UNIVERSAL LOW TEMPERATURE AC CONDUCTIVITY OF MACROSCOPICALLY DISORDERED NON-METALS.

Jeppe C. Dyre
Institute of Mathematics and Physics (IMFUFA)
Roskilde University
POBox 260
DK-4000 Roskilde
DENMARK
Abstract:

This paper discusses a macroscopic model for AC conduction in electronically or ionically conducting disordered solids. The model considers AC conduction in a macroscopically inhomogeneous solid that is characterized by a spatially varying (frequency-independent) conductivity. It is assumed that the conductivity is thermally activated. Discretizing Maxwell's equations leads to an electrical equivalent circuit where each pair of nodes are linked by a resistor in parallel with a capacitor. It is shown that the capacitor currents are Maxwell's displacement currents. Assuming uncorrelated admittances, the model is solved in the effective medium approximation (EMA) and in a new "percolation path approximation" (PPA). Both approximations predict universality of the AC response at low temperatures where the frequency dependent conductivity becomes independent of the activation energy probability distribution. The prediction is confirmed by computer simulations of 200x200 lattices in 2-D and of 50x50x50 lattices in 3-D.
1. INTRODUCTION

AC conduction in disordered solids has been studied during the last 40 years [1-7]. Numerous papers have appeared, especially after 1970, reporting the frequency and temperature dependence of the electrical conductivity in electronically or ionically conducting disordered solids like glasses or various forms of non-perfect crystals. With modern frequency analyzers the measurements are fast and fairly straightforward. A considerable amount of work has gone into developing theories for AC conduction, with main focus on hopping models [8-10]. Despite this, it is still not clear what is the correct model for AC conduction (in particular, whether macroscopic or microscopic inhomogeneities are responsible), it is unknown when and if Coulomb interactions are important [11,12], etc. As a consequence, the interpretation of data is highly subjective and few examples exist of AC measurements yielding reasonably certain and unambiguous [nontrivial] information about a bulk disordered solid.

Besides the lacking understanding of AC phenomena, there is another problem with the application of "impedance spectroscopy" to disordered solids: These solids show remarkably similar behavior as regards their frequency dependent conductivity and its temperature dependence [1-3,13]. Thus, ionically as well as electronically disordered solids all have an AC conductivity which depends on frequency as an approximate power law ω^n where n is less than but close to one and goes to one as the temperature goes to zero. Furthermore, one observes in all cases a much less
pronounced temperature dependence of the AC conductivity than that of the DC conductivity.

The present paper investigates a macroscopic model for AC conduction. The model, which is conceptually somewhat simpler than the presently popular hopping models, focusses on evaluating the AC consequences of a spatially varying electrical conductivity. The model is based on the well-known fact that inhomogeneities give rise to a frequency dependence of the conductivity because charge carriers accumulate at the boundaries to less conducting regions, thereby creating dipolar polarization (the so-called Maxwell-Wagner effect). A number of papers have discussed the DC conductivity of disordered solids with macroscopic inhomogeneities, but little work has gone into the studying the AC aspects. In this paper, that extends and details a recent Rapid Publication [14], the model is derived from Maxwell's equations, assuming the local conductivity is thermally activated with a spatially varying activation energy. It is shown how to discretize the model and two approximations are applied, focussing on the low temperature range of the model. Both approximations predict universality of the AC response as T goes to zero. This prediction is confirmed by computer simulations in two and three dimensions.

The paper is organized as follows. In Sec. 2 a brief review is given of the experimental observations and of the models hitherto studied. In Sec. 3 the macroscopic model is formulated and discretized, and in Sec. 4 two approximations are applied to the model, the effective medium approximation (EMA) as well as a naive percolation path analysis. In Sec. 5 the results from
computer simulations are reported, and finally Sec. 6 contains a discussion.

2. THE PHYSICS OF AC CONDUCTION IN DISORDERED SOLIDS

The first systematic work on AC conduction in disordered solids were the "dielectric" studies of ionic conductive oxide glasses that appeared toward the end of the 1950's [15-17]. In 1961 Pollak and Geballe [18] reported AC measurements on n-type crystalline silicon at helium temperatures (where the disorder is due to the random substitution of the dopants, this disorder becomes important when one enters the hopping regime at helium temperatures). Only much later was the similarity between the AC response of ionic glasses and of electronically conducting systems noted [1-3,13]. During the last 20 years a large number of publications have reported AC measurements on disordered solids like amorphous semiconductors [4,19], fast ionic conductors [5,7], nonstoichiometric- or polycrystals [20,21], ionic or electronically conducting polymers [22,23], metal-cluster compounds [24], polaronically conducting transition metal oxides [25], organic semiconductors [26], or high temperature superconductors above T_c [27].

Experimental data are usually reported in terms of the real part $\sigma'(\omega)$ of the frequency dependent conductivity $\sigma(\omega) = \sigma'(\omega) + i\sigma''(\omega)$; however alternatives to this are available. Early publications dealing with ionic glasses presented data in terms of the
negative imaginary part $\varepsilon''(\omega)$ of the complex dielectric constant $\varepsilon(\omega) = \varepsilon'(\omega) - i\varepsilon''(\omega)$ defined by

$$\varepsilon(\omega) = \frac{\sigma(\omega) - \sigma(0)}{i\omega}. \quad (1)$$

Presently it is common to present data for ionic systems in terms of the so-called electric modulus $M(\omega)$ defined [28] by $M(\omega) = i\omega/\sigma(\omega)$ (however it has been argued that this is not a good means of presenting data [29,30]). There is also the possibility of using the complex resistivity $\rho(\omega) = 1/\sigma(\omega)$, but this is mainly used for data on inhomogeneous systems like boundary layers etc [31].

