Udbredelsen af distributionsteorien siden 1950

Anders Albrechtsen
Kasper G. Christensen
Tina Hecksher

Vejleder: Anders H. Madsen

TEKSTER fra

IMFUFA ROSKILDE UNIVERSITETSCENTER
INSTITUT FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES FUNKTIONER I UNDervISNING, FORSKNING OG ANVENDELSEr
En distribution er en generaliseret funktion, der blandt andet har den egenskab, at den er uendeligt ofte differentiabel. Distributioner benyttes derfor i forbindelse med differentialligninger. Distributionsteorien giver desuden et matematisk grundlag for at beskrive for eksempel Diracs δ-funktion og Heavisides operationskalkule.

I dette projekt undersøges, hvorledes distributionsteorienens status har ændret sig, siden Schwartz udgav "Théorie des distributions" i 1950. Dette er søgt belyst dels ved at se på udbredelsen til andre faggrupper end matematik, dels ved at undersøge i hvilken grad distributionsteorien indgår på forskellige uddannelsesniveauer.

Vi har set på matematikhistoriske artikler, anmeldelser, biografer m.m. for at belyse, hvordan distributionsteorien blev modtaget, og hvordan status har ændret sig i perioden. Vi har studeret en række lærebøger i henholdsvis distributionsteori, partielle differentialligninger, matematisk fysik og kvantemekanik fra 1950 og frem for at forsøge at kortlægge, hvornår distributionsteorien er blevet udbredt, til hvem og i hvilken grad. Endelig har vi interviewet tre forskere i lineære partielle differentialligninger, Bernhelm Booss-Bavnbek, Lars Hörmander og Gerd Grubb, om deres brug af distributioner, samt lavet en rundspørges blandt forskere på DTU om deres kendskab til og brug af distributioner.

Vi konkluderer blandt andet, at der historisk set var en forventning om, at distributionsteorien ville få en rolle i fag som fysik, ingeniørvidenskab og matematisk fysik, men disse fag har tilsyneladende ikke generelt taget distributionsteorien til sig. I dag spiller teorien en vigtig rolle i lærebøger om lineære partielle differentialligninger og udgør en uundværlig forudsætning for at beskæftige sig med disse på forskerniveau, på trods af at nogle matematikere ved distributionsteorienes fremkomst var skeptiske over for den.
English abstract

A distribution is a generalized function, where differentiation is always possible. That is why distributions often are used when dealing with partial differential equations. The theory of distributions also gives a rigorous mathematical basis for Dirac's δ-function and Heaviside's operational calculus.

The aim of this project is to study the change in status that the theory of distributions has undertaken since the publication of "Théorie des distributions" in 1950. This is done by looking at the propagation to other sciences than mathematics and by studying the extent to which the theory of distributions is used at different education levels.

We have used historical mathematical articles, reviews, biographies and other forms of litterature to shed light on how the theory of distributions was received and how the status has changed in the period. We have studied a number of textbooks on distribution theory, partial differential equations, mathematical physics and quantum mechanics from the last half of the twentieth century. This was done to establish when the theory became widely known, to whom the theory was known and to what extent. We have also interviewed three scientists in linear partial differential equations about their use of distributions. The three scientists are Bernhelm Booss-Bavnbek, Lars Hörmander and Gerd Grubb. Finally we asked a number of scientists at DTU to fill out a questionnaire about their knowledge and use of distributions.

We conclude that even though there where high expectations for the role that the theory of distributions would play for physicists, engineers and mathematical physicists, they never really embraced the theory. But today the theory plays an important role in textbooks on partial differential equations and is a prerequisite for studying these at a research level even though some mathematicians where highly sceptical at first.
Forord

Dette projekt er udarbejdet som en del af overbygningsuddannelsen i matematik på IMFUFA på RUC. Det er skrevet under modulbindingen videnskabsfagsprojekt, hvorunder de studerende skal beskæftige sig med "videnskabsfaget" matematik – det kunne for eksempel dreje sig om, hvordan faget matematik er indrettet, hvordan matematikken udvikler sig, og hvorfor matematik har den status, som det har.

Alle tre forfattere har en naturvidenskabelig baasisuddannelse fra RUC og er i gang med deres overbygningsuddannelser, ligeledes på RUC. Anders Albrechtsen læser matematik og molekylærbiologi, Kasper G. Christensen læser matematik og datalogi og Tina Heckscher læser matematik og fysik.

Vi har under arbejdet med dette projekt interviewet Bernhelm Boos-Bavnbek, Gerd Grubb og Lars Hörmander og vil gerne takke dem for at tage sig tid til disse interviews, samt for velvilligt og hurtigt samarbejde i forbindelse med efterredigering og godkendelse af disse.

Videre vil vi gerne takke Bernhelm Boos-Bavnbek for at pege på relevant litteratur i den indledende litteratursegningsfase og for at svare på tekniske spørgsmål undervejs, samt Tinne Hoff Kjeldsen for at have diskuteret metoder med os i starten af vores projektforløb.

Til sidst vil vi takke vores vejleder Anders Madsen for at have udvist interesse og engagement, samt for at have introduceret os for forskellige matematiske teoribygninger vi støttede på undervejs i vores arbejde med at sætte os ind i de grundlæggende dele af distributionsteorien.
Indhold

English abstract iii

Forord iv

Indhold 1

1 **Indledning** 3
 1.1 Problemformulering 4
 1.2 Diskussion af problem 4
 1.3 Metode og opbygning af rapporten 5
 1.4 Målgruppe 6

2 **Kort introduktion til distributionsteori og dens anvendelse i partielle differentialligninger** 7
 2.1 Testfunktioner 7
 2.2 Distributioner 8
 2.2.1 δ-funktionen 10
 2.3 Foldning 10
 2.4 Fourier-transformation 11
 2.4.1 Fourier-transformation af funktioner 11
 2.4.2 Fourier-transformationer af distributioner 12
 2.5 Løsning af lineære differentialligninger ved brug af distributioner 12

3 **Opdagelsen af distributionsteorien** 14
 3.1 Schwartz og distributionsteorien 15
 3.1.1 Schwartz’ forudsætninger 15
 3.1.2 Opfindelsen af distributioner 16
 3.2 Opsummering 17

4 **Undersøgelser i litteraturen** 18
 4.1 Taler, anmeldelser og biografer 18
 4.1.1 En blandet modtagelse 18
 4.1.2 Teorien vinder indpas 21
 4.1.3 Opsummering 22
 4.2 Lærebøger i distributionsteori 22
 4.2.1 1950-1970 22
 4.2.2 1970- 24
 4.2.3 Opsummering 25
 4.3 Lærebøger i partielle differentialligninger 25
 4.3.1 1950-1960 26
 4.3.2 1960-80 27
 4.3.3 1980- 29
 4.4 Opsummering 31
 4.5 Anvendelsesorienteret litteratur 31
 4.5.1 Matematisk fysik 32
5 Undersøgelser blandt forskere
5.1 Interview med Bernhelm Boose-Bavnbek
 5.1.1 Resume
5.2 Interview med Gerd Grubb
 5.2.1 Resume
5.3 Interview med Lars Hörmander
 5.3.1 Resume
5.4 Opsamling på interviews
5.5 Uddedelse til ingeniører

6 Diskussion
6.1 Modtagelsen af distributionsteorien
6.2 Uddedelsen af teorien
6.3 Teorien's status i dag

7 Konklusion

Litteratur

A Distributioner og partielle differentialligninger
A.1 Notation
A.2 Testfunktioner
 A.2.1 Eksempler på testfunktioner
A.3 Distributioner
 A.3.1 Deltafunktionen af en variabel
A.4 Foldning
A.5 Fourier-transformation
 A.5.1 Fourier-transformation af funktioner af 1 variabel
 A.5.2 Fourier-transformation af funktioner af n variable
 A.5.3 Fourier-transformationer af distributioner
A.6 Tæthed af C^∞ i D'
A.7 Løsning af partielle differentialligninger
A.8 Sobolevrum
1 Indledning

Funktionsbegrebet optræder mange steder i matematikken og benyttes også i fysik og anvendt matematik til at modellere mange forskellige objekter. Funktioner af en eller flere variable benyttes til at beskrive ting, der intuitivt forekommer meget forskellige, for eksempel overflader og bevægelse. Der er således tale om et begreb med meget stor udtrykskraft.

Ved nærmere eftertanke er der imidlertid nogle områder, hvor funktionsbegrebet er utilfredsstillende: I praktiske anvendelser, specielt hos fysikere, forekommer Diracs δ-funktion (Dirac; 1930), som ikke er en egentlig funktion, men som alligevel behandles som sådan under integration. De fremkome resultater viser sig at være korrekte og brugbare, og dette kalder naturligvis på et matematiskt begreb, der omfatter δ-funktionen.

Yderligere findes der partielle differentialligninger, som med en speciel fortolkning af, hvad der skal forstå ved løsning, har løsninger (eller løsningsformler), hvori der indgår funktioner, som ikke nødvendigvis er differentiable i sædvanlig forstand. Man kunne derfor ønske sig en udvidelse af differentiabilitetsbegrebet, hvor differentiering generelt er muligt.

Laurent Schwartz beskrev i bogen ”Théorie des distributions” (Schwartz; 1950) (samt i tidligere artikler) nogle matematiske objekter, som han kaldte distributioner. Han opstillede en præcis teori for, hvorledes objekter som Diracs δ-funktion kan beskrives og benyttes på en matematisk forsvarlig måde. Desuden har distributioner den egenskab, at de altid er uendeligt ofte differentiable og derfor er bekvemme at arbejde med i forbinding med differentialligninger, hvor de kan træde i stedet for sædvanlige funktioner. Distributioner kan af denne grund betragtes som generaliserede funktioner.

Da funktioner som nævnt indgår i anvendelser, for eksempel i fysikken, kan man naturligt overveje, om den generalisering af funktionsbegrebet, som distributionsteorien giver, medfører nye muligheder i forbinding med disse anvendelser.

Nogle matematiske må have ment, at distributionsteorien var et vigtigt bidrag til matematikken, idet Schwartz fik Fields Medal for sit arbejde med distributionsteorien. Derfor kunne et interessant spørgsmål at stille i forbinding med distributionsteoriens formulering være, hvorvidt der var enighed blandt matematikere om distributionsteoriens fortrolighed, samt om hvorvidt distributionsteorien blev taget op af personer med en mere ”anvendelsesorienteret” tilgang. Videre kan man interessere sig for, hvorvidt distributionsteorien på længere sigt har fået en væsentlig betydning, og i givet fald for hvem? Da distributionsteorien er en generalisering af et meget udbredt begreb, nemlig funktionsbegrebet, kan man forestille sig, at den kunne få betydning inden for mange områder af matematikken. Imidlertid vil vi i dette projekt koncentrere os om betydningen inden for teorien om partielle differentialligninger, idet det var problemer inden for dette felt, der var med til at motivere Schwartz’ arbejde med distributionsteorien. Desuden er partielle differentialligninger et område med relevans for mange anvendelser, idet de bruges til at modellere dynamiske systemer.

Ganske kort og overfladisk kunne vi sammenfatte ovennævnte spørgsmål som: Var di-
stributionsteorien først og fremmest et "oprydningsarbejde", der havde til formål at retfærdiggøre en gammel praksis, eller førte den også til nye resultater, og fik den betydning for anvendelsesorienterede forskere?

Dette spørgsmål kalder dog på en indsnævringer eller en præcisering, idet det ikke umiddelbart giver anvisninger til, hvordan man i givet fald skal svare. En måde at forøge at belyse, om distributionsteorien primært var et oprydningsarbejde, kunne være at undersøge om, og i så fald hvordan, opfattelsen af teoriens brugbarhed har ændret sig "historisk". I bekræftende fald vil man forvente, at distributionsteorien ikke blev almindelig kendt uden for en snæver kreds af meget specialiserede forskere. I modsat fald vil man forvente, at teorien i tidens løb har spredt sig til en bredere kreds af matematikere og anvendere.

På baggrund af disse overvejelser vil vi arbejde med følgende problemstilling:

1.1 Problemformulering

Hvorledes har distributionsteoriens status inden for teorien om partielle differentialligninger og dennes anvendelse ændret sig siden udgivelsen af Schwartz' "Théorie des distributions"?

1.2 Diskussion af problem

Under arbejdet med dette projekt interviewede vi Lars Hörmander (som har udført vigtigt arbejde inden for distributionsteori og partielle differentialligninger – se afsnit 5.3), og han fortalte en anekdote, om hvordan han på et tidspunkt deltog i en konference med emnet "anvendt matematik". Både tyskerne og englænderne troede de vidste, hvad anvendt matematik var, idet der begge steder blev afholdt kurser om emnet. Imidlertid viste det sig, at de havde ret forskellige opfattelser af, hvad konferencen egentlig handlede om. Dette understreger, at anvendt matematik kan være mange ting. Man kan opfatte det således, at der kun er tale om anvendelser, når matematikken indgår direkte i forbindelse med udforslen af et konkret teknisk stykke arbejde, som for eksempel at bygge en bro. Imidlertid taler man også om at anvende en matematisk teori inden for et andet område af matematikken for på den måde at få nye resultater. Mellem disse to yderpunkter findes naturligvis et helt spektrum af opfattelser.

Når problemformuleringen skal besvares, må vi endvidere tage stilling til, hvorledes vi kan vurdere en teoris status. I den forbindelse kan man tale om, hvor vidt udbredt
teorien er. Udbredelse kan her forstås i mindst 2 dimensioner: Udbredelse til forskellige faggrupper og udbredelse til forskellige uddannelsesniveauer.

Graden af udbredelse til andre faggrupper end de teoretiske matematikere kan give et fingerpeeg om, hvorvidt teorien har haft en "praktisk" betydning. Hvis for eksempel fysikere eller ingeniører har taget teorien til sig, må det indikere, at den er anvendelig på disse områder og altså ikke udelukkende har karakter af en begrebsafklaring for matematikere, men også anvendes. Her må vi selvfølgelig tage de netop nævnte forbehold, for hvad der forstås ved anvendelse. Vi vil altså se på udbredelse til forskellige faggrupper for på denne måde at belyse spørgsmålet om, hvorvidt teorien anvendes.

Graden af udbredelse til forskellige uddannelsesniveauer giver et fingerpeeg om, hvor "almen" teorien er blevet. Hvis distributionsteorien indgår i kurser i partielle differenti- alligninger på kandidat-niveau, samt i lærebøger til en målgruppe på dette niveau, må det være på baggrund af en vurdering af, at teoribygningen er nødvendig almen viden på dette relativt brede niveau. Hvis den derimod kun optræder i forskningssammenhænge, må det omvendt tyde på, at det kun er på højt specialiserede områder, at teorien har relevans.

Tilsammen giver disse to "udbredelsesdimensioner" en idé om, hvorledes teoriens status er i dag. Er den en grundlæggende basis? Er den udbredt som værktøj i andre fagområder? Vi vil i dette projekt forsøge at belyse ændringer i teoriens status ved at fokusere på disse to dimensioner.

Man kan naturligvis spørge, hvad relevansen er af at undersøge, hvordan en konkret teori er blevet udbredt. Vi finder det imidlertid interessant som et eksempel på, hvordan matematiske teorier i almindelighed udvikles fra at være frontforskning til måske at blive alment kendt viden og måske indgå i anvendelser i andre fag. Valget af netop distributionsteori som eksempel skyldes dels, at vi finder området interessant i sig selv og har et ønske om at stiffe bekendtskab med denne teoribygning, dels at det er en teoribygning, hvis betydning vi, gennem samtaler med vejledere på vores institut ved projektets start, fik en fornemmelse af, at der ikke er bred enighed om.

Der har været diskussion af, hvorvidt det er rimeligt at give Schwartz'eren for opdagelsen af distributionsteorien, da andre matematikere i tiden før ham har arbejdet med lignende teorier. Lützen (1982) har skrevet en bog, der omhandler distributionsteoriens forhistorie op til udgivelsen af "Théorie des distributions", hvori han blandt andet belyser prioritetsspørgsmålet. I vores problemstilling vil vi derfor ikke tage denne diskussion op, men i stedet se på udviklingen i tiden efter udgivelsen af "Théorie des distributions".

1.3 Metode og opbygning af rapporten

I dette afsnit vil vi kort oprindse, hvilke metoder vi har benyttet for at besvare vores problemformulering, samt i hvilke afsnit, vi har beskrevet de enkelte undersøgelser.

For overhovedet at kunne læse tekster, der omhandler distributionsteori, måtte vi starte vores projektarbejde med at få en idé om de mest grundlæggende træk i teorien. Rapporten indeholder derfor en meget kort introduktion til distributionsteorien i afsnit 2. Da dette ikke er centralt for den egentlige besvarelse af problemformuleringen, har vi foresøgt at holde dette afsnit til et minimum, men har en mere udbygget redegørelse i appendiks A.

Et interessant fingerpeeg om, hvordan distributionsteoriens status var, umiddelbart efter at Schwartz' formulerede den, kan vi få ved at se på, hvad der motiverede ham, samt hvilken baggrund han havde. Vi vil ikke gå dybt ind i distributionsteoriens forhistorie,
men har som en form for startpunkt for vores undersøgelser et kort afsnit om Schwartz’ bevæggrunde (afsnit 3).

Derpå følger to hovedafsnit med hver sin type af undersøgelser.

I afsnit 4 ser vi på udviklingen i teoriens status i *forskelige former for litteratur*. Vi ser på personlige holdninger, der har fået udtryk i taler, anmeldelser af bøger om distributionsteorien og biografier. Desuden ser vi på lærebøger i distributionsteori, lærebøger i partielle differentialligninger og anvendelsesorienterede lærebøger, herunder lærebøger i matematiske fysik og i kvantemekanik. Nærmere beskrivelser af undersøgelserne findes som indledninger til de enkelte afsnit, men vi prøver i alle tilfældene på at få et overblik over, hvordan distributionsteoriens status har ændret sig i den enkelte type materiale.

I afsnit 5 beskriver vi, hvordan vi har kontaktet forskellige forskere for at få deres syn på distributionsteoriens status, samt deres beretninger om udviklingen af denne. Vi har interviewet tre matematikere personligt: Bernhelm Boos-Bavnbek, lektor i matematik på IMFUFA på RUC, Gerd Grubb, professor ved matematiske institutter på KU, og Lars Hörmander, professor emeritus på Lunds universitet. Derudover har vi foretaget en lille uformel rundspørgse via e-mail blandt forskere på DTU for at få en fornemmelse af, hvorvidt distributionsteorien kendes og bruges der.

1.4 Målgruppe

Læsning af denne rapport kræver ikke specialistviden inden for for eksempel partielle differentialligninger eller funktionalanalyse, men grundlæggende matematiske viden, blandt andet klassisk analyse er nødvendig. Vi giver en kort introduktion til distributionsteorien, som vi mener er nok til at føre rapporten, hvis man kan leve med undervejs at tage nogle matematiske begreber og sætninger for givet.
2 Kort introduktion til distributionsteori og dens anvendelse i partielle differentialligninger

I dette afsnit vil vi ganske kort opriße nogle vigtige ideer i distributionsteorien. Vi vil forsøge at skabe et overblik over de grundlæggende træk på bekostning af en del matematiske detaljer. Læseren med interesse for flere matematiske detaljer kan eventuelt se appendiks A for en mere fyldesgørende redegørelse. Vi vil i dette afsnit holde os til det endimensionelle tilfælde, men bemærker at alle resultaterne kan generaliseres til flere dimensioner. Disse generaliseringer kan ses i appendikset. Da vi egentlig vil beskæftige os med partielle differentialligninger, er det endimensionelle tilfælde forholdsvis uinteressant, men da de fleste generaliseringer foretages forholdsvis let, giver dette afsnit forhåbentlig stadig et overblik over ideerne.

Alle integraler skal forstås som Lebesgue-integraler, som er en generalisering af Riemann-integralet. Vi har ikke beskæftiget os med Lebesgue-integraler og vil ikke beskrive teorien for disse, da det er uden for rammerne af dette projekt at sætte sig ind i denne teoribygning.

En distribution er en afbildning af et bestemt funktionsrum, testfunktionerne, ind i et tallegele (C eller R). Ideen med testfunktionerne er, at man kan undersøge en funktion \(f \) omkring et punkt ved at "vægtte" \(f \), således at den tildeles størst vægt i punktet og vægten 0 uden for et begrænset interval. Denne type "vægtningsfunktioner" kaldes testfunktioner. Lad os derfor først se på disse.

2.1 Testfunktioner

Testfunktioner er \(C^\infty \) funktioner med kompakt støtte. Altså funktioner, som er uendeligt ofte differentiabel, og som er nul uden for en kompakt (hvilket i talrummene vil sige: lukket og begrænset) mængde. For en testfunktion af én variabel betyder det, at funktionen er nul alle andre steder end inden for et interval \([a,b]\). Rummet af testfunktioner benævnes \(\mathcal{D} \), og vi vil som konvention bruge \(\varphi \) og \(\psi \) som navne på vilkårlige testfunktioner. Vi indfører også en særlig konvergens for følger af testfunktioner, hvor vi også kræver, at de afledte konvergerer.
I nogle tilfælde kan det være hensigtsmæssigt at bruge andre funktionsrum end D som basis for definition af distributioner. Her kan nævnes rummet S, som er rummet af hurtigt aftagende funktioner. Hvilket løst sagt betyder, at funktionen og alle dens afledte går mod nul hurtigere end ethvert polynomium. Dette er trivielt opfyldt for funktioner i D, idet de har kompakt støt, så $D \subset S$. Funktioner i S spiller en vigtig rolle i brugen af distributionsteori i forbindelse med Fourier-transformationer, og vi vil se på dette i afsnit 2.4

Lad os se et eksempel på en testfunktion i D:

$$\psi(x) = \begin{cases}
\exp\left(\frac{-1}{x^2-1}\right) & \text{for } |x| < 1 \\
0 & \text{for } |x| \geq 1
\end{cases} \quad (2.1)$$

denne funktion er vist i figur 2.1

2.2 Distributioner

En funktion f, hvor f skal være lokalt integrabel, for at sikre at integralet er veldefineret, kan undersøges ved at se på dens integral under en bestemt vægtning:

$$\int_{-\infty}^{\infty} \varphi(x) f(x) dx$$

hvor "vægtningsfunktionen" φ er en testfunktion. Hvis vi vælger en "spids" testfunktion φ, med $\int_{-\infty}^{\infty} \varphi(x) dx = 1$ svarer dette næsten til at undersøge funktionen f i et punkt.

På denne baggrund defineres for enhver lokalt integrabel funktion f en distribution μ_f, som altså skal være en lineær afbildning $\mu : D \rightarrow C$, således:

Definition 2.1 (Den til en funktion horende distribution)

Til den lokalt integrable funktion f knyttes følgende distribution μ_f.

$$\mu_f = (\varphi \mapsto \int_{-\infty}^{\infty} \varphi f)$$

hvor $\varphi \in D$ og $\mu_f(\varphi)$ dermed er et tal.
2.2 Distributioner

Kravet om lokal integrabilitet af f skyldes, at vi skal være sikre på, at integralet $\int_{-\infty}^{\infty} \varphi(x)f(x)dx$ er veldefineret.

Ovenstående definition 2.1 er meget væsentlig, idet vi ved at underforstå denne kan opfatte funktioner som distributioner. Når vi således taler om en eller anden operation på en funktion (for eksempel operationen differentiation) "i distributionsforstand", betyder det i virkeligheden, at vi taler om operationen på den til funktionen hørende distribution.

Generelt definerer vi distributioner som følger:

Definition 2.2 (Distribution)

En distribution er en kontinuerligt lineær afbildning $\mu : D \rightarrow C$, idet kontinuitet er givet i forhold til den særlige form for konvergens for testfunktioner. Rummet af alle distributioner benævnes D'.

Som konvention har vi valgt at benævne distributioner μ eller ν.

Det er ikke alle distributioner, der har en tilhørende funktion. Et eksempel på en distribution, der ikke har en tilhørende funktion, er δ-funktionen, der beskrives i afsnit 2.2.1. En distribution, der er defineret ved en lokalt integrabel funktion, kaldes regular, mens en distribution uden denne egenskab, som for eksempel δ-funktionen, kaldes singular.

En af styrkerne ved distributionsteori er muligheden for at flytte operationer fra den funktion, der undersøges, og over på testfunktionen. Hvis en funktion f er differentiabel, vil dens afledte f' naturligvis også definere en distribution:

$$\mu' = \left(\varphi \mapsto \int_{-\infty}^{\infty} f'(x) \varphi(x)dx \right)$$

Ved partiel integration findes:

$$\int_{-\infty}^{\infty} f'(x)\varphi(x)dx = -\int_{-\infty}^{\infty} f(x)\varphi'(x)dx$$

(2.2)

Således er differentialoperatoren flyttet over på testfunktion, som er en C^∞-funktion. Vi vil udvide differentieringen, således at den stemmer overens med ovenstående, men nu gælder for alle distributioner (altså også de singulære). Vi definerer den afledte til en distribution ved:

$$\mu'(\varphi) = -\mu(\varphi')$$

Det betyder, at alle distributioner kan differentieres uendeligt mange gange, idet testfunktionen kan differentieres uendeligt mange gange. Her har vi altså nytte af de stærke krav til testfunktioner.

