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ABSTRACT. It is shown that the image of the universal enveloping algebra of the
Lie algebra of an exponential Lie group under a representation of the group induced
from a character satisfying the Pukanszky condition is a dense algebra of differential
operators. This result is used to prove irreducibility of certain families of nonunitary
induced representations of exponential Lie groups.

1. Introductfon.

Let G denote an exponential Lie group with Lie algebra g and let U(g®) denote
the universal enveloping algebra of the complexification of g. In the case where G
is nilpotent a theorem due to A. A. Kirillov [Ki] (and to J. Dixmier [Di] in a generic
case) states: Let 7 be a strongly continuous and unitary irreducible representation
of G, then 7 may be realized on L?(R") such that its derived representation dr
maps U(g®) onto the complex algebra of all differential operators on R" with
polynomial coefficients. The present paper deals with the problem of describing
- this image of U(g®) when G is a general exponential Lie group. We provide an
extension of Kirillov’s result which implies that the image is dense in the algebra
of all differential operators on R" with C*-coefficients.

We establish the result in a context of not necessarily unitary representations
induced in a generalized sense from not necessarily unitary characters, with the
unitary representations arizing as particular cases. The aim of our study is to
extend irreducibility results known for the unitary representations to this wider
class of representations. This was achieved for the nilpotent groups in [JS1], {Ja)
and [JS2] by extensions of Kirillov’s theorem adapted to the generalized setup. Here
the results are inferred for exponential groups via our density theorem.

To be more specific, let a € (g*)C be a complex-valued and real-linear functional
on g and let & be a subalgebra of g with a([¢,8]) = {0}. Let K denote the analytic
subgroup of G corresponding to ¢ and let x = xa,t be the continuous character on
K determined by x(exp X) = e*(X)| X € t. Let finally A, ¢ denote the action of
G by left translations on the distribution space

D \(G) = {u € D(G) | u(gh) = x(k)'u(g), Vg€ GkeK)

1
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The representations we study, and call induced from y, are the restrictions of
Ao to any left invariant subspace of Dj, ¢(G) with a locally convex topology for
whlch certain natural continuity and density conditions are satisfied.

The umtary representatlons fit into this setup as follows. If a =i +- 6 where
B,6 € g* and 6|t = — tradg e, then the unitary representation 75 of G mduced
from the unitary character Xig,t is the restriction of A4 ¢ to the subspace of functions
in D, 4(G) satisfying an appropriate square-integrability condition. ,

It is well-known that mg s is irreducible if and only if ¢ satisfies the so-called
Pukanszky condition relative to 3, and that every continuous unitary irreducible
representation of G is unitarily equivalent to some ng s, cf. [Be], [Pu].

We prove that the Pukanszky condition also suffices for irreducibility when the
induction from x4 ¢ is in the extended sense, and then in addition for more general
complex-valued a than arizing in the unitary case.

Our results are obtained for a of the form a = ¢ + 6, where c € C\ {0}, B € g*
and 6 € (g*)C with é([g,g]) = {0}, and with & satisfying the Pukanszky condition
relative to 8. The induced representations are realized via coexponential bases =
of g modulo ¢ as representations on subspaces of D'(R"), n = dimg/¢. '

The main result of the paper is (Theorem 4.1): The basis = may be chosen
such that the image of U(g®) in the algebra of differential operators on R" in
coordinates zi,...,z, contains the multiplication by either z; or e*! (if n > 1).
If g is spanned by ¢ and the nilradical of g, then = may be chosen such that the
image of U(g®) equals the complex algebra of all differential operators on R™ with
polynomial coefficients.

From the main result follows by recursion on n that the image of U(g®) is dense
in a specific sense in the algebra of all differential operators on R™ with coefficients
of class C* (Theorem 4.2).

Combining this density theorem for the image of U(g€) with an irreducibility
criterion from [JS2] we extend irreducibility results proved for nilpotent groups in
[JS2] to exponential groups. We show that:

(1) The considered induced representations are all scalar irreducible (the only
continuous intertwining operators are the scalar multiples of the identity).

(2) The representations on the spaces which are invariant under the natural
multiplication on D, ,(G) by the functions in C*°(G/K) are even ultra-irreducible
(the image of the group under the representation spans a dense subspace for the
ultra-weak operator topology; cf. e.g. [JS2]).

That the unitary induced representation 7g s is irreducible when & satisfies the
Pukanszky condition relative to 3 is now a particular instance of (1).

Part (2) applies to the representations on local distribution spaces, e.g. D, ,(G)
~and C3%(G) 1= C=(G)ND, (G). These choices appear in particular natural when
the covariance condition u(gk) = x(k~?)u(g), Vg € G,k € K, is given its equivalent
differential formulation, Xu = a(X)u, VX € 8. This relates our induced represen-
tations to the so-called eigenspace representations introduced by S. Helgason in
[Hel]; cf. Chap. I1.4 of [He2]. The present work may thus be seen as solving for
exponential groups modified cases of the program set up in [Hel].
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I1. Notation, definitions and auxiliary results.

1.General. In the following G denotes a real exponential Lie group with Lie
algebra g, i.e. the exponential map exp: g — G is a diffeomorphism. The universal
enveloping algebra of the complexification g€ of g is denoted U(g€). The dual space
of g is denoted g* and (g*)€ will be the set of the complex-valued and real-linear
functionals on g. By Cg* we denote the subset of (g*)© consisting of the complex
multiples of the elements of g*.
- For each a € (g*)©, S(a, @) will denote the set of subalgebras ¢ of g subordinate
to a, i.e. for which ¢ C £, where £ := {X € g | a([X,]) = {0}}. For each a € g*,
P(a,g) will denote the set of subalgebras ¢ of g satisfying the Pukanszky condition
relative to a, i.e. for which & = ## for all § € g* with 8 = a on . If g is nilpotent,
then a subalgebra ¢ € P(a,g), if only € = ¢*; [Be; Chap.IV.3].

2.The induced representations. Given o € (g*)€ and ¢ € S(a,g), let K denote
the analytic subgroup of G corresponding to £ and let x = xa,t be the continuous
character on K defined by x(exp(X)) = e~*X) for all X € ¢.

The left regular representation A of G on the space D'(G) of distributions on G
then leaves invariant the subspace

D, +(G) = {u € D'(G) | R(kJu = x(k)'u, VkeK},

where R(k) denotes right translation by k. Left and right translations on D'(G)
are defined so as to extend the actions on function spaces embedded in D'(G) by
means of some chosen left Haar measure on G, i.e. [A(g)u](¢) = u(A(g™1)p) and
[R(9)u)(¢) = u(Ac(g™")R(g7)p) for all g € G, u € D'(G) and ¢ € D(G), where
A denotes the modular function on G.

Set C3%(G) = C*(G)N D, 4(G) and let D, p(G) denote the subspace of C3%(G)
consnstlng of the functions of compact support modulo K.

The spaces D, ,(G) and C3%(G) inherit their topologies as closed subspaces of
the strong dual D' (G) and the ‘Fréchet space C*°(G), respectively, while the space

Do ¢(G) is equipped with the inductive limit topology from the family of subspaces -
{¢ € C3%(G) | supp p € CK}, where C ranges over the compact subsets of G.

We adapt the notion of a normal space of distributions to the present setup: a
normal subspace of D, ,(G) is a locally convex space E for which Do po(G) € E C
D, +(G) with weakly continuous inclusion maps and with Dq ¢(G) dense in E.

We then define a representation induced. from x to be the restriction Ag of A
to a left invariant normal subspace E of D, ,(G), provided that Ag is a strongly
continuous representation of G ‘by weakly continuous endomorphisms of F. .

Examples are E = D, ,(G), C3%(G) and Dq t(G). The representations on these
spaces are even differentiable. The restrictions of A to D, ,(G) and C,(G) are
denoted by A, ¢ and A, e, respectively.

The unitary representation 7 ¢ induced from the unitary character x;g ¢, where
B € g*, ¢ € S(B,9), is then in our setup induced from x;g+s,¢, where 6 € g* fulfilling
8|, = 4 tradye accounts for the square root of the quotient between the modular
functions on K and G appearing in the unitary induction.
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3. Coezponential bases. To establish isomorphisms D, ,(G) ~ D'(R"), C5%(G) ~
C®(R"), Dat(G) ~ D(R™) etc. we use coexponential bases:

Let £ be a subalgebra of g. An ordered basis (X;,...,Xn) of g modulo ¢, i.e. of
a complementary subspace to £ in g, is called coezponential, cf. [Be], if the map

(z1,---y2Zn, X) ER" x E— exp(xle)...exp(m,,X,,)exp(X) €G

is a diffeomorphism of R™ x £ onto G.

An ordered basis (X;,...,Xn) of g modulo & is called normal, if for every : =
1,...,n, the subspace g; := spa.n{X,.H, .»Xn} + tis an ideal of g;—;.

A normal basis of g modulo £ is automatxcally coexponential, cf. Theorem 3.18.11
of [Va). If g is nilpotent, then by Engel’s theorem there is for every subalgebra £ of
¢ a normal basis of g modulo . The existence of coexponential bases for general
exponential g is established by (c) of Lemma 2.1 below.

A coexponential basis of g modulo & of the form in (c) of Lemma 2.1 below will
be called compatible with the nilpotent ideal n in question.

2.1 Lemma. Let ¢ denote a subalgebra of g.

(a) Let i be an ideal of g for which g =i+¢. If (X1,...,Xn) ts a coezponential
basis of i modulo iNE, then it is also a coezponential basis of g modulo ¢.

