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Abstract
* In this paper a comprehensive review of mathematical modeling of 7

the control mechanism in the cardiovascular system of the human body
is presented. The presentation includes a brief review of the different
models of the cardiovascular system. The mechanical elements of the
cardiovascular system include the heart, the arteries, the arterioles,
the capillaries and the veins. The purpose of applying control theory
is to gain information on the nature of the controller. We point out
weakness and possible improvements which could and will be made.
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1 Introduction

In this paper we review and discuss the mathematical modeling of the control
mechanisms in the cardiovascular system of the human body. The major purpose
of applying control theory is to gain information on the nature of the controller.
However, it is also useful to investigate predictions which are suggested from the
models, although these may be very sensitive to variation of parameters. We
emphasize that when a model which describes the system is found its value should
be judged on the basis of its ability to describe the system under all circumstances.
Moreover, the model should be physiologically based and the equations describing
the model should have a minimal number of parameters and each of the parameters
should be sensitive to change in a particular system characteristic. Many models
of the cardiovascular system, with or without feedback mechanisms, do not fulfil
these criteria. We return to these questions in the various discussions.

The mechanical elements of the cardiovascular system include the heart, the
arteries, the arterioles, the capillaries and the veins. The heart consists of two
pumps, a left and a right ventricle, and the rest of the system of two sections,
a systemic and a pulmonary part, arranged in series to perform a closed circuit.
Both the systemic and the pulmonary systems consist of many distributed parallel
elements. The walls of the heart are muscular and contract in rhythmic motions
which result in the forcing of blood through the vascular system. Venous blood
enters the right atrium and passes into the right ventricle. During a contraction of
the heart blood is pushed into the pulmonary artery. Simultaneously, the tricus-
pid valve, between the right atrium and the right ventricle, closes. The pulmonary
artery branches to the right and left lungs, where the blood is oxygenated and
carbon dioxide is extracted. The pulmonary veins are the outlets from the lungs
and blood passes through them back into the left half of the heart. Blood flows
from the left atrium into the left ventricle. Contraction of the heart pushes the
blood into the aorta and hence into the arterial and venous system. The peri-
odic contractions of the heart result in a pulsatile flow of blood into aorta. More

" specifically, as a consequence of the contraction of the left ventricle, there is a

pressure and a flow wave through the systemic part of the vascular system. The
arterial pressure in humans is maintained within narrow limits over a wide range
of the body condition in spite of the fact that many factors and functions’ are
involved. In the human body there are distributed a number of receptors. The
receptors are divided into two groups, the baroreceptors and the chemoreceptors.
The baroreceptors are sensitive to pressure while the chemoreceptors are sensitive
to the chemical contents of the blood. There are baroreceptors in two general
areas, the carotid sinus and the aortic arch, which are believed to be main respon-



sible for the control of the arterial pressure. The blood pressure, in arteries and
partly in arterioles, is altered based on information obtained from the barorecep-
tors and chemoreceptors. - This information is processed in the brain and results
in one or a combination of three possible responses. First, the heart rate can be
increased or decreased. Second, the stroke volume can be increased or decreased.
Third, the peripheral blood vessel diameters can be increased or decreased locally,
called vasodilation and vasoconstriction, respectively. Hence, there are three dis-
tinct control mechanisms controlling the arterial blood pressure, heart rate, stroke
volume, and vasomotor control. For further physiological details see for example
[36] or [33].

In the following sections 2-7 and A-G we review 13 different models: In sections
2-7 we focus on how to model the baroreflex. We bring the review in chronologically
order. In section 8 we bring a discussion of the baroreflex models together with
a short summary and outlook. For completeness we review 5 more models in
the appendixlike sections A-G, focusing on other control mechanisms than the
baroreflex. These review also appear in chronologically order.

Each model can be classified in several ways. We are primarily interested in
knowing whether the models are pulsatile or non-pulsatile, use open loop, closed
loop or optimal control, and finally the choice of control variables. Each of the
review sections start with a classification. For an overview we bring the following
list:

The pulsatile models appear in sections 2, 3, B, C, E, F.

The non-pulsatile models appear in sections 4, 5, 6, 7, A, D.

The open loop control modelling appear in section 2 only.

The closed loop control modelling appear in sections 5, 7, A, B.

The optimal control modelling appear in sections 3, 4, 6, C, D, E, F.

The baroreflex models appear in sections 2, 3, 4, 5, 6, 7.

2 Warner (1962)

In this section we review a pulsatile compartment model and an open loop model
of the myoneural junction, describing a part of the baroreflex. The heart rate is
the control variable, it depends on the efferent action potentials of the sympathetic
nerve endings going to the heart. The models are physiologically based.

In 1962 H.R. Warner [4] approaches the study of regulation and control of
the circulation by use of an analogue computer. The work is based on an earlier
analysis [1] from 1958 by Warner himself. Warner discusses the use of analogue
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computers in analyzing and testing of mathematical models, quite general, using
the case mentioned above. In the paper he does not refer to anyone but himself.
Warner uses a pulsatile model for the cardiovascular system. Eight equations are
used to describe each half of the uncontrolled circulation. The two halves differ
only in the values of the parameters.
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Figure 1: Warner’s model.

The volume (V;) of the left atrium and large pulmonary veins, see ﬁguré 1,is
equal to its initial volume (V;(0)) plus the difference between flow into the atrium
(F1) and out of the atrium (F3) integrated with.respect to time

Vi = Vi(0) + / (F - Fy)dt

The pressure (P;) in the left atrium and pulmonary veins is treated as a power
function of the volume divided by the capacitance (C1) of that chamber (this is
to account for the well-known convexity toward the volume axis of the volume
pressure curve of veins)

Vﬂ
-
=
where n > 1. The flow out of the left atrium and into the left ventricle is zero
during systole

Py

F,=0 (systole)



and during diastole the flow is equal to the pressure gradient across the valve
divided by the resistance to flow (R;), minus an inertia term which depends on
the rate of change of flow

P -P dF;

- Lj—= (diastole)

B= R, di

Here P; denotes the pressure in the left ventricle during diastole and L, the in-
ductance (inertia) of blood. During diastole the pressure in the left ventricle is,
similarly to theleft atrium, expressed as a power function of the volume (Vo) of
the left ventricle divided by the diastolic capacitance of the ventricle (C3)

— VZm

Py = =2
2 Cz

The volume of the left ventricle may be expressed as some initial volume (V3(0))
plus the integral of inflow minus outflow (F3) of the ventricle

V= Vi0) + [(F - R
The outflow from left ventricle is zero during diastole
F=0 (diastole)

During systole the flow depends upon the volume of the ventricle divided by its
systolic capacitance (C3 ;) and the resistance (&) to flow, on the friction which
limits the rate of contraction depending on the inductance divided by the resis-
tance, and on the pressure in the aorta given by the volume of the aorta (V5)
divided by the aortic capacitance (C3) and resistance

- —— (systole)
3

The volume of the aorta depends on the initial value (V3(0)) plus the integral of
inflow minus outflow (Fj) SR O

Vs = %(0) + /(F3 - F4)dt

And, finally, the outflow from aorta is, similar to the outflow from the ventricle,
a function of the aortic volume, the aortic capacitance, and the resistance to flow
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out of the arterial bed (R3), the inductance, the volume (V}) and capacitance (Cy)
of the systemic veins and the right atrium

R3C3 R3 dt R3C,
To complete the loop, eight more analogoues equations must be added. These
describe the properties of the large systemic veins and the right atrium, the right
ventricle, and the pulmonary arterial bed.

Warner validates this model by examining its response to transient distur-
bances from the equilibrium state. By comparing this to the response of its bio-
logical counterpart he finds sufficient agreement.

Then Warner discusses the nerveous control. Through the central nervous
system and based on information regarding the pressure in the large arteries this
control mechanism modify flow and resistance to flow. The controller describes
the relationship between heart rate and frequency of efferent action potentials on
the sympathetic nerves going to the heart. More specific, Warner describes, what

today is known to be the myoneural or neuromuscular junction, i.e. the inter-

relationship between the sympathetic nerve fiber endings and the heart muscle
fibers, which causes the heart contraction. This control is an open loop, which
may be described in the following steps:

1) The changes in noradrenalin concentration [Ag] just beyond the sympathetic
nerve endings is given by a term proportional to the frequency of sympathetic
nerve stimulation f; and the number of fibers n responding to the stimulus, minus
a term proportional to the concentration gradient [Ag] — [A;] in noradrenalin. The
last term describes the amount of noradrenalin which diffuses to the S.A. node
(Sinus Arterial node) from the sympathetic nerve endings.

2) The change in noradrenalin concentration at the S.A. node [A,] is given by a
term proportional to the rate of noradrenalin which diffuses to it, minus a term
describing the change in concentration due to the reaction Ay + B=AB. At the
time when Warner made this model, one did not knew what kind of substance B
was. Today it is known to be noradrenalin receptors placed at the cell membranes
of the muscles. ,

3) A; reacts with the noradrenalin receptors B in a reversible second order process
to form a compound AB.

4) The quantity of noradrenalin receptors B present is limited, and thereby a
maximum in the concentration of the compound AB is established.

