “some process in the amorphous material occurs
too slowly at low temperatures to permit thermodynamic
equilibrium to be established in all degrees of freedom”
(Kauzmann, 1948).

What happens at the glass transition is that molecular
motion virtually ceases – except for thermal vibrations1
(Simon, 1930, 1931; Tammann, 1933; Kauzmann, 1948;
Johari, 1974; Harrison, 1976; Brawer, 1985; Scherer,
1986; Nemilov, 1995; Dyre, 1998; Angell et al., 2000;
Alba-Simionesco, 2001; Debenedetti and Stillinger, 2001;
Donth, 2001; Franks, 2003). This explains several obser-
vations:

• The ability to form glasses is universal and not a
specific atomic or molecular property – once the
extremely viscous liquid state has been arrived at,
glass formation is unavoidable upon continued cool-
ing.

• Volume, enthalpy, and entropy are continuous
across the glass transition, and no changes of the
molecular structure are observed at Tg;

• The glass expansion coefficient and specific heat are
lower than those of the liquid – this is because be-
low Tg molecular reorientations cease to contribute
to these quantities;

• Tg is lower when the cooling rate is reduced (in fact
Tg has no exact definition, even for a given cooling
rate);

• Hysteresis effects are inherently associated with the
glass transition – these derive from the fact that
upon reheating the structure relaxes slightly before
Tg is reached;

The universality of the property to form glasses was
suggested long ago (Tammann, 1925; Simon, 1931; Tam-
mann, 1933), but even many years thereafter the broader
scientific community tended to believe that, as in the
silicates, glasses primarily form from covalently bonded
network liquids. Glasses may form from all liquids, how-
ever, with liquid Helium as the outstanding exception.
In many cases, e.g., most metallic liquids, a rapid cooling
is necessary to avoid crystallization (cooling rates ∼ 106

K/s or higher). A “good glass former” is a liquid which is
readily supercooled, i.e., characterized by very low rates

1 Actually, minor motions often remain in the glassy phase via one
or more so-called Johari-Goldstein (1970) beta processes, but
these are unable to induce flow or relieve a macroscopic stress.

of crystal nucleation and growth at all temperatures (An-
gell, 1995; Pimpinelli and Villain, 1998). Examples of
good glass formers are given in table I; note that there
are now also good metallic glass formers, the so-called
bulk metallic glasses (Löffler, 2003; Wang, Dong, and
Shek, 2004).

Figure 2 shows the radial distribution function g(r) for
liquid and glassy Selenium. There is little difference, al-
though the liquid data were taken far above Tg

∼= 300 K;
the glass simply inherits the liquid structure and its lack
of long-range order. Generally, solids without long-range
order are termed amorphous. Amorphous solids may be
produced by a variety of methods like vapor deposition,
sputtering, solution hydrolysis, bombardment of crystals
with high energy particles, milling of crystals, etc. (El-
liott, 1990). The term glass is traditionally reserved for
amorphous solids produced by cooling a liquid,2 although
this convention was criticized by Doremus (1994) on the
grounds that solids should be named after their proper-
ties, not how they are produced.

The glass transition may be regarded as an artefact
due to our inability to do experiments slow enough to al-
low the molecules to change their configurations (Johari,
1974). Simon (1930, 1931) first emphasized that, because
glass is an out-of-equilibrium liquid, any glass continu-
ously approaches the liquid state. Thus glass properties
change with time, at least in principle, and there is no
unique glassy state. The latter is also reflected by the
fact that glass disobeys the third law of thermodynamics
by having a positive entropy at zero temperature. The
relaxation of glass properties is termed “annealing” or
“stabilization” when it is controlled and “physical aging”
or just “aging” when it is unwanted. Unless the glass is
produced by very fast cooling, however, glass relaxation
can only be observed just below Tg. It is an urban myth
that aging causes old windows to be thicker at the bot-
tom – window glass flow would only be visible to the
naked eye after billions of years.

B. The three non’s

Most applications of glass science deal with the glassy
state or relaxation just below the glass transition. In con-
trast, much of the scientific focus is on the viscous liquid
phase preceding glass formation. One reason for this is
that glasses derive from liquids, and just as in social sci-
ences or history one must know the past to understand
the present. Moreover, even basic properties of viscous
liquids are not well understood.

2 An amorphous solid may also be produced by keeping the liq-
uid at constant temperature and raising the pressure. Such a
solid would usually also be termed a glass; it could be brought
to ambient pressure by lowering the temperature while keeping
the pressure high, only subsequently relieving the pressure (the
resulting glass differs from one produced at ambient pressure).
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How are viscous liquids studied? Techniques like neu-
tron, X-ray, or light scattering are utilized for study-
ing both structure and dynamics (Hansen and McDon-
ald, 1986). NMR is a promising tool for assessing,
in particular, dynamical properties beyond those en-
tailed in two-point correlation functions (Böhmer et al.,
2001). Important macroscopic observables include the
frequency-dependent: dielectric constant (Kudlik et al.,
1999; Lunkenheimer et al., 2000; Kremer and Schönhals,
2002), specific heat (Birge and Nagel, 1985; Christensen,
1985), compressibility (Christensen and Olsen, 1995),
and shear modulus (or viscosity) (Jakobsen, Niss, and
Olsen, 2005). These linear response properties become
frequency dependent in viscous liquids at much lower fre-
quencies than observed in other contexts of condensed
matter physics. Thus if τ = 1 s, there is typically a non-
trivial frequency dependence around 1 Hz. Finally, com-
puter simulations are increasingly used, although com-
puters are still much too slow to simulate, e.g., a liquid
with τ = 1 s.

When a viscous liquid is subjected to a sudden con-
stant thermal, mechanical, or electrical perturbation,
there is a slow relaxation towards steady state. This
relaxation is almost always non-exponential (Mazurin,
1977; Scherer, 1990) - the first non. It is important to
distinguish between linear and non-linear relaxations, al-
though both are usually non-exponential.3 In the linear
case the perturbation in principle is infinitesimal. Lin-
ear perturbations are often studied in the frequency do-
main, where a periodic input results in a periodic out-
put. The ratio between output and input defines the rel-
evant, complex linear-response function. Linear-response
theory is based on the fluctuation-dissipation theorem,
which allows one to calculate the response function from
the equilibrium dynamics. As an example, an expo-
nential dipole equilibrium time-autocorrelation function
∝ exp(−t/τ0) results in the so-called Debye dielectric
function, ε(ω) ∝ 1/(1 + iωτ0). This is seldom observed;
instead one typically finds a dielectric loss (imaginary
part of ε(ω)) looking as in Fig. 3. For many liquids there
are additional, minor Johari-Goldstein “beta” peaks at
higher frequencies than the dominant loss peak frequency
∼ 1/τ .

The second non, our focus here, is the non-Arrhenius
temperature dependence of the Maxwell “alpha” relax-
ation time τ or viscosity η (according to Eq. (2) these
are roughly proportional since G∞ is much less temper-
ature dependent than τ or η). Figure 4 is the original
“Angell plot” (1985) showing the logarithm of the vis-
cosity for a number of viscous liquids as a function of
inverse temperature normalized to unity at Tg, where Tg

is defined as the temperaure at which the equilibrium liq-

3 Both are often fitted by the so-called “stretched exponential”
function, exp(−(t/τ ′)β), where 0 < β < 1 (Phillips, 1996).
The characteristic time τ ′ is usually not much different from
the Maxwell relaxation time.

uid viscosity is 1012 Pa s. If, as is generally assumed, the
dynamics are dominated by barriers to be overcome by
thermal fluctuations, one would expect an expression of
the form η ∼ exp(∆E/kBT ) (Brush, 1962), correspond-
ing to the diagonal line. This is referred to as an Arrhe-
nius temperature dependence, after the Swedish chemist
Svante Arrhenius (1889) who discovered that chemical
reaction times usually follow this law. The Arrhenius
law, however, only works for a few liquids, e.g., pure silica
(SiO2) or phosphor pentoxide (P2O5) (Varshneya, 1994).
In most cases viscous liquids show a stronger than Ar-
rhenius increase of the viscosity upon cooling toward the
glass transition. Accepting nevertheless the Arrhenius
expression, the activation energy must be temperature
dependent and ∆E(T ) is defined by4 (where τ0 ∼ 10−13

s is a typical microscopic time)

τ = τ0 exp
(

∆E(T )
kBT

)
. (4)

The message of Fig. 4 is that the activation energy in-
creases when temperature decreases. There seem to be
no examples of viscous liquids with an activation energy
that decreases upon cooling.