(b) Let | be a subalgebra of g with | D &. If (X1,...,Xm) is a coezponential (resp.
normal) basis of g modulo [ and (Xm41,...,Xn) i3 a coezponential (resp. normal)
basis of | modulo ¢, then (X1,...,Xn) is a coezponential (resp. normal) basis of g
modulo £.

(c) Let n denote a nilpotent ideal of g with [g,@] € n. Let (X,...,Xi) denote a
basis of g modulo n + & and let (Xi+1,...,Xn) denote ¢ normal basis of n modulo
nNe Then (X1,...,X,) is a coezponential basis of g modulo ¢.

Proof. (a): Since g/i is solvable, there is a normal basis (¥7,...,Y}) of g modulo
i, cf. Cor. 3.7.5 of [Va]. Since g = i+ ¢, we can choose the Y;,...,Y; in &, and
the basis will be normal of ¢ modulo ¢Ni. Let I, K and K, denote the analytic
subgroups of G corresponding to i, ¢ and &, := N1, respectively. Then we have the
diffeomorphisms:

(z1,---,Zn,a) ER" x Ko +— exp(z1X1)...exp(znXn)a €1
(a,y1,---,yp) € Ko xRP  +—  aexp(ypYy)...exp(y:1Y1) € K
(b,y1,...,yp) EI xR? —  bexp(y,Yp)...exp(yiY1) € G

The map (z;,.-.,Zn,k) € R® X K — exp(z1X))...exp(znXs)k € G is thus com-
posed of diffeomorphisms R" x K — R" x Ko x R?» = I x R? — G and is hence
itself a diffeomorphism, so (X3,...,X,) is a coexponential basis of g modulo ¢.

(b): Straightforward.

(c): Since [g,8) C n+ ¢, the basis X3,...,X} of g modulo n + £ is normal and
hence coexponential. Since n is an ideal of n+¢&, the normal and hence coexponential
basis Xi+1,...,Xn of n modulo nNe is by (a) a coexponential basis of n+ ¢ modulo
¢. The conclusion now follows by (b).
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4.Realizations. Let a € (g*)€ and ¢ € S(a,g), and let = := (X;,...,X,) be a
coexponential basis of g modulo ¢&. Then the map S: C*(G) — C*(R") given by

(S£)z1,--:,%a) := flexp(z1X1) ... exp(2aXn)), f € CT(G),

restricts to a topological vector space isomorphism So = of C3%(G) onto C®(R"), -
realizing Ao ¢ as a representation A = Ase= of G on C*°(R") of the form

[A(g)f](z) = ea("(ﬂ-

Here k: G x R® — ¢t and (g,z) € G x R"® — g-z € R" are the C*°-maps
determined by ¢(z,0) = (¢ - z,x(g,z)) for all g € G, z € R", where G is identified
with R™ x ¢ by means of the coexponential basis =.

The map S,z extends and restricts to topological vector space isomorphisms
of D, 4(G) and Dy 2(G) onto D'(R") and D(R"), respectively. The formula for
Aotz extends by continuity to the realization Aoz of Agp on D'(R™).

If = is chosen compatible with a nilpotent ideal of g containing [g, g], then the
Lebesgue measure on R" =~ G/K is relatively invariant under the action of G: Let
b0 € g* be defined by 6(Z) = {0} and 6|, = trady/e and set xo(exp X) = eo(X),
X € g. Then xo is a character on G and it may be shown that d(g - z) = x0(9) dz,
g € G. The unitary representation 7g, § € g*, is realized for such = as the
restriction of Aqp = to L*(R"™), where o = i3 + -%60. '

We denote by DO(R") the complex algebra consisting of all the differential
operators on R" with C*-coefficients, and by DP(R") the subalgebra consisting
of the operators with polynomial coefficients.

The derived image of U(g®) under the induced representations is determined by
the representations on the spaces C5%(G) =~ C*°(R"). If the basis = is compatible
with a nilpotent ideal n of g with [g,g] C n, then

1

f(g~-z), g€G,feC®R"),zeR"

(2.1) d)a ez (U(g%)) € DO(R*) ® DP(R"*) C DO(R"),

where k = dimg/(n+ ¢) and n = dimg/¢.
The remaining two lemmas establish transformation properties of A4 = under
a change in E or the addition of a character on g to a.

2.2 Lemma. Let « € (g*)C and & € S(a,g). Let E = (X1,...,Xn) and =’ =
(X3,...,X!) denote coezponential bases of g modulo & and set A = A= and
A = Agpzr. Then the following hold:

(1) The isomorphism & = Sapz 0 S}z : C°(R™) — C(R") which inter-

twines \' and X 1s of the form T
(8f)(z) = e**f(E(z)),  feCPR"),z €R",

where € = (£1,...,€n): R® — R" s the diffeomorpkism and p: R™ — ¢ is the
C*>-map determined by

(2.2) exp(z1X1)...exp(znXy) = exp(£1(z)X]). .. exp(&n(z) X, ) exp(p(z))
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for allz = (z,,...,2,) € R™.

(2) If for some D € U(g®), dN'(D) equals the multiplication by a function ¢ €
C>®(R™), then dA\(D) equals the multiplication by the function Y o £ € C*°(R").
~ (3) Put g :=span{Xa,...,X,}+¢ and suppose that g; = span{X},..., X }+¢,
that g, is an ideal of g and that X; — X! € g,. If for some D € U(g®), d)'(D)
equals the multiplication by e function ¢(z,), ¥ € C®(R), then dA(D) equals the
multiplication by the same function y(z;).

(4) Let n be a nilpotent ideal of g with [g,9] C n and suppose that g =n+ ¢ and
that the coezponential bases = and =' of g modulo € are normal bases of n modulo

nNeE Then d\(U(gC)) equals DP(R™) if and only if dX'(U(gC)) equals DP(R™).
Proof. (1): For every f € C*°(R") and z = (z;,...,Zn) € R" we have

(@f)(z) = (S5 .,=,f)'(exp<nx1) ..exp(znXn))
= (S;4= F)(exp(é1(z)X7). .. exp(én(z) X}, ))eo (=)
= 2 P@ f(£(z),...,Eal2)).

(2): Let f € C(R"). Then dA\(D)®f = ®dN'(D)f = ®(¢f) = e*°P((yf) 0 §)
= (Yo {)e*P(fof) = (Yo £)2f.

(3): Put G,,:= exp(g2).- Applying the quotient homomorphism 7 : G = G/G; to
(2.2) we get that exp(z1dn(X;)) = exp(& (z)dn(X])) for all z = (z4,...,zn) € R™.
Hence &;(z) = z,, since dn(X;) = dn(X]) # 0 and since the quotient group G/G;
is exponential. The conclusion now follows from (2).

(4): Since N := exp(n) is a subgroup of G, p maps R" into € N n. Since n
is nilpotent, the maps £, £7! and p are all polynomial. Hence the isomorphism
E +— ®0E0®~! of DO(R"™) onto DO(R"™) which maps d\'(U(g€)) onto dA(U(g®))
also maps DP(R") onto DP(R"). This proves (4).

The representation A, ¢ is essentially unchanged when a character on g is added
to a:

2.3 Lemma. Let o € (g*)€ and & € S(a,g). Let § € (g*)C be a character
on g, i.e. 6([g,0]) = {0}, and let xo denote the corresponding character on G, i.e.
xo(exp(X)) = e%X) for all X € g. Then & € S(a+ 6,9) and the followmg hold:

(1) There is by

(2.3) f€CHFsp(G) = xg' f € CIH(G)

defined a topological vector space isomorphism of C3%;,(G) onto CZ%(G) inter-
twining the representations Aotse and x5 Ao of G.
(2) If = is a coezponential basis of g modulo € with the property §(Z) = {0},
then
dats,=z(X) =dAapz(X) - 6(X) for all X € g.
(3) If = is a coezponential basis of g modulo ¢ compatible with n = [g,g], and if
8' € (g*)C is the extension of 6|, given by §'(Z) = {0}, then

Aatsp=(X)=drop=(X)-6(X) forall X €g.
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Proof. (1): Set x(exp(X)) :=e*X) for X € 8. Let f € Co,+5 +(G), 9,9' € G and

k € exp(t). Then (x5 )k = x5 (SR HOx(Ixolk) = (x5 N)o)x(k), which
proves that xg " f € CX(G). Also x5'(9')f(97"9") = xa ' (9)(x0 ' f)(97*¢'), which
proves that the map (2.3) intertwines Ao45¢ and x5 Ao

(2): If §(Z) = {0}, then the equivalence between Ag+se= and x5 Aotz given
by (2.3) is the identity map.

(3): Since &' is a character on g and dAa44,,z = dAa4s 2,2, (3) follows from (2).

III. Lemmas on exponential Lie algebras.

Here we collect the results we need about the Lie algebra of a real exponential
Lie group, i.e. a real solvable Lie algebra g for which ad X, X € g, has no non-zero
purely imaginary eigenvalues; cf. 1.2 of [Be]. The center of g is denoted 3.

3.1 Lemma. Assume that g # 3 and let a be minimal among the non-central
ideals of g. Puti:= {X € g|[X,a] Canj}. Then:

(i) a is abelian and 1 < dim(a/anj) < 2.

(i1) i 1s an 1deal of g, dim(g/i) <1 and for each X € g\ i, ad X acts zrreduczbly
on a/anj. In particular i contains the nilradical of g.

(iii) If i= g, then dim(a/ani) = 1.

Proof. (i), first part of (ii): Follows by Lie’s theorem, cf. Lemme 1.1 and 1.2 of
Chap. VI of [Be]. To prove the last statement in (ii) let X be in the nilradical of g.
Then ad X acts nilpotently on a/aNj. Hence ad X acts reducibly on a/aNj unless
dim(a/aN3) =1 in which case it acts as zero. So X ¢ g'\ i and therefore X € i.