5) The heart rate is proportional to the concentration of the compound AB.
This results in the following equations

% = kinfi ~ k2([Ao) — [A1])
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[AB] < max[B] = max[AB]

H = Ho+ks|AB)

Note that the “concentration” [B] is, in fact, the number of free noradrenalin recep-
tors. This submodel includes a description of the characteristic delay appearing in
the control mechanism, due to the kinematics in the S.A. node described in 2) and
3) above. The parameters of the equations are adjusted to obtain the best possible
fit to measured heart rates, and this agreement is the only validation of the model:
First Warner shows measurements of the heart rate on a dog anesthetized with
Nembutal caused by a step frequency, then he makes computer simulations using
the same step frequency as in the experiment. Hereby the parameters of the model
are adjusted to obtain the best possible fit. Finally the curves are superimposed,
and they seem to agree pretty well. We emphasxze that there appear no further
validation of the model. :

The model could easily be extended to a close loop control model by assuming
a specific connection between the frequency of the sympathetic nerve stimulation
and the arterial pressure when coupled with a model of the uncontrolled cardio-
vascular system, but Warner does not discuss this possibility. Moreover, he does
not include the decomposition of noradrenalin due to enzymes. Therefore an acu-
mullation in noradrenalin appear in this model. However, in another work [3] by
Warner and Cox also from 1962 and in a later work [10] by Warner and Russell a
term, —kg([A2] — [Ao]), is included in the two ﬁrst equa.tlon above, describing the
decomposition of noradrenalin.

3 Noldus (1976)

In this section we review a pulsatile optimal electrical analogue model, which in-
. cludes Starling’s law of the heart. The pressure in the left ventricle is the conirol
variable. The optimal strategy is given by minimizing the potential energy and the
mechanical flow work of the ventricle per cycle. Hereby a baroreflez mechanism,
describing how the heart rate depend on the arterial pressure, is obtained.

The paper by E.J. Noldus [11] from 1976 is, to our knowledge, the first attempt

to use optimal control theory to model the regulation of the ventricle. The model
is based on physiologically considerations and an optimization concept by Milsum
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(9] from 1968. Loosely speaking, the concept of Milsum is as follows, it is assumed
that a selective survival advantage is gained by those organisms whose subsystems
operate in an optimal fashion on some energetic basis, and that as a result living
system have evolved towards optimal performance when executing a given task.
Noldus emphasizes that it is by no means clear which performance criterion is the
relevant one for a given biological system, but optimization seems to be a worth-
while viewpoint, both for theoretical analysis and for suggesting new experiments.
However, we doubt whether this concept holds in all cases, for example, if the
brain for some reason does not get enough oxygen we expect that the heart will
increase the blood circulation for almost any energetic prize.

The purpose of Noldus paper is to approach the problem of developing a
ventricular pumping model, which relye on an optimization criterion in agree-
ment with Milsum’s concept. Hereby Noldus determine an elastance function
E(t) = P(t)/V(t), where P(t) and V(t) represent the instantaneous values of left
ventricular pressure and volume.

Noldus use an electrical analogue model, originally proposed by Suga [30] in
1971. This describes the pulsatile cardiovascular system, together with a version
of Starling’s law, which states that the stroke volume Vi ok increases with end-
diastolic volume and decreases with increasing arterial pressure

Vitroke = @ + (¢ — d - B) - Vy

The end-diastolic volume Vy equals the ventricular volume at the beginning of
ejection. P, is the average aortic pressure during ejection and a,c and d are positive
constants. :

The dynamic equations for the model in figure 2 are

V(t)= Vo /0 Ci(s)ds (1)
P(t) = Pyl(t) + ri(t) + L‘%(fl @)

and '
i(t) = %Pa(t).+.cd.}:;t(‘) o (3)

Where V(t) is the left ventricular volume, P(t) is the left ventricular pressure, P,
is the aortic blood pressure, i(t) is the flow rate ejected from the ventricle, r is
the aortic valvular resistance, L is the blood inertia, R is the peripheral resistance
and C is the compliance of the lumped arterial Windkessel load. Rewriting these
equations one ends up with the following state equations

v
—5 = —it) (4)




Figure 2: Noldus electrical analogue model.

di(t) 1 .

=~ = 7 (P(t) = Pa(t) = 7i(2)) (5)
and dP,(t) 1 1

= — g P+ Fil0) (6)

where P(t) is the control variable. There are of cause certain boundary conditions
for each variable, which ensure that the solution to the following optimal control
problem is non-trivial. Noldus seeks the optimal solution with respect to the
performance index

J= / - (P2(t) + aP(;)i(t)) dt (7)
0

¢ is a unknown positive weighting constant (it turns out that the simulations
are rather insensitive to the precise choice of a) and [0, ¢.] represents the ejection
period of the ventricle. Minimization of J may be interpreted as minimizing the
mechanical work required for blood flow ejection, while at the same time penalizing
the buildup of high pressure peaks over time. Alternatively one may interpret J
as a weighted sum of mean stored potential energy and mechanical flow work. By
use of Pontryagin’s maximum principle Noldus are able to derive an analytical
expressions for the state variable, and hence for the elastance, see [11). Moreover,
if one considers t. to be free one also gets the heart rate (in terms of ¢.).

The validation criterion of Noldus is to obtain qualitative agreement between
measurements and simulations, when varying some of the parameters. A standard
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estimate of the parameters is taken from Defares et al. [28]. The model is capable of
correctly reproducing many classical experiments, in a qualitative sense, including
the change in left ventricular pressure curves in response to varying preload (Vg)
and afterload (E) conditions. The family of elastance curves, depending on ¥ and
P,, agrees qualitatively with the result of Greene et al. [34], but is in contrast with
those of Suga [31], [32]. When the ejection period is allowed to change, it decreases
for decreasing V; and increasing P,, also in agreement with experimental findings.
However, the model is not reproducing the time cause of blood flow during ejection
_ satisfactory. Possibly, this can be attributed to an oversimplification in simulating
the characteristics of the aortic valve as a constant resistance. Some evidence
supporting this conjecture is included in the paper of Noldus.

4 Ono et al. (1982)

In this section we review a non-pulsatile optimal electrical analogue model, which
includes the baroreflex. The control variables are the ventricular outflow and the
peripheral resistance, both with and without the heart compliance. They depend on
the arterial pressure. The optimal strategy is given by minimizing the deviation in
the arterial pressure and the control variables from some set point values over an
infinite time horizon. '

In the paper from 1982 K. One, T.Uozumi, C. Yoshimoto and T. Kenner [22]
made an attempt to establish a theoretical framework for relating the optimal
regulatory behavior to the responses of individual component. They used a Wind-
kessel model with time variant resistance (R(t)) and constant compliance (C) for
the non-pulsatile arterial system. The heart is assumed to be a mechanical pump
whose output (Q(t)) is independent of the arterial pressure. The system has the
medullary cardiovascular center as its decision maker under which the heart and
arterial system are subordinated. The center accepts regular feedback information
about the pressure, sensed by the baroreceptors in the carotid sinus and in the
aortic arch through the afferent fiber. The information is processed at the center
.and its decisions are distributed to the effectors through the efferent fiber, see
figure 3. .

The system equation is as follows

‘%ﬁtl =CTIG(t)P(t) + CT1Q(1)
where P(t) denotes the arterial pressure and G(t) the inverse quantity of the
resistance, called the conductance. Ono et al. change to new variables, expressed

11
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Figure 3: The model of Ono et al.

as the relative deviation from some reference values

z(t) = (P(t) - Ro)/Po
u(t) = (Q(t) ~ Qo)/Qo
uz(t) = (G(t) = Go)/Go

Here z(t) is considered as the state variable and u;(¢) and us(t) as the control
variables. Moreover, Ono et al. change the time-scale, t — tGo/C, thus there is a
constrain on the reference values PoGo/Qo = 1. Hence the state equation becomes

) o Q4 w@) (1 +20) + 1+ u®)

This equation is linear in both the state and the control variables each taken sepa-
rately, but not jointly in both. Then Ono et al. assume that the optimal regulation
is such that it keeps the arterial pressure fluctuation close to zero without excessive
control responses of the heart and the arteries, from an energetic point of view.
Consequently, Ono et al. demand the following criterion function to be minimized

7= [7 @0+ i) + (o) a

where q; and ¢ are weighting factors. One may use the maximum principle of
Pontryagin to obtain numerical results. However, linearization of the state equa-
tion near steady state, i.e. neglecting the nonlinear term wuy(t)z(t), gives some
analytical information. The linearized state equation become

dz(t)
dt

= —2(t) + w1 (t) — uo(2)

12
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Now Omo et al. define u(t) as ,/u(t) + g—f-ug(t) and by Pontryagin’s maximum
principle they get .

w(t) = —Kya(t) - Ky /0 " 2(s)ds

where K; and K, are given constants depending on ¢; and g;. The system based on
the optimal principle then turns out to be a parametric proportional plus integral
control system which tends to eliminate the steady state error. According to
the equation they can predict that faster recovery of the pressure is achieved by
smaller values of the weighting factors ¢; and g;. Ono et al. discusses the different
weighting values and conclude that the arterial response plays the dominant role
in the pressure control, but the pressure recovery is indeed accelerated when the
cardiac response participate. The optimal values of the weighting factors are ¢; =
gz = 1 / 300.