Lad os nu se på det klassiske eksempel på en singulær distribution – nemlig Diracs δ-funktion.
2.2.1 δ-funktionen

Dirac (1930) beskriver δ-funktionen ved at angive, at den har følgende egenskaber:

\[
\int_{-\infty}^{\infty} \delta(x)dx = 1, \quad \delta(x) = 0 \text{ for } x \neq 0, \quad \int_{-\infty}^{\infty} \delta(x)\varphi(x)dx = \varphi(0)
\]

δ-funktionen kan altså opfattes som den "uendeligt spidse" funktion (da den kun er forskellig fra 0 i x = 0), hvorunder arealet er 1. Dette betyder, at når vi integrerer produktet af en testfunktion \(\varphi\) med δ-funktionen, får vi i virkeligheden værdien af \(\varphi\) i 0. Vi kan parallelforskyde δ-funktionen for at få værdien af \(\varphi\) i et vilkårligt punkt:

\[
\int_{-\infty}^{\infty} \delta(x-a)\varphi(x)dx = \varphi(a)
\]

δ-funktionen skulle altså være en funktion, der er 0 for alle andre x-værdier end nul, men alligevel har et areal under funktionen. En sådan funktion kan ikke eksistere inden for rammerne af den klassiske analyse, idet et punkts afvigelse fra resten af funktionen ikke har nogen betydning for integralet. δ-funktionen er derfor ikke en rigtig funktion, men kan opfattes som distributionen, der er defineret således:

\[
\delta = (\varphi \mapsto \varphi(0))
\]

Dermed kan vi i stedet for \(\int_{-\infty}^{\infty} \delta(x)\varphi(x)dx = \varphi(0)\) skrive \(\delta(\varphi) = \varphi(0)\). δ-funktionen kan således beskrives matematisk stringent ved hjælp af distributionsteori.

2.3 Foldning

Foldning viser sig at være en vigtig operation på distributioner, der indgår i forbindelse med løsning af partielle differentialligninger. Foldningen af to testfunktioner, \(\varphi\) og \(\psi\) skrives \(\varphi \ast \psi\) og defineres som:

\[
(\varphi \ast \psi)(x) := \int_{-\infty}^{\infty} \varphi(y)\psi(x-y)dy = \int_{-\infty}^{\infty} \varphi(x-y)\psi(y)dy
\]

Det sidste lighedstegn følger af variabelskift, og det ses derfor at foldning mellem to testfunktioner er kommutativ, desuden er foldning associativ samt distributiv over addition. Differentieres foldning mellem to testfunktioner, kan det vises at:

\[
(\varphi \ast \psi)' = \varphi' \ast \psi = \varphi \ast \psi'
\]

Det kan også vises, at når \(\psi, \varphi\) er testfunktioner, så er \(\varphi \ast \psi\) også en testfunktion.

Man kan udvide foldning af testfunktioner, således at det også bliver muligt at folde vilkårlige distributioner. Først må vi dog indføre lidt ny notation. For regulære distributioner skriver vi:

\[
\mu_y(\varphi(x-y)) := \int_{-\infty}^{\infty} f(y)\varphi(x-y)dy = (f \ast \varphi)(x)
\]

(2.3)

hvor \(\varphi\) er en testfunktion, hvorved \(\varphi(x-y)\) også er en testfunktion, både opfattet som funktion i \(x\) og som funktion i \(y\). (2.3) giver os en ny funktion i \(x\), idet vi har "integreret \(y\) væk". Når en vilkårlig distribution føldes med en testfunktion, vil vi have brug for en notation, der kan fortælle os, hvilken variabel testfunktionen \(\varphi(x-y)\) skal opfattes som værende funktion af. Vi vil notere dette således at:

\[
\mu_y(\varphi(x-y)) =: (\mu \ast \varphi)(x)
\]
er en funktion af x, idet y opfattes som variabel, når μ virker på testfunktionen.

Det gælder, at hvis μ er en distribution med kompakt støtte, da er $\mu_y(\varphi(x - y))$ en testfunktion i variablen x. Vi siger, at en distribution har kompakt støtte, når der findes en kompakt mængde, således at μ fører alle testfunktioner, hvis støtte ligger uden for denne mængde, over i 0. Foldningen mellem to distributioner, hvoraf mindst en har kompakt støtte, kan nu defineres som følger:

$$(\mu \ast \nu)(\varphi) = \mu_x(\nu_y(\varphi(x - y)))$$

Vi kan vise, at denne definition for foldningen mellem distributioner opfører sig ønskværdigt, når vi ser på foldningen af to regulære distributioner, idet det gælder at:

$$(\mu_f \ast \mu_g)(\varphi) = \mu_{f \ast g}(\varphi)$$

δ-distributionen, altså den distribution der er defineret ved: $\delta(\varphi) = \varphi(0)$, fungerer som neutrale element med hensyn til foldningsoperationen, idet det gælder at:

$$(\mu \ast \delta)(\varphi) = \mu(\varphi)$$

2.4 Fourier-transformation

Udover foldning viser det sig, at Fourier-transformation er en meget relevant operation i forbindelse med distributioner. Fourier-transformation anvendes blandt andet sammen med distributioner i forbindelse med løsning af partielle differentialligninger. Fourier-transformation af distributioner er defineret direkte ved Fourier-transformation af funktioner, så lad os starte med dette.

2.4.1 Fourier-transformation af funktioner

Vi definerer Fourier-transformation af en stykvis kontinueret funktion $f : \mathbb{R} \to \mathbb{C}$, der er defineret for alle $x \in \mathbb{R}$ og opfylder at $\int_{-\infty}^{\infty} |f(x)| dx < \infty$. Den Fourier-transformerede \hat{f} og den invers Fourier-transformerede \hat{f} af f er defineret ved:

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-i\xi x} dx$$

$$\hat{f}(\xi) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{i\xi x} dx$$

Mængden S af hurtigt aftagende funktioner er den største delmængde af de integrable funktioner, der er lukket over for Fourier-transformation. Det vil sige, det gælder at:

$$f \in S \Rightarrow \hat{f} \in S$$

i S gælder også at:

$$(f)^{\ast \ast} = (f)^{\ast \ast} = f$$

På grund af disse egenskaber, der viser sig særdeles praktiske, vil vi i resten af afsnit 2.4 kun betragte funktioner i S.

Ved at Fourier-transformere en funktion er komplicerede operationer som for eksempel differentiation transformeredet til multiplikationer. Det gælder nemlig, at hvis vi indfører den grundlæggende differentiationsoperator $D = \frac{d}{dx}$, så kan det vises at:

$$(D^n f)^{\ast}(\xi) = (i\xi)^n \hat{f}(\xi)$$

(2.4)
12 Kort introduktion til distributionsteori og dens anvendelse i partielle differentialligninger

Dette er yderst anvendeligt i forbindelse med løsning af differentialligninger, idet man ved Fourier-transformation af ligningen får en almindelig algebraisk ligning, som løses nemt, og dernæst tager den inverse Fourier-transformerede af løsningen:

\[
\begin{align*}
f &= -D^2 u + u \\
\hat{f}(\xi) &= \xi^2 \hat{u}(\xi) + \hat{u}(\xi) = (\xi^2 + 1)\hat{u}(\xi) \\
\hat{u}(\xi) &= \frac{1}{1 + \xi^2} \hat{f}(\xi) \\
u(x) &= \left(\frac{1}{1 + \xi^2} \hat{f}(\xi)\right)^{-1}(x)
\end{align*}
\]

2.4.2 Fourier-transformationer af distributioner

Fourier-transformationen af en distribution defineres ved at overflytte operationen til testfunktionen. Den Fourier-transformerede til en tempereret distribution \(\mu \in S'\) er altså defineret ved:

\[\hat{\mu}(\phi) = \mu(\hat{\phi}), \quad \phi \in S\]

Desuden gælder (2.4) også for en distribution \(\mu\):

\[(D^n\mu)^\sim = (i\xi)^n\hat{\mu}\] \hspace{1cm} (2.5)

Dermed kan vi nu benytte Fourier-transformationer i forbindelse med løsning af partielle differentialligninger, hvori vi benytter distributioner i stedet for funktioner.

2.5 Løsning af lineære differentialligninger ved brug af distributioner

Det kraftfulde i distributionsteorien kommer først rigtigt til sin ret, når vi ser på partielle differentialligninger. Vi vil i dette afsnit se på differentialligninger af formen:

\[Lu = f\]

Hvor \(L\) er en lineær differentialoperator, som for eksempel \(D^n\), \(f\) er en kendt funktion eller distribution, og \(u\) er den ubekendte funktion eller distribution. Vi henviser til appendiksk A for den interessante generalisering til partielle differentialligninger.

Når vi løser differentialligninger, har vi nytte af at indføre begrebet fundamentalløsning. Dette er et nøglebegreb i teorien om partielle differentialligninger. En distribution \(\mu\) kaldes en fundamentalløsning til en differentialoperator \(L\), hvis

\[L\mu = \delta\]

hvor \(\delta\) er \(\delta\)-distributionen. Vigtigheden af fundamentalløsninger skyldes, at de har nogle brugbare egenskaber. Det gælder således at:

\[\mu \ast (Lu) = u\]

hvis \(\mu\) er en fundamentalløsning, og \(u\) er en distribution med kompakt støtte (hvoraf det følger at \(Lu\) også har kompakt støtte).

Af denne egenskab ser vi, at hvis operatoren \(L\) har en fundamentalløsning \(\mu\), så er løsningen til ligningen \(Lu = f\) givet, idet vi har:

\[Lu = f \Rightarrow \mu \ast (Lu) = \mu \ast f \Rightarrow u = \mu \ast f\]
Vi bemærker, at \(f \) kan være en regulær distribution med kompakt støtte, altså svare til en almindelig funktion med kompakt støtte. Vi kan se, at hvis vi finder en fundamen-
talløsning til \(L \), så har vi en løsningsformel for enhver ligning på formen \(Lu = f \), men
løsningen \(u \) er ikke nødvendigvis regulær.

I dette lys er det særdeles interessant, at Ehrenpreis og Malgrange (iøjne Ortner & Wagner (2001)) har vist, at enhver lineær differentialoperator med konstante koefﬁcierter
(hvilket indbefatter den meget simple operator \(D^n \)) har en fundamentalløsning.

Distributioner, foldning og Fourier-transformationer tilsammen giver kraftfulde mulig-
heder for løsning af lineære partielle differentialligninger med konstante koefﬁcierter.
Iden er, at hvis \(\mu \in \mathcal{D}' \) er en fundamentalløsning til \(D^n \), da har vi ifølge (2.5):

\[
D^n \mu = \delta \Rightarrow \\
(i\xi)^n \hat{\mu} = \hat{\delta} \Rightarrow \\
\hat{\mu} = (i\xi)^{-n} \hat{\delta}
\]

vi kan således bestemme den Fourier-transformerede til \(\mu \), men vi kan i almindelighed
ikke vide, om \((i\xi)^{-n} \hat{\delta} \) kan invers Fourier-transformeres.
3 Opdagelsen af distributionsteorien

If one asks about the first people to use distributions in mathematics, the answer is Fourier 1822, Kirchhoff 1882 og Heaviside 1898. If one asks for a rigorous theory, which possibly only implicitly used distributions, the answer is Bochner 1932. If one wants to know who first defined distributions rigorously as functionals, the answer is Sobolev 1938 and finally, if one wants to point to the person who saw the far-reaching applications of distributions and created a broad theory of these objects, Schwartz is the one to cite... (Lützen; 1982, side 159)

Jesper Lützen opfatter således Laurent Schwartz som opfinderen eller opdageren af distributionsteorien, i den forstand at Laurent Schwartz som den første formulerede og formaliserede en stringent matematisk teori, der omfattede de tilløb, der tidligere havde været til en teori, og som samtidig så mulighederne for anvendelse af teorien.

Laurent Schwartz selv var imidlertid ikke opmærksom på alle tilløb til distributionsteorien (blandt andet kendte han ikke til Sobolevs arbejde (Lützen; 1982, side 156)). Han giver imidlertid i sin selvbiografi udtryk for, at teorien lå i luften, og at hvis ikke han havde opfundet den, ville en anden have gjort det inden for kort tid (Schwartz; 2000, side 211).

Dieudonné sammenligner Schwartz' rolle i distributionsteorien med den, som Newton og Leibniz spillede i integral- og differentialregningens historie. Newton og Leibniz opfandt ikke direkte differential- og integralregningen, men samlede og systematiserede den, så den i højere grad blev brugbar:

Contrary to popular belief, they [Newton and Leibniz] of course did not invent it [calculus], for derivation and integration were practiced by men such as Cavalieri, Fermat and Roberval when Newton and Leibniz were mere schoolboys. But they were able to systemize the algorithms and notations of Calculus in such way that it became the versatile and powerful tool which we know, whereas before them it could only be handled via complicated arguments and diagrams. (Dieudonné; 1981, side 231)

I dette afsnit vil vi forsøge at redegøre for, hvad der motiverede Laurent Schwartz til udvikling af distributionsteorien for måske på denne måde at give et fingerpeg om hvilke forventninger man (og måske især Laurent Schwartz) dengang havde til teorien. Vi forsager altså ikke at give en fyldestændende beskrivelse af forhistorien eller fuldstændig biografi af Laurent Schwartz for den sags skyld.

14
3.1 Schwartz og distributionsteorien

Laurent Schwartz (Schwartz; 2000) peger selv på mange forskellige inspirationskilder, der ledte frem til hans udvikling af distributionsteorien. Dels var der matematiske problemer, der gennem tiden havde generet ham, og som lagredes i hans bevidsthed, og dels var der de konkrete redskaber og områder, som han var bekendt med, som dannede grundlaget for formuleringen af distributionsteorien. Her vil vi nævne nogle af disse i nogenlunde kronologisk orden.

3.1.1 Schwartz’ forudsætninger

Diracs δ-funktion og dens afledte

Laurent Schwartz skriver om fysikernes brug af δ-funktionen og dens afledte:

Thus, physicists lived in a fantastic universe which they knew how to manipulate admirably, and almost faultlessly, without ever being able to justify anything... (.)... their computations were insane by standards of mathematical rigor, but they gave absolutely correct results (Schwartz; 2000, side 217)

Da Schwartz første gang hørte om δ-funktionen, blev han forårsaget over manglen på matematisk stringens\(^1\):

I believe I heard of the Dirac function for the first time in my second year at the ENS. I remember taking a course with my friend Marrot, which absolutely disgusted us, but it is true that those formulas were so crazy from the mathematical point of view that there was simply no question of accepting them(Schwartz; 2000, side 217).

Her var en såkaldt funktion, hvis egenskaber ikke gav mening i en sædvanlig matematisk forstand, men som tydeligvis gav meningsfulde resultater i anvendelse. Han skriver, at denne situation burde have inspireret til at lede efter en ordentlig matematisk udredning af begreberne, men at ingen tilsyneladende ledte efter den.

Den vibrerende streng

Bøgeligningen i én dimension:

\[
\frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0
\]

hvor \(v\) er en konstant, har den velkendte generelle løsning: \(u(t,x) = f(x + vt) + g(x - vt)\), hvor \(f\) og \(g\) er to gange differentiable. Men er en funktion på denne form ikke også en bølge, selvom funktionen ikke er differentiabel? Det er i hvert fald opfattet, at man ikke kan differentiere to gange og kontrollere, om funktionen nu også er en løsning til ligningen. Schwartz skriver i sin selvbiografi, at han var besat af dette spørgsmål i et stykke tid omkring 1933-34 under sin uddannelse. (Schwartz; 2000, side 218)

Dualitetsætninger for topologiske vektorrum

I sin tid i Grenoble studerede Schwartz det duale til vektorrum for at undersøge, hvilke sætninger der stadig var gældende i mere generelle topologiske vektorrum. Her undersøgte han blandt andet det duale, \(E'\), til rummet \(E = C^\infty([0,1])\), der umiddelbart ligner det, der senere skulle blive rummet af testfunktioner (under forudsætning af, at rummet udstyres med den samme topologi som \(D\)).

\(^1\) δ-funktionen kan godt defineres stringent som et mål, men dens afledte kan da ikke defineres meningfuldt
Schwartz skriver, at hans topologiske studier satte ham i stand til med det samme, da han opdagede distributioner, at indse alle de vigtige topologiske egenskaber uden hvilke de (ifølge ham selv) ikke ville have spillet så stor en rolle. Men imens han arbejdede med disse dualitetssætninger, kunne han ikke se, at de kunne have nogen anvendelsesværdi:

I remember thinking: "This space E' will probably never be useful for anything." (Schwartz; 2000, side 227)

Svage løsninger til differentialligninger

Inspireret af en artikel af Choquet og Deny udgav Schwartz i 1944 en artikel (Schwartz; 1944), hvori han viser, at de svage løsninger til ligningen2: $P(D)f = \sum_{|p|\leq m} a_p \partial_x^p f = 0$ er en kontinuerligt funktion $f(x)$, som opfylder at $f \ast \phi$ er en reel løsning for alle funktioner $\phi \in C_0^\infty$.

Schwartz fandt det problematisk, at man her, ligesom i tilfældet med den vibrerende streng, kunne definere løsningen til $\sum_{|p|\leq m} a_p \partial_x^p f = 0$ uden at give de forskellige led, $\partial_x^p f$, en mening. Denne gang var han imidlertid opsat på at finde et svar på problemet(Schwartz; 2000, side 229).

3.1.2 Opfindelsen af distributioner

Laurent Schwartz opdagede distributioner en nat i november 1944 (en nat han selv kalder "the most beautiful night of my life" (Schwartz; 2000, side 232)) som foldningsoperatorer $T : D \rightarrow D$. Vi noterer T virkende på $\varphi \in D$ som: $T \cdot \varphi$, og kræver, at T er lineær, kontinuerligt (med samme topologi på D som benyttes for distributioner i den endelige formulering) samt opfylder at: $(T \cdot \varphi) \ast \psi = T \cdot (\varphi \ast \psi)$, hvor $\varphi, \psi \in D$.

Han indåb, at hvis man ønskede generaliserede løsninger til partielle differentialligninger, kunne man generalisere funktionsbegrebet. Dette kunne gøres ved at opfatte en funktion som en sådan operator: $T_f : \cdot \rightarrow f \ast \cdot$. Dette vil da udgøre en generalisering af funktionbegrebet, da rummet af operatorer er større end rummet af funktioner, idet (næsten) alle funktioner kan identificeres med en operator, men ikke alle operatorer kan identificeres med en funktion. Hans begejstring skyldtes, at han med det samme indåb, at dette var løsningen på flere af de matematiske problemer, der havde någet ham. For eksempel ville δ-funktionen kunne formuleres stringent matematisk som en foldningsoperator, nemlig den identiske operator:

$$\delta = (\cdot \mapsto \cdot)$$

Denne formulering af distributioner viste sig dog at være lidt besværlig at arbejde med. Laurent Schwartz brugte nogle måneder på at generalisere forskellige operationer på distributioner, men han var ikke selv tilfreds med sine formuleringer, som han ikke mente var smukke nok (Schwartz; 2000, side 233). Det var imidlertid først, da han ville generalisere Fourier-transformationer, at han løb panden mod muren: Dette kunne ikke

2 p er her et multiindex. Se evt. afsnit A.1 for forklaring af notation
lade sig gøre i termer af disse foldningsoperatører. Først da fik han ideen til at formulere distributioner som funktionaler, som er den formulering, der stadig bruges idag.

3.2 Opsummering

Laurent Schwartz' udvikling af distributionsteorien syntes altså motiveret af nogle konkrete problemer, der til dels udspringer af fysikernes praksis med at benytte δ-funktionen, dels af overvejelser over belgeligningen, men måske hovedsageligt af tidligere matematisk arbejde med generaliserede løsninger til partielle differentialligninger. Den nøjagtige udfoldning må endvidere siges at være et produkt af Schwartz' forudgående forskning. Schwartz forsker ikke direkte med henblik på bestemte anvendelser, men er dog mest tilfreds med resultater, der har vide anvendelsesmuligheder:

I don't actually research with the aim of being useful in such and such domain, but I feel particularly pleased if my work has wideranging applications, and I address physicists, mechanics and engineers in their own language (Schwartz; 2000, side 165).

Muligvis opmuntret af de mange elektroingeniører blandt hans tilhørere til de første forelæsninger, han gav om distributionsteori, blev han selv overbevist om, at det primært var inden for disse områder, at teorien skulle finde anvendelse (Lützen; 1982). Han udgav endda en artikel om distributionsteori i "Annals des télécommunications" (Schwartz; 1948).

Vi vil derfor påstå, at anvendelser har været med til at sætte fokus på matematiske problemer, som dernæst er søgt løst inden for den rene matematik. Endvidere ser det ud til, at Schwartz efter sin opdagelse af distributionsteorien hurtigt kom til at tro på, at den ville have betydning i anvendt matematik.
4 Undersøgelser i litteraturen

I dette kapitel er det vores intention at undersøge, hvordan Schwartz' teori generelt blev modtaget, hvordan teoriers status har ændret sig gennem tiden, samt hvilken status teorien har i dag ved at se på litteraturen i perioden fra omkring 1950 frem til idag. Vi har i afsnit 4.1 set på matematikhistoriske artikler og bøger, anmeldelser af forskellige bøger om distributioner samt foredrag og taler givet ved kongresser, for eksempel Harald Bohrs tale ved overrækelsen af Fields Medal til Schwartz. Desuden har vi undersøgt lærebøger i distributionsteori, partielle differentialligninger samt forskellige anvendelsessorienterede lærebøger i nævnte rækkefølge.

Vi har valgt denne opdeling, dels fordi det giver en forholdsvis enkel måde at opdele materialet, dels fordi en af vores intentioner med afsnittet er at være i stand til at sige noget fornuftigt om udbredelsen af distributionsteorien, som kan have foregået i forskellige tempi inden for de forskellige grene.

Det er svært at sikre sig, at denne type undersøgelse bliver fuldstændig og tilbundsgrænse. Vi kan for eksempel ikke garantere, at vi har et repræsentativt udvalg af lærebøger. Der er også en reel risiko for, at vi kan have oversat noget, idet vi naturligvis ikke har nærlæst alle bøgerne, men orienteret os via indholdfortegnelser, stikordsregistre, forord med mere. I stedet kan vi bruge bøgerne til at udspænde diskussionen ved at beskrive ekstremerne i forskellige tilgange til stoffet. Man skal selvfølgelig af samme grund være varsom med at drage alt for bombastiske konklusioner på dette grundlag, men det er vores håb, at vi alligevel kan uddrage visse tendenser.

4.1 Taler, anmeldelser og biografer

Schwartz' distributionsteori blev ikke i første omgang anerkendt som en brugbar teori af alle, der beskæftigede sig med matematik, hvilket betød, at resultater opnået ved brug af distributioner blev betragtet med skepsis af nogle matematikere. Dette afsnit skal være med til at belyse, hvorledes distributionsteoriers status skiftede gennem dette århundrede, ved at se på forskellige personlige holdninger og kommentarer, der findes i litteratur som for eksempel taler, artikler og anmeldelser af bøger.

For at rekonstruere datidens modtagelse af distributioner har vi valgt at kigge på litteratur fra den undersøgte periode. Vi har derudover også set på nyere retrospektive beskrivelser af tiden så som biografer og historiske artikler.

4.1.1 En blandet modtagelse

Allerede kort tid efter udgivelsen af "Théorie des distributions", og før udgivelsen af det andet bind i serien året efter, blev Schwartz' arbejde med distributioner belønnet med Fields Medal, som han fik overrakt af Harald Bohr. Bohr var formand for komiteen og talte værst for, at Schwartz skulle have Fields Medal. Ved overrækelsen af denne sagde Bohr blandt andet:
Schwartz's work consists ... ()... in his creation of new and most fruitful notions adapted to the general problems the study of which he has undertaken. While these problems themselves are of classical nature, in fact dealing with the very foundation of the old calculus, his way of looking at the problem is intimately connected with the typical modern development of our science with its highly general and often very abstract character...()... I think that every reader of his cited paper, like myself, will have felt a considerable amount of pleasant excitement, on seeing the wonderful harmony of the whole structure of the calculus to which the theory leads and on understanding how essential an advance its applications may mean to many parts of higher analysis, such as spectral theory, potential theory and indeed the whole theory of linear partial differential equations.(Bohr; 1952, side 130)

Det var altså relativt hurtigt, at distributionsteori opnåede anerkendelse blandt nogle matematikere. Der lægges i talen op til, at distributionsteori er en teori, som vil have stor indflydelse på matematikken. Som det kan ses ud fra citatet, lægges der vægt på, at distributionsteori giver mulighed for at undersøge problemer på en ny måde. Derudover ses, at forårsningerne er store til betydningen af distributionsteorien for udviklingen af forskellige områder, specielt inden for partielle differentialligninger.

Den hurtige anerkendelse af teorien blandt nogle matematikere skyldes ifølge Gårding i høj grad Schwartz' personlighed og hans måde at sælge teorien på. Dette kan ses i kapitlet "The impact of distributions in analysis"(Gårding; 1997), hvor han skriver:

The initial success of the theory was due to an enthusiastic forward marketing and to Laurent Schwartz's conviction of the importance of distributions and the fiery lectures which he gave in several European countries after the war.(Gårding; 1997, side 79)

At distributionsteorien efter dens opfindelse blev fuldt accepteret af alle matematikere, er ifølge Schwartz' selvbiografi imidlertid langt fra sandheden.

