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Abstract

This paper presents a calculation of the time-dependence of the mean-square
displacement for symmetric random energy barrier hopping models. The cal-
culation is valid at low temperatures where the frequency-dependence of the
normalized diffusion constant D becomes universal, i.e., independent of the
energy barrier probability distribution [J. C. Dyre, Phys. Rev. B 49, 11709
(1994)]. The universal time-dependence of the mean-square displacement is
calculated from the effective medium approximation (EMA) universality equ-
ation, DIn D = §, where 3 is the dimensionless imaginary frequency, as well
as for the approximation D = §/In(1 + 5). At long times the universal mean-
square displacement is linear in time, corresponding to ordinary diffusion,

whereas it at short times ¢ varies as 2/ In(t™1).

PACS: 05.40.+j; 05.60.+w






I. INTRODUCTION

The study of stochastic motion in a rugged-energy landscape is relevant in a number of
contexts [1]. Examples include models for AC conduction in disordered solids [2-5], protein
dynamics [6], viscous liquids close to the glass transition [7], diffusion in random flows [8],
or plasma heat conduction in stochastic magnetic fields [8]. To be specific, consider the
Langevin equation of motion [9] for a system with d degrees of freedom subject to the
potential U(X;, .., Xa),

. ou
Xi = —p X, + &(t), (1)

where p is a constant and §;(t) is a Gaussian white noise term with variance given by
(&()€;(t)) = 2 pu kBT é;; 6(t—t') . In the study of motion in a complex energy landscape,
the potential is usually assumed to be random in some specific sense. For instance the
potential could be chosen according to a Gaussian functional probability with a specified
spatial correlation going to zero at long distances.

For the dynamics defined by Eq. (1) it is possible to monitor the ensemble average energy
as function of time, as well as the average displacement as function of time. As an example
relating to energy relaxation, the temperature may be an arbitrarily varying function of time
and one may calculate how the average energy varies in time. Thus, energy relaxations in
viscous liquids close to the glass transition may be modelled [7]. Also, the equilibrium energy
time auto-correlation function may be calculated, giving the linear frequency-dependent
specific heat [10,11]. In both cases, it is convenient in numerical simulations to use the
Smoluchowski equation [9,12] for the probability instead of the noisy Langevin equations.

When the quantity of interest is the average displacement as function of time, the focus
is on the mean-square displacement in some fixed axis direction 7, (AX?(t)). In terms
of the canonical equilibrium probability P,(X) « exp[—BU(X)] and the Green’s function

G(X — X';t), the mean-square displacement is given by (assuming isotropy)

(AXXD) = = / P,(X) G(X = X';1) (X — X')2dX dX'. 2)
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The mean-square displacement is always an increasihg function of time. In disordered sy-
stems the mean-square displacement increases linearly with time only asymptotically as
t — oo. At shorter times, the mean-square displacement varies more rapidly with time

leading to a negative curvature of (AXZ(¢)):

& axm) < o. )

The faster average displacement at short times is easy to understand. The particle spends
most of its timein a potentia.l energy minimum. The most likely displacement is to overcome
a low energy barrier to another energy minimum. ‘This is a relatively fast process. From
this new positioﬂ the most likely jump is often to go back to the starting point. Thus, at
longer times the displacement is smaller than expected from an extrapolation of the short
time displacement.

If s denotes the imaginary (‘Laplace’) frequency, s = iw, the frequency-dependent diffu-

sion constant D(s) is defined [2] as follows

D(s) = %2- /0 T AXI) e dt. | [C

It is understood that there is a convergenée factor lim._.o e~ in the integral. For ordinary
diffusion, where (AX?(t)) = 2Dt, one has D(s) = D. It is convenient to regard D(s) as an
analytic function of s that may be studied also for nbn—imaginary Laplace frequencies. It
is possible to show that Eq. (3) implies that D(s) is an increasing function of s for real s.
Writing for real frequencies w, D(iw) = D'(w) + iD"(w), it can also be shown [13] that the
real part D'(w) is always an increasing function of w.

If the particle moves in three dimensions and carry a charge, it is characterized By a
frequency-dependent conductivity, o(w). By the fluctuation-dissipation theorem o(w) is
proportional to the frequency-dependent diffusion constant. In fact, Eq. (4) may be derived
from the Kubo formula for o(w) by two partial integrations [2] (utilizing the fact that the

second time derivative of the mean-square displacement is twice the velocity time auto-

correlation function).