The model validation is made by comparing measurements to the curves for
arterial pressure, cardiac output and arterial conductance, and they show the right
characteristics. : : '

Furthermore, Ono et al. analyzes the contractile process of the heart from an
optimal control point of view. This model is an extension of the above model, and
here Ono et al. include the following description of the ventricle. The ventricle
is composed of two elements, the contractile component and the series elastic
component. This is the same idea as Robinson used in 1965, see section B. The
contractile component is expressed by the time variant compliance (C;). It is
assumed that the contractile component stretches the series elastic ‘component
(Ce) and that the total contractile force is generated by a combination of them.
Two diodes are used for the mitral valve and the aortic valve, respectively. The
right heart is lumped into the venous system and the arterial system is composed
according to the Windkessel model, see figure 4.

The symbols used in the model in figure 4 are as follow; R, denote the resistance
of pulmonary vein, R, the resistance of aortic valve, and R, the viscous resistance
of myocardium. The symbols V and P with index z, e and a denote the volume
and pressure of the contractile component, the series élastic component and the
arterial system. In this paper we will not include the equations which describes
the dynamics of the ejection phase, instead we refer to [22]. However, the problem
Is treated as an optimal control problem, the ventricle is assumed to eject as much
blood as possible within a systole and at the same time the work done by the
contractile component is assumed minimized.

The model is validated by the fact that, the pressure, volume and flow waves
together with the valvular movement and driving force are in good agreement with
those adopted in textbooks of physiology.

13
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Figure 4: The left ventricular model of Ono et al.

Ono et al. makes an important concluding remark, which we quote: “Even
through the theoretical results exhibit good agreement with real situation, one
cannot conclude that the existing phenomena are essentially explained by the per-
formance criteria and therefore by the maximum principle. The principle provides
only the sufficiency condition but not the necessary condition. It may be said that
the mechanism found in our study is but a part of more general control mecha-
nisms.”

5 Wesseling et al. (1982)

In this section we review a non-pulsatile closed loop electrical analogue model,
which includes the cardio-pulmonary reflex and the barorefler. The venous un-
stretched volume, the ventricular mazimal elastance, the heart rate, the peripheral
resistance and the stroke volume are the control variables. They depend on each
orther, on the arterial pressure, on the systemic venous pressure and on the pul-
monary venous pressure. :

In the paper [23] K.H. Wesseling, J.J. Settels, H.G. Walstra, H.J. van Esch.and..
J.J.H. Donders discuss the so-called “10 s thythm”, an almost sinusoidal oscillation
of frequency 0.1 Hz, observed in the short term variability of continuous registrated
blood pressure in normal subjects. This is done in term of the following non-
pulsatile model of the cardiovascular system with closed loop control. The model
is compiled from many literature sources (for reference, see [23]). Wesseling et al.
describe the model in terms of an electrical analogue model and standard control
diagrams. The symbols in the figures below are explained together with normal

14




values of the parameters and variables in the table 4 below. In figure 5 we sketch
the circulation system.

SYSTEMIC CIRCULATION

ey
g 1 5%

P Rew P
I

, I

*
= G
PULNONAIRY CIRCULATION

Figure 5: The circulation system of Wesseling et al.

The left and right ventricles have been indicated symbolically as flow sources.
The arterial compliance is a non-linear function of pressure, and is given in tabular
form.

The systemic venous compliance is visco-elastic, and shows a delay in the com-
pliance. The unstrectched venous volume control has been modeled as a volume
source. Both ventricles, peripheral resistance and unstretched venous volume are
varible, as indicated in figure 5. The baroreflex and the cardlo pulmonary reflex
are modeled as shown in figure 6.

In figure 6 inputs are on the left, the controlled pa.rameter or variable output
on the right. The cardio-pulmonary reflex is shown to modulate, inhibit, the
baroreflex. Four reflex effectors are shown. The BFC box (in figure 6) is given in
tabular form too.

The heart model is shown in figure 7

The heart model is the non-pulsatile part of the model and it is only the vegal . = .

(parasympathetic) control of the heart rate which is included. The stroke volume,
shown explicit in figure 7, multiplied by heart rate determines the cardiac output.
The PVD box in figur 7 is also displayed in tabular form.

Finally, in figure 8 of the integrated model, three (pressure) variables are shown
to modulate four hemodynamic parameters via the two interacting reflexes.

The only validation of this model is that it seems to agree well with the 10
s thythm from continuous measurements. We find the model very interesting,

15



Figure 6: The reflex model of Wesseling et al.

especial the detailed integrated reflex model.
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Figure 8: The integrated model of Wesseling et al.
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6 Kappel et al. (1993)

In this section we review a non-pulsatile optimal compartment model, which in-
cludes the baroreflex. The control variable is the change in heart rate, it depends
on the arterial pressure. The optimal strategy is given by minimizing the deviation
in the systemic arterial pressure from a set point value and, at the same time,
the deviation in the control variable from zero, over an infinite time horizon. The
model includes closed loop submodels of Starling’s law of the heart, the Bowditch
effect, and the autoregulation in peripheral regions.

Based on a four compartment model F. Kappel and R.O. Peer (25] in 1993
developed a model for the response of the controlled cardiovascular system to a
short term submaximal workload. The four compartment model is non-pulsatile
and is originally due to Grodins [5]. Starling’s law of the heart, the Bowditch effect
and the autoregulation in the peripheral regions are all included in the model. It is
assumed that the feedback control is represented by the baroreceptor loop and that
it minimizes a quadratic cost functional. Kappel and Peer state that their model
differs from those of Doubek (see section C), Kenner and Pfeiffer (see section F),
Noldus (see section 3) and Ono et al. (see section 4) since their investigations are
global in the sense that it models all essential subsystems. But they do not mention
the similarities with the previous work by Wesseling et al. (see section 5), which
also is global in the same sense. However, we like to point out that this paper
apparently is the first which covers a mathematical investigation of the stability of
the controlled model. Kappel and Peer made their model as a tool for studying the
reaction of the cardiovascular system to a constant ergometric workload imposed
on a test person on a bicycle-ergometer after a period of rest.

Following Grodins [5], Kappel and Peer restate the four compartment model
shown in figure 9 below. They emphasizes the underlying assumptions. The
first assumption is, that the variation of volume in time in each compartment
equals the difference between the inflow and outflow of the compartment. The
second assumption is, that the system is closed, i.e. blood flow only occurs between
compartments. These two assumptions gives rise to the following equations

18
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where Vg5, Vis, Vap, and V,, denote the volumes of the four compartments, the
arterial systemic part, the venous systemic part, the arterial pulmonary part and
the venous pulmonary part of the circulatory system, @; and @, denote the cardiac
output for the left and right ventricle, whereas F; and F, denote the blood flows
through the systemic and the pulmonary part of the peripheral regions. Likewise
use Fy;,..., P,y denote the pressures and ¢,s, ..., ¢yp the compliances of the four
compartments. Note that the total volume of blood is constant

Vaslt) + Vaolt) 4 Val) 4 Vi) = Vo ©

The third assumption is concerned with the peripheral system. They assume that
the flow in the cardiovascular system is laminar, proportional to the pressure dif-
ference and directed from higher to lower pressure. This assumption immediately
gives

F;

(Pas - va)/Rs.
(10)

"

F, (Pap = Pup)/ By

where the pulmonary peripheral resistance R, is constant, whereas the systemic
peripheral resistance R, may be regulated. It is determined in the process of
. autoregulation. The fourth assumption is, that the flow generated by the ventricle,
i.e. the average cardiac output, is given by

Q = HVstroke . - (11)

where H is the heart rate frequency and Vgioke is the stroke volume. Consequently
the time varying quantities in the model have to be interpreted as averaged over
the length of a pulse. Until now the ventricles and the peripheral regions are
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considered as non-compartments, so there are not associated any blood volume
with these parts of the cardiovascular system. However, to evaluate the stoke
volume and hence the flow generated by the ventricles one has to consider the
pulsatile dynamic of the ventricles. The underlying assumption for this study is
contained in the fifth, sixth and seventh assumption. The fifth assumption is that
the stroke volume is proportional to the final diastolic volume Vj, and inversely
proportional to the arterial (mean) pressure P,
Va
Vstroke = 5'13‘ (12)
a
where S is the contractibility of the ventricle and measure the strength of contrac-
tion. The sixth assumption is that, during diastole, the venous pressure P, acting
on the ventricle is the sum of the viscous filling pressure and the ventricle pressure
- - dv(t) 1
P,=R— 4 -V(¢ ' 13
=R 4 v () (13)
Hence .
V(t) = (V(0) — cP,)e" <R + cP, (14)

where R is the total viscous resistance and ¢ is the compliance of the relaxed
ventricle. The seventh assumption is, that the ventricle resistances depend on the
peripheral resistance according to

Ri(R,) = 1.0547R, - 0.0008 (15)
R.(R,) = 0.1563R,+ 0.0042 (16)

The coefficients are obtain by interpolating data in [5] and [27]. From the fifth,
sixth and seventh assumption one get

- tg(H)
cP, (1 — e c<R(Rs)

_ ()
P, (1 —e °RUM>

where t4 is the duration of the diastole. In contrast to Grodins, Kappel and Peer
use the empirical formula :

aon=(3)" (7))
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where k a constant between 0.3 and 0.5, when the time unites are minutes. Hence
they get an expression for the non-pulsatile flow, in (11), generated by the ventricle

t(H)
cSP, (1 - e"c_m)
, _ tg(m
+ Se ey (19)
_ ti(H)
P, (1 —e cRUM)
Finally, they need an eighth assumption connecting blood volume and pressure in

a compartment. This assumption says that the blood volume V is proportional to
the pressure P in the compartment