For some viscous liquids τ increases by more than one
order of magnitude when the temperature is lowered by
just 1%. Such strongly non-Arrhenius liquids are called
“fragile” (no connection to glass fragility!), while those
closer to Arrhenius behaviour are termed “strong” (An-
gell, 1985).5 Non-Arrhenius data are often fitted by the
so-called VFT expression (Vogel, 1921; Fulcher, 1925;
Tammann and Hesse, 1926)

τ = τ0 exp
(

A

T − T0

)
. (5)

Equation (5) implies that τ becomes infinite at T0, a
prediction that cannot be verified because, if correct, the
system is bound to fall out of equilibrium as T0 is ap-
proached. The VFT expression has inspired leading theo-
rists to speculate on its origin (Edwards, 1976; Anderson,
1979). Stillinger (1988) argued that a liquid cannot have
an infinite relaxation time at a finite temperature. When
compared to experiment, Eq. (5) generally breaks down

4 More correctly, Eq. (4) defines the free energy of activation, but
for simplicity we use the traditional term activation energy.

5 This corresponds to the empirical classification into “short” and
“long” liquids in glass industry, where short liquids are only
amenable to processing for a brief period of time before solid-
ifying as they cool. Silica-free commercial glass, for instance, is
short and difficult to blow or draw (Rawson, 1988). The “working
range” is the temperature between the “working point” (where a
glass can be worked on, η ∼ 103 Pa s) and the “softening point”
(where the worked mass will not deform under its own weight,
η ∼ 107 Pa s) (Varshneya, 1994). The glass transition takes
place much below the softening point.
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in the highly viscous regime by predicting too large relax-
ation times (Brawer, 1985; Scherer, 1990; Angell, 1995;
Stickel, Fischer, and Richert, 1995; Kivelson et al., 1996).

An alternative fit to data with the same number of pa-
rameters is provided by (Walther, 1931; Harrison, 1976;
Bässler, 1987; Avramov, 2005):

τ = τ0 exp
(

C

Tn

)
. (6)

No systematic analysis has investigated which of Eqs. (5)
or (6) generally give the best fit to data.

The third non is the nonlinearity of relaxation for
finite, but small perturbations. For instance, upon a 2
K temperature jump to 206 K triphenyl phosphite ini-
tially relaxes more than one order of magnitude faster if
starting at 208 K than starting at 204 K. This lack of
mirror symmetry is reproduced even by simple models
(Bisquert, 2005). The nonlinearity derives from the fact
that the relaxation time of an out-of-equilibrium liquid –
a glass – depends not only on temperature, but also on
the so-called fictive temperature (Scherer, 1986; Hodge,
1994; Avramov, 1996): Going from 208 K to 206 K the
fictive temperature starts at 208 K and ends up at 206
K, which implies a faster relaxation than when the fictive
temperature starts at 204 K to end up at 206 K.

C. The Kauzmann paradox

Just below the melting temperature, the supercooled
liquid has significantly larger entropy than the crystal.
As the temperature is lowered, the liquid entropy usu-
ally drops much faster than the crystal entropy, how-
ever. Below a certain temperature TK termed the Kauz-
mann temperature, the liquid entropy by extrapolation
becomes lower than the crystal entropy. But how can a
liquid – which is disordered – have lower entropy than
the same-temperature crystal? In real life the glass tran-
sition intervenes and saves the situation (Fig. 5), and
TK is always identified by extrapolation. Since Tg is low-
ered by slower coolings, however, it should be possible –
at least in principle – to bring the liquid to equilibrium
below TK . This constitutes the paradox.

Simon (1930) first described this paradox for glyc-
erol. Kauzmann (1948) discussed it in general terms
and proposed the following solution: At deep supercool-
ing the rate of homogeneous crystal nucleation becomes
larger than 1/τ , implying that no well-defined equilib-
rium liquid state exists (Cavagna, Attanasi, and Loren-
zana, 2005). It is not clear why this would always happen
before TK is reached, though, unless the relaxation time
is bound to become infinite at TK .

The specific heat is usually regarded as a sum of two
contributions: a vibrational part which survives the glass
transition, and a configurational part which is zero in
the glassy phase (Goldstein, 1972). Similarly, the liq-
uid entropy is a sum of two contributions. If, as tradi-

tionally assumed, the vibrational entropy of the liquid is
close to that of the crystal, the configurational entropy
Sconf may be identified with the so-called excess entropy,
Sexc ≡ Sliq − Scryst. Thus Sconf becomes zero at TK ,
and it appears that something must happen here. One
possibility is that there is a phase transition to a state of
zero configurational entropy, an “ideal glass” (Gibbs and
DiMarzio, 1958; Cohen and Turnbull, 1959; Angell, 1968;
Anderson, 1979; Kirkpatrick, Thirumalai, and Wolynes,
1989). Another possibility is that the extrapolation is
not valid (Stillinger, Debenedetti, and Truskett, 2001).

The idea of an underlying true phase transition is at-
tractive. Even a simple two-level system, however, has
an entropy which, if measured at high temperatures, ex-
trapolates to zero at a finite temperature (Angell and
Rao, 1972; Matyushov and Angell, 2005). In fact, liquid
excess entropy data like those of Fig. 5 may be fitted by
statistical mechanical models involving just a handful of
energies (Goldstein, 1972). If the dynamics are described
by a standard master equation, such simple models are
also able to reproduce the observed hysteresis of the spe-
cific heat around the glass transition illustrated in Fig.
1(b) (Bisquert, 2005).

As mentioned, Sconf
∼= Sexc applies if the vibrational

entropies of crystal and supercooled liquid are approxi-
mately the same. This was the prevailing opinion until
recently, but it is now increasingly recognized that the
assumption Sconfig

∼= Sexc most likely is incorrect (Gold-
stein, 1976; Phillips et al., 1989; Johari, 2002, 2003).
In fact, there was always a good reason to be skeptical
towards the identification of liquid and crystalline vibra-
tional entropies: When the frequency is much larger than
1/τ , the sound velocity reflects the short-time scale elas-
tic properties where the liquid molecules basically just
vibrate around fixed positions. Consider the data of
Fig. 6, which are similar to high-frequency sound velocity
measurements of glass-forming liquids obtained by ultra-
sonic methods already in the 1950s and 1960s (Litovitz,
1959; Barton, 1972). The smaller the high-frequency
sound velocity c∞ is, the larger the vibrational entropy
is [Svib ∝ ln(1/c∞) – more on this later]. Figure 6 shows
that the high-frequency sound velocity is more temper-
ature dependent in the liquid phase than in the glass
phase. Usually the crystal and the glass are similar as
regards the temperature variation of the sound velocities.
Therefore the vibrational entropies of the crystal and the
supercooled liquid cannot be approximately the same.

How serious is the Kauzmann paradox? In view of the
above it appears that there may be no fundamental prob-
lem if the entropy of an equilibrium supercooled liquid at
some temperature were to become lower than that of the
corresponding crystal. An example of this is “inverse
melting,” where a liquid crystallizes upon heating and
the liquid phase consequently has lower entropy than the
crystalline (Mortensen, Brown, and Nordén, 1992; Still-
inger and Debenedetti, 2003).
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III. MODELS OF THE CONVENTIONAL WISDOM

All molecules of a viscous liquid have the thermal ve-
locities prescribed by the canonical ensemble, but virtu-
ally all motion goes into vibrations. In view of this it has
been suggested that a viscous liquid is to be regarded
more as “a solid that flows” than as a conventional liq-
uid (Dyre, 1999, 2005, 2006). This is consistent with the
long-standing assumption that viscous-liquid thermody-
namics may be separated into a vibrational and a con-
figurational part. The dynamics also separate into vi-
brations on the fast time scale and “inherent dynamics,”
i.e., jumps between potential energy minima on the long
time scale (Goldstein, 1969; Stillinger and Weber, 1983;
Schrøder et al., 2000; Sciortino, 2005).

An obvious question is: Given that silicates, alcohols,
molten salts, aqueous solutions, metallic melts have little
in common chemically, is there any reason to expect that
a general theory exists for the dynamics of glass-forming
liquids? One reason to be optimistic is the following.
As a general rule in physics, whenever a phenomenon is
characterized by a small dimensionless number, there is
a good chance that a simple, general description exists.6
If D is the molecular diffusion constant and ν = η/ρ
is the so-called dynamic viscosity (ρ is the density), we
define γ ≡ D/ν. In the high-temperature, less-viscous
phase one has γ ∼ 1 (Boon and Yip, 1980; Hansen and
McDonald, 1986). Upon cooling D decreases roughly as
1/η,7 while at the same time ν increases proportionally
to η. At the glass transition one finds γ ∼ 10−30, an
unusually small number in condensed matter physics.