...some people found that the whole idea was so simple that it couldn't possibly be useful, and others that the generalization of functions by continuous linear forms on a topological space was so complicated that it couldn't possibly be useful. It goes without saying the young people were the main critics of the first type, whereas older mathematicians had reservations of the second type. Both criticisms corresponded the doubts of my own.(Schwartz; 2000, side 241)

I en anmeldelse af "Théorie des distributions" af Bochner (1952) modtog Schwartz ikke megen ros for sin bog. Bochner, som selv havde arbejdet med generaliserede Fourier-transformationer, havde dette at sige om at differenciere i Schwartz' forstand:

Such generalized integrals have been long in developing, and their systematic use the very basis for the theory of generalized Fourier transforms as presented in the reviewer's book *Fouriersche Integrale*, 1932.(Bochner; 1952)

And as regards the novelty of introducing "distributions" which are more general than Stieltjes integrals, say, we think that the credit for it ought to be assigned to Riemann.(Bochner; 1952)

Bochner mener altså ikke, at der er noget skelsættende nyt i Schwartz' teori, men at den mere bærer præg af en genfortælling af noget, der allerede var kendt: (ifølge Liitzen (1982) er det dog forkert, at Riemann opfandt distributioner). Bochner gennemgår en række af Schwartz' resultater og skriver, at disse alle er set før, han slutter ironisk sin anmeldelse af med ordene:

We have recounted all this with a view suggesting that it would not be easy to decide what general innovations in the present work are analytical and even conceptual, and that it is in order to appraise the value of the book by its specific results, such as we have extracted above, and of such let the author produce many more, by all means.(Bochner; 1952)
Således får Schwartz nogle barske kommentarer, idet hans formulering af distributions-teorien af Bochner beskyldes for hverken at være nyssabende som koncept eller som analytisk værktøj.

At distributionsteorien havde mange skeptikere er en oppatelse der deles af flere af de der praktiserede matematik i tiden efter opfindelsen af distributionsteorien. Gårding skriver at mange konservative matematikere ikke var imponerede af Schwartz’ teori, og de kunne ikke se, at distributionsteorien resultater kunne bruges til noget:

At the time [1950] the theory of distributions got a rather lukewarm and sometime even hostile reception among mathematicians. Analysis of an older school could joke that: "Your distributions may be all right, but you are only really happy when you find a function" (Gårding; 1997, side 80).

At mange matematikere var fjendtlige over for distributionsteorien stemmer overens med den oplevelse af tiden, som en anden svensker, nemlig Lars Höramnder, havde. Han skriver i artiklen "A Tribute to Laurent Schwartz" (Höramnder; n.d.), at han som ung på rejse læste "Théorie des distributions", hvorefter han blev så begejstret, at han endrede planer for at nå nogle af Schwartz' foreløsninger i Frankrig. Da han kom hjem igen til Sverige, blev Höramanders begejstring dog i løde modtaget af hans læser Marcel Riesz (Höramnder; n.d.). I forbindelse med en præsentation af distributionsteorien havde Schwartz i 1948 mødt Riesz, som angivelig skulle have afrundet Schwartz med kommentaren: "I hope you have have found something else in your life" (Treves; 2003). Riesz's holdning til distributioner påvirkede Höramnder, så han nedtonede betydningen af distributionsteorien for hans arbejde, og han skriver i et brev til Schwartz i 1999:

...although I was thinking entirely in terms of distributions when I wrote my thesis, I did not dare to be completely open about it (...). When a couple of years earlier I had read your book and told him [Riesz] how enthusiastic I was, his reply was that I was still so young that there was hope that my taste would improve as I grew up. In my thesis I therefore stuck as much as possible to weak L^2 solutions, defined in terms of adjoints of operators in L^2 (Höramnder; n.d.)

For nogle matematikere var distributioner altså tabu i de første år efter opfindelsen. Schwartz mente selv, at fysikerne var mere modtagelige over for teorien end matematikerne, måske fordi fysikerne havde brugt distributioner i mange år før matematikerne (Treves; 2003). Han valgte i sin undervisning at bruge δ-funktionen som indgangsvinkel til distributioner, når han underviste fysikere, hvilket viste nødvendigheden af teorien. Når han derimod underviste unge mennesker uden kendskab til δ-funktionen, fandt han hurtigt ud af, at de havde nemmere ved at forstå δ-funktionen, efter de havde lært om distributionsteori (Schwartz; 2000). Det var altså fysikere og de unge matematikere, som ifølge Schwartz først tog distributionsteori til sig. Mange matematikere mente, at netop fysikere og ingeniører ville have stor glæde af distributionsteori. For eksempel beskrev Lighthill, Mikusinsky og Temple distributioner forstået som grænser af funktioner, hvilket angiveligt skulle gøre det nemmere at forstå for fysikere (Schwartz; 2000, side 242). Temple skriver i en artikel om distributioner:

The theory of distributions is undoubtedly of great practical importance for the applied mathematicians, but unfortunately for them the theory is highly abstract (...). It is therefore desirable to give a more elementary and less abstract account of this new branch of analysis, so to make the important discoveries of Schwartz available to the physicist and engineer (...). It is clear that generalized functions are destined to play a considerable part in mathematical physics. (Temple, 1955)

Det er tydeligt, at det er inden for anvendt matematik og fysik, at forventningerne til distributionerne var store. Så selvom der fra nogle kanter af matematikken var stor skepsis over for distributionsteorien, var der også en del, der mente, at den ville komme til at forme matematikken fremover specielt inden for den anvendte matematik.
4.1.2 Teorien vinder indpas

I 1960’erne viser nogle af vores kilder, at distributionsteorien opnår større udbredelse og accept. I starten af 60’erne skrev Hörmander sin første bog om partielle differentialligninger (Hörmander; n.d.). Han har valgt at introducere distributionsteorien, idet han ikke vil forudsætte, at læseren kender denne, og skriver om dette valg:

Since distribution theory was not so widely known and appreciated at that time it seemed necessary to give such preliminaries which emphasized its "hard analysis" contents and minimized functional analytic aspects. (Hörmander; n.d.)

Altså skriver han, at kendskabet til distributioner endnu ikke var udbredt, og det var derfor nødvendig at introducere distributionerne i sin bog. Noget tyder dog på, at dette ændres i tresserne. Selvfølgelig er det ikke en begivenhed, som er sket over en nat, men en holdningsændring som er blevet mere udbredt siden starten af halvtresserne. At teorien har vundet indpas, viser nogle af kilderne fra tresserne dog meget klart. I en tale til en konference på University of Wisconsin giver Dieudonne i 1964 sin mening om, hvilken betydning distributioner på det tidspunkt havde haft.

The phenomenal growth of the theory of partial differential equations, during the last ten years, can also be taken as an excellent example of the impact of the general theory of topological vectorspaces on classical analysis. Here catalyst undoubtedly was the theory of distributions, although much of the technique is of earlier origin. (Dieudonne; 1964)

Dieudonne går endnu videre og sammenligner opfindelsen distributioner med opfindelsen af differential- og integralregning. Man havde længe kunnet løse de problemer, som differential- og integralregning kunne løse, men man behøvede ikke længere bruge forskellige ad hoc konstruktioner. Derudover prøver Dieudonne at gøre op med kritikere af nye matematiske teorier, idet han siger:

... it is now a well-established phenomenon that what is highly abstract for one generation of mathematicians is just common place for the next one, and the cries of anguish one still hears from time to time usually comes from older men visibly afraid of being unable to catch up with the younger set. (Dieudonne; 1964)

Senere i tresserne udgiver Zemanian (1965) sin bog om distributionsteori. I en anmeldelse af denne bog skrevet i The American Mathematical Monthly fremgår det klart, at distributionsteori er begyndt at vinde indpas i anvendt matematik:

Since a knowledge of distribution theory is now almost a necessary prerequisite for study in the systems area, and many other areas of applied mathematics, it is gratifying to see the appearance of this relatively elementary text directed to applied scientists. (Newcomb; 1966)

I en anmeldelse af Schwartz’ selvbiografi skriver Davis (2001), at selv om teorien har vist sig som en nyttig ramme for matematisk forskning, så har den ikke bidraget til den faktiske beregning af løsninger, som typisk er det, anvendere er interesserede i.

Though distribution theory has opened up new areas of mathematical research and though it has contributed a point of view, a useful attitude and mode of expression, it has done little for the actual computation required in bottom-line applied mathematics. (Davis; 2001)

Distributionens betydning for de anvendte fag begrænser sig ifølge Davis til en matematisk redegørelse for brugen af δ-funktionen, som de kan henvise til;

It's been said (jocularly) that "Mathematicians and physicists used to live in productive sin with the delta function and its derivatives. Schwartz provided them with a marriage certificate, which they take out of the closet occasionally to consult and show around. (Davis; 2001)
Det fremgår, at distributioner nu har bredt sig til en stor del af den matematik, som beskæftiger sig med partielle differentialligninger. Hörmander skriver for eksempel om forberedelserne til hans anden bog om partielle differentialligninger:

In 1981 I spent a month at École polytechnique while working on the manuscript, and at a lunch with Schwartz I mentioned my plans for the new book. His immediate reaction was that it was no longer necessary to include an introduction to distribution theory since it had become known to everybody. (Hörmander; n.d.)

Hvilket stemmer overens med Gårdings syn på teoriens status idag. Han skriver:

The book *Théorie des distributions* by Laurent Schwartz (1951), now one of the non-read classics of mathematics, has transformed many branches of analysis, and the theory is now familiar to every student who ever took an advanced mathematics course in analysis. (Gårding; 1997, side 77)

4.1.3 Opsumering

4.2 Lærebøger i distributionsteori

4.2.1 1950-1970

to PAUL DIRAC who saw that is must be true, LAURENT SCHWARTZ who proved it, and GEORGE TEMPLE who showed how simple it could be made (Lighthill, 1958, fra forordet)
4.2 Lærebøger i distributionsteori

Sådan starter Lighthills korte lærebog om distributioner og Fourier-transformationer. At Dirac nævnes hentyder selvfølgelig til opfindelsen af δ-funktionen, som ved hjælp af distributionsteorien kan beskrives på en stringent måde. Alle lærebøgerne ligger vægt på distributionsteoriens retfærdiggørelse af brugen af δ-funktionen. To af de meget betydningsfulde værker om distributionsteori skriver således om δ-funktionen og andre formelle manipulationer:

Generalized functions have of late been commanding constantly expanding interest in several different branches of mathematics. In somewhat nonrigorous form, they have already long been used in essence by physicists. (Gelfand & Shilov; 1964, fra forordet)

First of all, it [the distribution theory] provided a rigorous justification for a number of formal manipulations that had become quite common in the technical literature. (Zemanian; 1965, fra forordet)

This theory of distributions gives a rigorous content and validity to the formulæ of operational calculus ... it provides a simple but more complete theory of such topics as Fourier Series and Integrals, Convolutions, and Partial Differential Equations. (Halperin; 1992, fra forordet)

I lærebøgerne er det første, der nævnes, δ-funktionen, og der lægges vægt på, at distributionsteorien har samlet en masse løse ender og ryddet op i en praksis, der ikke var gjort stringent rede for, hvilket har banet vejen for en videre udvikling af matematikken. Den betydning, lærebøgerne tillægger distributionsteorien, kan opsummeres til det, Shilov (1968) skriver om distributioner:

Although the premises underlying the formation of the theory of generalized functions are rooted deep in classical mathematics, the physicists were actually the first to introduce and use the concepts. ... Almost instantly after the appearance of Schwartz's book the concept spread to a large part of analysis where they helped clean up many old facts and enabled new general relationships to be found. (Shilov; 1968, fra bibliographical comments)

Oprydningen i den ikke-stringente matematik var, ifølge lærebøgerne, ikke der. hvor distributionerne havde størst betydning. Endnu vigtigere var distributionernes betydning for udviklingen af matematikken, specielt partielle differentialligninger.

The second and more important effect was that it opened up a new area of mathematical research, which in turn provided an impetus in the development of a number of mathematical disciplines, such as ordinary and partial differential equations, operational calculus, transformation theory, and functional analysis. (Zemanian; 1965, fra forordet)

Shilov tillægger distributionsteori en endnu større rolle i forskningen i partielle differentiellligninger end de andre lærebøger:

With the growth of generalized function theory, it has become possible to construct a general theory of partial differential equations encompassing of any type of equation of any order. Although the role of fundamental solutions in the classical problems has been known certainly as far back as the past century, only the advent of generalized functions has made it possible to give a precise definition of a fundamental function (solution) of a differential operator and to study the question of its existence. (Shilov; 1968, fra bibliographical comments)
Shilov giver altså udtryk for, at udviklingen af distributioner gør det muligt at have en generel teori, således at alle typer partielle differentialligninger indgår. Dette må siges at være en meget optimistisk holdning til betydningen af distributioner.

En del af Schawrts' motivation for at udvikle distributionsteori kom fra de tekniske fags brug af δ-funktionen. Næsten alle de undersøgte lærebøger om distributionsteori har da også ingeniører og fysikere som målgruppe, hvilket eksempelvis kan ses ud fra forordet i Zemanians bog:

In recent years an everincreasing number of textbooks have been devoted to the classical Fourier and Laplace transformations. The corresponding distributional transformations, although they are considerably more powerful tools have not received the same attention in the current textbooks, nor have they been widely employed by scientists and engineers. It is hoped that this book will help to popularize distributional transform analysis.

(Zemanian; 1965, fra forordet)

Det er ikke kun i forord, man lægger mærke til, at bøgerne i høj grad henvender sig til fysikere og ingeniører. Bremermanns lærebog starter for eksempel med at motivere læseren med de praktiske anvendelser af distributionsteori i fysiske problemer:

In this introduction it is shown how a simple physical problem leads to a mathematical difficulty and how this difficulty may be overcome by introducing generalized functions.

(Bremermann; 1965, side 1)

Det er tydeligt at se, hvordan forfatteren henvender sig til den fysikinteresserede læser. At lærebøgerne henvender sig til fysikere og ingeniører kan tolkes, som om forfatterne mener, at distributionsteori er meget relevant for disse faggrupper – måske endda mere end for rene matematikere.

4.2.2 1970-

Der er selvfølgelig en del fællestæk mellem de ældre lærebøger og de nyere. En af disse fællestæk er fremhævelsen af distributionsteoriens retfærdiggørelse af nogle af den tidligere matematiks brug af ikke-stringente metoder. Dette kan blandt andet ses ud fra Misra & Lavoine (1986), der uduover at have mistænkelige ligheder med forordet fra Zemanian (1965) også har ligheder med de andre nutidige lærebøgers udlægning af distributioners oprydning i den ikke-stringente matematik:

In particular this theory provides a rigorous justification for a number of manipulations that have become quite common in technical literature and also it has opened a new era of mathematical research which, in turn, provides an impetus to the development of mathematical disciplines such as ordinary and partial differential equations, operational calculus, transformation theory, functional analysis, locally compact lie groups, probability and statistics etc. (Misra & Lavoine; 1986, fra forordet)

In this [theory of distributions] a systematic treatment of a wide and important class of generalised functions was developed, unifying much of the earlier work by Hadamard, Bochner, Sobolev and others. (Hoskins & Pinto; 1994, fra forordet)

The theory of distributions is a generalization of classical analysis, which makes it possible to deal in a systematic manner with difficulties which previously had been overcome by ad hoc constructions, or just by pure hand waving. In fact it does a good deal more: it provides a new and wider framework, and a more perspicuous language, in which one can reformulate and develop classical problems. Its influence has been particularly pervasive
4.3 Lærebøger i partielle differentialligninger

and fruitful in the theory of linear partial differential equations. (Friedlander & Joshi; 1998, side 1)

En anden forskel mellem de to tidsperioder er målgruppen for lærebøgerne. De nyere lærebøger henvender sig ikke i samme grad til fysik- og ingeniørstuderende. For eksempel står der i omslagsteksten på Friedlander's bog:

This account [of the distribution theory] should therefore be useful to graduate students and research workers who are interested in the application of analysis in mathematics and mathematical physics. (Friedlander & Joshi; 1998, fra omslagstekst)

Friedlander skriver altså primært til matematkere. Dette skift i målgruppe kan måske antyde, at fysikere generelt ikke havde så stor brug for distributioner, som man først troede.

En lærebog, som er meget anderledes end de andre lærebøger er Richards & Youn (1990), som giver en "non technical" introduktion til distributioner. Dette betyder, at den skal kunne læses næsten uden forudsætninger. I omslagsteksten til bogen står der om målgruppen:

Most books on this subject are either mathematically non-rigorous but intuitive, or else rigorous but technically demanding. Here, Professors Richards and Youn have introduced the subject in a way that will most appeal to non-specialists, yet is still mathematically correct ... (.) ... It will be a valuable introduction to the theory of distributions and their applications for students or professionals in mathematics, physics, engineering and economics. (Richards & Youn; 1990, fra omslagstekst)

Bogen giver ligesom Hoskins & Pinto (1994) udtryk for, at mange distributionsbøger er blevet for teknisk svære og prøver derfor at imødekomme de studerende, som i højere grad ønsker et overblik over anvendelserne af distributionsteori end at forstå den matematiske baggrund for den. For eksempel nævnes der intet om, at rummet af distributioner kan betragtes som det duale rum til rummet af testfunktioner.

En anden bog, som skiller sig ud fra flertallet af lærebøger, er Grosser et al. (2001), som ifølge forfatterene er den første omfangsrigte introduktion til ikke-lineær teori om generaliserede funktioner. Distributioner, som jo først og fremmest er en lineær teori, har i nyere tid gennemgået en udvikling, hvor ikke-lineær teori spiller en større rolle (Hoskins & Pinto; 1994).

4.2.3 Opsummering

Lærebøgerne i distributionsteori har siden udgivelsen af "Théorie des distributions" lagt meget vægt på oprydningen i den ikke-stringente matematik, specielt δ-functionen. Samtidig bliver samlingen af forskellige områder af matematikken i distributionsteorien fremhævet som værende af stor betydning. De nyere lærebøger mener, at det først og fremmest er den systematiske ramme, som distributionsteorien giver, der er teoriens største bidrag, og ikke teoriens retfærdiggørelse af tidligere brugte manipulationer. Distributionsteorien er derudover blevet udvidet, så det for eksempel også kan bruges i forbindelse med ikke-lineære ligninger. Målgruppen har også ændret sig lidt fra at være fortrinsvis fysikere og ingeniører generelt til primært at være matematkere eller mere specialiserede studerende inden for andre fag.

4.3 Lærebøger i partielle differentialligninger

I dette afsnit behandles lærebøger om partielle differentialligninger fra omkring 1950 til nu. Udvalgelsen af bøgerne har for så vidt været tilfældig, idet udvalgelseskriteriet først
og fremmest har været, at der var tale om lærebøger i (lineære) partielle differentialligninger med en målgruppe på et rimeligt niveau, det vil sige svarende til kandidatniveau. Vi har forsøgt at fremskaffe bøger fra hele tidsperioden, hvilket har vist sig lidt vanskeligt, idet biblioteker jævnligt rydder op i deres samlinger af lærebøger. I tilfældet med de ældste bøger (fra før 1970) har vi derfor nærmest ukrsit bestilt alt, hvad vi kunne finde.

Fremgangsmåden i analysen af disse lærebøger har været at kontrollere stikordsregistret og indholdsfortegnelsen (hvis sådanne fandtes) for relevante henvisninger, for eksempel fundamentalsløsning, δ-funktion, distributioner og dernæst slå op på de relevante sider og undersøge, hvordan emnet behandles. Desuden er et eventuelt forord løst igennem med henblik på at uddrage informationer dels om bogens målgruppe, dels eventuelt om forfatterens mening om distributionsteorien rolle, både inden for partielle differentialligninger og generelt i matematikken.

4.3.1 1950-1960

Overordnet kan man sige, at de lærebøger, vi har været i stand til at fremskaffe om partielle differentialligninger fra denne periode, stort set ikke berører emnet distributioner. Lax (1950-51) og John (1975) (1.udgave og forord fra 1953) er noter til undervisning i klassisk partielt differentialligningsteori om egenskaber og opførsel af løsninger til partielle differentialligninger. Disse noter indeholder ikke noget om distributioner, hvilket måske er forståeligt nok, eftersom de udkom nogenlunde samtidigt med Laurent Schwartz' lærebog, det vil sige hvad der havde været af tilgængeligt materiale før denne bestod i videnskabelige artikler, og man forventer ikke umiddelbart, at undervisningsnoter baseres på frontforskning. Desuden er begge bøger fra USA, hvor distributionsteorien angiveligt var længere tid om at blive almindeligt accepteret end i Europa.

Duff (1956) skriver i forordet til sin lærebog "Partial Differential Equations", at den er tænkt som en introduktion til den moderne behandling af partielle differentialligninger og målgruppen anfører at være studerende med solid baggrund i sædvanlige differentialligninger. Lidt længere nede i teksten skriver han:

...some of the material is relatively modern, though the methods and concepts used have been restricted to those of classical analysis. (Duff; 1956, fra forordet)

Han har altså valgt at lægge vægten på den klassiske teori, men denne kommentar tyder på, at han er klar over, at der findes andre metoder. Han nævner den generaliserede løsning til den en-dimensionelle bølgeligning som eksempel, men uden at differenchaliabiliteten af løsningen problematiseres. Løsningen antages simpelthen to gange differentiable.

Ligesådan har Sneddon (Sneddon; 1957) undladt at komme ind på distributioner i sin lærebog "Elements of Partial Differential Equations". Han bemærker, at δ-funktionen ikke er en rigtig funktion, og han definerer den som grænsen for en følge af funktioner.

The aim of this book is to present the elements of the theory of partial differential equations in a form suitable for the use of student and research workers whose main interest in the subject lies in finding solutions of particular equations rather than in the general theory ...().It therefore caters for readers primarily interested in applied rather than pure mathematics, but it is hoped that it will be of interest to students of pure mathematics following a first course in partial differential equations. (Sneddon; 1957, fra forordet)

Man kan altså her konstatere, at Sneddon (1957) blandt andre skriver til forskere, men alligevel ikke indfører distributionsteorien. Dette kan muligvis forklares med, at han henvender sig hovedsageligt til læsere interesserede i anvendt matematik.
4.3 Lærebøger i partielle differentialligninger

Den eneste lærebog, der beskæftiger sig med generaliserede funktioner, er "Operational Calculus" Erdélyi (1955), som strengt taget ikke er en lærebog i partielle differentialligninger:

This theory [distribution theory] has been applied most successfully to partial differential equations. J. Mikusinski also generalised the notion of function. His generalized functions differ from those of Schwartz and are especially suited to operational calculus. The process of generalization utilises the properties of convolutions to arrive at a concept which contains the notions of number, function, impulse function, operator. These lectures will be based on Mikusinski's theory. (Erdélyi; 1955, side 6)

Distributionsteorien ser altså ikke ud til at have holdt sit indtog i lærebøgerne i partielle differentialligninger på dette tidspunkt. Om dette beror på hensyn til målgruppen eller om forfattherne ikke er opmærksomme på distributionsteorians anvendelighed på området, kan ikke umiddelbart afgøres.

4.3.2 1960-80

Op igennem tresserne og halvfjerderne er distributionsteorien blevet mere synlig, hvilket kommer til udtryk i lærebøgerne om partielle differentialligninger. Vi har kigget på ti af disse bøger fra 60'erne og 70'erne.

Den første bog (kronologisk set), der beskæftiger sig med generaliserede løsninger, er Petrovskii (1967) (russisk udgave 1961). Bogens målgruppe angives i forordet til både matematikere og matematiske fysikere:

The present work deals mainly with the linear partial differential equations of mathematical physics, and should be a valuable text for mathematicians and mathematical physicists alike. (Petrovskii; 1967, fra forordet til den oversatte udgave)

I bogens andet kapitel nævnes Sobolevs arbejde med generaliserede løsninger til partielle differentialligninger, og der gøres opmærksom på, at ikke alle generelle løsninger vil være så differentiable, som det kræves i den oprindelige ligning. Generaliserede funktioner er imidlertid ikke nævnt. I sidste kapitel i bogen henvises der til Hörmanders tidlige arbejde inden for distributionsteorien (Petrovskii; 1967, side 335). Det ser således ud til at en udadelse af distributionsteori i behandlingen af partielle differentialligninger er et bevidst valg fra forfatterens side.

Hörmander begyndte tidligt at benytte distributioner, og hans første bog om partielle differentialligninger var skrevet i distributionsteorians ramme. Hele første del af bogen omhandler funktionalanalyse samt distributioner og danner fundamentet for bogen og dermed partielle differentialligninger:

Functional analysis and distribution theory form the framework for the theory developed here. (Hörmander; 1963, fra forordet)

Det var dog ikke alle lærebøger i tresserne, som vi har kigget på, der bruger distributioner. Weinberger (1965) indeholder intet om distributioner eller δ-funktionen. Ligeså inkluderer Friedman (1983) heller ikke distributioner. Friedman nævner dog, at der er sket en udvikling inden for partielle differentialligninger:

In the last few years the theory of Partial Differential Equations has continued to develop rapidly. Some of the main directions are (i) Pseudodifferential operators, (ii) nonlinear equations, (iii) variational inequalities. The Material of this book provides the basic knowledge needed for studying these fast growing areas of research. (Friedman; 1983, fra forordet, 1969)

Selv om Friedman ikke nævner distributioner i sin bog, så er han dog klar over, at de bruges inden for partielle differentialligninger, idet han nævner pseudodifferentialoperatører, som er en udspringer af distributionsteori (Dieudonne; 1981). Det forklares ikke,
hvorledes bogen skal kunne være grundlag for at studere pseudodifferentialoperatorer, når den ikke indfører distributionsteori.