Q=H

V=cP (20)

where ¢ is the compliance of the compartment. Moreover, it is assumed that ¢
is constant. Hence, by substitution equation (10), (19) and (20) into equation
(8) they obtain the following system of nonlinear ordinary differential equations
describing the variation of the pressure in the four compartments

- t(H)
ciSiPyp | 1 — e afu(Re)

dP, __tq(H)
Cas d:s = —(Pes— Pus)/Rs + H TS + Sie Rk
P {1—e ari(Rs)
' tg(H)
d.P . CrS-,-va (1 — e CrRr(Rs)) . (H)
Cos vso- (pas — P,_,,)/R_, -~ H + S,-e ¢r Rr R,
dt _ty(H)
P 1- e Crﬂr(Ra)
(21)
t }1)
Cap d:p = —(Pap - Pvp)/Rp +H i + Sye CrRr(Rs)
P (1 _ e AR )
t (H)
d-Pup ‘ clSvap (1 —-€ ‘lRl(Ra)) . (H)
Cop—= = (Pop = Pup)/Rp— H + §e” akED

¢ (H)
P, (1 —e ‘l"t(f"))

The equations in (21) essentially constitute the model given by Grodins in 5] for
the mechanical part of the cardiovascular system. Notice that there is a relation
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between the state variables due to equation (20) and (9), for example P,, =
Pop(Pusy Pysy Pypy Vo).

The Bowditch effect is modeled as in [15]. Kappel and Peer state that there
are essential two possibilities for a ventricle to change the cardiac output, either to
change the heart rate or the contractibility. But the heart rate and contractibility
are related through the Bowditch effect. Therefore the contractibility is propor-
tional to the heart rate. For each ventricle the Bowditch effect is modeled as
follows 25 ds

15 +a(8)S = A(SHH (22)
where v is a positive constants and @ and § are simple positive functions, in fact,
Kappel and Peer choose them as constant in a broad range around the normal
values of §.

Consider the baroreceptor loop. Kappel and Peer claim that the task of the
baroreceptor mechanism is to stabilize, sufficiently fast, the regulated variable Py,
to a somehow predefined debit-value P>, Thus the nervous reflex loop can be
considered as a stabilizing and optimizing feedback, the regulated quantity being
P,;. The optimization is based on the assumption that the control v = %’-:I— is
chosen to minimize

J(u) = /0 ” (q(PM(s) — P2EY2 4 (u(s) - udeb)ﬁ) ds (23)

where ¢ is a weighting factor and the debit-value of » is ude® = 0.

Another fundamental regulation mechanism in the model of Kappel and Peer
is autoregulation, which is very important during phases of exercise. The role
of autoregulation is to guarantee a sufficient blood flow in the relevant muscles
and parts of tissue. This is done essentially by lowering R, in the relevant tissue.
Under autoregulation R, is a function of the venous O,-concentration [O2),. Thus
Kappel and Peer assume that the peripheral resistance R, is directly proportional
to the venous O»-concentration, called the metabolic dilation

R, = A-[Ogs (24)

A is assumed to be a positive constant during periods of constant workload, i.e.
it is load-dependent. The second assumption on the mechanism of autoregulation
is an modification of Fick’s law on energy balance, which states that the complete
consumed energy flow is equal to the delivered O,-energy flow plus the biochemical
energy flow M,

M = ([02)a = [O2)v) - Fs + My (25)

[S™]
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where [0,], denote the arterial Op-concentration. The third assumption on au-
toregulation states that a positive amount of M, is delivered whenever [0y}, is
lowered, or more specifically, the storage energy flow M,, supplied in a phase of
exercise, is directly proportional to the variation of the venous O,;-concentration

in time 40 (1
M(t) = i 202AD) | (26)

where K is a positive constant. Differentiating equation (24) and combining it
with (25), (26) and the first equation of (10), one obtains

dR_, 1 Pgs"‘va P
7 _E(va—Pas+A(T[02]a_M)) . (21)

Hence, equations (19), (22), (27) and the equation u = %‘ constitute the

model of Kappel and Peer for the cardiovascular system. A diagram for the model

is drawn in figure 9.
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Figure 9: The model of Kappel et al.




Then Kappel and Peer analyze the state equations, which they write as
~ = F(z,4;p) (28)

where the state vector z = z(t) € R®, the control vector u = u(t) € R and the
parameter vector p € R?, but only three of the components in p depend on the
different phases of the experiments (rest and exercise): M, which characterizes the
workload, H%%*, which determines the specific stationary solution, and A, which
describes the metabolic dilation. The stationary solution is that of equation (28)
for u = 0. From the theory of non-linear control systems, see [35], it follows that a
stabilizing feedback law of the corresponding linearized control system also locally
stabilizes the non-linear control system. Thus the trajectory of the non-linear
control system may be approximated by the solution of the corresponding non-
linear differential equation. This is obtained from the non-linear control system
by substituting the control law from the linearized control system. Moreover,
Kappel and Peer also discuss a dynamical observer for the feedback system.

Kappel and Peer simulate the reaction of the cardiovascular system to an
activity test, i.e. after a period of rest a constant workload is imposed on a test
person. Eight of the parameters (in p) is found in the literature and the last sixteen
parameters were fitted to measurements by the method of least square in the range
of stationary situations. The simulations agree very well with measurements of P,,
and H(t). Furthermore, the values of the other components of the state vector
were within a physiologically realistic range. However, we have to point out that
calculation of the blood volume in each compartment results in very unrealistic
values. Moreover, we belive that the large number of estimated parameters in the
model is a considerable weakness.

7 Frello et al. (1994)

In this section we review a non-pulsatile closed loop compartment model of the
baroreflez. The control varible is the change in heart rate, it depend on the arterial
pressure. The baroreflex model consists of two submodels, one giving the change in
heart rate as a function of the sympathetic and parasympathetic tone and one giving
the sympathetic and parasympathetic tone, as functions of the arterial pressure.
These submodels are physiologically based. The model is closed by coupling the
feedback model and the model of the uncontrolled cardiovascular system, described
in the paper of Kappel and Peer.

In the report [26] from 1994 by S. Frello, R.U. Johansen, M.P.C. Hansen and
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K.D. Jensen, supervised by V. Andreasen, the authors adapt the Model of Kappel
and Peer, except for the part concerning the central nervous regulation, i.e. the
baroreceptor loop. Instead the feedback is modeled explicitly, on the basis of
qualitative physiological theory. But, Frello et al. express some doubt about the
validity of the model of Kappel and Peer. We will only sketch a few problems:
First of all they were not able to find any physiological reason or data supporting
the modeling of the Bowditch effect (Kappel and Peer’s refers to Ranft [15] who
refers to a paper of Koch-Weser, which they were not able to find). Secondly, the
linear equations, which Kappel and Peer get for the dependence of the ventricle
resistances to the peripheral resistance; see equation (16), are obtained by linear
extrapolation of two points (measurements from (5]). Besides these problems,
Frello et al. also add on the problems mention above when we discused the paper of
Kappel and Peer. The results obtained by Frello et al. agree with measurement to
the same degree as those of Kappel and Peer, and further it gives an understanding
of the physiological mechanisms being modeled. We emphasize that the model of
the central nervous regulation made by Frello et al. is in fact independent of the
choice of the model of the uncontroled cardiovascular system, except for the fact
that the arterial pressure has to be a state variable.

Frello et al. assume that the heart rate is a function of the activity of the
autonome nerve system, both sympathetic and parasympathetic (vegal). It is
described by the tones T,, a measure for the activity of the sympathetic nerve
system, and T}, a measure for the activity of the parasympathetic nerve system.’
These tones depends primarily on the arterial pressure P,;. Hence

%}ZI- = f(Ts(Pas - P:s)’TP(PGS - P‘IS)) (29)

where f denotes a yet unknown function and PJ, a set-point which depends on
external factors such as exercise or anaesthesica. It is assumed that the control
attempts to steer P,; to some ideal state, the set-point. Based on experiments
it is further assumed that the tones, as function of the arterial pressure, may be
described by the tangent hyperbolic function. Each curve on figure 10 is fitted
using of two parameters, 8 which fixes the tones when the pressure equals the
set-point, and a which describs the slope when the tones are fifty percent of their
maximal values. Hence one arrives at the following expressions -

Tp(Pas - Pz:s)

-;— {1 + tanh[ap(Pas - P;s - ﬂp)]}
(30)
Ts(Pas - P:s) = % {1 - ta.l'lh[(l‘s(Pas - P;s B 'Bs)]}
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Figure 10: The sympathetic and the parasympathetic (vegal) activity level,
tones, as function of the arterial pressure.

of cause this is an ad-hoc choice of quantitative connections. Similar Frello et al.
model the change in heart rate as a function of tones. Based on the experiments
of Levy and Zieske [29], they catch the qualitative physiological characteristics by
the following quantitative ad-hoc choice of functional dependents

dH _ oyT,

& T TTpaT, (31)

Note that this model seems to be in better agreement with the physiological theory
than the one suggested by Levy and Zieske in [29]. The constants ey, Sy and
vH are positive and have the following physiological interpretation, % ~ ay for
P € Pl ie. for Ty~ 0and Ty ~ 1, 4 ~ —yy for Py > PZ,,ie. for T, ~ 1 and
T, = 0, and By defines the strength of the damping from the parasympathetic tone
of the influence of the sympathetic tone on the heart rate. Since one demands that
-d{ti = 0 for P,; = PJ,, the change in heart rate as a function of the arterial pressure
depends on six parameters. These parameters are fitted to match measurements
made by Levy and Zieske, see figure 11.