From here on we focus on the second non: Why are
glass-forming liquids non-Arrhenius? The traditional
measure of non-Arrhenius behavior is the “fragility” m
defined (Plazek and Ngai, 1991; Böhmer et al., 1993;
Ruocco et al., 2004) by

m ≡ d log10 τ

d(Tg/T )

∣∣∣∣
Tg

. (7)

If the relaxation time prefactor of Eq. (4) is taken to be
10−13 s and the glass transition temperature is defined
by τ(Tg) = 103 s,8 Arrhenius behavior is characterized
by m = 16. Only a few glass formers have fragility below

6 A well-known example is the ideal gas law which applies to a
good approximation whenever r/λ� 1, where r is the molecule
size and λ the mean-free path.

7 According to the Stokes-Einstein relation the molecular diffusion
constant is proportional to the inverse viscosity, reflecting the
fact that a high viscosity impedes self motion. Researches of the
1990s have shown that the Stokes-Einstein relation is often vio-
lated in viscous liquids by 1-3 orders of magnitude (Diezemann
et al., 1998; Douglas and Leporini, 1998), but this interesting
fact is not important for the above very crude argument.

8 Since G∞ ∼ 109 Pa this approximately corresponds to defining
Tg by η(Tg) = 1012 Pa s.

25. Glycerol is intermediate with m ' 50, while, e.g., the
molten salt K3Ca2(NO3)7 has m ' 90. A high-fragility
liquid is decalin (m ' 150).

The stronger than Arrhenius behavior derives from
∆E increasing with decreasing temperature. An alter-
native measure of the degree of non-Arrhenius behav-
ior is provided by the “index” I = I(T ) (Schug, King,
and Böhmer, 1998; Granato 1999, 2002; Dyre and Olsen,
2004)

I ≡ −d ln∆E

d lnT
. (8)

I quantifies Arrhenius deviations in a way inspired by the
Grüneisen parameter (Kittel, 1996). A straightforward
calculation shows that the fragility is related to the index
by

m = 16
(
1 + I(Tg)

)
. (9)

The Arrhenius case has I = 0 and m = 16. If τ(T ) is
given by Eq. (6), the index is temperature independent,
I = n− 1. Typical indices of glass-forming liquids range
from 2 to 7. A theory of viscous liquid dynamics must
explain why the activation energy has such a relatively
strong temperature dependence.

A. The entropy model

The idea here is that the long relaxation times at low
temperatures are brought about by a dearth of config-
urations (Gibbs and DiMarzio, 1958; Adam and Gibbs,
1965). Assuming that molecular reorientations take place
cooperatively, Adam and Gibbs (1965) argued that the
minimum size of a cooperatively rearranging region is
determined by the requirement that it should contain
at least two different configurational states. As tem-
perature is lowered the cooperatively rearranging regions
grow. Assuming that the activation energy is propor-
tional to the region volume, the model predicts that
τ = τ0 exp(C/TSconf(T )) which implies a stronger than
Arrhenius behavior. If the identification Sconfig

∼= Sexc

is accepted and the Kauzmann paradox is formulated as
Sconf(T ) ∝ T − TK , the entropy model to leading or-
der implies the VFT expression Eq. (5) with T0 = TK

(Angell, 1997).
The entropy model connects dynamics to thermody-

namics by assuming that the fast increase of the relax-
ation time upon cooling reflects the existence of an un-
derlying second order phase transition to a state of zero
configurational entropy, an “ideal glass.” This is an at-
tractive scenario, especially to the generation of theorists
who grew up with the theory of critical phenomena of the
1970s and 80s (Wilson, 1983; Goldenfeld, 1992). For sev-
eral years the entropy model has dominanted the field to
the extent it defined a paradigm. There are, however,
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a number of problems with the model: 1) On the con-
ceptual level one might ask what the ideal glassy state
is. Since it is unique, a simple description of it would
be expected, but none has been proposed. 2) A further
conceptual problem is that model parameters typically
imply cooperatively rearranging regions containing just
4-8 molecules at the glass transition and even fewer at
higher temperatures (Yamamuro et al., 1998). This is
not enough to justify the assumption of cooperatively
rearranging regions acting independently of their sur-
roundings. 3) The assumption that the energy barrier
is proportional to the region volume is ad hoc. 4) The
entropy model’s experimental validation is based on as-
suming Sconf

∼= Sexc which as mentioned is problematic.
If the configurational entropy is a definite fraction of the
excess entropy (Martinez and Angell, 2001; Prevosto et
al., 2003; Corezzi, Comez, and Fioretto, 2004), the model
also predicts τ ∝ exp(C/TSexc), but it is not obvious why
this should be the case (Johari, 2002, 2003). 5) A recent
compilation of data led to the conclusion that the identity
T0
∼= TK , previously believed to give a good description

of the overall experimental situation, does not apply in
general (Tanaka, 2003).

B. Free-volume models

The basic idea here is that molecules need “free” vol-
ume in order to be able to rearrange. As the liquid
contracts upon cooling, less free volume becomes avail-
able. If the free volume per molecule is denoted by vf ,
the model prediction is τ = τ0 exp(C/vf ) (Cohen and
Turnbull, 1959; Grest and Cohen, 1981). There are sev-
eral mutually inconsistent free-volume models (Kovacs,
1963); the problem is that it is not possible to define free
volume rigorously. Cohen and collaborators defined it
as that part of the volume “which can be redistributed
without energy cost” and argued that this quantity goes
to zero at a finite temperature. This leads to the VFT
expression Eq. (5) if vf (T ) is expanded to first order.
Doolittle (1951) defined the free volume by subtracting
the molecular volume defined by extrapolating the liquid
volume to zero temperature, implying that vf → 0 only
when T → 0.

Free volume models are not popular because the relax-
ation time is not just a function of density ρ. Recent ex-
periments, which varied both temperature and pressure,
may be summarized into the scaling law: ∆E/kBT =
F (ρx/T ) where x and the function F are both nonuniver-
sal (Alba-Simionesco et al., 2004; Casalini and Roland,
2004).

C. Other models

The entropy model and the free-volume models link
the activation energy to a macroscopic observable. Be-
sides entropy and volume, a third class of models of this

kind takes energy as the controlling variable (Goldstein,
1972; Nemilov, 1978; Brawer, 1984, 1985; Bässler 1987;
Dyre, 1987; Bouchaud, 1992; Diezemann, 1997). In the
simplest versions it is assumed that thermal excitation
takes place to a specific barrier energy E0 (Goldstein,
1972; Brawer, 1984; Dyre, 1987; Bouchaud, 1992). If the
process is cooperative, the most likely energy of a rear-
ranging region is close to its average energy E(T ). This
implies that ∆E(T ) ∼= E0 − E(T ), so as temperature
is lowered, the activation energy increases. This model
implies too broad linear response loss peaks, however, un-
less the cooperatively rearranging regions are quite small
(Dyre, 1995). Thus, if energy is the relevant variable con-
trolling τ , a different route must be taken (Diezemann,
2005).

A first-principles approach is provided by the mode-
coupling theory that starts with Newton’s equations of
motion and after several nontrivial approximations ends
up with definite experimental predictions (Götze and
Sjögren, 1992; Sokolov, 1997; Das, 2004; Kob, 2004).
In ideal mode-coupling theory the dynamics are deter-
mined by static equilibrium averages, a most attractive
feature. The theory predicts a critical temperature be-
low which there is no ergodic phase. There are extensions
of mode-coupling theory which by taking activated pro-
cesses into account broaden the theory’s range of appli-
cability to lower temperatures. Nevertheless, while the
mode-coupling theory is believed to correctly explain the
onset of viscous behavior upon cooling, the consensus is
that it breaks down well before the glass transition is
approached (Dreyfus and Pick, 2001).