(iii): H i = g, then any subspace of a containing a N 3 properly is a non-central
ideal of g. The minimality of a therefore implies that dim(a/an3) = 1.

3.2 Lemma. Assume thatg # 3 and let a and i be as in Lemma 3.1. Leta € g*
and assume that ker a does not contain any non-zero sdeal of g. Then:

(i) dim3 <1 and 1 £ dim(g/a%) < dim(a/anj) < 2.

(ii)i=a* < an3= {0} = dim(g/a®) =1 & dima < 2.

(111) If i # a®, then the bilinear form a([-,:]) on i x a factorizes to a non-
degenerate form on i/iNa® xa/aN3. In particular then dim(g/a®) = dim(i/iNa®) =
dim(a/a N 3).

(iv) a® is an ideal of g if and only if [a®,a] = {0}, n which case dim(g/a®) = 1.

(v) If g1 is a subalgebra of g with g, D a%, then either g; = g or g; = a“,

Proof. (i): By the assumption on ker o we have 3 Nkera = {0}, so dim3 < 1.
Since a is a non-central ideal of g, [g,a] is a non-zero ideal of g, so [g,a] € ker a,
i.e. g # a® Hence dim(g/a®) > 1. The bilinear form a([-,:]) on g x a factorizes
to a non-degerate form on g/a® x a/an g®. Hence dim(g/a®) = dim(a/aNg®) <
dim(a/a N3) < 2, where the first inequality is due to 3 C g°.

(ii): Assume i = a®. Then g # i, so that [g,a] Z 3. Thus [g,a] is a non-central
ideal of g contained in a, whence [g,a] = a by the minimality property of a. Since
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i = a%, we also have [i,a] C 3 Nkera = {0}. So given X € g\ i we have that
[X,a] = [RX +i,a] = [g,a] = a, whence dima = dim[X,a] < dim(a/aN3). This
implies that aNn 3 = {0} and dima < 2.

Assume aN 3 = {0}. Then [i,a] = {0} and thus i C a®. Since dim(g/i) <1 <
dim(g/a®), this implies that i = a® and dim(g/a®) = 1.

Assume dim(g/a®) # 1. Then, as just proved, a N3 # {0}. Since dim3 < 1, it
follows that dim(a N 3) = 1. Also by (i), 1 < dim(g/a®) = dim(a/aNj3) = 2. Hence
dima =3 > 2. ,

To prove the remaining implication of (ii): that dim(g/a®) = 1 impliesdima < 2,
we use (iii), which is proved below. Assume dima > 2. Then by (i), dim(a/an3) = 2
and dim(a N 3) = 1. Since i = a® implies a N3 = {0}, we also have i # a*. Hence
by (iii), dim(g/a®) = dim(a/aN3) =2 # 1.

(iii): The bilinear form a(][-,-]) on i x a factorizes to a non-degenerate form on
i/ina® x a/ao, where ao := aNi®. Since 3 Nkera = {0}, we have aNi*={Y € a |
[Y,i] = {0}}. Hence ag = aNi* is an ideal of g. SinceaN C ap C a, the minimality
of a therefore implies that either ag = aNjor ap = a. If ap = a, then a C i* and
thus i € a® so that i = a® as seen above. Assuming i # a®, we therefore have
ao = aNj. This proves the first part of (iii). Hence dim(i/iNa®) = dim(a/anj) >
dim(g/a®) > dim(i/i N a®), which finishes the proof of (iii).

(iv): If a* is an ideal of g, then [a®, a] is an ideal of g contained in ker a, whence
[a®,a] = {0}. Conversely, assume [a®,a] = {0}. Then a® equals the centralizer of
a in g which is an ideal of g. Moreover, a® C i. If a® = i, then dim(g/a®) =1
by (ii). If a® # i, then we have by (iii) that g = i + a® and so g = i. In this case
dim(g/a®) = dim(a/aN3) = 1 by Lemma 3.1 (iii).

(v): The claim in (v) is trivial if dim(g/a®) = 1, so assume dim(g/a%) = 2.
Then by (iv), [a®,a] # {0} and thus a* Z i. Hence there exists V € a* \iC g \ i.
Moreover a® # i, so (iii) applies. Since [V,[i,a]] C [V,anj3] = {0} C kera, the
action of ad V on i/i N a® equals minus the transpose w.r.t. a([-, ]) of the action
of adV on a/aNj. Since the latter action is irreducible by Lemma 3.1(ii), so is
the former. Hence, since (g; Ni)/(i N a®) is an ad V-invariant subspace of i/iN a®
because V € g; and g, is a subalgebra of g, we have that either gy Ni=1iNa® or
gNi=1i IfgNi=iNa® theng; = RV+(@Ni)=RV+(ina®) =a" If
g1 Ni =i, then g; D i+ a®, implying, since g = i+ a® by (iii), that g; = g.

3.3 Lemma. Let a € g* and ¢ € S(a,g). Then t € P(a,g) if and only if for
every X € g\ ¢ there ezists V € & for which [X,V] € ¢\ kera.

Proof. Let X € g\ ¢ and suppose [X,8] N ¢ C kera. Then there exists § € g*
such that S =aontand §=0o0n [X t). Hence X € ¢#\ ¢ and thus ¢ # ¢#, proving
that ¢ ¢ P(a,g).

Conversely, assume that for all X € g\ ¢ there exists V € & such that [X,V] €
¢\ kera, and let B € g* with § = a on t. As ¢\ kerf = £\ kera, it follows that
(g\8)NtF =0,ie ¥ CE Thus & = ¢, since ¢ C t#, as B([¢,8]) = a([¢,?]) = {0}.
This proves that ¢ € P(a,g).
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3.4 Lemma. Let a € g* and £ € P(a,g), and let a be an ideal of g.

(i) If a 1s. minimal among the non-zero ideals of g, then a C &.
(i1) If a is abelian, then ¥ :=ENa* +a € P(a,g).

Proof. (i): By minimality of a, either an3 = aor ang = {0}. If [¢,a] = {0},
then a C #* = ¢. So assume [€,a] # {0}. Then the case aNj = {0} holds. It follows
by Lemma 3.1 that ad ¢ acts irreducibly on a. Hence the ad t-invariant subspace
a Nt of a equals either {0} or a. The case aN & = {0} is ruled out by Lemma 3.3.
Henceant=a,ie. aCt.

(ii): Since a is an ideal of g, a® and ¢’ are subalgebras of g. Since a is abelian,
a C a® Let v € g* with v = a on ¢'. We shall then prove that (¢')Y = ¥'.

Since v = a on €N a®, there exists B € g* suchthat S =aonfand f=vyon
a®. It follows that & = f = v on a. Thus a® = a = a7, since a is an ideal of g.
Also ¢ = ¢, since ¢ € P(a,g) and 8 = a on ¢. Hence

(#)'=(¢Na®+a)’ =(ENa®)"Na” = (ENa*)"Na” = (ENa®)’ Na®
=(tna?)P na® = na?)’ na® = ((t +a)f)’ Na®
=(R+a+g’)Na® =k +a)Na*=(Na*)+a=¢.

3.5 Lemma. Let a € g* and & € P(a,g). Assume g # 3 and let a be minimal
among the non-central ideals of g. Setby =tNa® endi={X € g|[X,a] Canjs}.
Then: '

(i) dim(t/€) = dim(a/aN¥).

(i) [eNi,ENi] C & Ni.

Gii) If 2 € i, then [¢,8] + & = &.

(iv) IfeZiand 8 £, thenaNt=anj.

(v) The bilinear form a([-,-]) on €Ni x a factorizes to a non-degenerate form on
tNi/t Nixa/ant. In particular dim(ENi/¢ N1i) = dim(a/a N &) = dim(E/8).

Proof. (1): Since ¢ = £, the bilinear form a([-,]) on ¢ x a factorizes to a non-
degenerate form on ¢/¢ x a/anét. '

(ii): Since [[i,i],a] = {0}, as [i,a] C 3, we have [i,i] C a®. Hence [ENi,tNi] C
Ena®Ni==&nNi. ;

(iv): We have 3 C ¢* = ¢. Assume that ¢ # & and anNt # aN3. The ad t-invariant
subspace aN&/aNj of a/aNj is then by (i) non-trivial. So by Lemma 3.1 ad ¢ acts
trivially on a/a N 3, whence & C i. ' _

(v): The proof of (i) covers the case in which ¢ C i and makes the claim trivial
if ¢ = &, so we may assume € # € and ¢ € i. Then by (iv), an¢ = anj. Clearly
(8Ni)Na® = & Ni, so it remains to be proven that aN(8Ni)* = ane. Let A € a\&.
Then by Lemma 3.3 there exists V € € such that [A,V] € ¢\ kera. In particular
[A,V]€ant=any, so ad V does not act irreducibly on a/aNn€ = a/anj. Hence
V € int and thus A ¢ (¢ Ni)*. This proves that an (¢ Ni)* C aN ¢, whence
an(¢ni)*=ant. ' .
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(i1i): Assume & Z i and & # 8. Then by (iv), ant=an 3. By (v), dim(t/&) =
dim(tNi/e Ni),so . =8&Ni+ €. Hence also &y € i. Let V € & \i. Then adV
acts irreducibly on a/aN€ = a/an . Since [V,[tNi,a]] C [V,3] = {0} C kera,
the action of ad V on €N/ Ni (defined since V € &) equals minus the transpose
w.r.t. a(],-]) of the action of adV on a/aNt. Hence adV also acts irreducibly
on ¢Ni/t Ni. In particular [V,ENi]+ & Ni=ENi, soast=ENi+¢t, we have
[V,€Ni] + &, = &. This proves (iii).