It turns out that the change in heart rate is globally decreasing with the arte-
rial pressure and, that the model is stable when coupled with a slight modification
of the compartment model of Kappel and Peer. The modification mentioned con-
sists of the additional assumption that the stroke volume for the left and the right
ventricles are equal. It would be interesting to analyze the model when this ad-
ditional assumption is dropped. Finally Frello et al. simulate the same activity
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Figure 11: The change in heart rate due to variation in sympathetic and
parasympathetic (vegal) activity level.

test as Kappel and Peer did. They get agreement to the same degree with the
experimental data. This agreement indicates that the value of the cost functional
of Kappel and Peer, using the arterial pressure and change in heart rate obtained
by Frello et al., is nearly optimal. However, it would be interesting to calculate it
explicit. Moreover, we would prefer an algebraic expressions instead of the above
use of the tangent hyperbolic function.

8 Discussion of the baroreflex models

In this section we discuss the modeling of the barorefiez.

Warner describes a pulsatile compartment model of the cardiovascular system
and an independent open loop model of a part of the baroreflex describing the
myoneural junction, i.e. how the heart rate, as the control variable, depends on the
efferent action potentials of the sympathetic nerves going to the heart. However,
Warner does not couple the two independent models.

The input to the open loop control model is the frequency of the sympathetic
nerve stimulation. The baroreflex model incorporate the characteristic time delay,
that appears in the physiological control mechanism.

The model parameters are fitted to measurements of the heart rate, and the
simulation then agree to a heigh degree of accuracy to these measurements There
is no further validation of the model.

27.




However, This model could be turned into a closed loop control model by
assuming a specific connection between the frequency of the sympathetic nerve
stimulation and the pressure in aorta.

Noldus describes a pulsatile electrical analogue model of the systemic part of
the cardiovascular system. This model was originally proposed by Suga in 1971. He
incorporates Starling’s law and extends the model by using optimal control theory
to arrive at a baroreflex mechanism. This is done by minimizing the potential
energy and the mechanical flow work of the ventricle per cycle using the ventricle
pressure as control variable, whereby the heart rate becomes dependent on the
aortic pressure. Hence, the model primarily describes a single heart beat.

The model reproduces many classical experiments, in a qualitative sense, using
parameter values taken from the literature. Moreover, the model determines the
elastance curve of the ventricle which agrees well with measurements. However, it
does not satisfactory reproduce the time course of the blood flow during systole.

"Ono et al use a non-pulsatile electrical analogue model to describe the sys-
temic part of the cardiovascular system and extend the model using optimal con-
trol theory with the ventricular outflow and the peripheral conductance as control
variables. Hereby, they develop a baroreflex and a vasomotor reflex mechanism.
This is done by minimizing the deviation in the arterial pressure, the ventricular
outflow, and the peripheral resistance from some set point values over an infinite
time horizon. Thus the control variables become dependent on the arterial pres-
sure. They also discuss the inclusion of the compliance of the ventricle as a control
variable.

The validation of the model is that the curves for the arterial pressure, the
cardiac output, and the arterial conductance show the right characteristics.

Wesseling et al present a non-pulsatile closed loop electrical analogue model
of the cardiovascular system including the cardiopulmonary reflex and the barore-
flex. The non-pulsatile part of the model is the submodel of the heart, and only the
parasympathetic control of the heart is included. The control variables are the ve-
nous unstretched volume, the ventricular contractibility, the peripheral resistance,
the heart rate, and the stroke volume. The first two depend on the systemic arte-
rial pressure, the next two depend also on the systemic and pulmonary pressure,
and the last one depends on all the venous and arterial pressures, both systemic
and pulmonary, partly through the heart rate and the ventricle contractibility.

The only validation of the model is, that it agrees well with the 10 s rthythm
obtained from continuous measurements, which was the topic for their study.
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Based on a four compartment model, originally proposed by Grodins in 1963,
Kappel and Peer develop a non-pulsatile model for the response of the cardio-
.vascular system to a constant short term submaximal workload.

The basic mechanisms included in the model are Starling’s law of the heart, the
. Bowditch effect (relating the heart rate to the contractibility of the ventricle), and
the autoregulation in the peripheral regions, as closed loop control mechanisms.

A fundamental assumption is, that the action of the feedback control is rep-
resented by the baroreceptor reflex and minimizes a quadratic cost functional.
Hereby, they minimize the deviation in the systemic arterial pressure and in the
change in heart rate from some set point values over an infinite time horizon.
Hence, the change in heart rate, as the control variable, becomes dependent on
the arterial pressure.

There are 26 parameters in the model and 18 of these are estimated from
the arterial pressure and the heart rate data obtained in a bicycle ergometer test.
They use the same data to validate the model, which indeed is a considerable weak-
ness. Furthermore, they state that the values of, for example, the systemic venous
pressure, the systemic resistance, and the ventricle contractibility are within a
. physiologically realistic range. However, calculatlons of the blood volume of each
compartment give very unrealistic values.

Recently Frello et al studied the model described by Kappel and Peer. Instead
of using optimal control theory they were modeling the baroreflex directly based
on physiology.

Their model of the baroreflex is independent of the model of the uncontrolled
cardiovascular system, except that it uses the arterial pressure as an input to
determine the heart rate, which is the control variable. When coupled with a
model of the uncontrolled cardiovascular system, it becomes a closed loop model.

The baroreflex model consists of two submodel: One describing how the sympa-
thetic and parasympathetic tones (nerve activity) depend on the arterial pressure,
which is qualitatively based on physiology. The parameters have physiological in-
terpretation. The other submodel describes how the change in heart rate depends
on the sympathetic and parasympathetic tones. This submodel is also qualitatively
based on physiology and the parameters do also have physiological interpretation.
As in the former submodel, the parameter values are determined by fitting the
final model to measurements. '

Together these submodels describe how the change in heart rate, as the control
variable, depend on the arterial pressure, and qualitatively the curve show the right
characteristic behavior.

The parameters of the integrated model are fitted to the data used in the paper
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by Kappel and Peer. As in the simulations by Kappel and Peer, agreement to the
same degree is achieved, describing the transition from rest to exercise. Further,
the systemic venous pressure, the systemic peripheral resistance and the ventricle
contractibility shows the right characteristic behavior.

Conclusion: The model of Warner should be closed. However, it includes
time delay and is physiologically based. The validation of the model is poor. The
model by Frello et al is compounded of two physiologically based submodels, but
does not include time-delay. However, it is validated to some degree. These two
models should be compared using the same model for the uncontrolled cardiovas-
cular system. Both are non-pulsatile.

The model of Kappel and Peer is also non-pulsatile but they use optimal
control theory as a fundamental principle. However, we doubt this concept to hold
in all situations, for example, if the brain for some reason does not get enough oxy-
gen we expect the heart to increase the blood circulation for almost any energetic
prize. The model is validated to some degree, but it gives some unrealistic value
for the volume of the blood compartments. However, it would be interesting to
calculate the cost functional, used by Kappel and Peer, using the arterial pressure
and the change in heart rate obtained by Warner and by Frello et al. respectively.

The models of Ono et al. and Wesseling et al. describe more than one
feedback mechanism. The model of Wesseling is very complex and is not very well
explained. Hence, they are not so easy to analyse.

The model of Noldus is pulsatile and is used for study one cycle of the heart.
It is very well validated and includes a detailed discussion of the model.

As an outlook we will improve and close the feedback model of Warner. More-
over, we will analyse the model mathematically and couple it with different models
of the uncontroled system. We will also expand the model and couple it with pul-
satile models of the uncontroled system. Further, we want to improve the model
of Frello et al. for example by including time delay and by making it pulsatile.
We also want to analyse the model in greater details. In all cases it would be nice
to compare the models with corresponding models using optimal control theory
and discuss the possible deviations. Finally, we plan to inverstigate the model of

Wesseling et al. partly by simplifying it such that mathematical analyse becomes
possible.
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A Grodins (1959)

In this section we review a non-pulsatile closed loop compartment model with stroke
volume as control variable. The latter is dependent on the arterial pressure through
Starling’s law.

In the fifties physiologists made an intensive reexamination of the ideas about
cardiac output regulation. The first to give an comprehensive mathematical treat-
ment was F.S. Grodins [2] in his classical paper from 1959. Grodins described the
non-pulsatile cardiovascular system by a compartment model composed by the
right ventricle, the pulmonary arteries, the pulmonary peripheral resistant, the
pulmonary veins, -the left ventricle, the systemic arteries resistant, the systemic
peripheral and the systemic veins. In the model the dependent variables are the
cardiac output, the ventricular volumes and work, the systemic arterial and ve-
nous pressures, the pulmonary arterial and venous pressures, the systemic and
pulmonary blood volumes and their distribution between artery and vein. The in-
dependent variables are the cardiac frequency, strength, viscance, and compliance
of each ventricle, systemic and pulmonary arteriolar resistances, systemic arte-
rial and venous compliances, pulmonary arterial and venous compliance and total
blood volume. The feedback regulator appears in the following version of Starling’s
law, Vsiroke = (S/P4)vd, Where vgioke denote the stroke volume, S the strength of
the ventricle, P4 the mean arterial pressure and vy the diastolic volume. The
mathematical model so derived appeared capable of accounting reasonably well
for a variety of experimental observations, for example the relationship between
systemic venous pressure and 1) mean systemic arterial pressure, 2) the cardiac
output and 3) the cardiac frequency.