Many other ways to understand the non-Arrhenius
property of glass-forming liquids have been proposed,
e.g., the energy landscape approach (Goldstein, 1969;
Stillinger, 1995; Debenedetti and Stillinger, 2001; Wales,
2003; Sciortino, 2005), models with trivial thermodynam-
ics, but nontrivial dynamics (Fredrickson, 1988; Pitts,
Young, and Andersen, 2000; Garrahan and Chandler,
2002; Ritort and Sollich, 2003; Pedersen et al., 2006), the
random first order transition theory (Kirkpatrick, Thiru-
malai, and Wolynes, 1989; Xia and Wolynes, 2000), the
entropic barrier hopping theory (Schweizer and Saltz-
man, 2004), and the theory of frustration-limited do-
mains (Tarjus et al., 2005).

Most models of the conventional wisdom predict that
the viscous slowing down is a consequence of an underly-
ing or narrowly avoided phase transition (Sethna, 1988;
Kivelson et al., 1995). Looking at data like those of Fig.
4, however, one might ask with Occam’s razor in mind:
Is the existence of an underlying phase transition com-
pelling?

IV. ELASTIC MODELS: CONNECTING THE FAST AND
SLOW DEGREES OF FREEDOM

If V is volume and p pressure, the (adia-
batic/isothermal) bulk modulus K is defined by K =
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−V (∂p/∂V ) = −∂p/∂(lnV ). For systems with posi-
tive thermal expansion the adiabatic bulk modulus is
higher than the isothermal because there is heating asso-
ciated with an adiabatic compression. The adiabatic and
isothermal shear moduli, on the other hand, are always
identical.

Any liquid is solid-like when probed on a sufficiently
short time scale; its short-time elastic properties are
characterized by the instantaneous moduli G∞ and K∞.
When the relaxation time is, e.g., one second or longer, it
may be difficult to imagine that relaxation processes can
have any relation to the elastic properties on the picosec-
ond time scale. Surely, one cannot predict the rate of
global climate variations over millions of years from ob-
servations of the world’s weather collected over a single
minute. Nevertheless, the barrier transition for a “flow
event” (a molecular rearrangement) does take place on a
very fast time scale, so the height of the energy barrier
could well be determined by liquid properties which can
be probed on this time scale. The “elastic” models all
embody this idea one way or the other.

A. The harmonic approximation

The first paper suggesting that the activation energy
is determined by short-time elastic properties appears to
be a little known work from the time of World War II
by Tobolsky, Powell, and Eyring (1943) basically argu-
ing as follows. The viscosity is determined by the rate
of molecules moving from one equilibrium position (en-
ergy minimum) to another. In the schematic situations
of Fig. 7 the energy barrier to be overcome is clearly
overestimated by the intersection of the parabolic extrap-
olations from the minima. Comparing the situations of
Figs. 7(a) and (b), however, the barrier is overestimated
by the same numerical factor. Thus the estimated barrier
is proportional to the actual barrier (a only changes in-
significantly). According to rate theory (Kramers, 1940)
the average time between jumps, τ , is basically a mi-
croscopic time τ0 divided by the statistical mechanical
probability to find the system around the energy max-
imum. In the harmonic approximation the energy is
quadratic in the “reaction coordinate;” this leads to a
Gaussian statistical mechanical probability distribution
∝ exp(−x2/2〈x2〉) where x is the reaction coordinate de-
viation from its value at the minimum and 〈x2〉 is the vi-
brational thermal mean-square average around one min-
imum. Thus for some numerical factor of order one λ1,
which is the proportionality constant between actual and
estimated barrier height, if a is the average intermolecu-
lar distance, the harmonic approximation leads to

τ = τ0 exp
(

λ1
a2

〈x2〉

)
. (10)

Comparing to Eq. (4) the activation energy is given by

∆E = λ1 kBT
a2

〈x2〉
. (11)

The vibrational mean-square displacement 〈x2〉 de-
pends on temperature. For a harmonic system the in-
termolecular potential is parabolic and classical equipar-
tition implies that 〈x2〉 ∝ T , so ∆E is temperature inde-
pendent. For most glass-forming liquids 〈x2〉 decreases
faster than T upon cooling, resulting in an activation en-
ergy that increases upon cooling. During the last 20 years
Eq. (10) or related expressions were derived and dis-
cussed by a number of authors in different contexts (Hall
and Wolynes, 1987; Buchenau and Zorn, 1992; Sokolov
et al., 1994; Novikov et al., 1996; Roland and Ngai, 1996;
Teeter et al., 2001; Starr et al., 2002; Bordat et al., 2004;
Ngai, 2004). Equation (10) has also been used for diffu-
sion in crystals (Flynn, 1968; Köhler and Herzig, 1988).

Returning to the 1943 paper of Eyring and collabo-
rators, these authors further reasoned that the relevant
potential is that resisting shear deformation, implying
that ∆E ∝ G where G is the “liquid shear modulus.”
A liquid has zero dc shear modulus, and clearly the au-
thors referred to the instantaneous shear modulus, lead-
ing to the following expression (where λ2 ∼ 1 and the
microscopic volume a3 simply comes from a dimensional
analysis):

∆E = λ2 a3 G∞ . (12)

It has been known for many years that G∞ is usually
much more temperature dependent in viscous liquids
than in crystals, glasses or less-viscous liquids, and that
G∞ always increases when temperature is lowered (Bar-
low et al., 1967; Harrison, 1976; Lamb, 1978).

B. The models of Mooney and Bueche

Mooney (1957) assumed that a local molecular rear-
rangement, a “quantum of liquid flow,” comes about
when thermal fluctuations generate a local expansion ex-
ceeding a certain critical value. He estimated how fre-
quently such an expansion occurs by calculating the prob-
ability that thermal longitudinal sound waves by chance
interfere to create a critically expanded local volume. If
c∞ is the high-frequency longitudinal sound velocity and
m the molecular mass, Mooney’s calculation results in
(where λ3 ∼ 1)

∆E = λ3 mc2
∞ . (13)

Bueche (1959) considered viscous liquid flow along sim-
ilar lines, arguing as follows. A molecule is regarded
as surrounded by a spherical layer of nearest neighbors,
which is surrounded by a second shell of molecules, and
so on. The shell radii fluctuate thermally, but the shells
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are assumed to stay spherical. “If all these concentric
shells should vibrate outward in phase, then the inner-
most shell would expand greatly. This would leave the
central molecule in a rather large hole and it would move
into a new position.” Bueche’s calculation is less reli-
able than Mooney’s, but the physical pictures are similar
in two crucial assumptions: 1) The free-volume-like as-
sumption that flow events only take place when there is
a local, temporary density decrease; 2) The probability
of this happening is determined by the short-time elastic
properties of the liquid.

C. Nemilov’s approach

Nemilov (1968, 1992, 1995) derived Eq. (12) by
substituting expressions for the viscosity and relax-
ation time into the Maxwell relation Eq. (2). He
used Eyring’s (1936) expession for the viscosity: η =
(h/a3) exp(∆E/kBT ) where h is Planck’s constant, and
for the relaxation time he used the Dushman (1920) the-
ory of unimolecular reaction velocities with τ identified
to the inverse reaction rate: τ = (h/∆E) exp(∆E/kBT ).
The result is Eq. (12) with λ2 = 1.

D. The shoving model

As shown in two beatiful papers (Widom, 1967; Chan-
dler, Weeks, and Andersen, 1983) many liquid proper-
ties derive simply from the fact that the intermolecular
forces consist of short-ranged, harsh repulsions and long-
ranged, much weaker attractions. Because of the harsh
repulsion it is reasonable to assume that, unless extra
room is temporarily created, a molecular rearrangement
requires very high energy. The shoving model assumes
that the activation energy is dominated by the work done
to shove aside the surroundings (Dyre, Olsen, and Chris-
tensen, 1996).

As a simple model (Fig. 8), suppose that the region
of rearranging molecules is spherical and that the radius
must increase by ∆r before a flow event has a fair chance
of taking place. Quite generally, the probability of a ther-
mal fluctuation is the frequency (i.e., how often the fluc-
tuation happens per unit time) times the average time
spent at the fluctuating state. Since the time spent close
to the barrier maximum is independent of barrier height,
the frequency is proportional to the probability of finding
the system around the barrier maximum.

According to statistical mechanics the probability of a
thermal fluctuation resulting in a local density decrease is
exp(−W/kBT ), where W is the reversible work done on
the system by external forces to bring about the required
local expansion. To calculate the probability of this hap-
pening in the fixed structure of the liquid molecules vi-
brating around a given potential energy minimum, the
system is regarded as a solid with elastic constants G∞
and K∞. W is calculated by assuming mechanical equi-

librium, and the small displacements in the surroundings
are calculated by use of standard linear-elasticity theory.
The calculation of the work done to enlarge a sphere in
an isotropic solid is a classical exercise of elasticity theory
(Landau and Lifshitz, 1970). The result is that, if r is the
distance to the center, the (radial) displacement varies as
r−2. This is a pure shear displacement, i.e., not associ-
ated with any density changes. What happens in the
surroundings of a flow event is the analogue of Hilbert’s
hotel, the infinite hotel that even when totally occupied
can always host an extra guest (simply by asking each
guest to move from room n to n + 1).