Sneddon, som også har udgivet (Sneddon; 1956) og (Sneddon; 1957), udgiver i 1972 en ny bog som behandler partielle differentialligninger. I modsætning til de to førnevnte bøger, som ikke nævner distributionsteorien, har denne bog et kapitel om distributioner. Sneddon skriver om dette:

Formal calculations are much simplified by the introduction of the Dirac delta "function" but the rules for its manipulation do not follow naturally from the methods of classical analysis. This led to the introduction of the concept of a "generalized" function. (Sneddon; 1972, side 484)

δ-funktionen introduceres i første omgang, ligesom i hans tidligere bøger, som grænsen for en funktionsefle. Men da der skal redegøres for, at Heavisidefunktionens afledte er δ-funktionen, skriver han:

To anyone without a background in rigorous mathematical analysis it may not be clear why there is anything wrong, with the analysis up to this point. The reason is that we have treated the Dirac delta "function" (or that is the same thing the derivative of the Heaviside function) as though it were a function in the sense of classical analysis. It is obviously not, since it is defined to be zero everywhere except at the origin, i.e. to be zero almost everywhere, and yet to have a finite integral. It is not admissible, therefore to apply the standard theorems of calculus, such as the formula for integration by parts, to such "functions". When we attempt to give a rigorous interpretation to these equations we have to generalize the whole concept of a function. (Sneddon; 1972, side 487)

Det er tydeligt at se, at Sneddon har ændret sit forhold til distributioner fra at ignorere dem til at indføre et separat kapitel om dem. Det skal dog siges at kapitlet, om distributioner i Sneddon (1972) er placeret sidst i bogen, der godt kan læses uden. Men Sneddon må alligevel have erkendt, at distributioner er vigtige, når man beskæftiger sig med partielle differentialligninger.

To andre bøger fra halvfjerdsærne er Lieberstein (1972) og John (1975). I disse to bøger spiller distributioner ikke en vigtig rolle, men er stadig nævnt. Forfatterne mener begge, at fundamentet for forståelse af partielle differentialligninger ikke nødvendigvis inkluderer distributioner. I forordet til den ene bog står der blandt andet:

These Notes grew out of a course given by the author in 1952-53. Though the field of Partial Differential Equations has changed considerably since those days, particularly under the impact of methods taken from Functional Analysis, the author feels that the introductory material offered here still is basic for an understanding of the subject. (John; 1975, fra forordet)

John (1975) mener tilsyneladende, at det stadig er relevant med en klassisk introduktion til partielle differentialligninger, inden man eventuelt indfører distributionsteorien. Bogen indeholder dog en meget kort beskrivelse af distributioner, mens Lieberstein (1972) kun nævner brugen af distributioner i underkapitlet "The impulse Problem as a prototype of a solution in terms of distributions". Begge bøger nævner derudover distributionsteori som en forklaring af δ-funktionen.

En bog, hvorimod distributionsteorien indgår meget grundlæggende i behandlingen af partielle differentialligninger, er "Linear partial differential equations" af Treves (1970). Bogen starter med de grundlæggende sætninger inden for funktionalanalyse, og der henvises flittigt til Hörmander (1963). I indledningen slås det fast, at ad hoc løsningernes tid er forbi:
4.3 Lærebøger i partielle differentialligninger

The fact is that the general theory of partial differential equations has now achieved a certain measure of maturity; the elimination of entertaining devices, monotony – almost sclerosis – of the methods, the repetitious assertions, all these attest to the coming of middle age...(Treves; 1970, fra forordet)

Samme forfatter udgiver i 1975 "Basic linear partial differential equations" (Treves; 1975). Han starter sin bog med at give kritik af, hvad de studerende får lært om partielle differentialligninger, hvilket ses i forordet, hvor han skriver:

The discrepancy between what is taught in a standard course on partial differential equations and what is needed to understand recent developments in the theory is now very wide. It is a fact that only a relatively small number of specialists, in a few universities, are able, these day, to teach a course that is truly introductory to those developments. (Treves; 1975, fra forordet)

På baggrund af resten af forordet er det tydeligt, at distributionsteori er en del af denne nylige udvikling. Treves påpeger altså i ovenstående citat også, at underviserne på universiteterne simpelt hen ikke er gode nok til at undervise i distributionsteori, fordi den heller ikke på dette niveau er alment kendt. Han mener, at distributionsteori er en nødvendighed for at behandle partielle differentialligninger:

Today, distributions are the language of linear PDE theory, and I am certainly not of the school that would like to do without them. But knowing that not all students are seriously exposed to distributions, I have limited their use to their more mechanical aspects - convergence of sequences, differentiation, convolution; sometimes, but not often, the local representation of a distribution as a finite sum of derivatives of continuous functions is used to advantage. Fourier transformation of distributions, however, is used systematically; the student genuinely interested in PDE must make an effort to learn it. (Treves; 2003, fra forordet)

Treves deler altså Hörmanders mening om distributioner som værende en del af fundamentet i partielle differentialligninger, men mener ikke, at de studerende (og andre i hans målgruppe) har nok styr på distributionsteori til, at han vil basere sin bog på den. Distributionsteori har dog stadig en vigtig rolle i bogen. Man må formode, at målgruppen er grunden til forskellen på angrebsvinklen i de to bøger.

Brugen af distributioner i lærebøgerne fra tresserne og halvfjerderne om partielle differentialligninger må siges at være blevet mere udbredt. Dog er det meget forskelligt, hvor centrale distributionerne er i behandlingen. Nogle bøger betegner dem som fundamentet for teorien om partielle differentialligninger og det sprog, som bruges, når man beskæftiger sig med dem, mens andre bøger ikke nævner dem.

4.3.3 1980-

I perioden fra 1980 og frem til i dag har vi set på syv lærebøger. To af disse har ikke distributionsteorien med. Den ene, der ikke medtager distributionsteorien, er Kevorkian (1990), der skriver, at hans bog benyttes i kurser for "first-year graduate students in Applied Mathematics":

The primary purpose of this book is to analyze the formulation and solution of representative problems that arise in the physical sciences and engineering and are modeled by partial differential equations. To achieve this goal, all the basic physical principles of a given subject are first discussed in detail... (Kevorkian; 1990, fra forordet)

DiBenedetto (1995) medtager heller ikke distributionsteori i sin bog. Muligvis skyldes dette et forhold, som han beskriver i sit forord:

Although the basic equations treated in this book, given its scope, are linear, we have made an attempt to approach them from a nonlinear perspective. (DiBenedetto; 1995, fra forordet)

DiBenedetto (1995) angiver ikke direkte målgruppen for sin bog, men skriver at den forudsætter avanceret differentialregning og noget grundlæggende L^p teori. En interessant kommentar i forordet er:

A book of this nature is bound to leave out a number of topics and this one is no exception. Perhaps the most noticeable omission here is some treatment of numerical methods. (DiBenedetto; 1995, fra forordet)

The progress in the theory of linear partial differential equations during the past 30 years owes much to the theory of distributions ... (Hörmander; 1983, fra forordet)

Taylor (1996) er helt på linie med dette og skriver i sin introduktion:

Chapter 3 is devoted to Fourier analysis and the theory of distributions. These topics are crucial for the study of linear PDE. (Taylor; 1996, side xiv)

En tilsvarende opfattelse af distributionsteoriens vigtighed kan man forestille sig, at Egorov & Shubin (1992) har. De skriver:

This volume contains a general introduction to the classical theory of linear partial differential equations for nonspecialist mathematicians and physicists. (Egorov & Shubin; 1992, fra forordet)

Hvis de mener, at ikke-specialister behov for at lære distributionsteori, må det være, fordi de anser distributionsteorien for grundlæggende for området.

Bogen af Bellman & Adomian (1985) er ikke lige så gennemsynet af distributionsteori, men han har i et kapitel om "Green's functions" et meget kort afsnit på knapt en side om distributioner. Han indfører derpå "symbolske funktioner", hvormed han blandt andet skriver:

However, $s(x)$ [a symbolic function] need not have numerical values unless multiplied by a testing function and integrated. (Bellman & Adomian; 1985, side 189)

Han indfører afledte af symbolske funktioner, og denne definition ligner umiskendeligt det, man foretager sig i distributionsteorien:

Now if

$$
\int_{-\infty}^{\infty} s'(x)\phi(x)dx = -\int_{-\infty}^{\infty} s(x)\phi'(x)dx
$$

for every testing funktion ϕ then we say $s'(x)$ is the derivative of the symbolic function $s(x)$. (Bellman & Adomian; 1985, Side 189-190)
Bellman & Adomian (1985) benytter altså ikke distributionsteori i vid udstrækning, men kender den og gør klart brug af tankegangen i den. Desuden skriver de i forbindelse med en ligning, hvori δ-funktionen indgår:

The remaining mathematicians who will still object to such equations are best simply ignored. The works of Schwartz, Gel'fand, Vilkenkin, and innumerable others has certainly well justified the brilliant intuitive work of Dirac. It was always correctly used by the physicists but sometimes explained very poorly in standard texts in physics causing controversy. Such equations are understood in the sense of linear functionals and symbolic functions, i.e., in the sense of the theory of distributions. (Bellman & Adomian, 1985 side 178)

4.4 Opsummering

4.5 Anvendelsesorienteret litteratur

I dette afsnit vil vi se på anvendelsesorienteret litteratur, for at forsøge at give en fornemmelse af hvorvidt, og i givet fald hvordan, distributionsteori anvendes uden for den rene matematik.

Vi har set på to typer af bøger. Den ene kategori består af matematikbøger skrevet for fysikere eller med inspiration fra fysikken. Dette er bøger om matematisk fysik og bøger om matematiske metoder i fysikken. Den anden kategori er bøger skrevet om kvantemekanik til fysikere. Grunden til, at vi har valgt kvantemekanik er, at det er inden for denne gren af fysikken, vi har en fornemmelse af (ud fra vores interviews og
e-mail korrespondance samt at Dirac brugte δ-funktionen på netop dette område), at distributionsteorien blandt andet anvendes.

Inden for matematisk fysik har vi set på syv lærebøger, og inden for kvantemekanik har vi set på fire lærebøger.

4.5.1 Matematisk fysik

På trods af at bøgerne i denne kategori hovedsageligt har matematisk indhold, er behandlingen af distributionsteori ikke en stor bestanddel. Undtagelsen fra denne regel er Schwartz (1966), som hovedsageligt omhandler distributionsteori samt nogle anvendelser i forbindelse med bølgeligningen og varmeledningsligningen. En interessant kommentar til denne bog findes i anmeldelsen skrevet af Dettman (1968):

The biggest surprise comes in the chapter on applications, for having developed distribution theory for 170 pages, the author hardly mentions them in the applications. A physicist, who had heard a rumor that distributions are very important, might wonder why all the fuss. (Dettman; 1968)

Schwartz' bog er da også ret anderledes end de øvrige i denne kategori, og det tyder på, at ikke alle anvendelsesorienterede forskere kan se det nyttige i distributionsteorien.

Courant & Hilbert (1962) lægger ikke den vægt på distributionsteorien, som Schwartz gør, men benytter forskellige "special functions", heriblandt δ-funktionen. I et appendiks til kapitel 6 "Ideal Functions or Distributions" skriver de:

In this appendix we shall discuss the concept of distributions or "ideal functions". The specific use of these ideal functions in the preceding chapters will be justified within a more general framework. (Courant & Hilbert; 1962, side 766)

Grundlæggende distributionsteori beskrives altså i et appendiks, som en form for "retfærdiggørelse" af, at der benyttes objekter, som for eksempel δ-funktionen, som ikke er egentlige funktioner, men som under visse omstændigheder behandles som sådanne. Courant & Hilbert (1962) beskriver altså distributionsteorien i et appendiks, men har en kritisk holdning til den og skriver for eksempel:

Formal simplifications thus attainable must not create the illusion that the core of intrinsic difficulties can thereby be mastered rather than merely isolated and clarified. Often the genuine difficulty is shifted to the final task of ascertaining in what sense a result obtained in terms of ideal functions is indeed expressible by ordinary functions. (Courant & Hilbert; 1962, s. 768, note 3)

Courant & Hilbert (1962) er altså ikke overbeviste om, at distributionsteorien egentlig gør problemerne lettere, men mener, at den måske blot flytter den egentlige vanskelighed et andet sted hen. De giver desuden udtryk for, at de ikke føler sig overbevist om, at distributionsteorien faktisk er den mest nyttige udvidelse af funktionsbegrebet og overvejer, om man måske kunne finde en mere brugbar generalisering. Om dette skriver de:
4.5 Anvendelsesorienteret litteratur

The value of all such concepts [ways of defining ideal functions] should be measured not by their formal generality but by their usefulness in the broader context of analysis and mathematical physics. (Courant & Hilbert; 1962, side 798)

$$\int_{-\infty}^{\infty} \delta(x)f(x)dx = \lim_{n \to \infty} \int_{-\infty}^{\infty} \delta_n(x)f(x)dx$$

hvor δ_n er en funktionsfølge, der tilnærmer δ-funktionen for n → ∞. Han bemærker, at δ-funktionen ikke er en egentlig funktion. Hellwig (1964) skriver noget tilsvarende i en opgaveformulering, idet han angiver forskellige funktionsfølger, der tilnærmer δ-funktionen. Han skriver ligeledes om eksistensen af en funktion δ, for alle kontinuerede funktioner f(x) opfylder \(\int_{-\infty}^{\infty} \delta(x)f(x)dx = f(0).\) at:

Eine solche Funktion gibt es im Rahmen des klassischen Funktionsbegriffes nicht. (Hellwig; 1964, side 122)

Hverken Hellwig (1964) eller Sneddon (1956), der har et separat afsnit om δ-funktionen, refererer til distributionsteorien for at forklare den, men henholder sig til ovennævnte fremgangsmåde.

The general procedure which puts all of this discussion on a firm foundation is called the theory of distributions, and in this setting H [Heaviside’s unit step function], δ and other important functionals are called distributions. We do not have time to develop this theory in detail and so must be content with formal calculations. However, the solution formulas we shall obtain below using delta function arguments and other plausible reasoning can be checked directly once they are obtained. (Guenther & Lee; 1996, side 416)

Guenther & Lee (1996) kender altså distributionsteorien, men har ikke tid til at udvikle den i denne bog. I stedet må de så benytte formelle beregninger for til sidst at tjekke, at de opnåede resultater nu også er gyldige. Rubinstein & Rubinstein (1993) har heller ikke beskrevet distributionsteorien i deres bog, men skriver i en fodnote i forbindelse med en diskussion af δ-funktionen:

Calculations based on using the δ function always lead to correct results, but for a long time mathematicians regarded them as unrigorous. ... After the development of the theory of distributions, it was understood that δ function is a distribution rather than a function in Dirichlet’s sense. (Rubinstein & Rubinstein; 1993, side 302)

Altså bliver der igen refereret til distributionsteorien, som matematikernes retfærdiggøre af manipulationer med δ-funktionen.

Som et sidste eksempel i denne kategori af bøger har vi set på Mikhlīn (1970), der indfører et begreb "Generalized Derivative", hvor han som eksempel viser, at den generelle afdelte af 1. orden af \(|x|\) på intervallet \([-1,1]\) i den af Mikhlīn (1970) indførte forstand er sign(x) (hvilket også er resultatet, hvis man tager den afdelte til \(|x|\) i distributions-
forstand). I et yderligere eksempel viser han, at\(^1\) sign\((x)\) ikke har en generaliseret første afledte i den forstand, han har indført dette begreb. Senere indfører han Sobolev-rum i kraft af betingelser om eksistens af denne type generelle afledte med bestemte egenskaber, samt en bestemt norm på rummet. Mikhlin (1970) har et forset om at benytte funktionalanalyse, men han afholder sig altså fra at indføre distributioner, men i forbinding med Laplaces ligning\(^2\) \(-\Delta u = f(x)\) skriver han:

Remark. The reader familiar with the concept of distributions (generalized functions) may observe that a singular solution of Laplace's equation satisfies the equation:

\[-\Delta u = c\delta(x - \xi),\]

where \(\delta\) is the Dirac function and \(c\) is some suitably chosen constant. (Mikhlin; 1970, side 221)

Alt i alt ser det altså ikke ud til, at distributionsteorien i de her gennemgåede bøger, spiller nogen særlig rolle. Den bliver enten helt forbogået eller blot refereret til som en retfærdiggjørelse af \(\delta\)-funktionen. Courant & Hilbert (1962), der er dem, der har mest om distributionsteorien, kritiserer den for ikke at give nogen større lettelse, samt muligvis ikke at være den bedste generalisering af funktionsbegrebet.

4.5.2 Kvantemekanik

Bøgerne om kvantemekanik er vanskelige for dette projekts forfattere at tilgå, da vi ikke tidligere har studeret dette område. Vi har alligevel forsøgt, vha. indeks-opslag, indholdsfortegnelse og forord/indledninger i bøgerne, at opsege steder, hvor distributionsteorien medtages i nogle af disse bøger.

No simple mathematical notation has yet been invented for operators which depend on parameters whose limiting values are to be taken after the operation, although the *theory of distributions*, or generalized functions, is a beginning in this direction. (Merzbacher; 1970, side 494)

Det er interessant, at Bohm (1986) i sit forord skriver:

Texts on a subject established a half-century before are often written using the material and presentation established by the first generation of books on that subject. New applications, deeper insight, and unifying formulations that subsequently develop are easily overlooked. That has not been done in this text. I have presented a unified theoretical formulation which was made possible by later developments, ... (Bohm; 1986, fra forordet)

Tilsyneladende benytter Bohm (1986) ikke distributionsteori direkte, men han benytter såkaldte antilineære funktionaler, som han indfører i et indledende kapitel "Mathematical preliminaries" der skal introducere "The mathematical language of quantum mechanics". I en fodnote til afsnittet om funktionaler, skriver han:

\[\text{1} \quad \text{sign}(x) = \begin{cases} -1 & \text{for } x < 0 \\ 1 & \text{for } x > 0 \end{cases}\]

\[\text{2} \quad \text{Laplace operatoren er: } \Delta = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \ldots + \frac{\partial^2}{\partial x_n^2}\right), \text{ se eventuelt A.1}\]
4.5 Anvendelsesorienteret litteratur

This section can be omitted in first reading. It gives a mathematical explanation of notions used in Section 1.4 and 1.5 and is not essential for an understanding of the following chapters except for Chapter XII. (Bohm; 1986, side 33)

4.5.3 Opsummering

I de mere matematik-orienterede bøger er distributionsteorien hovedsageligt en forklaringsmodel for δ-funktionen, som der nogle steder blot henvises til, mens der dog også er eksempler på, at distributionsteorien har fået et appendiks. Her er distributionsteorien mest en bejelig forklaringsmodel for de manipulationer med δ-funktionen, som man allerede udførte før distributionsteoriens fremkomst. Som undtagelse kan nævnes Schwartz (1966), der behandler distributionsteori i vid udstrækning, men som i hvert fald ifølge Dettman (1968) ikke inddrager den på overbevisende måde i anvendelserne.

Alt i alt må vi konstatere, at distributionsteorien har en meget tilbagetrukket placering i anvendelsesorienterede lærebøger. Årsagen kan være, at så lenge man hovedsageligt er interesseret i δ-funktionen, er det et usædet stort begrebsapparat at sætte i gang. Muligvis indgår distributionsteorien mere aktivt på forskningsniveau på specialiserede områder, men i lærebøgerne er den altså ikke sået igennem.
5 Undersøgelser blandt forskere

For at belyse vores problemformulering har vi interviewet Bernhelm Booss-Bavnbek fra IMFUFA på RUC, Gerd Grubb fra matematisk institut på KU og Lars Hörmander fra Lunds universitet. Disse tre bruger alle distributionsteori i deres arbejde og kan derfor være med til at læse lys over dennes status i dag. Desuden kan erfaringer fra deres uddannelser, og for Lars Hörmanders vedkommende også fra hans tidlige forskning, være med til at belyse ændringer i distributionsteoriens status.

De foretagede interviews er beskrevet i afsnittene 5.1 - 5.3. Der er tale om resumeer med vægt på de pointer, der er vigtige for vores problemformulering. Disse afsnit er alle gennemset og godkendt af de interviewede personer. I det efterfølgende afsnit 5.4 sammenholder vi interviewene og laver en kort opsamling af de vigtigste pointer.

Vi ville også gerne have talt med en forsker fra DTU, der benytter distributionsteorien, for at få et mere anvendelsessorienteret perspektiv med. Desværre fik vi ikke i kontakt til en relevant person. I stedet foretog vi en lille rundspørgsel ved hjælp af e-mail, denne er beskrevet i afsnit 5.5.

5.1 Interview med Bernhelm Booss-Bavnbek

Bernhelm Booss-Bavnbek (BBB) er lektor på IMFUFA og forsker i geometriske aspekter af partielle differentialligninger; primært randværdiproblemer i elliptiske differentialligninger – spesielt Dirac-ligningen.

Interviewet fandt sted på RUC d. 21/11 - 2003

5.1.1 Resume

BBB betegner selv sin forskning som grundforskning, som er stærkt motiveret af anvendelse. Motivationen for hans arbejde kommer både fra geometri, fordi geometriske forhold ved lavdimensionelle mangfoldigheder kan karakteriseres ved hjælp af Dirac-operatoren, og fra matematisk fysik, idet Dirac-operatoren spiller en stor rolle i kvantefelt-teori.

BBB stiftede bekendtskab med distributionsteorien i 1964 som studerende på udkig efter specialæmne. Der kørte et seminar for professorer og andre interesserede, som handlede om en berømt formel, Atiyah-Singer index-formlen, som knyttede partielle differentialligninger, moderne geometri og topologi sammen. BBB's bidrag til seminar-rækken bestod at holde foredrag om distributioner; hvad de i det hele taget var, og hvilken rolle distributioner spillede. Begreber som pseudodifferentialoperatorer var først ved at opstå dengang.

Siden er BBB fortsat i samme retning. Distributioner indgår i nogle situationer som et hjælpedemiddel i BBB's forskning. Et redskab, man kan bruge undervejs mod et "rigtigt" resultat, hvorefter man kan glemme mellemregningerne, og dermed distributionerne. Men af og til betyder distributioner mere, fordi de bidrager med forståelse af sammen-
hænge. BBB drager en parallel til brugen af komplekse tal ved løsning af sædvanlige 2. ordens differential ligninger:

For mig er distributioner, hvad komplekse tal er for ingeniører. I mange situationer behøver jeg ikke at tænke over distributioner, ligesom en mand, som er interesseret i anden ordens ordinære differentialligninger, ikke behøver at vide noget om komplekse tal. Man kan jo skrive løsningen for en anden ordens sædvanlig differentialligning op uden brug af komplekse tal. Men komplekse tal er et godt middel til at udlede løsningerne. Særlig er et aspekt af distributionsteorien i mit arbejde: det er bare et middel, som gør livet en lille smule nemmere.

MEN der er også ingeniører, for hvem de komplekse tal ikke kun er et middel til at finde de reelle løsninger. For eksempel giver faren jo en mening, når man har med vekselstrøm at gøre. Og da er det på en vis måde misvisende, hvis man forsøger at gå uden om. Man kan som sagt gå uden om komplekse tal, men nogle gange er det faktisk teoretisk mere tilfredsstillende, når man tager tyrien ved hornene og siger: vi har jo faktisk med komplekse tal at gøre. Særlig synes jeg også, en del af mit arbejde er. Da er distributioner noget virkelig levende. Distributioner giver altså en systematisk ramme til at behandle lineære partielle differentialligninger, både teknisk og konceptuelt. Men på den anden side er en løsning i et distributionsrum, ifølge BBB, ikke nødvendigvis "assertive" H-1, der er et underrum af L2. Arbejdet i de sidste fem år har drejet sig om at vise, om og under hvilke betingelser disse resultater også er gyldige i distributionsrum. I den færdige formel optøjer kun de ting, der er naturlige for Dirac-operatoren, nemlig differentiable funktioner. Distributioner er ude rent konceptuelt, men bevistekniske er distributioner stadig vigtige, for beviset er nemmest at lave i H-1.

BBB har siden 1995 mest arbejdet med at vise resultater for Dirac-ligningen i Sobolevrummet H-1, som er et underrum af L2, der består af distributioner, som ligger forholdsvis "assertive" L2. Arbejdet i de sidste fem år har drejet sig om at vise, om og under hvilke betingelser disse resultater også er gyldige i distributionsrum. I den færdige formel optøjer kun de ting, der er naturlige for Dirac-operatoren, nemlig differentiable funktioner. Distributioner er ude rent konceptuelt, men bevistekniske er distributioner stadig vigtige, for beviset er nemmest at lave i H-1.

BBB mener ikke, den betydning, som denne tankegang har haft for udviklingen af teori om lineære partielle differentialligninger - især gennem Sobolev-skalaen og dermed muligheden for at angive det passende rum at betragte sit problem i - kan overvurderes. Distributionsteorien vigtigste bidrag til partition lineulufrigningstheorien er, at den giver en ramme til at differentiere funktioner, som ikkeellers er differentiable. Man kan således regne symbolisk og behøver ikke altid kontrollere, om det giver mening. Distributionsteori og Fourier-analyse er en utrolig stærk kombination, idet det tillader udskiftning af alle de partielle differntialoperatorer med en slags symboliske procedurer. Men det er primært i forbindelse med differentialligninger, at man har brug for at differentiere og Fourier-transformere. Derfor mener BBB, at det først og fremmest er matematiske på partielle differentialeligningsområdet, der har glæde af distributionsteorien. Men han siger samtidig, at selve ideen bag distributioner egentlig er meget indlysende og dermed ikke specielt genial:

Jeg synes, det er lidt påklæstret at kalde det distributionsteori. Det er jo bare et begreb ligesom mængdelære. Vi matematisere griner altid over, at man siger, at matematikundervisningen på gymnasiet nu er mere centreret om mængdelære. Der er jo ikke mere i "mængdelære" end fællesmængder, foreningsmængder, komplementarmængder og den tomme mængde. Jeg ved ikke, hvad en mængdelære-baseret undervisning består i. Der er stof til en halv time og ikke til en hel uddannelse. Ligesådan har jeg aldrig forstået, hvad distributionsteori er. Det er jo bare "preceding concept extended to S by duality".