One way to simplify Eq. (1) is to put it on a lattice. In this way one arrives at a hopping
model [3,14416]. A particularly simple case is when all energy minima have the same energy.
If the minima correspond to the sites of the lattice, the problen;l is reduced to the study of a
hopping model with symmetric transition rates for nearest-neighbor jumps. Each transition
rate is given by an energy barrier. A further simplification of the model is arrived at, if it
is assumed that the transition rates are uncorrelated from link to link; the model is then
completely specified by the energy barrier probability distribution.

Symmetric hopping models have been studied extensively particularly with respect to
evaluating their frequency-dependent conductivity. These apparently simple models are
actually quite complex and cannot be solved analytically, even in one dimension. However,
a useful approximation exists for evaluating D(s) (or equivalently o(s)), the effective medium
approximation (EMA) [4,17]. Thé EMA is based on old ideas similar to those used in the
derivation of the Clausius-Mosotti formula for the dielectric constant of a mixture [18]; in
the solid state physics of disordered media the same idea is used in the successful coherent
potential approximation (CPA) [19]. Before giving the EMA equation it is convenient to
switch to a unit system in which the diffusion constant on a homggeneous lattice with link
jump rate I is given by D = I'. If the dimension is d, p(k) = %Z cos(k;) and one defines

=1
the following integral over the first Brillouin zone (—7 < k; < 7),

“ dk
G = / ° ’ 2
S P e (o ®
the EMA equation for determining D(s) is an equation for the following average over the

jump rate probability distribution [3,4]

'—-D
dD+[1-sGT - F_O'
( Tl D)]> = ©)

The EMA is a mean-field theory which becomes exact as d — oo. As recently shown

[16], the EMA equation becomes rather simple in the extreme disorder limit, i.e., where the
temperature goes to zero and the span of jump frequencies consequently covers more and

more decades. In this limit, the EMA equation becomes universal, i.e., independent of the

4



v

N

energy barrier probability distribution. Introducing the normalized dimensionless diffusion
constant D = D(s)/D(0) and the dimensionless Laplace frequency § = iwr, where 7 is a
characteristic time marking the onset of frequency dispersion (the precise value of which is

of little interest here), the EMA universality equation (valid for d > 2) [16] is
DD = 3. (7

At any finite temperature this expression is only valid for a finite range of Laplace frequencies,
since f)(.§) eventually becomes independent of § for sufficiently large 3. However, as the
temperature goes to zero, the range of validity of the EMA universality equation extends to
infinity, and therefore the existence of a ‘large frequency cut-off’ is ignored below.

The numerical solution of Eq. (7) was discussed in Ref. [20], that also gave an accurate

analytical approximation to D(3). Equation (7) implies that

PO ]
InD In

R

(1] = ). o (8)

7}

An approximate solution of the EMA universality equation is provided by the following exp-
ression (first derived as the continuous time random walk (CTRW) solution of the symmetric

hopping model with a box distribution of energy barriers [21]),

- s ' .

The equations (7) and (9) both imply that D(3) follows an approximate power law for real

Laplace frequencies, D  §* as § — oo, where u = 1 —1/1n 3. For real frequencies, one finds
p q )

for the real part of the diffusion constant that D’ oc &Y, where v = 1 —2 /In(&) {20].

II. CALCULATION OF THE UNIVERSAL TIME-DEPENDENCE OF THE

MEAN-SQUARE DISPLACEMENT

The mean-square displacement is given by the inverse Laplace transform of Eq. (4), where

the integration contour as usual is from —:c0 to i00 to the right of all poles and branch cuts,




(AXXD) = 5 2D(s) g g  (10)

T s2 :

Note that the boundary condition
(AX}t=0))=0 (11)

is ensured because Eq. (8) implies that D/s — 0 for | s |— oo. Henceforth, it is convenient
to consistently adopt the ‘rationalized’ unit system where D(0) = 1 and the time unit is
chosen so that § = s; this is done by writing D = D and §=s. In the ‘rationalized’ unit
system the quantities D, s and ¢ are all dimensiorﬂess and Eq. (7) becomes DIn D = s.
The calculation of the universal mean-square displacement is complicated by the fact
that D(s) is only given indirectly. We first evaluate the inverse Laplace transform of the

approximate expression Eq. (9), which is simpler. Substituting Eq. (9) into Eq. (10) gives

(AXF(t) = 2—; }{ Ef(l%ﬁ et ds. (12)

The integrand has a pole at s = 0 and a branch cut along the negative real s-axis from
s = —1 to s = —oo. The integration contour is displaced to run slightly below the real axis
from s = —oo to 0 and back to —oo slightly above the axis. The pole at s = 0 gives a

contribution calculated by expanding at s = 0:

2e% _ 9 14+st4--
sln(1 +s) s(s—-’;-f----)
= 2(1+st+---)(1+£+~-) = 3(1+(t+.1_)3+...> (13)
s2 2 52 2 ’

so the contribution to the integral from this pole is 2¢+1. If one defines F(z) = 2 e**/[z In(1+

z)] the remaining part of the integral equals (where € > 0 is infinitesimal)

1 o0
— —u—i€) — F(—u +i€)|du. 14
27rz'_/1 [F(~u —i€) — F(—u + i€)]du (14)
Since F(—u + i¢€) is the complex conjugate of F(—u — i€) Eq. (14) becomes

e—ut e—ut d'U.