Since the displacement field induces no density changes
in the surroundings, the relevant elastic constant is G∞.
The work is proportional to G∞ because the force is, thus
leading to Eq. (12). The shoving model philosophy dif-
fers from that of Mooney (1957), who argued that “con-
centrating free volume in one region happens only at the
expense of producing higher density in other regions.”

To summarize, the three assumptions of the shoving
model are:

• The activation energy is elastic energy;

• This elastic energy is located in the surroundings
of the flow event;

• The elastic energy is shear elastic energy.

How realistic are these assumptions? That the energy
barrier is mainly associated with the relatively small dis-
placements of the surrounding molecules, may be jus-
tified as follows (Dyre, 1998). The energy cost asso-
ciated with the rearranging molecules themselves is a
function of the expansion of their sphere, f(∆r). Be-
cause of the harsh repulsions, f(∆r) is expected to de-
crease very much if ∆r is just slightly increased from zero.
Mathematically, this translates into |d ln f/d ln∆r| � 1.
The “shoving” work on the surroundings is a quadratic
function, A(∆r)2/2. Minimizing the sum of these two
terms in order to identify the optimal barrier leads to
A∆r + f ′(∆r) = 0. The ratio between the shoving
work and the inner energy cost is A(∆r)2/2f(∆r) =
|d ln f/d ln∆r|/2 � 1; thus the shoving work gives the
dominant contribution to the activation energy.

E. How do the elastic models compare to experiment?

Elastic models have been compared to experiment in
a number of ways, but more work is needed before a
conclusion can be reached regarding their overall ability
to describe the non-Arrhenius relaxation time.

Nemilov (1992, 1995) compared Eq. (12) to experi-
ment by arguing as follows. Since the structure freezes
at Tg, the glass shear modulus (which varies only a little
with temperature) is approximately G∞(Tg). The glass
transition takes place when τ ∼ 103 s and the prefac-
tor of Eq. (4) is given by τ0 ∼ 10−13 s, so the ratio
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∆E/kBTg is a universal constant at Tg. Thus for chemi-
cally closely related glasses, i.e., with same intermolecu-
lar distance a, Eq. (12) predicts that Tg is proportional to
the glass shear modulus G (Sanditov, Sangadiev, and Ko-
zlov, 1998). For each of four types of glasses (silica-based
optical glasses, germanate glasses, BeF2-based glasses,
and chalcogenide glasses) Nemilov (1992) indeed found a
linear relationship between Tg and G, though not always
a proportionality. Figure 9 shows recent data along sim-
ilar lines for bulk metallic glasses (Wang, 2005), showing
a linear relation between Tg and Young’s modulus E (de-
fined by 1/E = 1/(3G) + 1/(9K) (Landau and Lifshitz,
1970)). A related line of reasoning notes that, if λ3 of Eq.
(13) is a universal constant, Tg should be proportional to
mc2

∞(Tg). Heuer and Spiess (1994) showed that this ap-
plies to a good approximation if c∞(Tg) is identified with
the glass sound velocity.

When Eq. (11) is compared to experiment it is com-
mon to subtract the crystalline vibrational mean square
displacement extrapolated into the liqiuid regime. After
this procedure the equation is able to describe a num-
ber of data (Buchenau and Zorn, 1992; Kanaya et al.,
1999; Magazu et al., 2004; Cornicchi, Onori, and Pacia-
roni, 2005). Thus it appears that Eq. (11) somewhat
underestimates the degree of non-Arrhenius behaviour.

The shoving model was compared to data on molecular
liquids obtained by a piezo-ceramic method (Christensen
and Olsen, 1995) optimized for measuring the high shear
moduli of viscous liquids approaching Tg (Dyre, Olsen,
and Christensen, 1996; Jakobsen, Niss, and Olsen, 2005).
This method makes it possible to measure both the vis-
cosity and the frequency-dependent shear modulus up to
50 kHz. The results (Fig. 10) show that log η is a lin-
ear function of G∞(T )/T with a physically reasonable
prefactor, as predicted by Eq. (12).

It is not obvious, however, that frequencies in the 100
kHz range are high enough to ensure that G∞ is mea-
sured. Transverse Brillouin light scattering gives data in
the GHz range, but even these data may be affected by
possible relaxation processes. Here one finds that the log-
log temperature derivative of G∞ (activation energy in-
dex, Eq. (8)) is often (but not always) somewhat smaller
than required to fit experiment.

V. COMMON FEATURES OF THE ELASTIC MODELS

A. Equivalence of the elastic models in the simplest
approximation

The fluid sound velocity s given by the well-known
expression c2 = ∂p/∂ρ, where the derivative exists in
adiabatic and isothermal versions. In most cases the
adiabatic version applies because the system does not
have time to thermalize locally when a sound wave
passes by. In terms of the adiabatic bulk modulus
K = −∂p/∂(lnV ) = ∂p/∂(ln ρ) the sound velocity is
given by ρc2 = K.

Sound waves in ordinary fluids are longitudinal, i.e.,
with displacement in the direction of the propagating
wave. In solids there are also transverse (shear) waves,
waves that do not result in density changes. The sound
velocity of a shear wave is given by ρc2 = G. The sound
velocity of a longitudinal wave in a solid is given by
ρc2 = K + 4G/3, which is a generalization of the fluid
G = 0 case (Harrison, 1976).

The fluid “identity” G = 0 applies only at frequencies
much below 1/τ . For highly viscous liquids this leaves
a broad range of frequencies with a significant non-zero
shear modulus, and at high frequencies (ωτ � 1) the
sound velocities are given by the solid expressions. Thus
if “t” and “l” refer to transverse and longitudinal sound
waves respectively and K∞ is the high-frequency adia-
batic bulk modulus, the high-frequency sound velocities
are given by

ρ c2
t,∞ = G∞

ρ c2
l,∞ = K∞ +

4
3
G∞ (14)

Since ρ = m/a3, Eq. (14) implies that Eqs. (12) and
(13) are equivalent if the instantaneous shear and bulk
moduli are proportional in their temperature variations.

A connection to Eq. (11) is established by noting that
for a one-dimensional potential U(x) = U0 +(1/2)mω2

0x2

the classical equipartition theorem, 〈U〉 = U0+(1/2)kBT ,
implies that mω2

0〈x2〉 = kBT . Generally, if vibrations
are modelled harmonically by having a single force con-
stant written as mω2

0 , one finds by expanding on a com-
plete set of waves that 〈x2〉 ∝ kBT/mω2

0 , thus a2/〈x2〉 ∝
ma2ω2

0/kBT . In these relations the characteristic fre-
quency ω0 is effective and may depend on temperature.
In the “single-force-constant model” the transverse and
longitudinal sound velocities are proportional; by dimen-
sional arguments one concludes that both are given by
c∞ ∝ aω0. This implies that a2/〈x2〉 ∝ mc2

∞/kBT . To
summarize, in the single-force-constant model Eqs. (11),
(12), and (13) are equivalent in their temperature varia-
tions:

∆E

kBT
∝ mc2

∞
kBT

∝ a3G∞

kBT
∝ a2

〈x2〉
. (15)

If the proportionality constants are universal, Eq. (15)
implies a Lindemann criterion for the glass transition:
Recall that the Lindemann (1910) criterion is the rule
that melting of a crystal takes place when the aver-
age vibrational displacement exceeds 10% of the nearest-
neighbor distance. As noted already, at the glass tran-
sition the activation energy relative to Tg is a universal
constant. Thus, Eq. (15) implies that the ratio a2/〈x2〉
is a universal constant at Tg, which is a Lindemann cri-
terion for the glass transition.

The glass transition Lindemann criterion is supported
by data: When glasses are prepared by standard slow
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cooling, the glass moduli usually do not differ much from
those of the crystal. This means that, if the classical har-
monic approximation 〈x2〉 ∝ T applies in both the crys-
talline and glassy phases, the proportionality constant is
roughly the same for both phases. Thus the Lindemann
criterion implies that Tg is a definite fraction of the melt-
ing temperature Tm. This indeed applies, since Tg/Tm

in the vast majority of cases varies between 0.5 and 0.8.
In particular, the glass transition Lindemann criterion
explains why one never observes Tg � Tm.