Den sidste linie i citatet henviser til en bog (Booss-Bavnbek & Wijciechowski; 1993, side 67) skrevet af BBB, hvori han forsøger at undgå at komme ind på distributions-
teori ved blot at henvise til det duale til funktionsrummet, fordi det ville blive meget omstændigt for noget, som egentlig var så simpelt, at det kunne skrives på en linie. Men han fortæller også, at der alligevel opstod et problem, som ikke kunne løses uden brug af distributioner, og at bogen i sidste øjeblik måtte udvides med et ekstra kapitel.

BBB foreslår, at nogle purister vil mene, at distributioner er irrelevante, fordi partielle differentialligninger nu engang handler om funktioner og ikke distributioner. Denne puristiske holdning til distributioner har BBB selv dyrket et langt stykke ad vejen. I sin bog Boose-Bavnbek & Bleecker (1985) har han så vidt muligt forsøgt at holde sig til funktioner uden at gøre brug af distributioner. Men han siger samtidig:

> Men spørgsmålet er om, vi kan bedre med? Gauss viste Algebræns Fundamentalsætning uden komplekse tal, men det er jo mere klart med

og indrømmer, at det måske ikke var den mest elegante metode. Han ville, hvis han skulle skrive bogen idag, gøre den mere stringent med regularitetssetninger formuleret ved hjælp af distributioner.

BBB selv har holdt et kursus i partiel differentialligningsteori på matematikoverbygningen på RUC uden at berøre distributionsteori. Han mener, der er rigeligt stof i grundproblemer inden for for eksempel fysik, separation af variable og reducere til et Sturm-Liouville-problem til et kursus på begynderniveau, men for specialister er et kursus i lineære partielle differentialligninger uden distributionsteori utænkeligt.

5.2 Interview med Gerd Grubb

Gerd Grubb (GG) er professor på KU og har afholdt kurser i distributionsteori. Hendes forskning foregår inden for differentialligninger. For dette interview havde vi fået nogle skriftlige svar på nogle af vores spørgsmål. Disse svar indgår også i følgende resume.

Interviewet fandt sted d. 28/11 - 2003

5.2.1 Resume

GG opfatter sig selv hovedsageligt som ren matematiker, men med stærk forbindelse til anvendelser:

> Der er så mange forskellige differentialligninger, man kunne studere, så derfor bruger jeg anvendelserne som guiding principle til, hvilke der er værd at bruge tid på. Jeg mener, der er feedback mellem anvendelser og matematik begge veje. Selvfølgelig er der den med at matematikken leverer nogle redslabør til anvendelserne, men anvendelser leverer også noget motivation til matematikken, noget kvalitet. Man kan skrive en eller anden dødsdyg mærkværdig ligning og bruge sit liv på at løse den eller sige noget om løsningerne. Det har meget lavere kvalitet end at tage en ligning, som anvendere brænder for og godt vil have noget at vide om ... Det er min holdning til anvendelser, at jeg både prøver at levere noget, anvendelser kan bruge, og bruge anvendelser som kvalitetparameter for, hvad jeg vil bruge min tid på.

GG mener altså, at anvendelser har en væsentlig rolle i forhold til at levere forslag til, hvad man som matematiker skal forsk i. GG opfatter sig selv hovedsageligt som ren matematiker, da det er nogle meget teoretiske emner, hun arbejder med, og da hun "ikke benytter en computer til at udregne bestemte løsninger til bestemte data", men i stedet interesserer sig for mere principielle spørgsmål, som for eksempel hvorvidt en given ligning overhovedet har løsninger. Altså overvejende kvalitative frem for numeriske resultater.
GG siger videre om forholdet mellem teori og anvendelse, at de ting, hun arbejder med, er så avancerede, at de fleste anvendere ikke vil sætte sig ind i det. Som et eksempel på et område, hvor der er både anvendelsesorienterede og teoretisk orienterede indgange, nævner hun skalteori:

Skalteori handler om, hvordan man laver en betonskal, der kan bære. Skalteori er et eksempel på nogle ret individerede differentialligninger. Der er både en meget teoretisk ende [matematikeren], et midlertidigt, som er ingenisterne, der principielt kan regne, og så er der murermesteren der bare skal have nogle oplysninger, så han kan bygge et hus.

Alt i alt ser GG altså et klart sanspil mellem teori og anvendelse, men fremhæver også at hun selv beskæftiger sig med ting, som en anvender ikke umiddelbart vil have gavn af.

GG opfatter distributionsteorien som en uundværlig forudsætning i sin grundforskning og fortæller, at når hun skriver en forskningspublikation, så nævnes distributionsteori ikke. Hun går ud fra som givet, at det kender læseren til. Desuden mener GG, at distributionsteorien er en absolut nødvendighed for at opnå interessante resultater inden for lineær teori:

Nogle resultater kan slet ikke formuleres uden distributionsteorien, andre kan formuleres, men så snart man beveger sig lidt ud i rum af funktioner, der ikke kan differentieres, så mener jeg, at man har brug for distributionsteori ... I den lineære teori er det barnemad, hvad man kan lave uden distributioner. Hvis man virkelig vil frems frem til noget nyt, så er distributioner en selvfølgeligt.

Dengang distributionsteorien kom frem, var der ifølge vores interview med Lars Hörmander nogle, der mente, at distributioner ikke var nødvendige, idet man allerede kunne lave de samme ting ved hjælp af forskellige ad hoc løsninger, så alle, der var godt inde i teorien, kunne undvære distributioner. Til denne påstand siger GG:

Så GG mener altså, at distributioner har givet os en større undtrykskraft, og at vejen uden om distributioner er en omvej, der måske kan findes retrospektivt, men som altså ikke er måden faktisk at finde resultatet på. Med andre ord så er distributionsteorien den naturlige begrebsramme at arbejde i.

GG mener således, at distributionsteorien er ganske uomgængelig inden for lineære problemer. Hun påpeger, at i ikke-lineære problemer kan man nok få nogle gode resultater uden brug af distributionsteorien, men inden for de lineære område siger hun:

Jeg kender i hvert fald ikke nogen, som jeg respekterer, og som går sig til at klare sig uden distributioner.

Imidlertid var distributionsteorien ikke på denne måde uomgængelig, da GG først lærte om distributioner i Århus, hvor der var nogle unge lægere, blandt andet Ebbe Thue Poulsen, der interesserede sig for disse ting og holdt kurser i dem. Så hun lærte dem i sit matematikstudei i begyndelsen af tresserne. På det tidspunkt var det meget moderne, men nu om stunder er det svært at komme uden om:

Jeg har undervist efter en bog af Evans, der prøver at klare sig uden 1. Bogen er skrevet uden at forudsætte distributionsteori, men på et tidspunkt kommer han ud i noget med H^1 og H^{-1}, og her fungerer det ikke rigtigt. Der er nogle mangler og læse ender, men på en måde, som en studerende næppe ville kunne gennemskue. Jeg havde en korrespondance med forfatteren, hvor han endte med at sige til mig, at det kunne da godt være, at han burde have lært folk distributionsteori eller burde have det med næste gang, der kommer en ny udgave.

1 Lawrence C. Evans "Partial differential equations ", 1998
Så emnerne i den bog er altså ifølge GG på et niveau, hvor man ikke rigtig kan komme uden om distributionsteori. Men hun fortæller, at den er skrevet til amerikanske graduaterstudents, eller avancerede undergraduates, hvor man ikke rigtig tør forudsætte distributionsteori. Så forfatteren laver små ad hoc løsninger for at komme uden om, lidt om svage afledte og lidt om dualitet, men uden at forklare det ordentligt.

Han bruger sin distributionsteori og lader, som han ikke havde den.

Han bruger altså teorien, når han tænker, og udelader den ikke, fordi han synes den er irrelevant, men af hensyn til målgruppen. GG tror ikke, at standard tilhørrerskaren i et "advanced undergraduate" kursus kan forventes at kende til distributionsteori, mens der for "graduate students" ikke sættes spørgsmålstegn ved, om de skal lære det. Der indgår det i en standard matematikuddannelse, hvis man er inden for analyse. Der er ingen vej uden om.

Idag udbydes distributionsteori kun lejlighedsvis på KU. På det nyligt afholdte kursus "Grundkursus i analyse" på kandidatdelen, brugte de en bog, der havde distributionsteorien med. De læste Schwartz' grundideer og brugte det til nogle problemer. Men det er ikke med i første del af uddannelsen. GG fortæller, at det langt ærrække var med i bachelordelen, men at det nu er taget ud igen, simpelthen fordi folk kan mindre og mindre fra gymnasiets, og det må uddannelsen selvføl lig indrettes et. Det er imidlertid ikke den eneste grund til, at det er fjernet fra pensum. Der er også sket en omprioritering, idet der i København har været en tradition for analyse, som der var en form for opkr mod midt i 90'erne. Der var et panel af folk, som skulle evaluere studiet, og de syntes, der var alt for meget analyse. Der skulle også være noget geometri og nogle andre ting og man valgte så, at analysen ikke skulle indgå så dybt, som den traditionelt havde gjort. Der kan altså ikke være tvivl, om at GG mener, at distributionsteorien er meget relevant i matematiske analyse, men der er altså ikke plads til den i bachelorstudiet på KU med den nuværende prioritering.

Med hensyn til at bruge distributionsteorien som en ramme for tænkning, sådan som Evans har gjort, selvom han ikke medtog det i sin bog, siger GG:

For mig er det ligesom de reelle tal. Det er ligeså selvføl lig for mig som de reelle tal.

Distribution er altså et meget vigtigt begreb for GG. Hun siger om distributionsteorien, at en meget vigtig effekt var, at den fik banaliseret en masse problemer. Problemer, som så meget vanskelige ud i 60'erne, blev afklaret: Når man vil løse ligningen \(Lu = f \), hvor \(L \) er en differentialoperator, og \(f \) er en given funktion (eller distribution), giver distributionsteorien mulighed for at splitte diskussionen op i to ting, nemlig eksistens af en løsning og regularitet af løsninger. Om eksistensproblemet siger hun:

Findes der overhovedet en løsning og kan man afgøre en klasse af \(f \)'er, for hvilke man er sikker på, der findes en løsning. Distributionsteorien giver en mulighed for at tolke det meget alment. \(u \) skal bare løse ligningen i distributionsformernd. Eksistensproblemet bliver nemmere fordi man tillader mange flere \(u \)'er.

Det, at eksistensproblemet bliver lettere, betyder, at man bagefter har en ekstra opgave: At gå tilbage og se om de distributioner \(u \), som er fundet, nu også løser det oprindelige problem, som vi stillede. Er \(u \) passende differentibel? Har \(u \) passende afledte som er funktioner? Dette handler om regularitet af løsninger:

Det er simpelthen en slags oprydning. Vi kan vise eksistensen af løsninger, men nogle af dem er så vanvittige, at de ikke bruges praktisk. Og så skal man ned og se på, om det nu er rigtige løsninger i den oprindelige betydning.

GG fortæller, at denne måde at splitte tingene op på var man godt klar over inden distributionsteorien, men distributionsteorien gjorde det lettere. Det, som blev klargjort med indforslen af distributionsteorien, er, at det viser sig, at der er en form for dualitet mellem de to ting. At eksistens af løsning gælder for \(Lu = f \) er på en eller anden måde
ækvivalent med, at regulariteten gælder for den adjungerede ligning: Til L hører der en adjungeret operator L^*, og så ved man løst sagt, at hvis L har en eksistenssætning, så har L^* en regularitetssætning, og omvendt – hvis L har en regularitetssætning så har L^* en eksistenssætning. Den dualitet opdagede man også:

Denne forståelse har nu bredt sig ud, så de fleste, der arbejder med disse ting, godt er klar over det. De kommer ikke med det som noget nyt. Så det er blandt andet det, GG mener med, at distributionsteorien hjælper med at banalisere nogle ting. Dermed er disse ting af vejen, og så kan man gå tilbage til de rigtig svære ting. Distributionsteorien løser altså ikke alle problemer, men hjælper med til at gøre det klart, hvad der er ligefrem, og hvad der er svært.

GG mener som udgangspunkt, at alle, der beskæftiger sig med partielle differentialligninger, har brug for distributionsteori i en eller anden grad. Hun fortæller, at når hun afholdt kurset i distributionsteori på 3. år, da var halvdelen af tilhørerne fysikstuderende, hvis lærebør havde opfordret dem til at tage kurset for at lære de ting der, altid fremstår lidt mystiske i fysikbøgerne. Hun fortæller om, hvorfor fysikerne blev opfordret til at tage kurset:

De fysikere, der sendte deres studerende over til GG’s kursus, var kvantemekanik-folk eller faststoffysikere. Så GG har opfattelsen af, at kvantemekanikken kræver funktionalanalyse, dualitet og altså distributionsteori.

5.3 Interview med Lars Hörmander

Lars Hörmander (LH) er professor emeritus på universitetet i Lund, hvorfra han også fik sin kandidatgrad i 1950. LH modtog 1962 Fields Medal for sit arbejde inden for partielle differentialligninger og betragtes som en af de største ekspert er inden for området. LH var også en af de første, der ’opdagede’ distributionsteorien anvendelsesmuligheder, og han fremhæves særligt i Laurent Schwartz’ selvbiografi som medvirkende til, at teorien blev accepteret og udbredt (Schwartz; 2000, side 241).

At komme til at tale med Lars Hörmander var en enestående mulighed for at få informationer på første hånd om tiden omkring udgivelsen af ”Théorie des distributions” fra en nogleperson på området, samtidig med at vedkommende også kunne hjælpe med at afklare spørgsmål om teoriens status idag.

Interviewet fandt sted i Lund d. 27/11-2003. I resumeet er udeladt en del tekniske udredninger.

5.3.1 Resume

LH betegner sig selv som primært ren matematiker, men bemærker at definitionen af anvendt holdesvis ren matematik er et spørgsmål om attitude. Han har dog lavet
ting i den anvendte retning, men stadig med en mere stringent matematisk tilgang end
den der ifølge LH typisk præger anvendere.

LH's arbejde med distributionsteori har bestået i dels at have løst nogle problemer in-
den for distributionsteorien, og dels i at anvende distributioner, når det var bekvemt.
LH har blandt andet løst to af de problemer, som Schwartz opstillede: karakterisering
af partielle differentialligninger med konstante koeficienter, som kun har C^∞-løsninger
(såkaldt hypoeptipliske differentialligninger), og divisionsproblemet: Givet en funktion
$f \in C^\infty(R^n)$ og en distribution $v \in \mathcal{D}'(R^n)$, findes da en funktion $u \in \mathcal{D}'$ så $fu = v$?
LH gav et positivt svar, når f er et polynomium og Lojasiewicz viste omkring samme
tidspunkt, at svarer er positivt for enhver analytisk funktion. Problemet motiveredes
oprindeligt af Schwartz i det tilfælde, hvor f er et polynomium og $v = 1$, idet en posi-
tiv løsning samtidig ville vise eksistensen af en tempereret fundamentallösning
for hver differentialoperator med konstante koeficienter. At vise eksistens af fundamentalløs-
ninger, som ikke er tempererede, viste sig snart at være meget lettere og vigtigere, så den
oprindelige motivation var delvist forsvundet, da divisionsproblemet blev løst.

LH betegner Schwartz' "Theorie des Distributions" først og fremmest som et stort pæ-
dagogisk arbejde, der samlede mange forskellige tråde og gjorde området tilgængeligt
for yngre matematikere som ham selv. LH opdagede bogen som PhD-studerende og
blev med det samme begejstret, idet den opklarede en masse sammenhænge. Distribu-
tionsteorien giver en bekvens ramme, hvor en mængde forskellige problemstillinger
passer ind og sparer dermed en for at indføre forskellige udvidelser ad hoc. LH mener
derfor, at distributionsteorien var et fantastisk løft og betød meget for stimulering af
udviklingen i teorien for partielle differentialligninger.

Men distributionsteorien havde også mange kritikere, især blandt ældre matematikere.
Dels var der en gruppe, som mente, at distributionsteorien var for abstrakt, dels var
der de gamle rotter i faget, som syntes, distributionsteorien var banal. LH's vejledere,
Marcel Riesz, var for eksempel ikke så begejstret for teorien, og LH nedtonede med vilje
den rolle, som distributioner spillede i sin afhandling. Han turde ikke bekende sig fuldt
ud til distributioner i erkendelse af, at emnet i begyndelsen var kontroversielt, og han
ikke var interesseret i at "vælge" sit rygte.

Ifølge LH tog det lang tid, inden distributionsteorien blev alment udbredt og accepteret.
I 1957, da LH holdt en forelæsningsrekke om emnet i Stockholm, var der ingen, der
kendte til distributioner, og da han udgav sin første bog (Hörmander; 1963), var der
stadig ikke mange, der kendte til området. LH udtrykker et beskedent håb om, at hans
bog bidrog til teorien gennembrud.

LH mener, at man burde indføre distributionsteori allerede i forbindelse med fjervariabel-
analyse.

Ligesom man skal lære differentialregning og integralregning, så skal man lære sig det
her, hvis man skal beskæftige sig med analyse af flere variable.

Ifølge LH burde distributionsteori altså være standardstof i en matematikuddannelse,
men han indrømmer, at det ikke er blevet sådan.

I den næste række bøger LH udgave i 1983-85 (hvoraf (Hörmander; 1983) er første
bind af fire), valgte han at udvide de indledende kapitler om distributionsteori med
en del klassisk analyse set i lyset af distributionsteori. Dette var dog primært, fordi
målgrupperne ikke længere forventedes at have den solide baggrund inden for partielle
differentialligninger, som tidligere var standard.

LH begrunder sin holdning til, hvor i uddannelsen man bør placere en indføring i
distributionsteorien med, at distributionsteorien ikke kun er brugbar inden for partielle
5.3 Interview med Lars Hörmander

differentialalligner, men også harmonisk analyse, og at distributionsteori er meget mere elementært end for eksempel integralteorien, som teknisk er mere vanskeligt.

Jeg kunne foreløbige når som helst i de grundlæggende ting i distributionsteorien, mens jeg skal læse på visse ting i integralteorien, inden jeg holder en forelæsning. Det er meget mere teknisk, og der er mange flere små detaljer. I distributionsteorien er der store linjer, som er lette at huske. Og som man ikke behøver at gå og huske, fordi de er så naturlige.

Distributionsteorien gav generaliserede definitioner af forskellige operationer, som foldning og Fourier-transformation, men den måske vigtigste egenskab for distributioner er, ifølge LH, at de altid kan afsledes:

Den enkleste tænkende differentialligning, hyperbolisk i to variable, kan man ikke regne ubeværet på uden distributionsteorien, hvor man kan gøre de naturlige ting som at afsleder, i stedet for at gå som latten om den varne gråd. Det er klart, at de, som kunne det her, min gamle lærer Riesz for eksempel, vidste, hvordan man gjorde, men det var jo meget nemmere for en, som skulle ind i teorien, at slippe for at sige en masse underligt og bare regne. Alle de almindelige regneregler gælder jo stadigvæk.

LH betragter altså distributionsteorien som den naturlige ramme at arbejde i, men understreger, at distributionsteorien ikke er et vidundermiddel:

I vid udtrekning er det jo sådan, at distributionsteorien ingen problemer løser, men man finder ind til kernen af problemet, og så kan man beskæftige sig med det i stedet for den her ganske uinteressante udenområd.

Distributionsteorien har dels nogle indbyggede begrænsninger: man kan ikke multiplikere frisk og heller ikke Fourier-transformere hvad som helst, for eksempel ting, der vokser meget hurtigt, dels skal man jo vise regulariteten efterfølgende.

LH mener ikke, at distributionsteorien i sig selv førte ny matematik med sig, snarere var den med til at forsimple og forenkle procedurer og derigennem stimulerede den til store fremskridt inden for partielle differentialligninger. Det er selvfølgelig stadig ikke alt, som er tilladt i distributionsteorien, men man har meget større frihed til at gøre det, der er naturligt.

Pseudodifferentialoperatoralkule, Fourierintegralalkule og alt dette passer inden for rammen af distributionsteori. Det kan ikke tænkes uden at have dette sprog at arbejde i. Så distributionsteorien er i allermæiste grad nødvendig, hvis man beskæftiger sig med lineære differentialligninger.

Fysikere og ingeniører mener LH til gengæld ikke har meget gavn af distributionstereo- rien. Inden for den anvendte matematik, fysik og ingeniørfagene kræves ikke den samme stringens. LH nævner som eksempel, at elektroingeniører i lang tid før Schwartz’ distributionsteori brugte Heavisides symboliske udregningsmetode, som distributionsteorien kunne gøre rede for som Laplace-transformationer af distributioner. Distributionsteorien bevirke altså, at man kom på fast grund med meget af det, som tidligere var lidt løst (og dermed også mere riskabelt), men:

I store træk er fysikere ligeledes med det her. Der findes fysikere, som lærer sig det her og anvender det når det går, mens hvis teorien ikke rækker fortsætter de jo ugeneret, og det skal de jo også. Men i alle tilfælde har distributionsteorien ryddet op i deres mere eller mindre formelle operationer, for eksempel Heavisidedalkulen.

Men i øvrigt ved LH ikke, om distributionsteorien overhovedet gjorde nogen forskel på disse områder.
LH mener ikke, der findes seriøse matematikere idag, der vil mene, at distributionsteorien er irrelevant:

Der findes jo dem, der synes, at matematik er irrelevant. Og inden for matematikken findes der dem, der er ensidige algebraikere, som synes, at analysen er helt unødigt. Men med disse forbiprol vil jeg sige, at en series analytiker mener, det er almen viden.

5.4 Opsamling på interviews

De tre interviewede personer er vældig enige om de fleste ting, men der er alligevel nuancer. Alle betegner sig selv som rene matematikere og forsker inden for lineære partielle differentialligninger, men især GG og BBB lader sig kraftigt inspirere og motivere af anvendelser. GG bruger anvendelser som kvalitetskriterier for udvælgelse af relevante problemstillinger, men arbejder derefter på et abstrakt plan, mens man får indtryk af, at BBB i virkeligheden er mest interesseret i "rigtige" funktioner. Det er funktioner, der er hans hjerte nærmest, og han begrunder det blandt andet med, at funktioner er mere intuitivt forståelige end distributioner, mens det virker, som om GG og LH mener, at distributioner er det naturlige sprog at tale og tænke i. BBB medgiver dog, at distributioner ind i mellem er noget mere "levende" end blot et bekvemt værktøj. (LH er den eneste af de tre, som har lavet resultater inden for selve distributionsteorien.)

GG og BBB er uddannet nogenlunde samtidigt og har begge stiftet bekendtskab med distributionsteorien, mens de var under uddannelse. På dette tidspunkt, siger de samstemmende, var distributionsteori meget nyt og bestemt ikke standard, hvilket stemmer fint overens med LH's oplevelser i begyndelsen af 1960'erne.

Alle tre er dog enige om, at distributionsteorien i dag er fuldstændig grundlæggende, hvis man beskæftiger sig med lineære partielle differentialligninger på dette niveau, og at distributionsteorien har givet et enormt løft til området. LH og GG mener, at det er yderst begrænset, hvad man kan foretage sig uden distributionsteorien som ramme. Ingen af de tre kunne drømme om at henvise til distributionsteorien i deres arbejde – det er simpelthen blevet et standardværktøj inden for lineære partielle differentialligninger.

BBB har dog en lidt tvetydig holdning til distributionsteorien. På den ene side siger han, at den betydning, distributioner har haft rent konceptuelt, ikke kan overvurderes, men på den anden side er han ikke meget for ligeform at ophæve det til en teori. Han mener, at grundideerne i virkeligheden er simple.

Denne holdning kan også (med lidt god vilje) spores hos LH. Han siger, at han betragter Schwartz' distributionsteori som en stor pedagogisk indsats, et værk, som først og fremmest placerede en masse begreber på deres rette hylde, sådan at en ny på området havde en chance for at forstå sammenhængene. Både LH og GG fremhæver, at distributionsteorien ikke i sig selv løser nogen problemer, men gør det muligt og frem for alt enkelt at skære ind til problemernes kerne.

Vandene skilles ved spørgsmålet om, hvor i en matematikuddannelse en indføring i distributionsteori burde ligge. LH er den mest vidtgående med sin holdning til, at man burde undervise i distributionsteori allerede i forbindelse med den fler-dimensionelle analyse. GG siger, at distributionsteorien er skubbet ud af bachelordelen, fordi kvalifikationerne fra gymnasiet ikke er gode nok hos det nuværende publikum på universiteterne, men man fornemmer, at hun ikke ville have noget imod, at emnet indgik obligatorisk. BBB mener til gengæld, at distributionsteori er specialistviden. Man får indtryk af, at praksis på de forskellige universiteter er nogenlunde den samme, nemlig at kurser i distributionsteori ikke indgår i pensum, men udbydes lejlighedvis (dog er et kursus i distributionsteori ikke blevet udbudt i RUC's historie).
Vores interviews giver et klart indtryk af, at distributionsteorien i dag er almen viden inden for lineære partielle differential ligninger, i hvert fald hvis man bekræfter sig med området på forskerniveau, og at distributionsteorien har givet anledning til store fremskridt på området både teknisk og konceptuelt.