2 o0 oo
;/1 Im =) =] = 72 /1 Ra-Dir (15)
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To summarize, the mean-square displacement is in the approximation Eq. (9) given by

00 —ut du .
AX2(t)) = 2t 1—2/ < =. 16
AXF@) = 2 + [ T (16
Since (AX?(t = 0)) = 0, Eq. (16) may be rewritten [22] as
®  l1-e* du
AXZ(t)) = 2t + 2 / —. 17
( 1( )) + i 11’12(?1,—1)'}-71'2 U ( )

Equation (17) makes it possible to estimate the asymptotic behavior of the mean-square dis-
placement at short times, as briefly sketched here: The term 2t is, it turns out, insignificant
compared to the integral. The latter quantity is separated into two terms, one integral from
1 to t~! and one from ¢t~! to co. In the first integral the term 1 — e~* is smaller than ut
and the denominator may be replaced by In?(t~*) ; thus this integral is of order 2/In*(¢~1).
This quantity is small compared to the value of the second integral: Here the term 1 —e~*
may be replaced by 1 and the denominator may be replaced by In*(u). Thus, for ¢t < 1 one
has |

wxio) = [ =T - (18)

This asymptotic behavior suggests the following analytical approximation to Eq. (16),
(AX) & s | (19)
In(1+1271)
since this expression has both the correct short time behavior given by Eq. (18) and, as is
easy to show, the correct long time behavior, (AX?(t)) = 2¢t + 1. Equation (19) gives aﬁ
approximation to Eq. (16) which for any ¢ deviate less than 7 percent.
We now turn to the Laplace inversion of the EMA universality equation. It is possible to

show that the equation DIn D = s defines D(s) for all complex s, except the negative real

numbers between —oo and —1/e (this is confirmed by Eq. (34) below). Consequently, we

again choose as integration contour the one going from s = —oo slightly below the s — axis
and back to s = —oo slightly above the axis, encircling all poles and branch cuts. There
is a pole at s = 0, just as above, and the branch cut this time stretches from s = —1/e to
s = —o00. The residue at s = 0 is by standard rules equal to

7



2 12 D(s)e] Lo = 2D'(0) + D(O)Y). | (20)

The EMA universality equation Eq. (7) implies that D(0) = 1 and by differentiation that
D'(0)[ln D(0) + 1] = 1 or D'(0) = 1. Thus, the residue is equal to 2t + 2. For the remaining
integration it is convenient to change to D as integration variable. The EMA universality

implies ds = (1 4+ In D)dD and thus

2 _ L% D+DIDD DDt
(AX2(0) = 2 + 2 + 5= § 2 “pope PRP D, (21)

The integration contour in the D — plane is defined by Dln D being real and < —1/e.
Writing D = re', the equation defining the integration contour is Im(DIn D) = 0 which,

since In D = Inr + 26, implies that [23] § cos§ = —sinflnr, or
_ ,—0coth
r=e (—r<b<m). (22)

Equation (22) implies that on the integration contour the real number Dln D is given by

DInD = re?(lnr4+140) = e°°*% § (- cos b cot 6 — sin §), (23)
or
DlnD = -E(6), (24)
where
E(H) - i e—ecota (25)
sin 0 ' .

The function E() varies monotonically from 1/e to co as |0| varies from 0 to 7. Next, the
integration variable is changed to #. The differential of D is given by dD = e*(dr + irdf).
From Eq. (22) one finds dr = r(— cot 6 + %5)df, and thus

dD = D(—cot0+ —i—z') da. (26)

sin’ 6

Substituting Egs. (24) and (26) into Eq. (21) one obtains




Y

1 T 6 E(8 )
(AXF®) = 2t +2 + — / o T~ E(6) s, g0 (- cot 6 +

0 + z) do. (27)

sin’ @

Since r = 22 E() (Eqs. (22) and (25)) the factor E?(8) cancels. The integrand is the real