IV. The image of U(g®) and irreducibility of the group representations.

This section contains the results of the paper. The first theorem is the main one.
It gives a partial description of the derived image of the enveloping algebra U(g€)
under the induced representations Ay ¢ of G realized as representations on D'(R")
via coexponential bases. It is assumed that & satisfies a Pukanszky condition relative
to a. The result implies irreducibility in various senses of the associated induced
representations of G realized as representations on subspaces of D'(R").

To determine the image of U(g®) it suffices to consider the restriction Aq ¢ of
A, to the space C35%(G) of C*-functions in D, ,(G).

4.1 Theorem. Let G denote a real exponential Lie group with Lie algebra g. Let
a € (9*)C be of the form a = cB+ 6, where c € C\ {0}, B € g* and 6([g,g]) = {0},
and let ¢ € P(B,g8). Let n denote a nilpotent ideal of g with [g,8] C n and let
(Xk+1,---,Xn) be a normal basis of n modulo nN ¢, where k = dimg/(n + &) and
n =dimg/¢t.

(1) If k=0, set = := (X1,...,Xn). Then the image dra,=(U(gC)) equals the
algebra DP(R™) of all differential operators on R™ with polynomial coeffictents.

(2) If kK > 0, there ezists a basis (Xi,...,Xk) of g modulo n + & such that
if Z = (X1,..., Xk, Xk+1,...,Xn), then the image dAy 2 =(U(gC)) contains the
multiplication by either the function z; or the function e*!.

Remarks. (i) i G is nilpotent, we may choose n = g, and then case (1) applies.
Moreover, with ¢ = i and § = 0 the restriction of Aq ez to L2(R") is a realization
of the unitary representation 7g¢. Hence Theorem 4.1 is an extension of Kirillov’s
result mentioned in the introduction, [Ki;Theorem 7.1] (modulo [Ki;Theorem 5.2)).
Actually it extends the more explicit version [CGP;Theorem-3.1], which says that
dmge=(U(g€)) = DP(R") for each & € P(B,g) and each normal basis Z. (In [Ki]
this is concluded, for given f, merely for some ¢ and some =).

(1) Theorem 4.1 is for nilpotent G not as general as [Ja;Theorem 3.2], which
1s a version of Kirillov’s theorem for arbitrary complex-valued a, but it contains
[JS1;Theorem 4.1] where a is proportional to a real-valued functional.

The proof of Theorem 4.1 is given in sectionV below. Here we derive some
consequences of it. First we show that the image of U(g®) is dense in the algebra
DO(R"™) of all differential operators on R” with C'*-coeflicients. The density will
in particular be with respect to pointwise convergence of operators on C*(R").

For our application, however, we need to consider convergence in a more controlled
manner: For each subspace A of DO(R"), A will denote the subspace of DO(R")
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spanned by the operators MyD, where D € A and M, is multiplication by a
function ¥ € C®(R"™) which is the limit in C°(R") of a sequence {#i}&, such

that My, € A and My, D € Afor all i € N. For each m € N, ZA"™ will denote the
result of applying this “closure” operation m times to A.

4.2 Theorem. Let G, g, a, &, n and k, n be as in Theorem 4.1. Let = denote
a coezponential basis of g modulo €. Then

(k+1)

Dhae=(U(e c)) = DO(R™).

Proof. Put A = Ay z. The conclusion of the theorem is by Lemma 2.2 easily
seen to be independent of the choice of coexponential basis =. If k = 0, we have by
(1) of Theorem 4.1 that dA\(U(g€)) equals DP(R") for a suitable choice of =. In
this case the conclusion holds because the polynomials are dense in C*(R").

© Suppose k > 0 and let the coexponential basis = = (X;,...,X,) of g modulo
€ be chosen in accordance with (2) of Theorem 4.1. Since both z and e* generate
‘a dense subalgebra of C>°(R), it follows that the “closure” dA(U(g€)) contains all
the operators of the form My D, where 1 € C®(R") is a function of z; alone and
where D € dA(U(g€)). Note also that 8/8z; = —dA(X1) € dA(U(g®)).

Set go = span{Xz,...,Xn}+& a0 = al; , Zo = (X2,...,Xn) and Ag = Aag 2,5,
Then Ag is a representatlon of the subgroup Gy = exp(go) of G Since gy is an ideal
of g we have for each D € U(gC) that

[AX(D)y)(z1, &) = [dho(e™*2X* D)p(z1,))(£)

for all p € C*(R"), z; € R and % = (z2,...,2,) € R"7. For every D € U(goc)
there exist finitely many v, € C*°(R) and D € U(gL) such that :

efr0dXap — Z Yy(21)Dy, z; €R,
] .

and so

1r ® dAo(D) = ) _ ¥,(z1)d\(D5) € dA(U(aC)).
ki
From this it readily follows that
DO(R.,) ® dho(U(gy")) € dA(U(gC)).

If k —1 > 0 we may repeat the argument with g replaced by go. Carrying out the
argument k times in all we conclude that

DO(R.,)®--- ® DO(R,,) ® DP(R"*) C AU(GC))"" C DO(R™).

From this the conclusion of the theorem follows.
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As an appiication of this density theorem we extend to exponential Lie groups
the irreducibility result proved for nilpotent Lie groups in [JS2; Theorem VI.1]. The
class of functionals a covered here in the exponential case, however, is somewhat

smaller than.in the nilpotent case, where arbitrary complex-valued a is handled.

Depending on the choice of representation space we establish irreducibility in the
weak sense of scalar irreducibility, or the strong sense of ultra-irreducibility, cf. the
definitions in the introduction.

Ultra-irreducibility implies topological complete irreducibility, and hence again
topological irreducibility and operator irreducibility (the latter meaning that the
only densely defined and closed intertwining operators are the constant multiples
of the identity). For the unitary representations all the considered notions of irre-
ducibility coincide.

For the exponential groups of dimension < 3 irreducibility results for the repre-
sentations on the spaces CZ%(G) and D), ,(G) are found in [St; Sec. II].

4.3 Corollary. Let G denote a real ezponential Lie group with Lie algebra g. Lei
a € (g*)C be of the form a = cB+ 6, where c € C\ {0}, B € g* and §([g,g]) = {0},
and let € € P(B3,8). Then the following hold.

(1) Any representation Ag induced from xq . on a normal subspace E of D, (G)
18 scalar irreducible.

(2) Let furthermore the topology of E be semi-complete and let E be stable under
the natural multiplications by the functions from C*°(G/K) =~ C5y(G) on D, (G)
with the corresponding bilinear map (Y, u) — Yu of C*®°(G/K) x E into E being
separately continuous. Then the representation Ag ts ultra-irreducible.

Examples. Part (1) in particular entails the well-known irreducibility of the
unitary representation mgp induced from x;g, with ¢ € P(3,8). Indeed, if ¢ = i
and 6|, = 3 tradg, then in a suitable realization D, ,(G) ~ D'(R"), 74, is the
restriction of Aq e to L2(R™), cf. sec. I1.4.

Part (2) applies to the local spaces of distributions in D, ,(G) ~ D'(R"). The
representation A, ¢ realized on D'(R") restricts to ultra-irreducible representations
on e.g. the spaces Cf(R") and C"(R") for 0 < r £ 00, D'(R") and £'(R"), and
L} (R") and LE(R") for 1 < p < oo.

Proof of Corollary. Choose a realization A= Aoz of Ay corresponding to a
coexponential basis = of g modulo ¢ and identify E with its associated image in
D'(R"). Then D(R") C E C D'(R") with weakly continuous inclusions.

(1): Let A: E — E be a continuous linear operator commuting with A. It must
be proved that A is a scalar multiple of the identity on E. The restriction Ay of A to
D(R™) is a continuous operator into D'(R"). Since D(R") is dense in E, it suffices
to prove that A is a scalar multiple of the inclusion map i: D(R") — D'(R"). If
Ao commutes with every operator in a subspace A of DO(R"), then 4, commutes
with every operator in A. Since Ay intertwines the actions of K, Theorem 4.2
therefore implies that Ay commutes with every operator in DO(R"). Hence Ay is
a scalar multiple of the inclusion map.
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(2): Let now the further assumptions in (2) be in force. Then we may form the
integrated representation Ag: D(G) — B(E) corresponding to Ag: G — S(E).
Here for any given topological vector spaces E and F we let L(E,F), S(E,F)
and B(E, F) denote the spaces consisting of those linear operators from E into
F which are continuous, weakly continuous and maps bounded subsets of E into
bounded subsets of F', respectively. For each ¢ € D(G) we then have K(tp) €
L(D'(R"), C=(R")) with A(p)|p = AE(p) € B(E).

The representation Ag is ultra-irreducible, according to Theorem IV.2 of [JS2],
if the following two conditions hold:

(i) The closure of L(D'(R"),D(R"))|g in S(E) w.r.t. the ultraweak topology
contains the identity operator Ig on E.

(ii) The closure F of A(D(G))|z = Ap(D(G)) in B(E) w.r.t. the ultraweak
topology contains the operators MyA(y)] g € L(D'(R™),D(R"))|g for all ¢ € -
D(R"™) and ¢ € D(G).