The elastic models offer a simple scenario for explain-
ing the glass transition Lindemann criterion, but this cri-
terion has also been arrived at from arguments based
on: excess low-energy vibrational states in glasses (Ma-
linovsky and Novikov, 1992), the existence of a single
energy scale (Heuer and Spiess, 1994), percolation the-
ory (Novikov et al., 1996), energy landscape arguments
(Onuchic, Luthey-Schulten, and Wolynes, 1997), free-
volume theory (Sanditov and Sangadiev, 1998; Starr et
al., 2002; Berry and Smirnov, 2005), random first-order
transition theory (Xia and Wolynes, 2000), computer
simulations (Starr et al., 2002; Bordat et al., 2004), or
mode-coupling theory (Novikov and Sokolov, 2003).

B. The thermodynamic connection

The entropy model relates dynamics to thermodynam-
ics: The larger the temperature variation of the configu-
rational entropy is, the more fragile the liquid is. Since
the specific heat is given by c = dS/d lnT , the entropy
model predicts that fragile liquids have a larger config-
urational contribution to the specific heat than strong
liquids. If the identification Sconf

∼= Sexc is accepted,
fragile liquids should have larger excess specific heat than
strong liquids. This is traditionally reported as the gen-
eral trend (Angell, 1985; Mohanty, 1995; Ito, Moynihan,
and Angell, 1999; Xia and Wolynes, 2000), but even this
conventional wisdom has now been challenged (Ngai and
Yamamuro, 1999; Huang and McKenna, 2001).

As mentioned, the identification Sconf
∼= Sexc is prob-

lematic. This brings into question the experimental sup-
port for the entropy model, but why then do fragility
and excess heat capacity appear to correlate? The good
news is that the elastic models give rise to a correlation
of the reported kind (Granato, 2002). To see this, con-
sider first a one-dimensional harmonic oscillator, U(x) =
U0+(1/2)mω2

0x2. The entropy is the logarithm of the sta-
tistical mechanical “uncertainty”

√
〈x2〉: In one dimen-

sion S = kB ln(
√
〈x2〉) + Constant. Since c = dS/d lnT

we find for the vibrational specific heat: 2cvib/kB =
d ln〈x2〉/d lnT . For the crystalline state one expects al-
most temperature independent elastic constants, imply-
ing that 2ccryst/kB = 1, so the excess vibrational specific
heat is given by 2cexc,vib/kB = d ln(〈x2〉/T )/d lnT . From
Eqs. (8) and (11) we conclude that, since the tempera-
ture dependence of a is insignificant,

cexc,vib

ccryst
= I . (16)

Thus the elastic models predict that fragile liquids have
larger excess vibrational specific heat than strong liquids.

The bad news is that the numbers do not fit exper-
iment. The measured excess heat capacity has also a
configurational contribution, so the calculation implies
that cexc/ccryst > I. As an example, for ortho-terphenyl
an excess heat capacity is predicted that is at least twice
as large as ccryst, whereas the measured number is below
one. Generally, Eq. (16) predicts a much too large excess
heat capacity. In conclusion, the single-force-constant
model is too simple to account for experiment.

This means that the elastic models are not strictly
equivalent. The overwhelming contribution to the vi-
brational specific heat, however, comes from excitations
with wavelength comparable to a, whereas, e.g., c∞ and
G∞ are dominated by long-wavelength excitations. Thus
it is possible that the proportionalities of Eq. (15) in fact
do apply to a good approximation, but that the phonon
dispersion relation is slightly “deformed” at high frequen-
cies upon cooling. Such effects of temperature changes
are well known, even for single crystals (Wallace, 1972).

The above conclusions were reached assuming classical
mechanics. Since the Debye temperature (Kittel, 1996)
is generally lower, but not much lower than Tg, phonons
should properly be treated quantum mechanically, a fact
which has been given surprisingly little attention. This
to some extent invalidates Eq. (16).

C. The relation to point-defect thermodynamics and
solid-state diffusion

Because the single-force-constant model is too simple,
one cannot realistically expect that G∞ ∝ K∞ in their
temperature variations. This brings into question how
accurate the proportionalities of Eq. (15) are.

Interestingly, by far the most important temperature
variation is that of the shear modulus: To calculate 〈x2〉
one expands the vibrations on a complete set of normal
modes. In a disordered structure these are not phonons
with a well-defined wavelength and direction of propa-
gation (Binder and Kob, 2005). Nevertheless, as a first
approximation one might imagine describing the mean-
square displacement in terms of transverse and longitu-
dinal waves. Because there are twice as many transverse
as longitudinal waves, the harmonic approximation Eq.
(11) implies that 1/∆E ∝ 2/G∞ + 1/(K∞ + 4G∞/3)
(Dyre and Olsen, 2004). If temperature variations are
quantified in terms of log-log derivatives, at least 92% of
the index I of Eq. (8) derives from the temperature vari-
ation of G∞ and at most 8% from that of K∞ (Dyre and
Olsen, 2004). Thus whether or not G∞(T ) and K∞(T )
are proportional, Eq. (15) applies to a good approxima-
tion if c∞ is taken to be the high-frequency transverse
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sound velocity. The dominance of the shear modulus9 in
the harmonic approximation comes from three factors: 1)
There are two transverse phonons for each longitudinal
one; 2) G∞ plays a role also for the longitudinal phonons;
3) Longitudinal phonons are associated with larger elas-
tic constants than the transverse, thus giving less than
1/3 contribution to 〈x2〉.

The elastic models involve assumptions and reasoning
which have a long history in the field of point defects
in crystals (Flynn, 1968; Teodosiu, 1982; Varotsos and
Alexopoulos, 1986; Alexander, 1998; Kraftmakher, 1998;
Faupel et al., 2003); the only new thing is the unusu-
ally strong temperature variation of the elastic constants
of viscous liquids. For instance, the Zener (1942) strain
model assumes that most of the energy of a solid de-
fect is elastic energy in its surroundings, and the shoving
model derivation is similar to that of the Anderson-Stuart
(1954) theory of ionic conduction in solids. A futher con-
nection to conventional solid-state defect theory comes
from noting that vacancy-formation enthalpies scale with
the melting temperature (Doyama and Koehler, 1976),
and that these enthalpies are proportional to the bulk
modulus (Varotsos and Alexopoulos, 1986). When com-
bined with the elastic model prediction that Tg scales
with the glass moduli and the empirical fact that glass
and crystal moduli are usually similar, the elastic mod-
els imply that the glass transition temperature must scale
with the melting temperature. This is universally true,
as discussed above in connection with the glass transition
Lindemann criterion.

VI. RECENT DEVELOPMENTS

The last few years have revealed unexpected connec-
tions between the fast and slow degrees of freedom of
glass-forming liquids. Whether or not these new findings
are eventually explained in terms of elastic models, they
serve to emphasize that the starting point of these models
– the fast-slow connection – is not at all unreasonable.

Scopigno et al. (2003) reported a correlation be-
tween (liquid) fragility and properties of the glassy phase.
These authors used inelastic X-ray scattering, the impres-
sive technique whereby energy changes of X-rays (keV)
are measured with meV resolution. If the Brillouin line
intensity is integrated over frequency, the ratio of the cen-
tral line contribution to the entire intensity at long wave-
lengths and low temperatures varies as 1/(1 + αT/Tg).
Scopigno et al. found that α is proportional to the
fragility. Buchenau and Wischnewski (2004) noted that,
if the above expression applies up to Tg, α equals the ra-

9 “Shear dominance” appears to be a fairly general rule according
to which, whenever a physical quantity depends on both bulk
and shear moduli, the dependence of the shear modulus is by far
the most important (Rehn et al., 1974; Johnson, 1988; Granato,
1992; Dyre, 2004a).

tio between the vibrational (short-time) and relaxational
(long-time) contributions to the compressibility of the
liquid phase just above Tg. Since the compressibility is a
measure of density fluctuations (Hansen and McDonald,
1986; Barrat and Hansen, 2003), the larger the fragility
is, the larger is the fraction of vibrational to relaxational
density fluctuations in the equilibrium liquid.