We will not go into further detail of the model of Grodins, but only mention
that the major contribution of his analysis perhaps was an inspiration to further
mathematical treatment of the regulation of the cardiovascular system. However,
in the earlier section 6 we described a further developed compartment model of
Grodins [5], when discussing the paper of Kappel and Peer.

B Robinson (1965)
In this section we review a pulsatile closed loop hydraulic analogue model, which in-

clude the homeometric autoregulation. The intraventricular pressure is the control
variable, and it depends on the isometric ventricle pressure during systole.
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In 1965 D.A. Robinson, inspired by Grodins 2] and Warner [4], continues the
idea of using control theory to regulate the left ventricle. In the paper [6] Robinson
makes a hydraulic analogue model of the left ventricle and the arterial systemic part
of the circulatory system. The main point is to consider the ventricle conceptually
divided into two chambers in series corresponding to the contractile and the elastic
part of myocardium. Then the intraventricular pressure regulates the isometric
pressure during systole, modeling the so-called homeometric autoregulation. In
contrast to Grodins’ model the one of Robinson is pulsatile, as Warner’s was.

Figure 12: Robinson’s hydraulic analogue model.

The symbols used in figure 12 are as follows: P is the intraventricular pres-
sure, Py(V) is the isometric pressure during systole, V is the total volume of the
ventricle, R, is the coefficient of myocardial viscosity during systole, %’- is the rate
of change of volume, i.e. the flow, it is the cardiac output during systole and the
pulmonary venous return during diastole, C. is the compliance of that portion
of the ventricular volume contributed by the series elastic component of the my-
ocardium, C, is the compliance of the elastic of the arterial tree, R, is the systemic
resistance, R, is the small resistance of the aortic valve and the ascending aorta, .
P4(V) is the isometric pressure of the ventricle during diastole, Ry is the coeffi-
cient of myocardial viscosity during diastole, 7 is the relaxation time constant of
the myocadial viscosity, P, is the arterial pressure, P, is the filling pressure in the
pulmonary venous reservoir, and R, is the resistance of the pulmonary veins, the
atrium and the mitral valve.

From the analogue model in figure 12 one arrives at the following set of equa-



tions, describing the ventricle and the arterial load respectively. During the systole

dv dP

and dP d?v dv
P+ CGRQE + RvCaRa’dt—2 + (Ru + RG)E =0 (33)

During the diastole

dv dP
P=PyV)+[(Rs - Ry)e~t/" + Rd]-E —[(Rs — Ra)e V™ + Rd]CeE (34)

dP,
CeRy— + P, =0 (35)
dt
and 4V
P=P, - R”Et_ (36)

The term in the squared bracket in equation (34) is a submodel of how the re-
sistance of the aortic valve changes when going from systole to diastole, using a
time constant 7 = 0.05 second. The expressions for P,(V) and Py(V), for the
uncontrolled system, are given by ad-hoc choices, according to some parameters
fitted to measurements. For the controlled system Robinson use homeometric au-
toregulation, i.e. he add to the uncontrolled Py(V') the deviation between a weight
averaging of the intraventricular pressure and the mean pressure (using the weight
function e~(¢=3)/15 where s denote the integration variable).

Robinson’s simulations are made using data from a 10 kg dog and the vali-
dation is qualitative focusing on the fact that when introducing the homeometric
autoregulation the Starling’s law is obeyed. In contrast to the work of Grodins [2]
and Warner [4] Starling’s law follows from Robinson’s model.

C Doubek (1978)

" In this section we review a pulsatile optimal electrical analogue model, which in-
clude the vasomotor reflex. The peripheral resistance is the control variable and
the optimal strategy is given by minimizing the ezpended energy per cycle.

In the paper [13] of E. Doubek from 1978 the vasomotor control is investigated.

Doubek’s paper is based on a complex model of the pulsatile cardiovascular system
described by Weygandt et al. in [12]. The model consists of an electrical network
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with two different types of “elements”, the longitudinal sections and the vascular
beds, for further details see [13].

The mathematical model consists of 24 state equations relating pressures and
flows, and one control variable, the peripheral resistance. Doubek then apply
optimal control theory and calculate an optimal control, assuming a parametric
proportional plus rate set point controller of the carotid sinus pressure. This
is done by formulating the problem like a Riccati state regulator problem, and
assuming that the optimization criterion is the minimization of expended energy
per cycle.

Doubek simulates some very nice “normal” waveformsin the uncontrolled case,
using the criterion that the carotid sinus pressure at the beginning of the 5th
heartbeat should differ sufficient little from the pressure at the end of the 5th
heartbeat (steady state). Then Doubek manipulate some arbitrary constants to
get the controlled waveforms to agree with the “normal” one. Finally, Doubek
conclude that the simulations verifies the chosen form of the controller.

However, we shall note that Swan, see section G, in [24] points out some very
fatal problems in the analysis of Doubek, which seems to casts doubt on the validity
of his conclusions.

D Taylor (1978)

In this section we review a non-pulsatile optimal mechanical analogue model, which
includes the vasomotor reflez and Starling’s law of the heart. A sympathetic arte-
rial constrictor signal is the control variable and it depends on a sympathetic con-
strictor signal. The model is studied both with and without a sympathetic venous
constrictor signal as an additional control variable, it depends on some unspecified
control signal. The optimal strategy is given by minimizing the deviations in the
arterial pressure from its final value, the venous pressure from its initial value, and
the control signals from their final equilibrium values over a given time period.

In a nice paper [16] from 1978, M.G. Taylor discussed the use of the method of
quasilinearization to solve a set of non-linear ordinary differential equations with
two-point boundary values. They arise from the use of the maximum principle of
Pontryagin to solve an optimal control problem. Taylor demonstrates the method
on two examples, one of these is the vasomotor control of the cardiovascular system,
thus there is no attempt to include autonomic influence on the heart. A diagram
of the model is illustrated in figure 13.

The model consists of an arterial reservoir of capacitance C; leading to a pe-
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Figure 13: The model of Taylor

ripheral resistance which has two components. One is fixed, denoted Ry, and one
is variable, denoted z,. The variable component is constrained to be greater than
zero, and its value is determined by the control variable u; acting through the
- spring dashpot element with a time constant 1/o (see figure 13)

d.’l,'2

—dt_ = U — QT
This spring dashpot element represents the delay between a sympathetic constric-
tor signal (u;) and the resulting smooth muscle tone of the resistance vessel (z3).
On the venous side, there is also a reservoir of capacitance C,. Taylor does in fact
study two models: One in which the venous reservoir was unregulated (model 1),
and one in which it was subject to a venoconstrictor tone z3 (model 2), regulated
by a control signal u;, acting, as in the case of the peripheral resistance, through
a spring dashpot element of the same time constant 1/c

d23

- = Uy — a3 (model 2 only)

The effect of this venoconstrictor tone is to divide the capacitance by z3, thus, for
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any given venous volume, the venous pressure is increased in proportion to z3, i.e.
the venous volume is given by Cyz,/z3. We note that a spring dashpot system is
mathematical equivalent to a capacitor resistance system. Finally, Taylor describes
the cardiac output or flow by a sort of Frank-Starling relation between the filling
pressure z, and the flow F’

F=AQ - e%™)

where A and ¢ are constants and 2, is the venous filling pressure. This venous
pressure is determined by the arterial pressure (z;) via a relationship which ex-
presses the fact that the total storage in the two reservoir is constant

z1C1 + 2,C2 = £(C1 + C2)

where  is a constant, describing the equilibrium pressure of the system. Rear-
ranging this expression and putting A = C;/C3, Taylor gets

T, =2 — A2 - %)

The problem posed by Taylor is to find the optimal strategy or time course of
the control signal u; (and in model 2, of u, as well) representing a pattern of
sympathetic nervous activity which will take the arterial pressure z; from an initial
value of 4.0 units at time ¢ = 0 to a final value of 6.0 units at time ¢ = 15. The
transition subject to various costs should be accomplished as quickly as possible,
during the fixed interval of time. The cost functional consists of four terms and
penalize certain deviations; the arterial pressure from its final value, the venous
pressure from its initial value (or equivalent the flow from its initial value) and the
control signals from their final equilibrium values

15 .
o= [T (= m(15)+ e - 20+
v(u1 — u1(15))? + s(ug — u2(15))?) dt

where (3, 7 and & represent weighting constants. Hence Taylor uses the maximum
principle of Pontryagin with quasilinearization to get the optimal solution for
(and in model 2 also u3). The following values of the various constants were
used, A = 2.0, ¢ = 0.731, £ = 0.5, A = 0.05, C; = 1.0, Ry = 1.0, z,(0) = 4.0,
£1(15) = 6.0, 25(0) = 3.1845, z,(15) = 5.2767, 23(0) = 1.0, z3(15) = 1.4444,
1y < 50.0, 42 € 50.0, 0= 0.2,y = 0.2, k = 20.0 and 8 = 400.0. It is not clear how
these values are determined and the units doesn’t appear anywhere in the paper.