Condition (i) is satisfied as an immediate consequence of the assumptions on
E, cf. the proof of Corollary IV.3 of [JS2]. Condition (ii) is verified by means of
Theorem 4.2 above: Fix ¢ € D(G). Then for each D € U(g€) we have

dA(D)Ag(p) = dA(D)A(¢) | = A(dA(D)p) |5 € A(D(G)) |5 C F. -+

By Theorem 4.2 it thus suffices to prove the following: If A is a subspace of DO(R")
such that AAp(p) € F for all A € A, then BAp(p) € F for all B € 4. % :

Now, such ‘B is a sum of operators of the form M, A, where A € A and where_
¥ € C°(R") is a limit in C°(R") of a sequence {9;}2, such that My, A €.4 for
all 7 € N. We shall prove that MyAAg(y) € F.

Since My, A € A, we have My, AR E(y) € F for all : € N, so it suffices to;prove:
that M.p'-AKE(Lp) — M¢AKE(<,9) ultraweakly in B(E) as ¢ — oo. But My, + My~
ultraweakly in L(E) as i — oo (cf. Lemma IL.2 in [JS2]), AAE(p) beloiigs to:
F C B(E) and the map C — CD is for each D € B(E) continuous from L(E) into
B(FE) w.r.t. the ultraweak topologles Hence this is indeed the case.

V. Proof of Theorem 4.1.

For a given G it follows by (3) and (4) of Lemma 2.2 that if the conclusion of the
theorem holds for one choice of normal basis of n modulo nN¢, then it holds for any
other. In particular, since such a basis may be chosen compatible with (g, g], we
have by Lemma 2.3 (3) that the conclusion of the theorem holds for any cha.racter
6, if it holds for é = 0. Hence we may assume é = 0.

The proof is by induction on dim G. If dim G = 1, then g = t. In this case Ay ¢ is
one-dimensional and the conclusion of (1) thus trivially satisfied. Therefore assume
that dim G > 2 and that the theorem holds for all the groups of dimension < dim G.

If ker @ contains a non-zero ideal i of g, then the result follows by an application
of the induction hypothesis to the quotient group G/ exp(i).

Therefore, from now on we assume that ker « does not contain any non-zero
ideal of g. Since a is of the form a = ¢f3, where c € C\ {0} and ﬂ € g*, this implies.
that the center 3 of g is of dim3 < 1.
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Let a denote a minimal non-central ideal of g and set i = {X € g | [X,a] C anj}.

Assume first that a N3 = {0}. Then a is minimal among the non-zero ideals of
g, so by Lemma 3.4(i), a C ¢ = & C a®. By (ii) and (iv) of Lemma 3.2 we get
i = a%, dim(g/a®*) = 1 and [a,a%] = {0}. By Lemma 3.1, n C i, so also n C a°.
Hence n + & C a%, in particular k£ > 0.

Moreover, dima = 1 or 2. In any case there exist Y;,Y; € a and X; € g\ a®
such that a = span{Y;,Y2} and [X},Y; 2iY5] = (-1 £ib)(Y1 £iY;) for some b € R
(where b=0if dima =1 and b # 0 if dima = 2).

Let (X3,...,Xk) denote a basis of a® modulo n+ ¢. Then (X, X3,...,X)is a
basis of g modulo n + . Let (Xi41,...,Xn) be a normal basis of n modulonn ¢
and set = = (X;,...,Xn). Then, since Y3,Y> € ¢ are central in a®, we find that

dhapz(Y1 £1Y2) = —a(e™ ad X;(Y1 +iY;)) = —a(Y; + iyz)e—(—§:hib):1.

Here a(Y; £ iY3) # 0, because span{Y7,Y2} = a € kera and o = ¢f € Cg®*. Since
e?t = e(4+®)z1(4=)z1this finishes the proof in the case anz = {0}.

Assume from now on that an 3 # {0}. Then dim3 =1,sothatani=3=RZ
with a(Z) # 0.

The proof is now divided according to whether (I): € C a® or (II): ¢ € a.

(I) Assume ¢ C a®. Then a C ¢ = £. Since [g,9] € n, n+ a® is an ideal of g, so
by Lemma 3.2 (v) either (a): n € a® or (b): g =n+a”.

(a) Assume n C a®. Then in particular £ > 0. Moreover, then a® is an ideal
of g, so by Lemma 3.2 (iv), dim(g/a®) = 1. Hence dima = 2, say a = span{Y, Z},
where a(Y') = 0. By Lemma 3.2(ii), i # a®, so by Lemma 3.2 (iii), g = i + a°.

Let X; € i\ a® be normalized so that [X;,Y] = Z. Let (X2,...,X:) denote a
basis of a® modulo n+ &. Then (X;,X2,...,X}) is a basis of g modulo n + &. Let
(Xk+1,.-.,Xn) denote a normal basis of g modulo nN¢ and set = = (X;,...,Xn).
Since [X3,Y]=Z€3Ctand Y € ankera C ¢, where aNkera is an ideal of a®
(in the present case in fact [a,a%] = {0}), we find that

(5.1) o z(Y) = a(e™™ 24 Xn | emn12d Xy (_V)) = o(2Z)z,,

which concludes the proof in case (I)(a).

(b) Next, assume g = n + a®. We shall here apply the induction hypothesis to
the subgroup exp(a®) of G. Set np = nN a®. Then ny is a nilpotent ideal of a®
containing [a®,a®]. Also [n,n] C a® N n = ny since [n,a] C [i,a] C 3.

Set p = dim(g/a®) = dim(n/ng). By Lemma 3.2, p=1orp=2.

Since g = a® + n, a basis of a* modulo ny + ¢ is also a basis of g modulo n + &.
Let (Xi,...,Xx) be such a basis. .

We have dima = p+1, so a = span{Z,Y;,...,Y;}, where Y;,...,Y} is a basis of
aNkera. Since g = n+a® and n C i, it follows by (iii) of Lemma 3.2 that the real
bilinear form (-,-) = a(Z) ?a([-,*]) on n x a factorizes to a non-degenerate form
on n/ng x a/RZ. Also [X,Y]=(X,Y)Z forall X €nandY € a.

Hence there exists a basis (Xk41,- - . , Xs+p) of n modulo ng, normal since [n,n] C
no, such that [Xg4i,Y;] = 6i;Z for all 4,5 = 1,...,p. Since g = n+ a® this is by
Lemma 2.1(c) also a coexponential basis of g modulo a®.
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Finally, let (Xk4p+1,.--,Xn) denote a normal basis of g modulo ng N = nN§,
so that (Xk+1,...,Xn) is a normal basis of n modulonN¢.

Then = := (X}i,...,X,) is a coexponential basis of g modulo € compatible with
n and Zg := (X1,..., Xk, Xk+p+1,- - -, Xn) is a coexponential basis of a* modulo &
compatible with ng. Also Z' := (X41,...,Xk+p) ® Zo is a coexponential basis of
@ modulo & since (Xg41,-..,Xk+p) is a coexponential basis of g modulo a* and =,

is a coexponential basis of a® modulo ¢. :

’ For notational convenience put (Wi,...,Wy):=E'". Set A = Agpz, A = Aap=
" and Ao = Aq,,t,=,, Where ag = al,.. Since span{Y},...,Y;} = aNkera is an ideal
of a®, the relations [W;,Y;] = [Xk+i, Y] = 6i;Z, 4,5 = 1,...,p, then imply

(5.2) A(Y;) = (Z)wi, i=1,...,p.

Moreover, we claim that

0

0w1 ’

(5.3) ...,rgpmm ® dho(U((a°)°)) € dX'(U(EO)).

Indeed, let ¢ € C3%(G) and put g(wy,...,wn) = p(exp(w1W). .. exp(waWy)).
ThenforeveryVGgandiE{1,..,,p+1} we have '

[dA(V)‘;](wla 1wn) »
. p(exp(—tV)exp(wiW1).. . exp(w.Wy))

dt t=
= EZ — ‘P(exp(wl %%} ) “e exp(w;_l Wi_l)exp(e-wi—.l ad Wi, e e~ W1 ad Wl-(—tV))
-exp(w;W;). .. exp(waWhy)),
so that

[dr(e¥r 2 W || evim1ad Wieay\Bl(wy, ..., wa)
d

=3 o(exp(wy Wi). .. exp(wi—1 Wi—1)exp(—tV)exp(w;W;) ... exp(waW,)).

t=0

In particular for i € {1,...,p} and V = W; we get

- - w;‘l EU_:‘:HI_I mn , ni-1 . =_i
..Z=o Zl::o nl!...ni_l!d,\((adwl) o (2d Wic )M W) = oo’

whilefori=p+1and V € a,

n
wP

ST B P g ((ad Wh)™ ... (ad W)™ V) = 1gs ® dAo(V).
n,! ny! p

Since W,...,W, € n, these series are finite, and since wy,...,w, € dA(U(g®)),
their sums belong to dA(U(g®)). This proves (5.3).
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(1) Assume k = 0. Then a® = ng +¢. Hence by the induction hypothesis applied
to exp(a®) :

(54)  Do(U((®)C)) = DP(R™P).

Also £ = =' and A = X, so by (5.2)-(5.4) it follows that DP(R") C dA(U(g®)),
whence (cf. (2.1))
dA(U(g®)) = DP(R™)

(2) Assume k > 0. Then also dim(a®/(ng + ¢)) = k > 0. Hence by the induction
hypothesis applied to exp(a®), the basis (Xi,...,Xi) = (Wp+t1,..., Wpr) of a®
modulo ng + £ may be chosen such that d\o(U((a®)C)) contains the multiplication
by (Wp41,---»Wn) — Yo(wp41), where either 1o(z) = z or Yo(z) = €* forall z € R.