Novikov and Sokolov (2004) showed that the glass
Poisson ratio correlates with the liquid fragility (Dyre,
2004b). Recall that Poisson’s ratio is the ratio of trans-
verse expansion to longitudinal contraction when a solid
is compressed in one direction. Most materials have a
Poisson ratio of between 0, for which no lateral expansion
occurs, and 0.5, for which the volume is kept constant.
Cork has a Poisson ratio close to 0 (which conveniently
implies that there is little lateral expansion when a wine
bottle is corked), most steels are around 0.3, and rub-
ber is close to 0.5. The Poisson ratio is larger the larger
K/G is. It now appears that for glasses K/G is larger,
the larger the fragility of the glass-forming liquid is. At
the glass transition the structure freezes and the high-
frequency elastic constants K∞ and G∞ transform into
the glass elastic constants K and G. Thus the Novikov-
Sokolov correlation may be formulated as an observation
referring only to the liquid phase, namely that fragility
correlates with K∞/G∞ (Novikov, Ding, and Sokolov,
2005).

The elastic models deal with equilibrium viscous liq-
uid dynamics, but the idea that the activation energy
is proportional to an elastic modulus may also be ap-
plied to describe aging just below Tg (Olsen, Dyre, and
Christensen, 1998). Granato and Khonik (2004) formu-
lated a theory for aging of bulk metallic glasses based
on ∆E ∝ G, where G is the glass shear modulus. This
theory explains the observation that during aging the ef-
fective glass phase viscosity increases as a linear function
of time, ηeff = A+Bt. Johnson and Samwer (2005) devel-
oped a model for plastic yielding of metallic glasses where
the activation energy for a “shear transformation zone”
depends on the shear stress σ and goes to zero at a crit-
ical stress σc in the following way: ∆E ∝ G(σc − σ)3/2.
This expression generalizes Eq. (12) to deal with plastic
flow. Experiments on 30 bulk metallic glasses confirm
the model.

VII. OUTLOOK

Contrary to what is often stated, the liquid-glass tran-
sition is no big mystery – it is a falling-out-of-equilibrium
of a kind which inevitably happens to any system that
is cooled faster than its temperature-dependent internal
equilibration time. The scientific challenge is to under-
stand the viscous liquid phase above Tg.

It is not obvious that any universal theory for the tem-
perature dependence of the viscous liquid relaxation time
exists. And if such a theory does exist, it is not obvious
that the activation energy relates to any macroscopic
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quantity. Nevertheless, these two features are shared
by four classes of phenomenological models, where the
stronger than Arrhenius behavior is a consequence of the
fact that:

1. For the entropy model: The configurational entropy
decreases with decreasing temperature;

2. For the free-volume models: The free volume de-
creases with decreasing temperature;

3. For the energy-based models: The energy decreases
with decreasing temperature;

4. For the elastic models: The short-time elastic con-
stants increase with decreasing temperature.

For the first three model classes the activation energy is
controlled by a difference of quantities; this is the only
possibility for deriving activation energies that vary suf-
ficiently with temperature from S(T ), V (T ), or E(T ).
For the elastic models, on the other hand, there is no
subtraction in the expression for the activation energy.

Elastic models are conceptually related to the free-
volume models by the assumption that the activation en-
ergy is determined by a physical quantity which can be
measured on a short time scale (configurational entropy
cannot be determined by a fast measurement). More-
over, several elastic models are based on the free-volume
assumption that a temporary local density decrease is
needed for a flow event. On the other hand, elastic mod-
els have the property that the fragility correlates with the
excess specific heat in common with the entropy model.

In elastic models the excess vibrational specific heat
is larger, the more nonlinear the vibrational 〈x2〉 is as a
function of temperature, i.e., the more anharmonic the
system is on the short time scale. Thus vibrational anhar-
monicity (Angell, 1995) is a central ingredient of elastic
models. At high pressure one expects the potential to
become less anharmonic, so the elastic models are con-
sistent with the finding that fragility generally decreases
with increasing pressure (Casalini and Roland, 2005).

It is too early to tell whether or not elastic models give
the basically correct explanation of the non-Arrhenius
viscosity. If this is the case there are several notable
conclusions:

• Viscous liquid dynamics relate to the broad, clas-
sical branches “solid-state diffusion” and “thermo-
dynamics of point defects in solids.”

• Viscous liquid slowing down is not a manifestation
of the approach to a nearly-avoided or unreachable
phase transition where the relaxation time becomes
infinite, and the slowing down is not caused by a
diverging length scale.

• Similarly, the liquid-glass transition has little in
common with either the ergodic-nonergodic tran-
sitions of various lattice models (Pitts, Young, and
Andersen, 2000) and ideal mode-coupling theory,

or with the jamming transition of granular media
(D’Anna and Gremaud, 2001).

• The activation energy controlling aging of the
glassy phase may be monitored directly, e.g., by
high-frequency sound velocity measurements. This
could make it easier to predict and control glass
annealing.

For a number of reasons the study of viscous liquids
approaching the glass transition is likely to remain an
exciting branch of condensed-matter physics for several
years to come: 1) The most basic problems are unsolved;
2) Computers are still too slow for the secrets of viscous
liquid dynamics to be revealed by brute force simulations;
3) There is a small, dimensionless number characterizing
viscous liquids just above the glass transition (∼ 10−30),
indicating that a simple and general theory for viscous
liquid dynamics may exist. – In the opinion of the author,
although the research field is still open to new theoretical
developments and even simple phenomenological model-
ing, future breakthroughs are likely to come from careful
and accurate experiments.
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Löffler, J. F., 2003, “Bulk metallic glasses,” Inter-
metallics 11, 529-540.

Lunkenheimer, P., U. Schneider, R. Brand, and A.
Loidl, 2000, “Glassy dynamics,” Contemp. Phys. 41,
15-36.

Magazu, S., G. Maisano, F. Migliardo, and C. Mon-
delli, 2004, “Mean-Square Displacement Relationship in
Bioprotectant Systems by Elastic Neutron Scattering,”
Biophys. J. 86, 3241-3249.

Malinovsky, V. K., and V. N. Novikov, 1992, “The
nature of the glass transition and the excess low-energy
density of vibrational states in glasses,” J. Phys.: Condens.
Matter 4, L139-L143.

Martinez, L.-M., and C. A. Angell, 2001, “A ther-
modynamic connection to the fragility of glass-forming
liquids,” Nature 410, 663-667.

Matyushov, D. V., and C. A. Angell, 2005, “Two-
Gaussian excitations model for the glass transition,” J.
Chem. Phys. 123, Art. No. 034506.

Maxwell, J. C., 1867, “On the dynamical theory of
gases,” Phil. Trans. R. Soc. London, 157, 49-88.



18

Mazurin, O. V., 1977, “Relaxation phenomena in
glass,” J. Non-Cryst. Solids 25, 129-169.

Mohanty, U., 1995, “Supercooled liquids,” in Advances in
Chemical Physics, Vol. 89, edited by I. Prigogine and S.
A. Rice (Wiley, New York), pp. 89-158.

Mooney, M., 1957, “A theory of the viscosity of a
Maxwellian elastic liquid,” Trans. Soc. Rheol. 1, 63-94.

Mortensen, K., W. Brown, and B. Nordén, 1992, “Inverse
melting transition and evidence of three-dimensional
cubatic structure in a block-copolymer micellar system,”
Phys. Rev. Lett. 68, 2340-2343.

Moynihan, C. T., A. J. Easteal, J. Wilder, and J.
Tucker, 1974, “Dependence of the glass transition temper-
ature on heating and cooling rate,” J. Phys. Chem. 78,
2673 - 2677.

Nemilov, S. V., 1968, “Kinetics of elementary pro-
cesses in the condensed state. II. Shear relaxation and the
equation of state for solids,” Russ. J. Phys. Chem. 42,
726-729.

Nemilov, S V., 1978, “Valence configurational theory
and its experimental basis for viscous flow in supercooled
glass-forming liquids,” Sov. J. Glass Phys. Chem. 4,
113-129.

Nemilov, S. V., 1992, “Viscous flow of glasses corre-
lated with their structure. Application of the rate theory,”
Sov. J. Glass Phys. Chem. 18, 1-27.

Nemilov, S. V., 1995, Thermodynamic and kinetic
aspects of the vitreous state (CRC, Boca Raton, FL).

Ngai, K. L., 2004, “Why the fast relaxation in the
picosecond to nanosecond time range can sense the glass
transition,” Philos. Mag. 84, 1341-1353.

Ngai, K. L., and O. Yamamuro, 1999, “Thermody-
namic fragility and kinetic fragility in supercooling liquids:
A missing link in molecular liquids,” J. Chem. Phys. 111,
10403-10406.