5.5 Udbredelse til ingeniører

For at få et anvendelsesorienteret perspektiv på distributionsteorien forsøgte vi at komme i kontakt med en forsker på DTU (Danmarks Tekniske Universitet der uddanner ingeniører), der benytter distributionsteori.

Vi kontaktede en forsker, som vi fandt frem til muligvis ville være relevant, og han skrev tilbage, at han arbejder med funktionalanalyse, ikke benytter distributionsteori i sin forskning og ikke arbejder med differential ligninger, men at hans PhD-studerende bruger distributionsrum inden for funktionalanalyse. Desuden betragter han sig selv som ren matematiker, dog på et felt med praktiske anvendelser. Det var ikke denne type forsker, vi manglede kontakt til, men han havde dog følgende interessante kommentar:

for en matematiker er distributionsteori en naturlig begrebsumre. Men da området er svært vil en ingenær ofte prøve at undgå det og lave ad-hoc løsninger i stedet.

Han angiver endvidere, at distributioner har afgørende betydning for den matematiske forståelse af partielle differential ligninger.

Som et supplement til disse forsøg på at finde en relevant kontakt foretog vi en rundspørgse blandt forskerne på DTU. Spørgsmål og svar blev udvekslet via e-mail, og vi udsendte i alt 114 mails. Hvor mange af disse, der faktisk er kommet frem og er blevet læst, kan vi ikke vide. Vi fik svar fra 28 forskere fra fysikafdelingen og matematikafdelingen. Vi stillede tre spørgsmål og bad om korte svar. Spørgsmålene var:

1. Hvad er dit forskningsområde?
2. Er du bekendt med distributionsteori?
3. Anvender du/har du anvendt distributionsteori i dit arbejde?

Omring 2/3 af de forskere vi fik svar fra sagde, at de kendte til distributionsteori.

Undersøgelsen viser, at distributioner bruges af forskere inden for ovennævnte områder. Her er det specielt interessant, at nogle af områderne er inden for fysikken.

Et af de interessante svar, vi fik på spørgsmål 2, er:

Ja, dog ikke indgående. Har læst om det, men har ikke haft kurser om emnet (sådanne kurser findes i øvrigt ikke på DTU, dog vil et specialkursus/studiegruppe sikkert godt kunne oprettes).

Altså er det ikke noget, DTU-studerende normalt lærer, idet det kræver, at de selv får interesse for det og gør noget aktivt for at få oprettet et specialkursus. En kommentar i en anden mail, der understøtter en fornemmelse af, at distributionsteori ikke er noget, ingeniører normalt bruger eksplicit, kommer fra en person, der i sin studietid stiftede kendskab med distributionsteorien via et specialkursus:

Siden min studietid har jeg dog ikke brugt det direkte. Når der er et område i fysikken hvor det er relevant så klarer vi det normalt alligevel uden, i hvert fald uden at sige det.
En enkelt gang har jeg dog fundet på en generaliseret sætning omkring Linking og Gauss integraler.

Der er nogle fundamentale mangler ved denne undersøgelse, som betyder at der ikke kan konkluderes noget entydigt ud fra den. For det første har kun knapt 30 mennesker deltaget i undersøgelsen, og vi kan ikke fastlægge en egentlig svarprocent, da vi ikke ved, hvor mange der faktisk har fået spørgsmålene. Man kan forestille sig, at de, der kan komme med en positiv tilbagemelding (altså kender til distributionsteorien), vil være mere villige til at deltage i undersøgelsen. Derudover er det ikke sandsynlige, at der er et repræsentativt udvalg af forskere, vi har spurt. Forskellige universiteter har forskellige områder, de mener, er vigtige, og dette vil naturligvis have betydning for forskernes kendskab til og brug af en teori.

Med ovenstående forbehold viser undersøgelsen i hvert fald, at distributioner bliver brugt på forskningsniveau af andre end rene matematikere. Undersøgelsen viser derudover, at halvdelen af dem, der svarer, at de kender distributionsteorien, også bruger teorien i deres forskning. Det er svært at konkludere, om grunden til dette høje tal er, at distributionsteori er noget grundlæggende, de har lært og senere fundet naturligt at bruge i deres arbejde, eller om det er en viden, de har tillegnet sig senere, fordi de har skulle bruge det i deres forskning. Noget kan tyde på det sidste: Ingen af dem, der svarer, at de beskæftiger sig med ikke-lineære partielle differentialligninger, kender til distributionsteorien, mens alle, der beskæftiger sig med lineære partielle differentialligninger kender og bruger den.

Det kunne have været interessant at følge denne undersøgelse op med at kontakte de forskere, der benytter distributionsteori for at høre, hvorledes den indgår i deres forskning. Dette var desværre ikke muligt for os inden for tidsrammen for dette projekt.
6 Diskussion

I denne diskussion forsøger vi at finde frem til et svar på vores problemformulering ved at sammenholde de pointer, vi i løbet af rapportens forskellige dele er kommet frem til. I den forbindelse har vi tre "dimensioner" at holde styr på, idet vi på tværs af vores forskelligartede kilder vil diskutere udviklingen i tid med henblik på udredelse både til forskellige faggrupper (matematik og anvendelsesorienteerde fag) og til forskellige uddannelsesniveauer. Vi kan ikke komme med overbevisende svar for alle kombinationer af disse "dimensioner", men må i en del tilfælde nøjes med at påpege tendenser. Man kunne godt forestille sig, at det kunne være interessant at undersøge flere "dimensioner". For eksempel er det gennem arbejdet med projektet blevet opmærksomme på, at der også synes at være geografiske forskelle i udredelsen. Vi har dog i dette projekt valgt at holde os til de tre ovenstående "dimensioner".

Vi har valgt at strukturere diskussionen efter tidsdimensionen, idet vi vil diskutere teoriens status inddelt i tre perioder.

6.1 Modtagelsen af distributionsteorien

I afsnit 4.1 ser vi på nogle kilder, der giver udtryk for personlige holdninger og oplevelser. Disse kilder beskriver, at tiden efter udgivelsen af "Théorie des distributions" var præget af væsentligt forskellige meninger blandt matematikere om distributionsteorien. Der blev (så vidt vi ved) ikke stillet spørgsmål til, om teorien var matematisk stringent, men nogle matematikere mente, at der ikke var noget nyt i den, eller at den ikke var anvendelig. Schwartz skriver selv, at der blev fremsøgt to former for kritik, som kan virke modstridende: nogle hævdede, at teorien var for simpel til at kunne være nyttig, og nogle at den var for abstrakt!

Udredelsen og accepten af distributionsteorien er således ikke foregået uden problemer, selv om Schwartz’ teori hurtigt blev anerkendt af nogle matematikere, og han fik Fields Medal allerede i 1950, så var der også mange, der havde den modsatte holdning: At der ikke var noget revolutionerende i Schwartz’ teori. Der tegner sig altså et billede af en opdelt matematikverden i tiden lige efter Schwartz udgivelse af sin lærebog. Dette kan have at gøre med, at der var to grupper, som havde nogle kraftige meninger, og som fylde meget i billedet. Imellem disse kan der sagtens have været en mere moderat gruppe, som bare ikke har givet sig til kende.
Man kan i den forbindelse diskutere, om de mange uafhængige udsagn nu også er så uafhængige, idet mange af vores kilder kender hinanden på forskellig vis. For eksempel har Schwartz og Dieudonné skrevet flere artikler sammen, Gårding var vejleder for Hörmander, og de er/var begge tilhørt Lunds Universitet. Desuden har Hörmander udviklet breve med Schwartz, og de har mødtes ved flere lejligheder (Hörmander; n.d.).

Det ses i afsnit 4.3 om lærebøger i partielle differentialligninger, at distributionsteorien ikke på dette tidligere tidspunkt havde nået et stadi, hvor den generelt blev medtaget i lærebøgerne. Vi har således ikke fundet nogen lærebøger i partielle differentialligninger fra før 1960, hvor distributionsteorien indgår. Der kan naturlægvis alligevel godt være været udgivet sådanne bøger, men det var i hvert fald ikke udbredt standard at gøre det.

6.2 Udbredelsen af teorien

6.3 Teoriens status i dag

6.3 Teoriens status i dag

Vores interviews viser til gengæld, at distributioner i dag er fuldstændig fundamentalt for forståelsen af lineære partielle differential ligninger. Især lægges der vægt på at distributioner giver en systematisk ramme, som gør mange standard-manipulationer trivielle, så problemets kerne lettere kan findes. Der bliver lagt vægt på distributionsteorien som en konceptuel ramme. Gerd Grubb siger, at hun tænker i distributioner, ligesom andre tænker i komplekse eller reelle tal, og at hun aldrig ville drømme om at introducere distributioner i en artikel – det er noget alle i den verden kender til.

Både vores interviews og den undersøgte litteratur giver altså et billede af, at distributionsteorien i dag har en helt central plads inden for teorien for lineære partielle differential ligninger som et alment kendt og anvendt værktøj (på linie med differentiation og integration). Distributionsteorien betragtes her som den naturlige ramme at bevæge sig inden for. Så på trods af den lidt lunke modtagelse teorien fik i begyndelsen har den altså vundet indpas inden for lineære partielle differential ligninger.

Til gengæld ser det ud til, at de anvendelsesoriente fag, ikke i samme grad har
taget teorien til deres hjerte. Gerd Grubb fortæller dog, at fysikere sendte deres studerende til kurser i distributionsteori i 80’erne, og nogle forskere på DTU har i vores lille rundspørge, beskrevet i afsnit 5.5, svaret, at de benytter distributionsteori. De anvendelsesorienterede lærebøger medtager det derimod i meget begrænset omfang, som beskrevet i afsnit 4.5. Nogle af dem refererer dog til bøger om distributionsteori, og måske er det et udtryk for, at man lader matematikerene om at skrive de bøger, der indfører teorien. Det ser dog ud til at distributionsteorien i lærebøgerne hovedsageligt opfattes som en forklaring af δ-funktionen. Desuden ser vi, at de lærebøger i partielle differentialligninger, som medtager distributionsteorien, samt lærebøgerne i distributionsteori, ikke længere angiver fysikere eller ingeniører som en vigtig målgruppe. Endvidere har vi en udtalelse fra DTU (se afsnit 5.5), som siger at ingeniører typisk prøver at undgå at skulle bruge distributionsteori. Desuden skriver Davis (2001), at distributionsteorien for fysikere hovedsageligt er en retfærdiggørelse af deres brug af δ-funktionen. Denne del af vores konklusion er dog temmelig usikkert, idet vi ikke har afsøgt alle mulige områder af fysikken, hvor distributionsteorien kunne være relevant, og vi kun har adspurgt fysikere på DTU og ikke andre universiteter.
7 Konklusion

Umiddelbart efter udgivelsen af "Théorie des distributions" havde nogle matematikere en vis forventning om, at distributionsteorien ville være nyttig for anvendelsesorienterede fag (her førstået som fysik, ingeniørvidenskab samt matematisk fysik).

Teorien fik en blandet modtagelse blandt matematikere, idet nogle for eksempel mente at der ikke var noget nyt i den, mens især unge matematikere tog teorien til sig. I perioden fra 1960 og frem til 1980, indgår distributionsteorien i nogle lærebøger om lineære partielle differentialligninger som separate kapitler, i andre er den stadig udeladt, og endelig begynder der at opståe bøger, hvori distributionsteorien er den grundlæggende begrebsramme. Samtidig mindskedes matematikerenes forestilling om at distributionsteorien var essentiel for de anvendelsesorienterede fag.

Efter 1980 spiller distributionsteorien en vigtig rolle i lærebøger om lineære partielle differentialligninger, der er henvendt til studerende på et uddannelseniveau svarende mindst til kandidatdelen. De anvendelsesorienterede fag benytter kun distributionsteori på forskningsniveau inden for nogle få teoretiske områder. I anvendelsesorienterede lærebøger finder man det tilsyneladende generelt ikke besværet værd at indføre distributionsteorien, men nogle bøger refererer til den, for at retfærdiggøre brugen af δ-funktionen. I dag er distributionsteorien standard begrebsrammen for forskere i lineære partielle differentialligninger, der opfatter distributioner som lige så naturlige som de reelle tal.
Litteratur

A Distributioner og partielle differentialligninger

Dette appendiks tjener blandt andet det formål, at dokumentere noget af det arbejde med distributionsteorien som vi som projekgruppe har udført, før vi var i stand til at arbejde med den egentlige problemstilling. Vi er langt fra i stand til at beskrive en fuldstændig teoribygning her. Omfanget af værker, som for eksempel firebinds værket af Hörmander hvor det første bind er (Hörmander; 1983) og fembindsværket af Gel'fand & Shilov hvor det første er Gel'fand & Shilov (1964), antyder hvor stor en teoribygning der er tale om. I nærværende appendiks vil vi således nøjes med at indføre nogle basale definitioner og nogle ganske få centrale sætninger. Vi håber også at vi undervejs kan give læseren en fornemmelse af hvad det går ud på, og hvordan definitionerne kan bringes i spil i forbindelse med partielle differentialligninger. Der er dog langt fra tale om en færdig "værktøjskasse", med beskrivelser af hvordan definitionerne anvendes. Dette ligger uden for rammen af dette projekt, der jo har fokus på teoriens udbredelse, mere end på dens tekniske indhold.

Alle integraler skal forstås som Lebesgue-integraller, som er en generalisering af Riemann-integralet. Vi har ikke beskæftiget os med Lebesgue-integraller og vil ikke beskrive teorien for disse, da det er uden for rammerne af dette projekt at sætte sig ind i denne teoribygning.

I det følgende vil vi indføre begrebet distributioner. En distribution er en afbildning
af et bestemt funktionsrum ind i et tallegeme (C eller R). Vi vil derfor først indføre
nogle notations-konventioner, og derpå se på dette bestemte funktionsrum, der består
af de såkaldte testfunktioner. Derpå vil vi definere distributioner formelt, samt indføre
differentiation af en distribution. Derpå vil vi indføre to vigtige operationer på distributioner: Foldsning og Fourier-transformation, som benyttes i forbindelse med løsning af
lineære partielle differentialligninger.

A.1 Notation

Inden vi tager fat på at definere distributioner, vil vi indføre notationer, der vil vise sig
nyttige i forbindelse med generel opskrivelser af udtryk hvor differentiation indgår. Vi
starter med at indføre multiindizes:

Definition A.1 (Multiindex)

Et multiindex er et n-tuple \(\alpha = (\alpha_1, \ldots, \alpha_n) \) hvor \(\alpha_k \in \mathbb{N}_0 \) for \(k \in \{1,2,\ldots,n\} \). Vi
indfører for n-dimensionelle vektorer \(x \):

\[
\begin{align*}
 x^\alpha &= x_1^{\alpha_1} \cdots x_n^{\alpha_n} \\
 |\alpha| &= \alpha_1 + \ldots + \alpha_n
\end{align*}
\]

Idet vi indfører den grundlæggende partielle differentiationsoperator \(D = \partial_x \) som en vek-
tor: \(D = \partial_x = (\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \ldots, \frac{\partial}{\partial x_n}) \). Kan vi hermed skrive \(D^\alpha \) hvor \(\alpha \) er et multiindex, og dermed opnå den partielle differentiationsoperator:

\[
D^\alpha = \left(f \mapsto \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \frac{\partial^{\alpha_2}}{\partial x_2^{\alpha_2}} \cdots \frac{\partial^{\alpha_n}}{\partial x_n^{\alpha_n}} f = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \cdots \partial x_n^{\alpha_n}} f \right)
\]

Vi kan generalisere yderligere ved at have polynomier af operatorer. Dette giver anled-
ning til generelle lineære partielle differentialoperatorer, som vi definerer som følgende:

Definition A.2 (Lineær partiel differentialoperator)

Idet \(\xi \) er en n-dimensionel vektor, lader vi polynomiet \(P \) være givet ved:

\[
P = \left(\xi \mapsto \sum_\alpha a_\alpha \xi^\alpha \right)
\]

hvor \(\alpha \) gennemløber alle mulige multiindices og \(a_\alpha \) er funktioner, der højst er forskellige
fra 0-funktionen for endeligt mange indices \(\alpha \). Vi kan da konstruere operatorer \(P(D) \)
hen \(D \) er den netop omtalte differentiationsoperator. Vi kalder da \(P(D) \) for en lineær
partiel differentialoperator. Værdien \(\max\{ |\alpha| : a_\alpha \neq 0 \} \) kalder operatoren orden, og
funktionerne \(a_\alpha \) kaldes for dens koefficienter. Polynomiet \(P(\xi) \) hvor \(\xi \in \mathbb{R}^n \) kaldes det
til operatoren hørende polynomium.

Et eksempel på en lineær partiel differentialoperator, kunne være den operator hvor
\(\alpha \in \mathbb{N}^2 \) og \(a_{(2,0)} = 1, a_{(0,2)} = 1 \), mens \(a_\alpha = 0 \) for alle andre \(\alpha \). Denne operator kalder
Laplace-operatoren (i 2 dimensioner), og skrives ofte \(\Delta \). Denne operator er altås givet
som:

\[
\Delta = P(D) = 1 \cdot D^{(2,0)} + 1 \cdot D^{(0,2)} = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}
\]

og det tilhørende polynomium er altås: \(P(\xi) = \xi_1^2 + \xi_2^2 \). Med denne notation ved hånden,
vi starte med at definere testfunktioner.
A.2 Testfunktioner

Testfunktioner er C^∞ funktioner med kompakt støtte. Altså funktioner som er uendeligt ofte differentiable og som er nul uden for en kompakt (hvilket i talrummene vil sige: lukket og begrenset) mængde. For en testfunktion af én variabel, betyder det at funktionen er nul alle andre steder end inden for et interval $[a,b]$. Vi definerer konvergens af testfunktioner:

Definition A.3 (Konvergens af testfunktioner)

En følge φ_m af testfunktioner konvergerer mod nul, hvis

1. Følgerne af aftede $\varphi_m^r (r \in \mathbb{N}_0)$ konvergerer uniformt mod 0:
 $$\forall r : \lim_{m \to \infty} \varphi_m^r = 0$$

2. Alle φ_m^r har uniformt begrænset støtte, hvilket betyder at der findes en kompakt mængde K uafhængig af $m,r \in \mathbb{N}_0$ således at φ_m^r er nul uden for K:
 $$\exists K \text{ kompakt} : \forall m,r \in \mathbb{N}_0, x \notin K : \varphi_m^r(x) = 0$$

Hvis $\varphi_n, \varphi \in \mathcal{D}$ og $\varphi_n - \varphi \xrightarrow{n \to \infty} 0$ i ovennævnte forstand, da skriver vi at $\varphi_n \xrightarrow{n \to \infty} \varphi$

Rummet af testfunktioner benævnes \mathcal{D} og vi vil som konvention bruge φ og ψ som navne på villkårlige testfunktioner. I nogle tilfælde kan det være hensigtsmæssigt at bruge andre funktionsrum end \mathcal{D} som basis for definition af distributioner. Her kan nævnes rummet S som defineres:

Definition A.4 ($S(\mathbb{R}^n)$)

$S(\mathbb{R}^n)$ er mængden af funktioner $\varphi \in C^\infty(\mathbb{R}^n)$ hvorom det gælder at:

$$\sup_x |x^\alpha D^\beta \varphi(x)| < \infty$$

for alle multi-indices α, β.

Dette er trivielt opfyldt for funktioner i \mathcal{D}, idet de er kontinuerede og har kompakt støtte, så $\mathcal{D} \subset S$. Funktioner i S spiller en vigtig rolle i brugen af distributionsteori i forbindelse med Fourier-transformationer, og vi vil se lidt mere på dette i afsnit A.5

A.2.1 Eksempler på testfunktioner

Lad os se et eksempel på en testfunktion i $\mathcal{D}(\mathbb{R})$:

$$\varphi(x) = \begin{cases}
\exp\left(\frac{1}{x^2-1}\right) & \text{for } |x| < 1 \\
0 & \text{for } |x| \geq 1
\end{cases} \quad (A.1)$$

Et eksempel på en følge af testfunktioner i $\mathcal{D}(\mathbb{R})$ kunne være:

$$\psi_n(x) = \begin{cases}
\frac{1}{A} \varphi(nx) & \text{for } |x| < 1/n \\
0 & \text{for } |x| \geq 1/n
\end{cases} \quad (A.2)$$

hvor $A := \int_{-1}^{1+1} \psi(x)dt$, hvor ψ er den i (A.1) definerede testfunktion. De fire første funktioner i følgan ψ_n er vist i figur A.1

$\psi_n(x)$ har kompakt støtte i intervallet $[-1/n, 1/n]$ og følgan har altså uniformt begrænset støtte, idet støtten for ψ_n ligger i den kompakte mængde $[-1,1]$ for ethvert $n \in \mathbb{N}_0$.
Figur A.1 På billedet ses $\psi_n(x)$ som defineret i (A.2) for $n = 1, \ldots, 4$

Endvidere er ψ_n uendelig ofte differentiabel og $\int_{-\infty}^{\infty} \psi_n(x)\,dt = 1$. Det smarte ved en sådan følge af testfunktioner er, at den kompakte støtte kan gøres vilkårligt lille mens arealet under funktionen er konstant 1.

Det gælder for testfunktioner at summer af disse giver en ny testfunktion. D er også lukket overfor skalarmultiplikation og er altså et lineært vektorrum.

A.3 Distributioner

Distributioner er lineære afbilledinger af funktioner ind i et tallegeme. Mere nøjagtigt er distributioner defineret som følger:

Definition A.5 (Distribution)

En distribution er en afbildung $\mu : D \to \mathbb{C}$ som opfylder følgende:

1. $\mu(\varphi)$ er et velfærdet tal i \mathbb{C} for alle $\varphi \in D$
2. (linjæritet) For alle $\varphi_1, \varphi_2 \in D$, $a_1, a_2 \in \mathbb{R}$ gælder:
 $$\mu(a_1\varphi_1 + a_2\varphi_2) = a_1\mu(\varphi_1) + a_2\mu(\varphi_2)$$
3. (kontinuitet) Hvis følgen af funktioner $\varphi_n \in D$ konvergerer mod φ, (i følge definition A.8), så vil $\mu(\varphi_n)$ gå mod $\mu(\varphi)$:
 $$\varphi_n \xrightarrow[n \to \infty]{} \varphi \Rightarrow \mu(\varphi_n) \xrightarrow[n \to \infty]{} \mu(\varphi)$$

Rummet af distributioner kan forstås som det duale rum til rummet af testfunktioner, idet det duale rum er defineret således:

Definition A.6 (Dualt rum)

Lad E være et topologisk vektorrum over legemet L (\mathbb{R} eller \mathbb{C}). Vektorrummet af kontinuerede lineære afbilledinger af E ind i L kaldes det duale rum til E og betegnes E'.
Dermed skriver vi rummet af distributioner som D'. For at kunne betragte rummet af distributioner som det duale til D, skal man have en topologi på D. Det er muligt at definere denne ved en familie af semi-normer, således at konvergensbegrebet for testfunktioner (definition A.3), induceres af disse (Friedlander & Joshi; 1998). Dette vil vi ikke gøre her.

Man kan også tale om andre typer af distributioner, som ligger i de duale rum til andre funktionsrum - for eksempel S. Distributionerne i S' kaldes tempererede distributioner. De tempererede distributioner er også distributioner, altså: $S' \subset D'$

Til alle lokalt integrable funktioner f knyttes en distribution. Lokal integrabilitet er defineret således:

Definition A.7 (Lokal integrabilitet)

Lad $f : \mathbb{R}^n \rightarrow C$ være en Lebesgue-integrlabel funktion. Da er f lokalt integrabel, hvis Lebesgue-integralet

$$\int_{\Omega} |f| dx < \infty$$

for alle kompakte mængder $\Omega \subset \mathbb{R}^n$.

Til den lokalt integrable funktion f knyttes distributionen μ_f som altså er en afbeeldning $\mu : D \rightarrow C$. Denne afbeeldning defineres således:

Definition A.8 (Den til en funktion tilhørende distribution)

Til den lokalt intergrable funktion f knyttes følgende distribution μ_f.

$$\mu_f = \left(\varphi \mapsto \int_{\mathbb{R}^n} \varphi f \right)$$

hvor $\varphi \in D$ og $\mu_f(\varphi) : D \rightarrow C$.

kravet om lokal integrabilitet af f, skyldes at vi skal være sikre på at integralet $\int_{\mathbb{R}^n} \varphi f$ er veldefineret. Følgende sætning fortæller os noget om, hvornår dette er tilfældet:

Sætning A.1

Integralet $\int_{\mathbb{R}^n} \varphi f$ er veldefineret når $\varphi \in D$ og f er lokalt integrabel, eller når $\varphi \in S$ og f vokser passende langsomt.

Bevis

Tilfældet for $\varphi \in D$ er trivielt: Den lokale integrabilitet sikrer at f kan integreres på enhver kompakt delmængde af \mathbb{R}^n, φ er kontinueret så produktet kan ligeledes integreres på enhver kompakt mængde. Da φ endvidere har kompakt støtte, vil integralet være 0 uden for en kompakt mængde, og vil dermed være veldefineret.