Thus by (5.3) there exists D € U(g®) such that

d\' (D) = ¢/,

where ¥'(w,...,wn) = Yo(wp+1) for all (ws,...,wn) € R™
By (1) and (2) of Lemma 2.2 it then follows that

d\(D) = ¢' o,
where € is the diffeomorphism of R" onto R" defined by

(5.5) exp(z1X1)...exp(znXyn) € exp(&1(z)W1). .. exp(€n(z)Wn) exp(t)

for all £ = (21,...,2n) € R". Since span{X3,...,Xn} + ¢ is an ideal of g, as it
contains n D [g, g], (5.5) implies that £p41(z) = z; for all z = (z,,...,2,) € R™.
Hence (¢' 0 £)(z) = vo(€p+1(z)) = o(z1) for all z = (z;,...,z,) € R", which
proves that dA\(U(g®)) contains the multiplication by either z;, or e*'.
This concludes the proof in case (I).

If the conclusion of the theorem holds for one nilpotent ideal n of g with n 2 [g, g],
then it holds for every smaller such. Indeed, if ng is a nilpotent ideal g such that
n D ng D [g,g) and r = dim((n + ¢)/(ng + ¢)), then a normal basis (Xi+1,...,Xxn)
of n modulo n N ¢ can be chosen such that (Xi4r+1,-..,Xn) is a normal basis of
ny modulo ng N €. Since the conclusion of the theorem holds independently of the
choice of normal basis of n modulo n N ¢, the claim easily follows.

Hence we may and will assume in the rest of the proof that n equals the nilradical
of g. Then in particular a C n.

(I1) Assume & Z a®. Set & = €Na® and ¢ = a+#&. Then by Lemma 3.4(ii), ¥’ €
P(a,g@). This case will be reduced to (I) essentially by relating suitable realizations
of Ao, and A ¢ to each other. We begin by choosing appropriate coexponential
bases, which, however, will be adjusted along the way.

Set p = dim(£/&) and ¢ = dim(8Nn/t Nn). Then 0 < pand 0 < ¢ < p, and by
Lemma 3.5, p = dim(¢ Ni/¢ Ni) = dim(a/aNt) < dim(a/anz) < 2.
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Set go = a+ & Then g¢ is a subalgebra of g and go = € + & with ENE = &.
'By Lemma 3.5(ii) we have [ENi,6Ni] C & Ni. Since goNi =a+ (¢Ni) and

[a,i] € 3 C & N1, therefore also [go Ni,g0 Ni] C & Ni. As n C i, it follows that
[90 N'n,go Nn] C & N n. Also, dim(g/go) = dim(g/¢) — dim(go /&) = n — p.

Let (W1,...,W,) be a basis of € N n modulo & Nn. Since n C i, we can extend
it to a basis (Wh,...,W,) of £Ni modulo & Ni. Adding suitable multiples of Z to
each W; we may assume that a(W;) =0foralli=1,...,p.

The set (W,...,W,) is a basis of go N'n modulo ¥ Nn. It is a normal such, since
[go N n,g0 N} C & Nn. The set (Wy,...,W,) is a basis of go Ni modulo ¢ Ni. It

- is a normal such, since [go Ni,80 Ni] C & Ni. Since go Ni is an ideal of go with
BoNi+# =go (as €Ni+ 8 = &) and goNiNE = &' N4, it follows by Lemma 2.1 (a)
that (Wi,...,W,) is a coexponential basis of gg modulo #'.

. We have [X,Y] = (X,Y)Z, where (X,Y) = a(Z) 'a([X,Y]), for all X € ENi,
- Y € a. By Lemma 3.5(v) the real bilinear form (-,-) factorizes to a non-degenrate
form on (£Ni/8 Ni) x (a/ant). Hence there exists a basis (Y3,...,Y}) of a modulo
an e, with a(Y;) = 0, such that (W,,Y;] = §;;Z for 1,5 =1,...,p.

The set (¥;,...,Y}p) is a basis of go N n modulo €N n, and it is a normal such
since [go N'n,@o N n} C & Nn C €N n. By Lemma 2.1(a) it is thus a coexponential
basis of go modulo &. ' :

Let (X;,...,Xk) denote a basis of g modulo n + &€ = n + go;, automatically
normal since [g,@] € n. Let (Xi41,...,Xn-p) denote a normal basis of n modulo
nNgo, by Lemma 2.1 (a) then a coexponential basis of n + go modulo go. Then by
Lemma 2.1 (b),

Zi=(X1,...; Xnep, Y1,..,Y,) and Ei=(Xy,..., Xnop, Wi,..., W)

are coexponential bases of ¢ modulo ¢ and ¥, respectively. Here = is compatible
with n, since (Xi+1,...,Xn-p,Y1,...,Y;) is a normal basis of n modulo nN&.

Claim (*): Let ® denote the algebra isomorphism of DO(R"‘P.) ® DP(RP) onto
DO(R""?) ® DP(R?) given by ® = I ® ®¢, where I is the identity on DO(R""P)
and @ is the algebra isomorphism of DP(R}) onto DP(R},) determined by

@o(é% =—a(Z)w,-,_ i=1,...,p.

B(u) = a(2)” 5,

Then dAq r.=(U(gC)) € DO(R"?) ® DP(R?) and

&(dAa,ez(U(g))) = dAa e = (U(g)).

Proof: Abbreviate A = Ay p= and X' = Aq ¢ =r. We will show that @ intertwines
d) and d)\' after certain characters are added to « in the two representations.

Let 6 € g* denote the linear extension of trady,, € t* given by 6(Z) = {0}
and let §' € g* denote the one of } tradg, v € (¥')* given by é'(Z') = {0}. Then §
and &' are characters on g. Indeed, since nilpotent endomorphisms have zero trace,
we have § = 0 on nN€ and §' = 0 on nNE'. Moreover,nNge = 3-7_, RY; +nNt and
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nNgo =nnNe+>7_ RW;, son=nNspan(E)+nNt and n = nNspan(Z')+nN¥.
Hence é and é' vanish on n 2 [g, g].

For later reference, note that since [W;,go] = [W.', FLRY;+¥{ CRZ+e=t¢,
we have §(W;) = L tr adgo/e(W ) = 0 for all { = 1,...,p, so that both § and &'
vanish on spa.n{Y.,Z Wi|1<i<p}.

Set \ := Aa+s,e,z and o= Aa+6 0.z Then by (2) of Lemma 2.3, dx=d\-6
and d\' = d)' — &, so that dA(U(gC)) = dA(U(g®)) and dX'(U(gC)) = dX'(U(gC)).

Hence the claim () will follow if dA(g) € DO(R"~?) ® DP(RP) and

(5.6) S(dNV))=dN(V) forall V eg.

We shall reduce (5.6) to an assertion involving only go. Set Xo = Aco+60,8,50
and Xf, 1= Ago+6,,0 > Where ag, 6o and & denote the restrictions of o, 6 and &' to
go, and where = := (V4,...,Y;) and Ej := (Wy,...,W,).

Given V € g, there exist £{; € C®°(R x R""P)and U € C®(R x R"7?,go) such
that for all (t,z) €e R x R"7P,

exp(—tV)exp(z1X,)... exp(z,...,,X,,-,,) |
= exp(£1(t,2)X1) ... exp(€n-p(t, 2) Xn-p)exp(-U(t, z)),

implying that
~ ~— 8¢;
d\(V) = E —(0, a:)a +d/\0( E (0 z))

and

(V) = —paf'(o ) + ATy 5 (0,2).

Thus to prove (5.6) it suffices to prove that dxo(go) C DP(R?) and
(5.7) Bo(dho(V)) = dX(V)  forall V € go.

Put Ao := Aao,t.5, and Ay := Agy v =1. Then dho = dAo — 6 and dXy = d\y — &
by Lemma 2.3 (2). Put [ = & Nkera. Then go = span{Y;, Z,W; |1 <i < p} +1[.

First we observe that (5.7) holds for V € span{Y;,Z,W; | 1 < ¢ < p}. Indeed,
using the relations [W;,Y;] = 6;;Z and [W;, W; +Ini] C [Ni and that W;,Y; € kera,
we easily find for i = 1,...,p, that

0

W) = -a(Dhs () =5, da(Z)=-a(2),
DW=y GK)=a@)s,  D(2) = ~a(2).

Since § = 6§' = 0 on span{W;,Y;,Z | 1 < i < p}, as noted above, it follows that
(5.7) holds for V € span{W;,Y;,Z |1 <1 < p}.
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It remains to prove (5.7) for V € . Note that [l,a] C span{Y;,...,Y,;}. Indeed,
([,a] C [a®,a] C aNkera, and if ¢ C i, then [[,a] C RZ, so that actually [[,a] = 0,
while if ¢ € i, then by Lemma 3.5 (iv), ant = an3 = RZ, so that aNnkera =
span{Y;...,Y;}.

Let A denote the matrix of ady, (V) wrt. the basis Y1,...,Y}, of go modulo ¢.
Then, since ad V leaves span{Y; ...,Y,} invariant,

P P
adV() uY:) =) 4i¥;, withy'=Ay, yeR’

=1 i=1
Let B denote the matrix of adg, /- (V') wrt. the basis Wi,..., W, of go modulo

. Then, since [V,W;] C [¢,¢] C ENiNkera = span{W,...,W,} + [Ni, there are
V.elni,i=1,...,p, such that

adV(ZwW)—ZwW+Zw, i with w' = Bw, w € R?.

=1

Applying adV to

[Zw,W,,Zy,Y] (w-y)Z, w,yeR”,

1=1

and using [[Ni,Y;] = 0, we then get that (Bw) y+w- (Ay) =0 for all w,y € RP.
Hence B = — A%, so that §(V) = JtrA=—1tr B=-6'(V).