Novikov, V. N., Y. Ding, and A. P. Sokolov, 2005,
“Correlation of fragility of supercooled liquids with elas-
tic properties of glasses,” Phys. Rev. E 71, Art. No. 061501.

Novikov, V. N., E. Rössler, V. K. Malinovsky, and
N. V. Surovtsev, 1996, “Strong and fragile liquids in
percolation approach to the glass transition,” Europhys.
Lett. 35, 289-294.

Novikov, V. N., and A. P. Sokolov, 2003, “Universal-
ity of the dynamic crossover in glass-forming liquids: A
‘magic’ relaxation time,” Phys. Rev. E 67, Art. No. 031507.

Novikov, V. N., and A. P. Sokolov, 2004, “Poisson’s
ratio and the fragility of glass-forming liquids,” Nature
431, 961-963.

Olsen, N. B., J. C. Dyre, and T. Christensen, 1998,
“Structural relaxation monitored by instantaneous shear
modulus,” Phys. Rev. Lett. 81, 1031-1033.

Onuchic, J. N., Z. Luthey-Schulten, and P. G. Wolynes,
1997, “Theory of protein folding: The energy landscape
perspective,” Ann. Rev. Phys. Chem. 48, 545-600.

Owen, A. E., 1985, “The glass transition,” in Amor-
phous Solids and the Liquid State, edited by N. H. March,
R. A. Street, and M. Tosi (Plenum, New York), pp. 395-432.

Pedersen, U. R., T. Hecksher, J. C. Dyre, and T.
B. Schrøder, 2006, “An energy landscape model for
glass-forming liquids in three dimensions,” e-print cond-
mat/0511147 [J. Non-Cryst. Solids, to appear September
2006].

Petrie, F., 1925, “Glass found in Egypt,” Trans. British
Newcomen society 5, 72-76.

Phillips, J. C., 1996, “Stretched exponential relax-
ation in molecular and electronic glasses,” Rep. Progr.
Phys. 59, 1133-1207.

Phillips, W. A., U. Buchenau, N. Nücker, A.-J. Di-
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Figures

FIG. 1 (a): Volume of Selenium measured during cooling
from the liquid phase. Around 30 degrees Centigrade the ex-
pansivity decreases to a value close to that of the crystalline
state; this is the glass transition. At slower cooling the glass
transition takes place at a slightly lower temperature (adapted
from Owen, 1985 (using data of Dzhalilov and Rzaev, 1967)
with kind permission of Springer Science and Business Me-
dia). (b): Schematic drawing of the enthalpy H and specific
heat CP by cooling from the liquid phase and subsequently re-
heating (the enthalpy is calculated by integrating the specific
heat with respect to T). On reheating, the enthalpy follows a
different path because the structural relaxation process is al-
ways directed towards the equilibrium liquid state (reprinted
with permission from Moynihan et al., 1974). Copyright 1974
American Chemical Society.

FIG. 2 Radial distribution function for liquid Selenium (left)
and glassy Selenium-Tellurium mixtures (right) measured by
neutron scattering (from Bellissent and Tourand, 1980). Left:
There are only moderate changes upon cooling although the
viscosity increases by many orders of magnitude in the same
temperature range. Right: The radial distribution function
of glassy Selenium (bottom) is not much different from that
of liquid Selenium (reprinted from Journal of Non-Crystalline
Solids 35, 1221-1226, “Short range order in amorphous and
liquid Se1−xTex systems,” by R. Bellissent and G. Tourand,
Copyright 1980, with permission from Elsevier).

FIG. 3 Dielectric loss as a function of frequency for glycerol.
The Debye dielectric function gives symmetric loss peaks in
a log-log plot, but the data show the characteristic asym-
metry towards higher frequencies that is almost always ob-
served. Annealing for a long time is necessary at the low-
est temperature to ensure that the liquid is in equilibrium.
The inset shows that the loss peak frequency is non-Arrhenius
(reprinted from Journal of Non-Crystalline Solids 235, 173-
179, “Dielectric and far-infrared spectroscopy of glycerol,”
by U. Schneider, P. Lunkenheimer, R. Brand, and A. Loidl,
Copyright 1998, with permission from Elsevier).

FIG. 4 The original Angell (1985) fragility plot showing the
viscosity as a function of inverse temperature normalized to
one at Tg. The lower left corner marks the approximate high-
temperature limit of the viscosity that is common to all liq-
uids. An Arrhenius viscosity gives a straight line in this plot.
Inset: Specific heat jumps at the glass transition.
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FIG. 5 Excess entropy (liquid minus crystalline) of super-
cooled ortho-terphenyl calculated from specific heat data ob-
tained by cooling at a rate of 20 K/minute (the experimental
uncertainty is marked by the dashed lines). The excess en-
tropy extrapolates to zero at a temperature above 200 K, the
Kauzmann temperature, but the glass transition intervenes
just below 250 K and saves the situation. By slower cooling,
however, it should be possible to take the equilibrium liquid
to the Kauzmann temperature and below. This is the Kauz-
mann paradox (reused with permission from R. J. Greet and
D. Turnbull, Journal of Chemical Physics 47, 2185 (1967).
Copyright 1967, American Institute of Physics.).

FIG. 6 High-frequency longitudinal (L) and transverse (T)
sound velocities of the mainly ionic salt-melt mixture com-
prising 94% NaPO3 and 6% Al(PO3)3 with data obtained
by Brillouin scattering both above and below the glass tran-
sition (around 350 K). The full symbols give the appar-
ent sound velocities estimated from the peak positions, the
full lines give model-based high-frequency sound velocities.
The figure shows that the high-frequency sound velocity is
more temperature dependent in the liquid phase than in
the glass phase. This implies that the vibrational entropy
of the liquid phase has a temperature dependence different
from that of the crystalline phase (adapted from Soltwisch
et al., 1999, with permission from Taylor & Francis Ltd.,
http://www.tandf.co.uk/journals).

FIG. 7 Comparing two cases of potential energy minima with
different curvatures at the minima (from Dyre and Olsen,
2004). The full curve is the potential energy; the thin curve
gives the potential estimated by second order Taylor expan-
sions around the minima. The barriers estimated from the
intersection of the thin curves are considerably larger than
the actual barriers; however, going from (a) to (b) the esti-
mated and the actual barriers are proportional.

FIG. 8 A flow event (a molecular rearrangement) accord-
ing to the shoving model with the dark spheres showing the
molecules before the flow event. A flow event can only take
place if the region volume briefly expands due to a thermal
fluctuation. According to statistical mechanics the probabil-
ity of this happening is the reversible work done on the sur-
rounding fixed structure to bring about the same expansion,
a work that is calculated using standard solid-state elasticity
theory. In the simplest case, that of spherical symmetry, the
surroundings are subjected to a pure shear deformation and
the activation energy is proportional to G∞(T ).

FIG. 9 Young’s modulus E versus the glass transition tem-
perature for all metallic glasses for which data are presently
available. There is a linear relation between these two quanti-
ties as predicted by the elastic models, although the line does
not quite go through the origin as required to give a perfect
model fit. Similar plots with E replaced by K were presented
by Nemilov (1992) for other classes of glass-forming liquids
(reprinted from Journal of Non-Crystalline Solids 351, 1481-
1485, “Elastic moduli and behaviors of metallic glasses,” by
W. H. Wang, Copyright 2005, with permission from Elsevier).
FIG. 10 Viscosity as a function of inverse temperature (full
symbols) and as function of X ∝ G∞/T (open symbols) for
four organic liquids and one silicone oil with both x-axis vari-
ables normalized to one at Tg (1 P = 0.1 Pa s) (adapted
from Dyre, Olsen, and Christensen, 1996). The results were
obtained by a piezo-ceramic measuring method (Christensen
and Olsen, 1995). As in Fig. 4, the approximate high-
temperature limit of the viscosity is given at the lower left
corner. The open symbols follow the diagonal line predicted
by the shoving model ending in the lower-left corner at a typ-
ical high-temperature viscosity.

Tables

TABLE I Examples of good glass formers of different chemi-
cal bonds. By definition, a good glass former is a liquid with
very low rates of crystal nucleation and growth at all temper-
atures.
Glass-forming liquid Chemical bond

Silicates, Borates Covalent

KNO3-Ca(NO3)2 mixtures Ionic

Ortho-terphenyl Van der Waals

Glycerol, glycose Hydrogen

Pd-Cu-Ni-P alloys, Cu-Zr alloys Metallic