Taylor makes three simulations, the above described situation for model 1 and
2 together with a simulation where the “fixed” element of peripheral resistance
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is increased suddenly from an initial value of 1.0 to 2.0 in model 2. It seems, as
expected, that the models response quite. nicely. Particularly interesting is the
form of the control signal u;, there is a steep rise (or fall) followed by a slower
settling (with or without an overshoot or undershoot) to a new equilibrium value
which is claimed to be characteristic for autonomic firing patterns found in animal
experiments under circumstances such as those modeled. These pattern arise in
the simulations entirely as an expression of the optimal strategy stated. Moreover,
the third simulation show that the arterial pressure in the face of a 25 % change
in peripheral resistance, only changes about 2.5 %. '

E Yamashiro et al. (1979)

In this section we review a pulsatile optimal electrical analogue model of the aortic
flow pulse counter. The ventricular outflow is the control variable, it depends on
the heart rate, stroke volume, arterial compliance, peripheral resistance, valvular
resistance, and end-diastolic flow. The optimal strategy is given by minimizing the
power dissipating through the valvular and the peripheral resistances per cycle.

“In the paper [19] by S.M. Yamashiro, J.A. Daubenspeck and F.M. Bennett
from 1979 the question; what is the optimal left ventricular ejection pattern which
minimizes the total power required for a given level of cardiac output. They
answer the question by use of variational calculus and a model of the cardiovascular
system, or rather the left ventricle load. For some reason, unknown to us, they
do not use optimal control theory. The electrical analog of this model is shown in
figure 14.

—
m(t)

Figure 14: The electrical analog model of Yamashiro et al.

37



Yamashiro et al. wish to minimize the hydraulic power dissipated through the
valvular resistance (R¢) and the peripheral resistance (Rp) over the cardiac period
(T), see figure 14. Hence, they minimize

ts

ty T
J=Rc [ m(t)dt+ Rp / z%(t)dt + Rp / z*(t)dt (37)
0 0 t,

where ¢, denotes the systole duration, m(t) the aortic root flow (notice that it is
indeed zero during diastole, i.e. when ¢, < t < T') and z(t) the peripheral flow. The
optimization hypothesize is with ¢; and T free. Moreover, they use the constraint
that the delivered stroke volume (1) of the peripheral circulation is maintained
constant

ts
-V = /(; m(t)dt = constant (38)

The linking between the control variable m(t) and the peripheral flow z(t) is given
by the electrical network shown in figure 14
dz(t
m(t) = r—xd(t—z + () (39)
where 7 = RpC4. In fact, there is a third constraint on m(t) due to the present of
the aortic valve. It implies that the flow is proceeding out of the ventricle through
R (defined to be the positive direction). This complication is approached by
limiting the values of , to a range where the value of m(¢) is nonnegative. If one
imposes the initial and final value of z, equation (39) determines the behavior of
z(t) in the interval {; <t < T. Thus one gets an exponential decay and

24, = 2(t,) = 2(0)e Tt/

Thus the third term in equation (37) depends on t;, T and z(0), but is independent
of the course of m(t). Hence it is sufficient to consider a simplification of the
criterion function (37) to

ts ts
J =R / m?(t)dt + Rp / z%(t)dt (40)
0 0 '

Now Yamashiro et al. use calculus of variation to calculate analytically expressions
for the minimum power dissipation (given by J) and the optimal aortic root flow
(m(t)) as functions of t, for fixed mechanical parameters, i.e. cycle duration (T
and stroke volume (V;), and hence constant cardiac output.

By use of Robinson’s parameters for a 10 kg dog, given in [6], Yamashiro et al.
simulate the sensitivity of the optimal trajectories, i.e. the optimal aortic root flow
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as a function of time, to changes in the heart period (T'), the stroke volume (V;), the
arterial compliance (C4), the peripheral resistance (Rp), the valvular resistance
(Rc), and the end-diastolic peripheral flow (z(0)). Furthermore, by numerical
calculations they fixed the optimal trajectories for some values of t;. The optimal -
value of ¢, determined from the observation that the power dissipation decreases
as t, increases and that m(t) becomes negative when ¢, is increased beyond 0.29
seconds. o

The validation of the model is done by observing that the major shape charac-
teristics of the predicted optimal aortic flow pulses agree with some measured flow
pulses in dogs reported in literature. This does’t incorporate the initial part of the
systole. The present optimal pulse predictions show an instantaneous rise of flow
at the beginning of the systole which of cause is never observed (it would require an
infinite ventricular pressure due to the inertia of blood). At this point one should
mention that in a paper from 1978, S.M. Yamashiro, J.A. Daubenspeck, F.M.
Bennet, S.K. Edelman and F.S. Grodins [17] present the same model except that
they do include the inertance of blood. However, then it becomes the same model
as Noldus analyzed in 1976, see section 3. Yamashiro claims, in the discussion
following the article, [17], that the solution obtained is independent of the value
of the inertance, why they neglect it in the model equations. We disapprove with
this, since a non-vanishing inertance term would prevent the instantaneous rise-of
flow in the beginning of the systole (this also follows by the model of Noldus). |

F Kenner et al. (1980) | -

In this section we review a pulsatile optimal electrical analogue model of the aortic

flow pulse counter. The ventricular outflow is the control variable and the optimal

strategy is given by minimizing the power dissipating through the valvular and the
peripheral resistances.

In an earlier paper from 1978 K.P. Pfeiffer and T. Kenner [14] restate the model
developed by Yamashiro et al., see section E. Moreover, they make simulations and
the resulting flow and pressure contours look pretty much as those mentioned in
a later paper. However, in this earlier paper Pheiffer and Kenner briefly mention
the work of Noldus, see section 3, which is a more preferable approach. In a
later paper [20] from 1980, that will be discussed in details here, Kenner and
Pheiffer improve the model of Yamashiro et al., also using the method of calculus
of variations. Their validation is done in order to simulate the characteristics of
the central aortic flow pulse contour, i.e. its steep ascent, which leads to a peak
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flow early in the systole, its slow descent, which, together, give the pulse a more or
less triangular shape, and its “shoulder”. Kenner and Pfeiffer use the same model
of the cardiovascular system, or rather of the left ventricular load, as Yamashiro
et al., but do moreover give an explicit equation for the ventricular pressure Py
during the systole

Py(t) = Rem(t) + Rpz(t)

We have used the same notation as in section E. Whereas Yamashiro et al. min-
imizes the external loss of energy per stroke, Kenner and Pheiffer minimizes the

total external stroke work .

W= [ Pym(t)dt
0

This is partly inspired by the work of Noldus, see section 3. Thus the model is
similar to that of Yamashiro et al., except that the functional to be minimized is

d:r(t)

/0 N ((Rp + Ro)z(t) + RpCa(2Re + Rp)a(t)
+ (B CARc)(""(”) )at

The flow pulses computed according to this model have the same strange appear-
ance as those of Yamashiro et al. insofar as the steepness of the ascent of the flow
pulse is infinite in contrast to real physiological pulses. Thus Kenner and Pheiffer
improve the model by impose the additional condition

dm(t)

dt t=0

In solving this new model Kenner and Pfeiffer first solve the original optimization
problem, and then they expand the equation for z(t) as

:z:(t) = Ay + Ale—at + Ageat + A3eba2t

Finally they use an iterative procedure to compute a value of b, such that the
optimization criterion is a minimum. Hence, in that sense, they find a suboptimal
solution.

The new model does produce flow contours which .agree much better with the
characteristic physiological shapes, especially with finite ascending slope. However,
the shoulder in the downslope of the flow pulses can only be seen at low values
of the characteristic impedance Rc. This fact, apparently, does not agree with
physiological conditions since the shoulder can be seen in vivo at normal (higher)
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values of the characteristic impedance. The values of the maximal pressure slope
(dp/dt)max Were measured and it shows the expected behavior; it increases with
reduction of peripheral resistance and of capacitance, and with increased values
of the valvular resistance. Furthermore, it was found that the energy saving by
optimization is surprisingly small (it may not exceed 5 % of that of some triangular
pulses). This indicate that, under physiological conditions, additional constraints
are of equal importance for the purpose of circulatory control, or it may even
indicate that, the used optimization criterion is not the appropriate one.

In 1981 Kenner and Pfeiffer restated their work in another paper [21] but in a
condensed form. ’

G Swan (1984)

In this section we review a discussion of the pulsatile optimal electrical analogue
models described in sections 5, 6 and 8.

The excellent book of Swan “Application of Optimal Control Theory in Biomedi-
cine” [24] is devoted to several case studies and includes a nice introduction to
optimal control theory, in particular chapter 7 contains a fine compound of the
optimal control aspect of the circulatory system, especially it discussed the paper
of Noldus [11], Yamashiro et al. [19] and Doubek [13]. Swan remark that it is
rather surprising that Yamashiro et al. when writing their paper, were unaware
of the 3 year earlier work by Noldus, as it seems. Swan present the analysis of
Noldus as he did, see section 3, but when discussing the model of Yamashiro et al.,
see section E, Swan uses optimal control theory. Instead of equation (40), Swan
incorporates equation (38) into the criterion functional

J = /Oh (Rem?(t) + Rpz®(t) + pm(t)) dt - (41)

where p is 2 unknown weight and the rest of the symbols are as in section E.
Straightforward use of optimal control theory gives z(t), involving p in a linear
manner, then m(t) is obtained from equation (39) and finally, an linear equation
for p is obtained by equation (38). The result and validation is the same as
discussed by Yamashiro et al., see section E. :

Swan elaborate the analysis of Doubek, see section C, on certain points, indi-
cating the possibility of two failures. The first problem is that some time dependent
parameters of the model equations have to fulfil a particular equation for a central
derivation in the paper of Doubek to be correct. However, Doubek does not men-
tion this problem and the matter is not yet resolved. The second problem is that
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Doubek uses what appears to be a circular argument when correlating the con-

trol to changes in peripheral resistance. We will not discuss these fatal problems
further but reefer to [24].