~E(6)t

number e times the quantity

" :
2 (S_m_(cose +isinf) — 1) sin 6 (cos@ +isind) | —cot 6 + — 02 +17]). (28)
6 6 sin” @

As is straightforward to show, this function of # has an antisymmetric real part and a

symmetric imaginary part equal to —2F(8) where

. . 2 :
F(8) = (cosa_ S‘ga) + sin?f. | (29)

Since Eq. (28) is to be multiplied with the symmetric factor e=E(®)* and integrated from —=

to 7, only the symmetric imaginary part of Eq. (28) gives a contribution. We thus finally

arrive at

(AXE(t) = 2t + 2 —% / ) F(8) e dg (30)

Utilizing the fact that (AX?E(t =0)) =0 Eq. (30) may be rewritten as
(AX2(t) = 2t + % / F(6) (1-e*E0®) do. (31
0

Figure 1 shows a log-log plot of the universal mean-square displacement (full curve)
as well as the mean-square displacement z;ccording to Eq. (16) (dashed curve, deviation
less than 30% from the full curve). At long times one has ordinary diffusion leading to a
mean-square displacement that grows linearly with time. At short times, the mean-square
displacement is much larger than expected by extrapolation from the long time behavior.
A detailed analysis of the asymptotic behavior of Eq. (30) for ¢ — 0 is somewhat involved.
However, the short time behavior of (AXf(t)) is determined by the behavior of D(s) for
large Laplace frequencies, and a detailed analysis is unnecessary since we can refer directly

to Eq. (18): This result must be valid also for the mean-square displacement given by Eq.

(30) because of the asymptotic behavior Eq. (8).




An analytic approximation to Eq. (30), which for any t is more accurate that 3.3% is

given by the following formula

N 2
T In(1+Y) -lnfln(e+d)] e-1°

(AX? (1)) (32)

Finally, we note that Eq. (30) gives rise to an explicit integral expression for D(s) using

Eq. (4). The term 2t + 2 in Eq. (30) is transformed into 1 + s and thus

D(s) =1 + s —% /0 WF(O)S—E%(H—)dO. (33)

Utilizing the fact that f[;r F(0)d8 = r (which follows from (AX?(t = 0)) = 0 but may also
be shown by direct calculation), Eq. (33) may be rewritten

Ds) =1+ = / F(8) iEg’()a) do. (34)

Thus, as a byproduct of the calculation of the time-dependence of the mean-square displace-
ment we have derived an integral representation of the function D(s) obeying the functional
equation D(s)1n D(s) = s. Equation (34) confirms the fact used above, that D(s) is defined
for all complex s except the negative real numbers from —1/e to co. For the practical nume-

rical evaluation of D(s), this integral representation is not as useful as the Newton-Raphson

method [20].

III. CONCLUSION

An analytic expression for the time-dependence of the mean-square displacement for
low-temperature hopping has been derived from the EMA universality equation Eq. (7) .
At short times the mean-square displacement varies as 2/In(¢7!), indicating a considerably
faster effective motion at short times than expected from the long time diffusive behavior
o t.

The expression derived for the mean-square displacement is valid as the temperature
goes to zero. At any finite temperature the mean-square displacement actually returns

to diffusive behavior o t at very short times, corresponding to the fact that at very high

10



Laplace frequencies D(s) always becomes constant. This effect has been ignored here because
the range of validity of Eq. (30) becomes larger and larger as the temperature is lowered.
The transition from ‘logarithmic’ diffusion to ordinary diffusion defines a characteristic
13 time, which in the above used dimensionless units is of order one. In real units this characte-
ristic time is thermally activated with an activation energy equal to the percolation energy,
the lowest energy barrier met on a long optimal path [16]. It follows from the detailed
EMA treatment of the problem [16], that the ‘DC’ diffusion constant in real units, D(0), is
Arrhenius'with the same activation energy. This fact, which was confirmed by the computer
simulations of Ref. [16], has been known for many years from experiments on AC conduction

in ionically and electronically disordered solids (the ‘BNN relation’ [24,20,16]).
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FIGURES

FIG. 1. The universal mean-square displacement in dimensionless units in a log-log plot (base
10) according to thci': EMA (Eq. (31), full curve) and to the approximation to the EMA given
by Eq. (17) (dashed curve). At short times the mean-square displacement varies as 1/In(t™?)
which implies a much faster motion than expected from an extrapolation of the long time diffusive
behavior, (AX?(t)) o t. This is due to the fact that at short times it is mainly small barriers that
are overcome, which is a fast process. At longer times the largest barrier on a ’percolation path’

will have to be overcome in order to extend the diffusion to infinity.
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