I tilfældet $\varphi \in S$ vil vi ikke her komme ind på den nøjagtige grænse for hastigheden af væksten af f, men det er intuitivt klart, at der må sættes en grænse, der sikrer at produktet med den hurtigt aftagende funktion φ, stadig aftager tilstrækkeligt hurtigt, til at integralet bliver veldefineret. Dette diskuteres for eksempel i Gel'fand & Shilov (1964)

Dette betyder altså at alle lokalt integrable funktioner har en tilhørende distribution, som defineret herover, mens kun alle tilpas langsamt voksende funktioner har en tilhørende tempereret distribution. Disse krav til funktionerne, der sikrer at uendelige integraler af ovennævnte type er veldefineret, vil være underforstået i resten af dette appendiks.
Ovenstående definition A.8 er meget væsentlig, idet vi ved at underforstå denne, kan opfatte funktioner som distributioner. Når vi således taler om en eller anden operation på en funktion "i distributions forstand", betyder det i virkeligheden, at vi taler om operationen på den til funktionen hørende distribution.

Lige som ikke alle funktioner har en tilhørende distribution, er det heller ikke alle distributioner der har en tilhørende funktion. Et eksempel på en distribution der ikke har en tilhørende funktion er δ-funktionen der beskrives i afsnit A.3.1. En distribution der er defineret ved en lokalt integrabel funktion kaldes regulær, mens en distribution uden denne egenskab, som for eksempel δ-funktionen, kaldes singular.

En af styrkerne ved distributionsteori er muligheden for at flytte operationer fra den funktion der undersøges og over på testfunktionen. Hvis en funktion \(f \) er en differentiabel funktion af én variabel, da vil den tilføjet \(f' \) naturligvis også definerne en distribution:

\[
\mu_f = \left(\varphi \mapsto \int_R f'(x)\varphi(x)dx \right)
\]

Ved partiel integration findes:

\[
\int_R f'(x)\varphi(x)dx = -\int_R f(x)\varphi'(x)dx
\]

Således er differentiationen flyttet over på testfunktion som er \(C^\infty \). Vi vil udvide differentieringen, således at den stemmer overens med ovenstående, men nu gælder for alle distributioner. Vi definerer den tilføjet til en distribution ved:

\[
\mu'(\varphi) = -\mu(\varphi')
\]

Det ses at \(\mu' \) også er en distribution, idet den opfylder betingelserne i definition A.5. Kontinuitetskravet er opfyldt, idet konvergensbegrebet indført i definition A.3 sikrer, at de tilføjelser af en følge af testfunktioner også konvergerer.

Det betyder at også singulære distributioner og regulære distributioner der svarer til en ikke-differentiabel funktion, kan differentieres. For regulære distributioner \(\mu_f \) hvor \(f \) er differentiabel, vil det, som det fremgår af (A.3), gælde at:

\[
\mu'_f = -\mu_f
\]

Ovenstående generaliseres til funktioner af flere variable:

Definition A.9 (En distributions afledte)

Den afledte til en distribution, er defineret som:

\[
D^\alpha \mu(\varphi) = (-1)^{|\alpha|} \mu(D^\alpha \varphi)
\]

hvori \(\alpha \) er et multiindeks. (Egorov & Shubin; 1992, side 56)

Distributionsteori er en lineær teori og ikke alle operationer på \(\mathcal{D} \) vil umiddelbart kunne overføres til \(\mathcal{D}' \). Nogle operationer såsom addition og skalarmultiplikation sker uden problemer på vilkårlige distributioner. Disse kaldes regulære operationer. Operationer som for eksempel foldning, multiplikation og variabelskeift kan defineres for nogle distributioner eller enkelte underklasser af distributioner og kaldes irregulære operationer.

Lad os nu se på det klassiske eksempel på en singular distribution - nemlig Diracs δ-funktion.
A.3.1 Deltafunktionen af en variabel

Dirac (1930, side 58-61) beskriver δ-funktionen ved at angive, at den har følgende egenskaber:

\[\int_{-\infty}^{\infty} \delta(x) \, dx = 1, \quad \delta(x) = 0 \text{ for } x \neq 0, \quad \int_{-\infty}^{\infty} \delta(x) f(x) \, dx = f(0) \]

δ-funktionen er altså 0 for \(x \neq 0 \), men har alligevel et areal under funktionen. Dette strider imod den gengivne måde at opfatte integraler på, hvor et punkts afvigelser fra resten af funktionen ikke har nogen betydning for integralet. δ-funktionen er derfor ikke en rigtig funktion men kan opfattes som en distribution:

\[\delta = (\varphi \mapsto \varphi(0)) \]

δ-distributionen svarer til den afsatte i distributionsforstand af Heaviside-funktionen:

\[H(x) = \begin{cases} 1 & \text{for } x \geq 0 \\ 0 & \text{for } x < 0 \end{cases} \] (A.4)

Vælger man at se på Heaviside-funktionen som en distribution (det vil sige ser på den til Heaviside-funktionen hørende distribution) og derefter differentierer i distributionsforstand, er det nemt at se at den svarer til δ-distributionen:

\[\mu_H(\varphi) = -\mu_H(\varphi') = -\int_{-\infty}^{\infty} \varphi'(x) H(x) \, dx = -\int_{0}^{\infty} \varphi'(x) \, dx = \varphi(0) = \varphi(0) = \delta(\varphi) \]

hvor \(\varphi \) er en vilkårlig testfunktion. δ-funktionen kan opfattes som grænsen \(\lim_{n \to \infty} \psi_n \), hvor \(\psi_n \) er funktionsfølgen defineret i (A.2).

A.4 Foldning

Foldning viser sig at være en vigtig operation på distributioner, hvorfor vi vil se nærmere på denne i det følgende. Lad os starte med at se på foldning af to testfunktioner \(\varphi \) og \(\psi \). Vi skriver foldningen som \(\varphi * \psi \) og definerer den som følger:

Definition A.10 (Foldning af testfunktioner)

*Lad \(\varphi, \psi \in \mathcal{D} \) da definerer vi foldningen \(\varphi * \psi \) ved integralet:

\[(\varphi * \psi)(x) = \int_{\mathbb{R}^n} \varphi(y) \psi(x - y) \, dy = \int_{\mathbb{R}^n} \varphi(x - y) \psi(y) \, dy \]

Foldning af to testfunktioner er kommutativ og associativ samt distributiv over addition. Differentieres foldning mellem to testfunktioner fås:

\[\partial_x (\varphi * \psi) = \partial_x \int_{\mathbb{R}^n} \varphi(y) \psi(x - y) \, dy = \int_{\mathbb{R}^n} \varphi(y) \partial_x \psi(x - y) \, dy \]

På grund af kommutativitet af foldning fås desuden:

\[\partial_x (\varphi * \psi) = \partial_x (\psi * \varphi) = \partial_x \int_{\mathbb{R}^n} \psi(y) \varphi(x - y) \, dy = \int_{\mathbb{R}^n} \psi(y) \partial_x \varphi(x - y) \, dy \]

Vi har altså:

\[D(\varphi * \psi) = (D \varphi * \psi) = (\varphi * D\psi) \]
eller mere generelt:

\[D^\alpha (\varphi \ast \psi) = (D^\alpha \varphi \ast \psi) = (\varphi \ast D^\alpha \psi) \]

Ud fra dette ses tydeligt, idet der er tale om testfunktioner, der jo er uendeligt ofte differentiabel, at foldningen mellem de to funktioner ligeledes er uendeligt ofte differentiabel. Hvilket er en af ingredienserne i følgende sætning.

Sætning A.2

Hvis \(\varphi, \psi \in \mathcal{D} \) så gælder at \(\varphi \ast \psi \in \mathcal{D} \)

Bevis

Vi udforer kun beviset for testfunktioner af 1-variabel: Uendeligt ofte differentiabilitet følger af argumentet herover. Foldningen må også have kompakt støtte: Hvis \(\varphi \) har støtte på \([a, b]\) og \(\psi \) har støtte på \([c, d]\) vil \(\varphi(x - y)\psi(y) \) have værdien 0 for \(x < a + y \) og for \(x > b + y \), når vi integrerer med hensyn til \(y \), betyder støtten for \(\psi \) at foldningen bliver 0 for \(x < a + c \) og for \(x > b + d \), eller med andre ord: \(\text{supp}(\varphi \ast \psi) = [a + c, b + d] \)

(Richards & Youn; 1990)

Som det ses i det ovenstående, har det betydning at testfunktioner har kompakt støtte. Når vi om lidt vil definere foldninger hvori distributioner indgår, får det en tilsvarende betydning, at distributioner har kompakt støtte, idet vi indfører dette begreb således:

Definition A.11 (Distribution med kompakt støtte)

En distribution \(\mu \in \mathcal{D}'(\mathbb{R}^n) \), siger at have kompakt støtte, hvis der findes en kompakt mængde \(\Omega \subset \mathbb{R}^n \), således at for alle testfunktioner \(\varphi \in \mathcal{D}(\mathbb{R}^n) \) der har kompakt støtte således at \(\Omega \cap \text{supp}(\varphi) = \emptyset \), gælder at \(\mu(\varphi) = 0 \).

Vi bemærker straks, at hvis en funktion \(f \) har kompakt støtte, da har den tilhørende distribution \(\mu_f \) det også.

Lad os nu starte med at definere foldningen mellem en distribution og en testfunktion:

Definition A.12 (Foldning mellem en distribution og en testfunktion)

Lad \(\mu \) være en distribution og \(\varphi \) en vilkårlig testfunktion (eller funktion i \(\mathcal{S} \)), vi definerer da foldningen mellem disse:

\[(\mu \ast \varphi)(x) = \mu(\varphi(x - \cdot)) \]

Hvor \(\cdot \) er plads holder for en variabel.

Vi ser at for en regulær distribution har vi:

\[(\mu_f \ast \varphi)(x) = \mu_f(\varphi(x - \cdot)) = \int_{\mathbb{R}^n} f(y)\varphi(x - y)dy \]

\[= \int_{\mathbb{R}^n} f(x - y)\varphi(y)dy = (f \ast \varphi)(x) \]

Vi har følgende egenskaber for foldning mellem distributioner og testfunktioner:

Sætning A.3 (Egenskaber for \(\mu \ast \varphi \))

Hvis \(\mu \in \mathcal{D}' \) og \(\varphi \in \mathcal{D} \) så vil følgende gælde:

\[\mu \ast \varphi \in C^\infty(\mathbb{R}^n) \]

\[D^\alpha (\mu \ast \varphi) = (D^\alpha \mu) \ast \varphi = \mu \ast (D^\alpha \varphi) \]

hvor \(\alpha \) er et multiindeks. Hvis \(\mu \) endvidere har kompakt støtte, gælder at \(\mu \ast \varphi \) har kompakt støtte, og alltså er en testfunktion.
Bevis

Er udeladt her, men ses i Hörmander (1983) theorem 4.1.1

Da både testfunktioner og distributioner er uendelig ofte differntiabel vil \((\mu + \varphi)\) naturligvis også være det. Et specielt tilfælde ved foldning mellem distributioner og testfunktioner er \(\delta\)-distributionen:

\[
(\delta * \varphi)(x) = \delta(\varphi(x - \cdot)) = \varphi(x)
\]

(\text{A.5})

da \(\delta(\varphi) = \varphi(0)\).

Vi vil nu naturligt ønske at indføre foldning mellem distributioner. Til dette formål må vi indføre tensor-produktet.

Definition A.13 (Tensorprodukt)

Lad \(f \in C^\infty(\mathbb{R}^n)\) og \(g \in C^\infty(\mathbb{R}^m)\) da definerer vi tensorproduktet \(f \otimes g\) således:

\[
(f \otimes g)(x,y) = f(x)g(y)
\]

Vi vil udvide tensorproduktet til distributioner, således at \(\mu_f \otimes \mu_g\) er lig den regulære distribution \(\mu_{f \otimes g}\), af dette får vi:

\[
\mu_f \otimes \mu_g(\phi) = \mu_{f \otimes g}(\phi) = \int_{\mathbb{R}^{n+m}} (f \otimes g)\phi = \int_{\mathbb{R}^n} \int_{\mathbb{R}^m} f(x)g(y)\phi(x,y) dy dx
\]

\[
= \int_{\mathbb{R}^n} f(x) \int_{\mathbb{R}^m} g(y)\phi(x,y) dy dx = \mu_f \mu_g(\phi(x,y))
\]

(A.6)

Hvor \(\phi\) er en testfunktion. Vi angiver variabelnavnet som fodtegn, for at holde styr på hvilken variabel vi skal integrere med hensyn til.

For at generalisere dette til villkårlige distributioner, må vi først have følgende:

Sætning A.4

Hvis \(\phi(x,y)\) er en testfunktion i \(D(\mathbb{R}^{n+m})\), da er \(\varphi(y) = \phi(x_0,y)\) en testfunktion i \(D(\mathbb{R}^m)\) for ethvert fast \(x_0 \in \mathbb{R}^n\).

Bevis

Vi antager sætningen uden bevis. Men bemærker at sætningen er intuitivt klar.

Vi inddrager distributionen, idet vi indfører en ny notation:

Sætning A.5

Lad \(\mu \in D'(\mathbb{R}^m)\) have kompakt støtte, og \(\phi \in D(\mathbb{R}^{n+m})\) være en villkårlig testfunktion. Da gælder at \(x \mapsto \mu y \mapsto \phi(x,y))\) er en testfunktion (af variablen \(x\)) i \(D(\mathbb{R}^n)\), idet vi til ethvert \(x_0 \in \mathbb{R}^n\) knytter værdien af \(\mu\) i testfunktionen \(\phi(x_0,y)\). Vi skriver \(\mu_y(\phi(x,y))\) for denne testfunktion. Vi bemærker at for regulære distributioner, svarer dette til notationen \(\mu_y(\phi(x,y))\)

Bevis

Konstruktionen af funktionen \(\mu_y(\phi(x,y))\) er mulig ifølge sætning A.4. Vi vil ikke her argumentere for differentiabilitet og kompakthed af den fremkomne funktion.

Vi er nu klar til at udvide definitionen af tensorproduktet, til at gælde villkårlige distributioner:
Definition A.14 (Tensorprodukt mellem distributioner)
For \(\mu \in \mathcal{D}'(\mathbb{R}^n) \), \(\nu \in \mathcal{D}'(\mathbb{R}^m) \) og \(\phi \in \mathcal{D}(\mathbb{R}^{n+m}) \) definerer vi tensorproduk tet som:

\[
(\mu \otimes \nu)(\phi(x,y)) = \mu_x(\nu_y(\phi(x,y)))
\]

hvor \(x \in \mathbb{R}^n \) og \(y \in \mathbb{R}^m \).

Vi bemærker at denne definition, som ønsket, stemmer overens med (A.6).

Foldningen mellem to distributioner kan nu defineres udfra tensorproduk tet:

Definition A.15 (Foldning mellem distributioner)
Lad \(\mu, \nu \in \mathcal{D}'(\mathbb{R}^n) \) være distributioner med kompakt støtte og lad \(\varphi \in \mathcal{D}(\mathbb{R}^n) \). Vi sætter \(\phi(x,y) = \varphi(x - y) \), og definerer foldningen mellem \(\mu \) og \(\nu \) som:

\[
(\mu \ast \nu)(\varphi) = (\mu \otimes \nu)(\phi) = \mu_x(\nu_y(\phi(x,y)))
\]

Vi ser at definitionen for foldningen mellem distributioner opfører sig ønskværdigt, når vi ser på foldningen af to regulære distributioner:

\[
(\mu \ast \nu_g)(\varphi) = \mu_{f \ast \nu}(\varphi(x - y)) = \int_{\mathbb{R}^n} f(x) \int_{\mathbb{R}^n} g(y) \varphi(x - y) \, dy \, dx = \int_{\mathbb{R}^n} f(x) \int_{\mathbb{R}^n} g(x - y) \varphi(y) \, dy \, dx = \int_{\mathbb{R}^n} \varphi(y) \int_{\mathbb{R}^n} f(x) g(x - y) \, dx \, dy = \int_{\mathbb{R}^n} \varphi(y) (f \ast g)(y) \, dy = \mu_{f \ast g}(\varphi)
\]

Vi kan let vise at \(\delta \)-distributionen er neutrale element for foldning mellem en distribution og en testfunktion (svarende til (A.5)), idet vi stadig har \(\phi(x,y) = \varphi(x - y) \):

\[
(\mu \ast \delta)(\varphi) = \mu_x(\delta_y(\phi(x,y))) = \mu_x(\phi(x,0)) = \mu_x(\varphi(x)) = \mu(\varphi)
\]

Foldning af distributioner har en egenskab svarende til en generalisering af sætning A.3, idet det ifølge Hörmander (1983, side 103), gælder at:

\[
P(D)(\mu \ast \nu) = P(D)\mu \ast \nu = \mu \ast P(D)\nu
\]

(A.7)

Dermed kan man også se differentiation som en foldning:

\[
P(D)\mu = P(D)(\delta \ast \mu) = (P(D)\delta) \ast \mu
\]

hvor \(\mu \in \mathcal{D}' \).
A.5 Fourier-transformation

Udover foldning viser det sig at Fourier-transformation er en meget relevant operation i forbindelse med distributioner. Fourier-transformation anvendes blandt andet sammen med distributioner i forbindelse med løsning af partielle differentialligninger.

Inden vi giver os i kast med Fourier-transformation af distributioner, vil det være på sin plads at give en kort introduktion til Fourier-transformationer af funktioner. Først en definition og udledning af egenskaberne for den Fourier-transformerede af en funktion af 1 variabel og dernæst en generalisering til n variable. Til sidst indføres operationen for distributioner.

A.5.1 Fourier-transformation af funktioner af 1 variabel

Definitionen af den Fourier-transformerede kan ses som den kontinuerte grænse af en Fourierrække (Dyke; 2000).

Definition A.16 (Fourier-transformation)
Lad $f : \mathbb{R} \rightarrow \mathbb{C}$ være Lebesgue-integrabel. Da er den Fourier-transformerede og den inverse Fouriertransformerede af f defineret ved:

$$
\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-ix\xi} \, dx
$$

$$
\tilde{f}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\xi) e^{ix\xi} \, d\xi
$$

Det er ikke givet at \hat{f} er integrabel selv om f er det. Det derfor interessant at undersøge hvilke rum, der er lukkede over for Fourier-transformationen og hvilke funktioner der opfylder at:

$$
(f)^{\wedge \wedge} = (\hat{f})^{\wedge \wedge} = f \tag{A.8}
$$

Hvis både f og \hat{f} er integrable, vil (A.8) gælde. S er den største delmængde af de integrable funktioner, der er lukket over for Fourier-transformation. Det vil sige:

$$
f \in S \Rightarrow \hat{f} \in S \tag{A.9}
$$

og dermed følger (A.8) gælder for funktioner i S. I det følgende vil vi derfor kun betragte funktioner i S.

Ved at Fourier-transformere en funktion er komplicerede operationer som for eksempel differentiation transformered til muliplikationer:

$$
\partial_\xi \hat{f}(\xi) = \int_{\mathbb{R}} \partial_\xi e^{-ix\xi} f(x) \, dx
$$

$$
= \int_{\mathbb{R}} e^{-ix\xi} (-ix) f(x) \, dx = -i(xf(x))^{\wedge}(\xi)
$$

$$
(\partial_x f(x))^{\wedge}(\xi) = \int_{\mathbb{R}} e^{-ix\xi} \partial_x f(x) \, dx
$$

$$
= [e^{-ix\xi} f(x)]_{-\infty}^{\infty} - \int_{\mathbb{R}} e^{-ix\xi} \partial_x e^{-ix\xi} f(x) \, dx
$$

$$
= -\int_{\mathbb{R}} -i\xi e^{-ix\xi} f(x) \, dx
$$

$$
= i\xi \int_{\mathbb{R}} e^{-ix\xi} f(x) \, dx
$$
Leddet \[e^{-ix\xi} f(x) \] bliver 0, idet \(|e^{-ix}| < 1 \) og \(f(x) \) er en hurtigt aftagende funktion.
Vi får altså følgende to egenskaber for Fourier-transformationen.

\[
D_f(\xi) = -i(\xi f(x))'(\xi) \\
(Df)'(\xi) = i\xi \cdot \hat{f}(\xi)
\]
(A.10)

og idet vi itererer (A.10), får vi:

\[
(D^n f)'(\xi) = (i\xi)^n \hat{f}(\xi)
\]
(A.11)

Dette er yderst anvendeligt i forbindelse med løsning af differentialligninger, idet man ved Fourier-transformation af ligningen får en almindelig algebraisk ligning som løses nemt, og dernæst tager den inverse Fourier-transformerede af løsningen:

\[
f = -D^2 u + u \Rightarrow \\
\hat{f}(\xi) = \xi^2 \hat{u}(\xi) + \hat{u}(\xi) = (\xi^2 + 1) \hat{u}(\xi) \Rightarrow \\
\hat{u}(\xi) = \frac{1}{1 + \xi^2} \hat{f}(\xi) \Rightarrow \\
u(x) = \left(\frac{1}{1 + \xi^2} \hat{f}(\xi) \right)^{-1}(x)
\]

A.5.2 Fourier-transformation af funktioner af n variable

Fourier-transformationen af n variable er defineret således;

Definition A.17 (Fourier-transformation)

For en funktion \(f \in \mathcal{S}(\mathbb{R}^n) \) defineres den Fourier-transformerede og den inverse Fourier-transformerede (analogt til det 1-dimensionelle tilfælde) således:

\[
\hat{f}(\xi) = \int_{\mathbb{R}^n} e^{ix\cdot\xi} f(x) \, dx \equiv \int_{\mathbb{R}^n} e^{ix\cdot\xi} f(x) \, dx \\
\hat{f}(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{-ix\cdot\xi} \hat{f}(\xi) \, d\xi
\]

Vi kan jävnførs Renardy & Rogers (1993, side 154) få et resultat analogt til (A.11) i det 1-dimensionelle tilfælde:

\[
(P(D)f)'(\xi) = P(i\xi)\hat{f}(\xi)
\]

og endvidere kan følgende egenskaber udledes:

Sætning A.6

Lad \(\phi, \psi \in \mathcal{S}(\mathbb{R}^n) \), da gælder følgende identiteter:

\[
\int_{\mathbb{R}^n} \hat{\phi} \phi \, dx = \int_{\mathbb{R}^n} \phi \hat{\phi} \, dx
\]
(A.12)

\[
\int_{\mathbb{R}^n} \hat{\phi} \psi \, dx = \int_{\mathbb{R}^n} \phi \hat{\psi} \, dx
\]
(A.13)

\[
(\phi \ast \psi)' = \hat{\phi} \hat{\psi}
\]
(A.14)

\[
(\phi \ast \psi)' = \frac{1}{(2\pi)^n} \hat{\phi} \ast \hat{\psi}
\]
(A.15)

Bevis

Udelades. Sætning ifølge Hörmander (1983)
A.5.3 Fourier-transformationer af distributioner

Som det er tilfældet med andre operationer på distributioner kan Fourier-transformationen modelleres over egenskaberne for almindelige funktioner (i dette tilfælde funktioner i Schwartzrummet). Og som det også er set tidligere vil det at udføre operationen svare til at overfylte operationen til testfunktionen.

Definition A.18 (Fourier-transformation af distribution)

*For μ ∈ S' er den Fourier-transformerede defineret som:

\[\hat{\mu}(\phi) = \mu(\hat{\phi}), \quad \phi \in \mathcal{S} \]

og vi konstaterer med tilfredshed at denne definition er konsistent med definition A.17, hvis μ er en til almindelig Schwartz-funktion hørende funktion (ifølge definitio- nen af distributioners virkning på testfunktioner) samt egenskaberne af den Fourier- transformerede sætning A.6.*

Ifølge Renardy & Rogers (1993, side 156) gælder følgende:

\[(P(D)\mu)^* = P(i\xi)\hat{\mu} \tag{A.16} \]

for lineære partielle differentialoperatorer P(D) med konstante koefficientser.

Dermed kan vi nu benytte Fourier-transformationer i forbindelse med løsning af partielle differentialligninger, hvor vi benytter distributioner i stedet for funktioner.

A.6 Tæthed af \(C^\infty \) i \(D' \)

Som allerede postuleret flere gange, så kan enhver distribution tilnærmes vilkårligt godt med en funktion. Dette er udtrykt mere præcist i følgende sætning:

Sætning A.7 (Tæthed D i D')

*Enhver distribution μ ∈ D' er grænsen i distributionsforstand af en følge \(\phi_n \in D \).

(Richards & Youn; 1990)*

Bevis

Er udeladt her, men ideen er at for en vilkårlig distribution μ kan vi konstruere en følge af testfunktioner: \(\varphi_n = \mu \ast \psi_n \), hvor \(\psi_n \) er en følge af testfunktioner der konvergerer mod δ-funktionen (som for eksempel defineret i (A.2)). Dernæst vil det kunne vises at:

\[\varphi_n \xrightarrow[n \to \infty]{} \mu \ast \delta = \mu \]

Dermed har vi for en vilkårlig distribution μ konstrueret en følge i D der konvergerer mod μ. □

A.7 Løsning af partielle differentialligninger

En partiel differentialligning er, ligesom en almindelig differentialligning, en ligning hvor den ubekendte er en funktion. Forskellen er, at der indgår partielle afledte af funktionen, i stedet for ordinære afledte. Lad os definere en generel lineær partiel differentialligning:

Definition A.19 (Lineær partiell differentialligning)

*En lineær partiell differentialligning, er en ligning på formen:

\[P(D)u = f \]
Hvor f er en kendt funktion eller distribution, $P(D)$ er en lineær partiell differentialoperator som defineret i definition A.2 og u er den ubekendte funktion eller distribution.