In the end of the chapter Swan use optimal control thedry in the study of using

microcomputers to administrate automatic drug delivery to patients suffering from
hypertension.
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Below we bring a list of the publications, those numbered {1]-[26] are dealing
explicitely with mathematical modeling of the control of the cardiovascular system.
The publications numbered [27]-[36] are general litterature and publications also
appearing in the text. Each part of the list is ordered chronologically. If one
author appears as auther anywhere else in the list the name of the author has
an integer as supscript, the number indicate how many times the specific author
name appear in the list.
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Perspectives on Teichmuller and the
Jahresbericht Addendum to Schappacher,
Scholz, et al.

by: B. Booss-Bavnbek !

With comments by W.Abikoff, L.Ahlfors,
J.Cerf, P.J.Davis, W.Fuchs, F.P.Gardiner,
J.Jost, J.-P.Kahane, R.Lohan, L.Lorch,
J.Radkau and T.Soderqvist

EULER OG BOLZANO - MATEMATISK ANALYSE SET I ET
VIDENSKABSTEORETISK PERSEEKTIV

Projektrapport af: Anja Juul, Lone Michelsen,
Tomag Hojgdrd Jensen

Vejleder: Stig Andur Pedersen

Genotypic Proportions in Hybrid Zones

by: Freddy Bugge Christiansen, Viggo Andreasen
and Ebbe Thue Poulsen

MODELLERING AF TILFEALDIGE FANOMENER

Projektrapport af: Birthe Friis, Lisbeth Helmgaarc
Kristina Charlotte Jakobsen, Marina Mosbak
Johamnessen, Lotte Ludvigsen, Mette Hass Nielsem

Kuglepakning
Teori og model
af: Lise Arleth, Kdre Fundal, Nils Kruse

Vejleder: Mogens Niss

Regressionsanalyse
Materiale til et statistikkursus
af: Jorgen Larsen

TID & BETINGET UAFHENGIGHED

af: Peter Harremoes

Determination of the Frequency Dependent
Bulk Modulus of Liquids Using a Piezo—
electric Spherical Shell (Preprint)

by: T. Christensen and K.B.Olsen

Modellering af dispersion i piemoelektriske
keramikker

af: Pernille Postgaard, Janmik Rasmussen,
Christina Specht, Mikko @atergdrd

Vejleder: Tage Christensen .

Supplerende kursusmateriale til

"Lineere strukturer fra algebra og analyse” *

af: Mogens Brun Heefelt

STUDIES OF AC HOPPING CONDUCTION AT LOW
TEMPERATURES

by: dJeppe C. Dyre

PARTITIONED MANIFOLDS AND INVARIANTS IN
DIMENSIONS 2, 3, AND 4

by: B. Booas-Bavnbek, K.P.Wojoiechowski
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OPGAVESAMLING
Bredde-kursus i Fysik
Eksamensopgaver fra 1976-93

Separability and the Jones
Polynomial

by: Lars Kadison

Supplerende kursusmateriale til
"Line®are strukturer fra algebra
og analyse" II

af: Mogens Brun Heefelt

FOTOVOLTAISK STATUSNOTAT 2
af: Bent Serensen

SPHERICAL FUNCTIONS ON ORDERED
SYMMETRICKSPACES

To Sigurdur Helgason on his
sixtyfifth birthday ’

by: Jacqués Faraut, Joachim Hilgert
and Gestur Olafsson

Kommensurabilitets-oscillationer i
laterale supergitre .
Fysikspeciale af: Anja Boisen,
Peter Bwggild, Karen Birkelund

Vejledere: Rafael Taboryski, Poul Erik
Lindelof, Peder Voetmann Christiansen

Kom til kort med matematik pa
Eksperimentarium - Et'forslag til eﬁ
opstilling

af: Charlotte Gjerrild, Jane Hansen
Vejleder: Bernhelm Booss-Bavnbek

Life is like.a sewer ...

Et projekt om modellering af aorta via
en model for stremning i kloakrer

af: Anders Marcussen, Anne C. Nilsson,
Lone Michelsen, Per M. Hansen

Vejleder: Jesper Larsen

Dimensionsanalyse en introduktion
metaprojekt, fysik

af: Tine Guldager Christiansen,
Ken Andersen, Nikolaj Hermann,

Jannik Rasmussen

Vejleder: Jerns Hojgaard Jensen

THE IMAGE OF THE ENVELOPING ALGEBRA
AND IRREDUCIBILITY OF INDUCED REPRE-
SENTATIONS OF EXPONENTIAL LIE GROUPS

by: Jacob Jacobsen

Matematikken i Fysikken.
Opdaget eller opfundet
NAT-BAS-proijekt

vejleder: Jens Hejgaard Jensen
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Tradition og fornyelse

Det praktiske elevarbejde i gymnasiets
fysikundervisning, 1907-1988

af: Kristian Hoppé og Jeppe Guldager
Vejledning: Karin Beyer og Nils Hybel

Model for kort- og mellemdistanceleb
Verifikation af model

af: Lise Fabricius Christensen, Helle Pilemann,
. Bettina Serensen

Vejleder: Mette Olufsen

MODEL 10 - en matematisk model af intravensse
anastetikas farmakokinetik
3. modul matematik, fordr 1994

af: Trine Andreasen, Bjern Christensen, Christine
Green, Anja Skjoldborg Hansen. Lisbeth
Helmgaard

Vejledere: Viggo Andreasen & Jesper Larsen

Perspectives on Teichmuller and the Jahresbericht
2nd Edition

by: Bernhelm Booss-Bavnbek

Dispersionsmodellering
Projektrapport 1. modul

af: Gitte Andersen, Rehannah Borup, Lisbeth Friis,
Per Gregersen, Kristina Vejre

Vejleder: Bernhelm Booss-Bavnbek

PROJEKTARBEJDSPEDAGOGIK — Om tre tolkninger af
problemorienteret projektarbejde

af: Claus Flensted Behrens, Frederik Voetmann
Christiansen, Jern Skov ‘Hansen, Thomas
Thingstrup

Vejleder: Jens Hesjgaard Jensen

The Models Underlying the Anaesthesia
Simulator Sophus '

by: Mette Olufsen(Math-Tech), Finn Nielsen
(RIS@ National Laboratory), Per Fege Jensen
(Herlev University Hospital), Stig Andur
Pedersen (Roskilde University)

Description of a method of measuring the shear
modulus of supercooled liquids and a comparison
of their thermal and mechanical response
functions.

af: Tage Christensen

A Course in Projective Geometry

by Lars Kadison and Matthias T. Kromann

Modellering af Det Cardiovaskulare System med

Neural Pulskontrol

Projektrapporf udarbejdet af:

Stefan Frello, Runa Ulsee Johansen,
Michael Poul Curt Hansen, Klaus Dahl Jensen

Vejleder: Viggo Andreasen
Parallelle algoritmer

af: Erwin Dan Nielsen, Jan Danielsen,

Niels Bo Johansen
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Granser for tilfaldighed o

(en kaotisk talgenerator)

af: Erwin Dan Nielsen og Niels Bo Johansen

Det er ikke til at se det, hvis man ikke
lige ve' det!

Gymnasiematematikkens begrundelsesproblem

En specialerapport af Peter Hauge Jensen

og Linda Kyndlev

Veileder: Mogens Niss

Slow coevolution of a viral pathogen and
its diploid host

by: Viggo Andreasen and
Freddy B. Christiansen

The energy master equation: A low-temperature
approximation to Bassler's random walk model

by: Jeppe C. Dyre

A Statistical Mechanical Approximation for the
Calculation of Time Auto-Correlation Functions

by: Jeppe C. Dyre

PROGRESS IN WIND ENERGY UTILIZATEON

by: Bent Serensen

Universal Time-Dependence of the Mean-Square
Displacement in Extremely Rugged Energy
Landscapes with Equal Minima

by: Jeppe C. Dyre and Jacob Jacobsen

Modellering af uregelmassige belger
Et 3.modul matematik projekt

af': Anders Marcussen, Anne Charlotte Nilsson,
Lone Michelsen, Per Morkegaard Hansen

Vejleder: Jesper Larsen

1st Annual Report from the project

LIFE-CYCLE ANALYSIS OF THE TOTAL DANISH
ENERGY SYSTEM

an example of using methods developed for the
OECD/IEA and the US/EU fuel cycle externality study

by: Bent Serensen

Fotovoltaisk Statusnotat 3

af: Bent Serensen

Geometridiskussionen -~ hvor blev den af?
af: Lotte Ludvigsen & Jens Frandsen

Vejleder: Anders Madsen