Put Gy = exp(go) Let p € Ca ',,(Go) and set Q(wy, ..., wp) = cp(exp(wlwl)
exp(wpW,)) for all w = (w,.. w,,) € RP”: Since g, := span{Wl, yWpl+Iniis
a subalgebra of g and [g1, g1] Q (N1, there exists U € C®(R? x R?, (ﬂi) such that

exp (Zw Wi + Zv. ) = exp(w1 W1)...exp(wpW,) exp(U(w,v))

for all (w,v) € R? x RP. Since ¢ € C° ,,(Go) is invariant under right tra.nslatlons
by elemerts from exp(¥' Nkera) 2 exp(() we thus find

[dXo (V)s?](w) , p(exp(—tV)exp(w1W1)... exp(wyWp))
=jt olenp(- tV)exp<Z wili))
= % (exp(— tV)exp(Z w;W;) exp(tV))

t=0 i=1

=@ (exp(}:w= '*t[V’zw-'W"]))

t= =1 =1
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t

p(exp(Y_(wi — tw))Wi = Y _twiVi))

t=0 =1 i=1

. Plexp((iwy — tw))Wh). .. exp((wp — tw))W}))

t

=— Zwéa—‘p, where w' = Buw.
=1 Wi
Since dXy = d\} — 8}, this gives
p
- a 1 | 1
! = — e = = — . - =
AN (V)= =) w] o 3B (Bw) Vo - 5t B,

i=1

where V,, := (8/0w,,...,0/0w;).

By similar, but simpler, computations

~ P, 1 1
d/\o(V)=-—zyA-—y-'-——trA=—(Ay)-Vy'—é-trA.

Hence d)\o(V) € DP(R?) and
Bo(dho(V)) = ~(A(a(2)V4)) - (~a(Z)w) - 5 tr 4
=V, Alw - %trA
= (A'w) -V, +trA* - %trA
= dAh(V).

This proves the claim.

Now, either (a): g=por (b): ¢ <p.

(a) Assume g = p. Then (Wy,...,W,) is a normal basis of go N n modulo ¢ N n.
Hence Z' is compatible with n, with (X¢41,...,Xn-p, W1,...,W,) being a normal
basis of n modulo ¢ Nn. We have dim(g/(n + ¢')) = dim(g/(n + ¢)) = k.

Since a C ¢ C a“%, we have by (I) that the conclusion of the theorem holds for

the representation Aq ¢ :
(1) In the case k = 0 this means that

d)o,v = (U(g”)) = DP(R").
An application of the claim (%) then gives
Ao,z (U(e)) = @7} (dAa,p,z(U(g))) = 87! (DP(R")) = DP(R").
(2) In the case k > 0 it means that (X,,...,Xx) may be chosen such that

¥(21) € dda v = (U(g°))
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-for either y(z;) = z; or ¥(z1) = e*'. Here an application of the claim (*) gives
Y(z1) = @7 (¥(21)) € 271 (dha,r,z (W(E))) = dha e,z (U(g))-

This finishes the proof in case II(a). _
(b) Assume ¢ < p. Since Wy41, ..., W, do not belong ’t'o n, we shall replace them
" by their nilpotent parts in an extension of g. '
The nilpotent part in the Jordan decomposition of a derivation is again a deriva-
tion, cf. Cor. 3.1.14 of [Va], so we may form the successive semi-direct product

g:i= R X(adW,+1),. ...R X (ad Wp)pn 8

where (ad W;), denotes the nilpotent part in the Jordan decomposition of ad W; € '_
End(R X(ad Wig1)n -+ R X(adWw,), 8) for i = p,p—1,...,¢+ 1. Since nilpotent
endomorphisms have zero as only eigenvalue, the Lie algebra g is exponential.

We may consider g as a subalgebra (in fact ideal, cf. (5.8) below) of g and write
as a direct sum of subspaces '

- _ (n) n
g=RW,}} +- -+ RW™ +g,

where [W(™, X] = (ad W;)a(X) for X € span{W(),..., W™} +g,i = g¢+1,...,p.
Since for each W the nilpotent part (ad W), of ad W is a polynomial in ad W

without constant term, we have
(5.8) g,0) = RW ™ + g, RW™ 4+ g] = - = [3,7].

In the present case ¢ C i. Indeed, dim(¢ N n/ Nn) = ¢ < p = dim(t/¥) implies
that [€,€] + 8 C €N n+ & # ¢ so by Lemma 3.5 (iii), ¢ C i.

Set W,-(a) = W; — W,-(n), i=q+1,...,p. Since W; € ¢ and [¢,a] C [i,a] C 3,
each ad W; acts nilpotently on a, so by the uniqueness of the Jordan decomposition,

[Wi(’),a] ={0}fort=q+1,...,p.

Set &:= ¢+ span{Wq(j_)l, e ,W,S")} and ¥ := ¢ + span{Wq(i)l, ... ,W,S’)}. Since
¢ = & + a, where a commutes with a, & and each W,-(_’), we have [¥,¥'] C [€, 8.
Since W; € &, we conclude as in (5.8) that [, €] = [€,£]. From & C i we get by (ii) of
Lemma 3.5 that [¢,€] C & Nkera. Hence [¢/,¥] C [¢,€] € Nkera. ,

We form a modification g of g by exchanging W; for Wi("), t=gqg+1,...,p:
_Setting g; := span{Xi,..., Xs} + (n+ &) =span{Xy,..., Xnp,W;,..., W, } + ¥,

which satisfies g = g; + span{Wy41,...,W,}, we define '

g:=01+ span{Wq(:)n SRR W}En)} and W:=n+ Span{Wq('?‘)l’ e W}S")}.

Then g = span{X,...,Xi}+(n+¥)is an ideal of g with [§,8] = [g,g) CnCnCH,
and 7 is a nilpotent ideal of g containing [g, g]. Also, dimg = dim g.

Set go == span{Wl,...,Wq,Wq(_z)],...,W,S")} + ¥'. Then [go,g0) C & C ¥, since
g0 C ¥+ a with [£,a] C3 C & and [8, C &. Hence (Wi,...,W,,W),...,W3")
is a normal basis of go N N modulo & N 7.
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The normal basis (X k+1s+++1Xn—p) of n modulo nNgo may be chosen such that
it is also a normal basis of 0 modulo nNgo =nNgo+ span{Wq(_';)l,r. . W,S")}. Then

[l]z

(Xk+l’ Xn-—p’Wla---aWQ)Wq(:)lia'”aW;Sn))

is a normal basis of 7 modulo & N7, and thus

(m

= (X1ye ey Xby Xkt1se o2 Xy Wiy, Wo, WS, L, WM

is a coexponential basis of § modulo #' compatible with #.

By Lemma 2. l(a) is also a coexponential basis of § modulo ¥, since g is an
ideal of § with g=g+ & and gN¥ = ¢'. Similarly, the coexponential basis =' of g
modulo ¥ is also a _coexponential basis of § modulo ¥, since g is an ideal of § with
g=g+¥andgnt =¢.

Let @ € Cg denote the extension of @ € Cg* given by a(W(")) = 0 for all
i=g¢+1,...,p and set & := @l;. Clearly ¥ € S(a,g) and ¥ € S(a,9).

Claim: & € P(&,5). Proof: Let U € §\ ¥ and write U = 3-7__,, a; W™ + U,
where Up € g1. Then U := 37 ., a;W;+ U € g\ ¥. Since ¥ € P(a,g), there
exists by Lemma 3.3 V' € ¥ such that [U,V] € ¥ \ kera. Since [W.-(a),t’] CF,¥c
€ N ker o, we also have [17 ,V] € ¥ \kera = ¢ \ ker@d. By Lemma 3.3 this proves
the claim.

Put Xi= A\;pz, N i=Azpz and A:= Az Then
d\(V)=dzps(V) forallVegcs
(5.9) dN(V)=dl\gp=(V) forallVegCh,
dN(V) = dX'(V) forall Veg
Indeed, the first two relations are trivial. To prove the third set gy := go +
spa.n{Wq(_':)l, W,E")} and B := &, + span{Wéi)l, (")} Then g, = a + £ and
[€o,a] = {0}, so that [g,, €] C [€,&)] C [€,€) C Egﬂkera In particular {p := E;Nker&@
is an ideal of g, containing Wq+)1, ey W,E ). so for every (we+1,---,wp) € RP7Y,

exp(wg+1Wy41). .. exp(w,Wp) € exp(wg+1 Wq(_';)l) .exp(w,W, ("))exp((o)

This implies by Lemma 2.2 (1) that the canonical equivalence between X and X is
the identity map.
Combining (5.9) with Claim (*) we finally obtain

(5.10) dX(U(g%)) = dX'(U(gC)) = dAa v,z (U(g®)) = B(ANU(g®)))-
Now, a C #' C a® with ¢ € P(@,g) and dimg = dimg. Also, a is a minimal non-

central ideal of g. Hence by (I) (or the prior cases) the conclusion of the theorem
holds for the representation Az p:
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(1) In the case dimg/(n + #') = k = 0 this means that
(5.11) dMUF)) = dA; 5(UE®)) = DP(R™).

Moreover, ¢ = 0 and p = 1 in this case. Indeed, k = 0 implies that g = n+ ¢,
soasn Ciand € Ci, we have g = i. Hence by Lemma 3.5 (i) and Lemma 3.1 (iii),
p = dim(¢/8) = dim(a/aN¢) < dim(a/aN3) < 1. Since 0 < ¢ < p, the claim
follows. This will simplify the notation below.