Når vi løser differentialligninger med konstante koefficienter, har vi nytte af følgende definition:

Definition A.20 (Fundamental løsning)

En distribution μ kaldes en fundamental løsning til en differentialoperator $P(D)$ med konstante koefficienter, hvis

$$P(D)\mu = \delta$$

hvor δ er δ-distributionen.

Vigtigheden af fundamentalløsninger, skyldes følgende sætning:

Sætning A.8 (Egenskaber for fundamentalløsninger)

Hvis μ er en fundamentalløsning til differentialoperatoren $P(D)$ med konstante koefficienter, gælder at:

$$\mu * (P(D)u) = u$$
$$P(D)(\mu * f) = f$$

hvor u, f er distributioner med kompakt støtte.

Bevis

Sætningen følger af at vi ifølge (A.7), har at $P(D)(u_1 * u_2) = (P(D)u_1) * u_2 = u_1 * (P(D)u_2)$ og $\delta * u = u$. Da μ er en fundamentalløsning til $P(D)$, ser vi at:

$$\mu * (P(D)u) = (P(D)\mu) * u = \delta * u = u$$
$$P(D)(\mu * f) = (P(D)\mu) * f = \delta * f = f$$

Af (A.17) ser vi at hvis operatoren $P(D)$ har en fundamental løsning μ, så er løsningen til ligningen $P(D)u = f$, hvor u og f er distributioner med kompakt støtte, givet, idet (ifølge egenskaber af fundamentalløsning, sætning A.8) $\mu * (P(D)u) = \mu * f \implies u = \mu * f$. Vi bemærker at f kan være en regular distribution med kompakt støtte, det vil sige svare til en almindelig funktion med kompakt støtte.

I dette lys, bliver følgende sætning interessant.

Sætning A.9

Enhver lineær differentialoperator med konstante koefficienter har en fundamental løsning.

Bevis

Denne sætning bygger blandt andet på egenskaberne for Fourier-transformation. Beviset trækker på mere teori, end vi har præsenteret her, og vi vurderer det uden for rammerne af dette projekt, at præsentere et bevis her. Vi henholder os derfor blot til, at sætningen oprindeligt er bevist af Malgrange & Ehrenpreis i 1954-1955 (Gårding; 1997) og også er vist i (Hörmander; 1983).

Det ses altså at man altid kan løse en partiell differentialligning $P(D)u = f$, hvis f er en distribution med kompakt støtte. Hvis man endvidere kan finde en fundamental løsning til $P(D)$ er løsningen til ligningen umiddelbart givet som $u = \mu * f$. Distributioner, foldning og Fourier-transformationer giver til sammen kraftfulde muligheder for løsning.
af partielle lineære differentialligninger med konstante koefficienter. Ideen er, at hvis $\mu \in \mathcal{D}'$ er en fundamentalløsning til $P(D)$, da har vi ifølge (A.16):

$$P(D)\mu = \delta \Rightarrow \quad P(i\xi)\hat{\mu} = \hat{\delta}$$

$$\hat{\mu} = \frac{\hat{\delta}}{P(i\xi)}$$

vi kan således bestemme den Fourier-transformerede til μ, men vi kan i almindelighed ikke vide, om $\frac{\hat{\delta}}{P(i\xi)}$ kan invers Fourier-transformeres (Renardy & Rogers; 1993, side 158).

A.8 Sobolevrum

Sobolevrum defineres på baggrund af funktionsrummet L^2, som vi derfor først definerer:

Definition A.21 (L^2)

$L^2(\mathbb{R}^n)$ er rummet af kvadratisk integrable funktioner forsynet med normen:

$$\|f\|^2 = \int_{\mathbb{R}^n} |f|^2$$

Mange løsninger til partielle differentialligninger er ikke altid på en form som er ønskeligt. Det kan derfor være hensigtsmæssigt at introducere nogle rum hvor regulariteten af løsningerne kan studeres. Sådanne rum er Sobolevrum. Sobolevrum benyttes som en form for inddeling af tempererede distributioner, efter deres "grad af differentiabilitet", forstået som hvor mange gange de kan afledes, før de afledte ikke længere svarer til L^2-funktioner. Dette benyttes ofte i forbindelse med partielle differentialligninger. Vi vil ikke udvikle denne teori her, men blot definere Sobolevrum. Vi starter med en oplagt definition. Vi skriver Sobolev-rummet som $H^k(\mathbb{R}^n)$ hvor vi i første omgang forlanger "at $k \geq 0$ er et heltal, og definérer det således:

$$H^k(\mathbb{R}^n) = \{ u \in \mathcal{S}'(\mathbb{R}^n) : |\alpha| \leq k \Rightarrow \partial_\alpha^u u \in L^2(\mathbb{R}^n) \}$$

Et Sobolevrum er altså et rum af tempererede distributioner, hvis afledte op til og med ordenen k, svarer til L^2-funktioner. Det gælder ifølge (A.11) dermed for $|\alpha| \leq k$ at:

$$u \in H^k(\mathbb{R}^n) \Leftrightarrow \xi^k \hat{u}(\xi) \in L^2(\mathbb{R}^n)$$

Dermed kan vi lave en definition der stemmer overens med den ovennævnte for $k \geq 0$ heltal, og som er gyldig for $k \in \mathbb{R}$.

Definition A.22

Sobolevrummet $H^s(\mathbb{R}^n)$ er for $s \in \mathbb{R}$ defineret ved:

$$H^s(\mathbb{R}^n) = \{ u \in \mathcal{S}'(\mathbb{R}^n) : \xi^s \hat{u}(\xi) \in L^2(\mathbb{R}^n) \}$$

Det kan vises at det duale til $H^s(\mathbb{R}^n)$ er $H^{-s}(\mathbb{R}^n)$ (Taylor; 1996), og dermed findes der i rummene for $s < 0$ også singulære distributioner mens når $s > 0$ er distributionerne regulære. Desuden bemærkes det, at jo større s eller k er, des "pænere" (det vil sige flere gange differentiabel, uden at "forlade" L^2) er distributionen.
Liste over tidligere udsendte tekster kan ses på IMFUFAs hjemmeside: http://mmf.ruc.dk eller rekvireres på sekretariatet, tlf. 46 74 22 63 eller e-mail: imfufa@ruc.dk.

332/97 ANOMAL SWELLING AF LIPIDE DOBBELTLAG
Specialerapport af: Stine Korremann
Vejleder: Dorthe Posselt

333/97 Biodiversity Matters
an extension of methods found in the literature on monetisation of biodiversity
by: Bernd Kueimmel

334/97 LIFE-CYCLE ANALYSIS OF THE TOTAL DANISH ENERGY SYSTEM
by: Bernd Kueimmel and Bent Sørensen

335/97 Dynamics of Amorphous Solids and Viscous Liquids
by: Jeppe C. Dyre

336/97 Problem-orientated Group Project Work at Roskilde University
by: Kathrine Legge

337/97 Verdenbankens globale befolkningsprognose
- et projekt om matematisk modellering
af: Jørn Chr. Bendtsen, Kurt Jensen, Per Pauli Petersen

338/97 Kvantisering af nanolederes elektriske ledningsevne
Første modul fysikprojekt
af: Søren Dam, Ebbe Danielsen, Martin Niss, Ebbe Friis Pedersen, Frederik Resen Steenstrup
Vejleder: Tage Christensen

339/97 Defining Discipline
by: Wolfgang Coy

340/97 Prime ends revisited - a geometric point of view
by: Carsten Lunde Petersen

341/97 Two chapters on the teaching, learning and assessment of geometry
by: Mogens Niss

342/97 A global clean fossil scenario DISCUSSION PAPER prepared by Bernd Kueimmel
for the project LONG-TERM SCENARIOS FOR GLOBAL ENERGY DEMAND
AND SUPPLY

343/97 IMPORT/EKSPORT-POLITIK SOM REDSKAB TIL OPTIMERET UDNYTTELSE
AF EL PRODUCERET PÅ VE-ANLÆG
af: Peter Meibom, Torben Svendsen, Bent Sørensen

344/97 Puzzles and Siegel disks
by: Carsten Lunde-Petersen

345/98 Modeling the Arterial System with Reference to an Anesthesia Simulator
Ph.D. Thesis
by: Mette Sofie Olsensen

346/98 Klyngedannelse i en hulkatode-førstovningsproces
af: Sebastian Horst
Vejleder: Jørn Borggjen, NBI, Niels Boye Olsen

347/98 Verificering af Matematiske Modeller
- en analyse af Den Danske Elektriske Model
af: Jonas Blomqvist, Tom Pedersen, Karen Timmermann, Lisbet Øhlenschlager
Vejleder: Bernhelm Boos-Bavnbe

348/98 Case study of the environmental permission procedure and the environmental impact
assessment for power plants in Denmark
by: Stefan Krüger Nielsen
project leader: Bent Sørensen

349/98 Tre rapporter fra FAGMAT - et projekt om tal og faglig matematik i
arbejdsmarkedssuddannelserne
af: Lena Lindenskov og Tine Wedege

Erstatter telsterne 3/78, 261/93 og 322/96

351/98 Aspects of the Nature and State of Research in Mathematics Education
by: Mogens Niss

352/98 The Herman-Swatiec Theorem with applications
by: Carsten Lunde Petersen

353/98 Problemløsning og modellering i en almendannende matematikundervisning
Specialerapport af: Per Gregersen og Tomas Højgaard Jensen

354/98 A Global Renewable Energy Scenario
by: Bent Sørensen and Peter Meibom

355/98 Convergence of rational rays in parameter spaces
by: Carsten Lunde Petersen and Gustav Ryd
356/98 Terrænmodellering
Analyse af en matematisk model til konstruktion af digitale terrænmodeller
Modelprojekt af: Thomas Frommeld, Hans Ravnkjer Larsen og Arnold Skinninge
Vejleder: Johnny Ottesen

357/98 Cayleys Problem
En historisk analyse af arbejdet med Cayleys problem fra 1870 til 1918
Et matematiske videnskabsfagsprojekt af: Rikke Degn, Bo Jakobsen, Bjørke K.W. Hansen, Jesper S. Hansen, Jesper Udesen, Peter C. Wulff
Vejleder: Jesper Larsen

358/98 Modeling of Feedback Mechanisms which Control the Heart Function in a View to an Implementation in Cardiovascular Models
Ph.D. Thesis by: Michael Danielsen

359/99 Long-Term Scenarios for Global Energy Demand and Supply
Four Global Greenhouse Mitigation Scenarios
by: Bent Sørensen (with contribution from Bernh. Kuemmel and Peter Meibom)

360/99 SYMMETRII FYSIK
En Meta-projektrapport af: Martin Niss, Bo Jakobsen & Tune Bjørke Bonné
Vejleder: Peter Voetmann Christiansen

361/99 Symplectic Functional Analysis and Spectral Invariants
by: Bernhelm Booss-Bavnbek, Kenro Furutani

362/99 Er matematik en naturvidenskab? - en udsendelse af diskussionen
En videnskabsfagsprojekt-rapport af: Martin Niss
Vejleder: Mogens Nørgaard Olesen

363/99 EMERGENCE AND DOWNWARD CAUSATION
by: Donald T. Campbell, Mark H. Bickhard, and Peder V. Christiansen

364/99 Illustrationens kraft - Visuel formidling af fysik
Integret speciale i fysik og kommunikation af Sebastian Horst
Vejledere: Karin Beyer, Søren Kjærup

365/99 To know - or not to know - mathematics, that is a question of context
by: Tine Wedege

366/99 LATEX FOR FORFATTERE - En introduktion til LATEX og IMFUA-LATEX
af: Jørgen Larsen

367/99 Boundary Reduction of Spectral Invariants and Unique Continuation Property
by: Bernhelm Booss-Bavnbek

368/99 Kvartvæsirapot for projektet SCENARIER FOR SAMLET UDNYTTELSE AF BRINT SOM ENERGIÆRER I DANMARKS FREMTIDIGE ENERGISYSTEM
Projektleder: Bent Sørensen

369/99 Dynamics of Complex Quadratic Correspondences
by: Jacob S. Jalving
Supervisor: Carsten Lunde Petersen

371/99 Bevisets stilling - beviser og bevisførelse i en gymnasial matematik undervisning
Et matematikspeciale af: Maria Herrmannsson
Vejleder: Mogens Niss

372/99 En kontekstualiseret matematikhistorisk analyse af ikke-lineær programmering:
Udviklingshistorie og multipel udvikling
Ph.d.-afhandling af Tinne Hoff Kjeldsen

373/99 Criss-Cross Reduction of the Maslov Index and a Proof of the Yoshida-Nicolaiescu Theorem
by: Bernhelm Booss-Bavnbek, Kenro Furutani and Nobukazu Otsuki

374/99 Det hydrauliske spring - Et eksperimentelt studie af polygoner og hastighedsprofiler
Specialeafhandling af: Andens Marcusen
Vejlederen: Tomas Bohe, Clive Elleegaard, Bent C. Jørgensen

375/99 Begrundelser for Matematikundervisningen i den lærde skole hhv. gymnasiets 1884-1914
Historiespeciale af Henrik Andreassen, cand.mag. i Historie og Matematik

376/99 Universality of AC conduction in disordered solids
by: Jeppe C. Dyre, Thomas B. Schrøder

377/99 The Kuhn-Tucker Theorem in Nonlinear Programming: A Multiple Discovery?
by: Tinne Hoff Kjeldsen

378/00 Solar energy preprints:
1. Renewable energy sources and thermal energy storage
2. Integration of photovoltaic cells into the global energy system
by: Bent Sørensen
379/00 EULERS DIFFERENTIALREGNING
Eulers indførelse af differentialregningen stillet over for den moderne
En tredjesemesters projekt rapport på den naturvidenskabelige basisuddannelse
af: Uffe Thomas Volmer Junkvist, Rie Rose Møller Pedersen, Maja Bagge Pedersen
Vejleder: Jørgen Larsen

380/00 MATHEMATISK MODELLERING AF HJERTEFUNKTIONEN
Isolovulmetrik ventrikulær kontraktil og udpumpling til det cardiovasculære
system
af: Gitte Andersen (3-modul-rapport), Jakob Hilmer og Stine Weisbjerg (speciale)
Vejleder: Johnny Ottesen

381/00 Matematikviden og teknologiske kompetencer hos kortuddannede voksne
- Rekognosceringer og konstruktioner i grænselandet mellem matematikkens didaktik
og forståelse i voksendannelse
Ph. d.-afhandling af Tine Wedge

382/00 Den selvudvivende vandring
Et matematisk professionsprojekt
af: Martin Niss, Arnold Skimming
Vejledere: Viggo Andreaesen, John Villumsen

383/00 Beviser i matematik
af: Anne K.S. Jensen, Gitte M. Jensen, Jesper Thrane, Karen L.A.W. Wille, Peter Wulff
Vejleder: Mogens Niss

384/00 Hopping in Disordered Media: A Model Glass Former and A Hopping Model
Ph.D. thesis by: Thomas B. Schrøder
Supervisor: Jeppe C. Dyre

385/00 The Geometry of Cauchy Data Spaces
This report is dedicated to the memory of Jean Leray (1906-1998)
by: B. Booss-Bavnbek, K. Funstoni, K. P. Wojciechowski

386/00 Neutrale mandatfordelingsmetoder – en illusion?
av: Hans Henrik Brok-Kristensen, Knud Dyrberg, Tove Oxager, Jens Sveistrup
Vejleder: Bernhelm Booss-Bavnbek

387/00 A History of the Minimax Theorem: von Neumann’s Conception of the Minimax
Theorem – a Journey Through Different Mathematical Contexts
by: Tinne Hoff Kjeldsen

388/00 Behandling af impuls ved kilder og dræm i C. S. Peskins 2D-hjertemodel
et 2. modul matematik modellprojekt
af: Bo Jakobsen, Kristine Niss
Vejleder: Jesper Larsen

389/00 University mathematics based on problemoriented student projects: 25 years of
experience with the Roskilde model
By: Mogens Niss
Do not ask what mathematics can do for modelling. Ask what modelling can do for
mathematics!
by: Johnny Ottesen

390/01 SCENARIER FOR SAMLET UDNYTTELSE AF BRINT SOM ENERGIBÆRER I
DANMARKS FREMTIDIGE ENERGISYSTEM Slutrapport, april 2001
Projektleder: Bent Sørensen
Projektledagem: DONG: Aksel Hauge Petersen, Celia Juhl, Elkraft System
Thomas Engberg Pedersen, Hans Ravn, Charlotte Søndergaard, Energi 2
Peter Simonsen, RISØ Systemanalyseaf.: Kaj Jørgensen, Lars Henrik Nielsen, Helge V. Lassen,
Poul Erik Morthorst, Lotte Schleiner, RUC: Finn Sørensen, Bent Sørensen

391/01 Matematisk modellering: et undervisningsforløb i gymnasiets
3. semesters Nat.Bas. projekt af: Jess Tolstrup Boysen, Morten Bjørn-Mortensen, Sofie
Inari Castella, Jan Lauridsen, Marias Getzsche, Ditte Mandøe Andreaesen
Vejleder: Johnny Ottesen

392/01 "PHYSICS REVEALED" THE METHODS AND SUBJECT MATTER OF PHYSICS
an introduction to pedestrians (but not excluding cyclists)
PART III: PHYSICS IN PHILOSOPHICAL CONTEXT
by: Bent Sørensen.

393/01 Hilberts matematikfilosofi
Spatedebatrapport af: Jesper Hasmark Andersen
Vejleder: Stig Andrø Pedersen

394/01 "PHYSICS REVEALED" THE METHODS AND SUBJECT MATTER OF PHYSICS
an introduction to pedestrians (but not excluding cyclists)
PART II: PHYSICS PROPER
by: Bent Sørensen.

395/01 Menneskers forhold til matematik. Det har sine årsager!
Spædeafhandling af: Anita Stark, Agnete K. Ravnborg
Vejleder: Tine Wedge

396/01 2 bilag til tekst nr. 395: Menneskers forhold til matematik. Det har sine årsager!
Spædeafhandling af: Anita Stark, Agnete K. Ravnborg
Vejleder: Tine Wedge
397/01 En undersøgelse af solvents og kædelængdes betydning for anomal swelling i phospholipidsdobbeltlag.
2. modul fysikrapport af: Kristine Niss, Arnold Skimminge, Esben Thomm, Stine Timmermann
Vejleder: Dorthe Posselt

398/01 Kursusmateriale til "Lineære strukturer fra algebra og analyse" (E1)
Af: Mogens Brun Heefelt

399/01 Undergraduate Learning Difficulties and Mathematical Reasoning
Ph.D Thesis by: Johan Lithner
Supervisor: Mogens Niss

400/01 On Holomorphic Critical quasi circle maps
By: Carsten Lunde Petersen

401/01 Finite Type Arithmetic
Computable Existence Analysed by Modified Realisability and Functional Interpretation
Master's Thesis by: Klaus Frovin Jørgensen
Supervisors: Ulrich Kohlenbach, Stig Andur Pedersen and Anders Madsen

402/01 Matematisk modellering ved den naturvidenskabelige basisuddannelse - udvikling af et kursus
Af: Morten Blomhøj, Tomas Hojgaard Jensen, Timm Hoff Kjeldsen og Johnny Ottesen

403/01 Generaliseringer i integraletheorien
- En undersøgelse af Lebesgue-integralet, Radon-integralet og Perron-integralet
Et 2. modul matematikprojekt udarbejdet af: Stine Timmermann og Eva Uhre
Vejledere: Bernhelm Boos-Bavnbe, Timm Hoff Kjeldsen

404/01 "Mere spredt fægtning"
Af: Jens Hojgaard Jensen

405/01 Real life routing
- en strategi for et virkeligt vrp
Et matematisk modelpakiet af: David Heiberg Backchi, Rasmus Brauner Godiksen,
Uffe Thomas Volmer Jankvist, Jørgen Martin Poulsen og Nelsihan Saglamak
Vejleder: Jørgen Larsen

406/01 Opgavesamling til dybekursus i fysik
Eksemplesopgaver stillet i perioden juni 1976 til juni 2001
Denne tekst erstatter tekst nr. 25/1980 + efterfølgende tilleg

407/01 Unbounded Fredholm Operators and Spectral Flow
By: Bernhelm Boos-Bavnbe, Matthias Lesch, John Phillips

408/02 Weak UCP and Perturbed Monopole Equations
By: Bernhelm Boos-Bavnbe, Matilde Marcolli, Bai-Ling Wang

409/02 Algebraisk ligningsløsning fra Cardano til Caeby
- et studie af kombinationers, permutationers samt invariansbegrebet betydning for
den algebraiske ligningsløsning for Gauss, Abel og Galois
Videnskabsfagsprojekt af: David Heiberg Backchi, Uffe thomas Volmer Jankvist,
Nelsihan Saglamak
Vejleder: Bernhelm Boos-Bavnbe

410/02 2 projekter om modellering af influenzaepidemier
Influensaepidemier- et matematisk modelleringssprojekt
Af: Claus Jørgensen, Christina Lohfert, Martin Mikkelsen, Anne-Louise H. Nielsen
Vejleder: Morten Blomhøj
Influenza A: Den tilbagevendende plage – et modelleringssprojekt
Af: Beth Paludan Carlsen, Christian Dahmcke, Lena Petersen, Michael Wagner
Vejleder: Morten Blomhøj

411/02 Polygonformede hydrauliske spring
Et modelleringssprojekt af: Kåre Stokvad Hansen, Ditte Jørgensen, Johan Rønby
Pedersen, Bjørn Toldbod
Vejleder: Jesper Larsen

412/02 Hopf-bifurkation og topologi i væskestømming – en generel analyse samt en
behandling af stømmingen bag en cylinder
Et matematisk modul III professionsprojekt af: Kristine Niss, Bo Jakobsen
Vejledere: Morten Brøns, Johnny Ottesen

413/03 "Elevernes stemmer" Fysikfaget, undervisningen og lærerroller, som eleverne opfatter
det i det almene gymnasium i Danmark
Af: Carl Angell, Albert Chr. Paulsen

414/03 Feltlinediagrammer En vej til forståelse?
Et 1. modul fysikprojekt af: Ditte Gundermann, Kåre Stokvad Hansen, Ulf Rørbaek
Pedersen
Vejleder: Tage Emil Christiansen

415/03 FYSIKFAGET I FORANDRING Læring og undervisning i fysik i gymnasiet med
fokus på dialogiske processer, autenticitet og kompetenceudvikling
Ph.d.-afhandling i fysikdidaktik af: Jens Dolin

416/03 Fourier og Funktionsbegrebet
- Overgangen fra Euler til Dirichlets funktionsbegreb
Projektrapport af: Rasmus Brauner Godiksen, Claus Jørgensen, Tony Moyer Hanberg,
Bjørn Toldbod
Vejleder: Erik von Essen
<table>
<thead>
<tr>
<th>Week</th>
<th>Project Title</th>
<th>Supervisor</th>
<th>Project Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>417/03</td>
<td>The Semiotic Flora of Elementary particles</td>
<td>Peder Voetmann Christiansen</td>
<td></td>
</tr>
<tr>
<td>418/03</td>
<td>Militærmatematik set med kompetencebriller</td>
<td>Jesper Thrane</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. modul projektrapport af: Gitte Jensen og specialrapport af: Tine Wedege</td>
<td></td>
<td></td>
</tr>
<tr>
<td>419/03</td>
<td>Energy Bond Graphs – a semiotic formalization of modern physics</td>
<td>Peder Voetmann Christiansen</td>
<td></td>
</tr>
<tr>
<td>420/03</td>
<td>Stemning og Musikalsk Konsonans</td>
<td>Claus Jørgensen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Et matematisk modelleringsprojekt af: Johnny Ottesen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>421/03</td>
<td>OPGAVESAMLING</td>
<td>Johnny Ottesen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Denne tekst erstatte tekst nr. 370/99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>422/03</td>
<td>Vurdering af dynamisk blodstrømningsmodel</td>
<td>Jacob Kirkensgaard Hansen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ved numerisk simulering med FEMLAB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Et 2. modul matematikprojekt af: Sofie Inari Castella, Ingunn Gunnarsdóttir og Jacob Kirkensgaard Hansen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vejleder: Johnny Ottesen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>423/03</td>
<td>Fysikkenes historie i en almentannende fysikundervisning</td>
<td>Albert Chr. Paulsen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Eksemplificeret med Millikan Henrikshaf kontroversen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specialrapport af: Marianne Wilckens Bjerregaard</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vejleder: Johnny Ottesen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>424/03</td>
<td>Dielectric and Shear Mechanical Relaxation in Glass Forming Liquids</td>
<td>Niels Bøye Olsen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- A thorough analysis and experimental test of the Diharzio-Bishop model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master thesis in physics by: Kristine Niss and Bo Jakobsen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supervised by: Niels Bøye Olsen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>425/03</td>
<td>Fysiske forklaringer i undervisning</td>
<td>Jens Højgaard Jensen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specialrapport af: Kirsten Ringgaard Jensen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vejleder: Jens Højgaard Jensen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>426/04</td>
<td>Myrcintelligens</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distribuering af Ant Colony System Traveling Salesman Problem</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Et 2. modul datalogiprojekt af: Uffe Thomas Volmer Jankvist og Magnus Meinild</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vejleder: Keld Helgaun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>427/04</td>
<td>Fra Leibniz til Isabelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Typetoeone i fremkomst og udvikling samt dens anvendelse i bevisereten Isabelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Et 3. modul datalogiprojekt af: Ingunn Gunnarsdóttir, Uffe Thomas Volmer Jankvist og Bjørn Toldbod</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vejleder: Jørgen Villadsen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>