Using [8,8) = [g,8] € g1 = span{Xi,...,Xn-1} + ¥ we find, denoting the
coordinates on R" by z,,...,z,-1, w1, that

d\(V) € DP(R"™!) ® Pol(w) for all V € RW{" + g1,

and

.~ n 9 .
AW ™) e ~7w t DP(R"™!) ® Pol(w,),

where Pol(w;) denotes the algebra of polynomials in w;.
Since g = RWI(")+91 , we conclude from this via (5.11) that DP(R™~1)® Pol(w )
is generated by dA(g;), so

AW ) € DP(R""') ® Pol(w;) = dA(U(gF)).
Since g = RW; + g1, where Wy = W™ + W(?), it follows that
dA(U(g®)) = d\(U(F)) = DP(R™),
which by (5.10) finishes the proof in case k = 0:
dAU(g®)) = 71 (dA(U(e°))) = &~ (DP(R™)) = DP(R").

(2) In the case dimg/(n + ¥) = k > 0 there exists a basis (X1,..., Xe) of 8
modulo 1 + ¥ such that for = replaced by (X 1y X k) ®Zp we have

(5.12) P(z1) € dAg , 2(U@E®)) = dXUE®)),

where either ¥(z;) = z; or ¢(z;) = e**.

By Lemma 2.2 (3) the conclusion (5.12) still holds if we to each X; add elements
from n+#¢'. Hence we may assume that spa.n{Xl, Xk} = span{X},...,Xx} and
then as well that X; = X; fori=1,...,k.

From [g,8] = [8,0) € n C span{Xi41,...,Xn-p, W1,...,W,} + ¥ we get, denot-
ing the coordinates on R by z;,...,Zn—p,w1,...,wy, that

dX(g1) € DO(R"~P+1) @ C(RP™Y),

and

DW™) € ~=2 4 DOR™") @ C=(R?™), i=g+1,....p
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Since g = span{W;_';)l,...,W,E")} + @1, we thus conclude that (5.12) may be
strengthened to

$(a1) € A(U(g)")) € dNU(E)).
Since (z;) is fixed under =1, it follows by (5.10) that

¥(z1) € 271(dA(U(g))) = dAU(G®)),

which was to be proved in the case k > 0.
This finishes the proof of Theorem 4.1.
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“Mette Olufsen, Ule Moller Nielsen

Vejledere: Johnny Ottesen, H.B.Hansen

"Undersegelse om den simultane opdagelse
af energiens bevarelse og iszrdeles om
de af Mayer, Colding, Joule og Helmholtz
udforte arbejder"

af: L.Arleth, G.I.Dybkjer, M.T.@stergard
Dorthe Posselt

“The‘effect of age-dependent host
mortality on the dynamics of an endemic
disease and

Instability in an SIR-model with age-
dependent susceptibility

by: Viggo Andreasen

"THE FUNCTIONAL DETERMINANT OF A FOUR-DIMENSIORAL

BOUNDARY VALUE PROBLEM"
by: Thomas P. Branson and Peter B. Gilkey
OVERFLADESTRUKTUR OG POREUDVIKLING AF KOKS

- Modul 3 fysik projekt -
af: Thomas Jessen




236a/93

236b/93

237/93

238/93

239/93

240/93

241/93

242,93

243/93

244/93

245a+b
/83

246/93

INTRODUKTION- TIL KVANTE e
HALL EFFEKTEN

af: Anisa Boisen,
Vejleder:

Peter Boggilad

Peder Voetmann Christiansen
Erland Brun Hansen

’

STROMSSAMMENBRUD AF KVANTE
HALL EFFEKTEN

af: Anja Boisen, Peter Boggild

Vejleder: Peder Voetmann Christiansen

Erland Brun Hansen

The Wedderburn principal theorem and
Shukla cohomology

af: Lars Kadison

SEMIOTIK OG SYSTEMEGENSKABER (2)
Vektorbdnd og tensorer

‘af: Peder Voetmann Christiansen
Valgsystemer - Modelbygning og analyse
Matematik 2.

af: Charlotte Gjerrild, Jane Hansen,
Maria Hermannsson, Allan Jgrgeneen,
Ragna Clauson-Kaas, Poul Lutzen

Vejleder:

modul

Mogens Niss

Patologiske eksempler.
Om sare matematiske fisks betydning for
den matematiske udvikling

af: Claus Draby, Jern Skov Hansen,
Ulsee Johansen, Peter Meibom, -
Kristeffer Nielsen

Vejleder:

Runa
Johannes

Mogens Niss

FOTOVOLTAISK STATUSNOTAT 1

af: Bent Sorensen

Brovedligeholdelse ~ bevar mig vel

Analyse af Vejdirektoratets model for
optimering af broreparationer ’

af: Linca Kyndlev, Kare Fundal, Kamma
Tulinius, Ivar Zeck

Vejleder: Jesper Larsen

TANKEEKSPERIMENTER 1 FYSIKKEN

Et l.modul fysikprojekt

af: Karen Birkelund, Stine Sofia Korremann
Vejleder: Dorthe Posselt

RADONTRANSFORMATIONEN oq dens anvendelse
i CT~scanning

Projektrapport

af: Trine Andreasen, Tine Guldager Christiansen,
Nina Skov Hansen og Christine Iversen

Vejledere: Gestur Olafsson og Jesper Larsen

Time-0f-Flight mdlinger pd krystallinske
halvledere
Specialerapport

af: Linda Szkotak Jensen og Lise Odgaard Gade
Vejledere: Petr Viscor og Niels Boye Olsen
HVERDAGSVIDEN OG MATEMATIK

- LEREPROCESSER I SKOLEN

af: Lena lLindenskov, Statens Humanistiske

Forskningsrdd, RUC, IMFUFA
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UNIVERSAL LOW TEMPERATURE AC CON-
DUCTIVITY OF MACROSCOPICALLY
DISORDERED NON-METALS

by: Jeppe C. Dyre

DIRAC OPERATOhS AND MANIFOLDS WiTH
BOUNDARY B

by: B. Booss-Bavnbek, K.P.Wojciechowski

Perspectives on Teichmuller and the
cahresbericht Addendum to Schappacher,
Scholz, et al.

by: B. Booss~Bavnbek

With comments by W.Abikoff, L.Ahlfors,
J.Cerf, P.J.Davis, W.Fuchs, F.P.Gardiner,
J.cost, J.~-P.Kahane, R.lLohan, L.Lorch,
J.Radkau and T.Sodergvist

EULER OG BOLZANO = MATEMATISK ANALYSE SET I ET
VIDENSKABSTEORETISK PERSPEKTIV

Projektrapport af: Anja Juul, Lone Michelsen,
Tomas Kejgd~d Jensen

Vejleder: Stig Andur Pedersen

Genotypic Proportions in Bybrid Zones
by: Preddy Bugge Christiansen, Viggo Andreasen
and Ebbe Thue Poulsen

MODELLERING AF TILFELDIGE FENOMENER

Projektrapport af: Birthe Priis, Lisbeth Belmgaard
Kristina Charlotte Jakobeen, Marina Mosbek
Johannessen, Lotte Ludvigsen, Mette Bass Nielsen

Kuglepakning

Teori og model

af: Lise Arleth, Kdre Pundal, Nile Kruse
Vejleder: NMogens Riss

Regressionsanalyse
Materiale til et statistiklarsus
af: Jergen Larsen

TID & BETINGET UAFBANGIGEHED
af: Peter Harremoés

Determination of the Prequency Dependent
Bulk Modulus of Liquids Using a Piezo-
electric Spherical Shell (Preprint)

by: T. Christensen and N.B.Olsen

Nodsllering af dispersion i piescelektriske
keramikker

af: Permille Postgaard, Jomnik Rasmussen, .
Christina Specht, Nikko @stergdrd

Vejleder: Tage Christensen

Supplerende kursusmateriale til

"Linsere strukturer fra algebra og analyse”
af: Nogens Brun Beefelt

STUDIES OF AC HOFPIRG CONDUCTION AT LOW
TENPERATURES

by: Jeppe C. Dyre

PARTITIONED NANIFOLDS ARD IWVARIANRTS IR
DIMERSIORS 2, 3, AND 4
Booss-Bavnbek,

by: B. K.P.Wojeiechowski
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Bredde-kursus i Fysik
Eksamensopgaver fra 1976-93

262/93 Separability and the Jones
Polynomial

by: Lars Kadison

263793 Supplerende kursusmateriale til
"Line®re strukturer fra algebra
oq analyse" Il

af: Mogens Brun Heefelt

264/93 FOTOVOLTAISK STATUSNOTAT 2
af: Bent Sorensen

265/94 SPRERICAL FUNCTIONS OR ORDERED
SYMMETRIC SPACES
To Sigurdur Belgason on his
sixtyfifth birthday
by: Jacques Faraut, Joachim Hilgert
and Gestur Olafsson

266/94 Kommensurabilitets-oscillationer i
laterale supergitre
Fysikspeciale af: Anja Boisen,
Peter Boggild, Karen Birkelund

\
Vejledere: Rafael Taboryski, Poul Erik
Lindelof, Peder Voetmann Christiansen

267/94 Kom til kort med matematik pé
Eksperimentarium - Et forslag til en
opstilling
af: Charlotte Gjerrild, Jane Hansen
Vejleder: Bernhelm Booss-Bavnbek

268/94 Life is like a sewer ...

Et projekt om modellering af aorta via
en model for stromning i kloakrer

af: Anders Marcussen, Anne C. Nilsson,
Lone Michelsen, Per M. Hansen

Vejleder: Jesper Larsen
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