As mentioned above, all disordered solids exhibit the same qualitative AC behavior: Around the dielectric loss peak frequency, ω_m, [marking the maximum of $\varepsilon''(\omega)$] $\sigma'(\omega)$ starts to increase, and for $\omega > \omega_m$ $\sigma'(\omega)$ follows an approximate power law: $\sigma'(\omega) \propto \omega^{n'}$. This behavior continues right up to phonon frequencies where the conductivity around $\omega = 10^{12}\text{Hz}$ is of order $1(\Omega\text{cm})^{-1}$ [32]. The signature of a power law is a straight line in a log-log plot. There is some controversy as to whether the observed power laws are truly fundamental [1,33-35] or just an approximate description [8,30]. In any case, the exponent n' is always between 0.7 and 1.0 (the only exception seems to be one-dimensional conductors [36,37]), and one always finds that n' goes to one as the temperature goes to zero. As regards the temperature dependence of $\sigma'(\omega)$, the AC conductivity is always less temperature dependent than the DC conductivity (when viewed
in the usual log-log plot), and for $T \to 0$ the AC conductivity becomes almost temperature independent. The DC conductivity usually follows an Arrhenius law, but a weaker temperature dependence is occasionally observed, e. g., for group IV amorphous semiconductors [6]. An important observation which is apparently always valid is the Barton-Nakajima-Namikawa (BNN) relation [38-42],

$$\sigma(0) = p \Delta \varepsilon \omega_m,$$

(2)

where $\Delta \varepsilon$ is the dielectric loss strength: $\Delta \varepsilon = \varepsilon'(0) - \varepsilon'(\infty)$, and p is a numerical constant of order one. Since $\Delta \varepsilon$ depends only weakly on temperature, the BNN relation implies that the activation energy of $\sigma(0)$ is equal to that of ω_m [17]. In the majority of disordered solids $\sigma'(\omega)$ obeys the time-temperature superposition principle, i. e., the fact that at different temperatures one observes the same function $\sigma'(\omega)$ just scaled (displaced in the log-log plot). This, in conjunction with the BNN relation and the Debye law $\Delta \varepsilon \propto T^{-1}$, shows that the dimensionless conductivity $\sigma'(\omega)/\sigma(0)$ is a function of $\omega/[T\sigma(0)]$ [43-45].

A convenient name for the fact that all disordered solids show the same qualitative AC behavior is to refer to it as "quasi-universality". This term was coined by Summerfield in 1985 in a paper [44] dealing not with experiments but with approximate solutions of hopping models; however it seems to be a very good name for the experimental situation as well.
The early experiments on AC properties of ionic glasses were interpreted in terms of a distribution of relaxation times for associated Debye processes, as is common for dielectric relaxation in liquids [46]. In order to understand the coupling between DC and AC properties, Stevels [15] and Taylor [16] proposed a model assuming the ions (typically Na\(^+\) or K\(^+\)) feel a randomly varying potential energy deriving from the random network structure of the glass. At that time no useful analytic approximations or powerful computers were available and the model remained qualitative (for some time the model was generally but erroneously [45] assumed to be inconsistent with experiment).

Workers in semiconductor physics in the 1960's proposed the pair approximation as a model for AC loss [47,48]. This model assumes the loss derives from independent pairs of sites in the solid, where each pair provides two possible positions for a localized electron. Mathematically, this corresponds to the description in terms of Debye processes in parallel that was used in the early work on ionic glasses. The problem with this approach is that there is no DC conduction (which has to be assumed to derive from a completely different process whereby the BNN relation becomes very hard to understand). Furthermore, the pair approximation cannot explain the fact that the exponent \(n'\) goes to one as \(T\to0\). Recently, a version of the pair approximation, the correlated barrier hopping model [6,49], has become popular; this model is able to explain the low temperature behavior of \(S\) as a consequence of Coulomb force controlled variable range hopping and does have a non-zero DC conductivity.
because the pairs are not isolated from each other.

Throughout the years a number of authors have considered models based on some kind of networks composed of resistors and capacitors [11,21,28,34,50-55]. This approach is phenomenological in the sense that the networks are regarded as an intuitive means of picturing the conduction and the networks are not justified from fundamental equations. In the present paper, following Springett, Webmann et al, Sinkkonen, and Fichshuk [56-59], we arrive at a resistor-capacitor network which is justified from Maxwell's equations. Since the circuit has not been discussed in detail in the literature, some care is taken to derive it in detail (Sec. 3). It turns out that the physical interpretation of the network is not completely straightforward.

In the last 15 years a number of models have appeared [1,33-35,60-62], emphasizing the power law behavior of $\sigma'(\omega)$ which is taken as a fundamental experimental fact, much like the power laws found close to T_c of a second order phase transition. Thus, fractal aspects of the conduction process is emphasized [35,63]. Power laws also result if it is assumed the phase difference between field and current is frequency independent; this is sometimes taken as the starting point for modelling AC conduction [64].

The most thoroughly studied models for AC conduction in disordered solids are the so-called hopping models [8-10]. Hopping models consider the stochastic motion of (usually) independent charge carriers in disordered structures. If the
charge carrier sites are marked s and $\Gamma(s-s')$ denotes the rate for jumps from site s to site s', a hopping model is characterized by the following equation for the probability of finding a charge carrier at site s, $P(s,t)$,

$$\frac{\partial P(s,t)}{\partial t} = -\gamma_s P(s,t) + \sum_{s'} \Gamma(s'-s) P(s',t)$$

(3)

where $\gamma_s = \sum_{s'} \Gamma(s-s')$. The sites are often taken to lie on a cubic lattice. The jump rates are usually assumed to vary randomly and to be non-zero only for nearest neighbor jumps. The frequency dependent conductivity is calculated from the Kubo formula [65] that in D dimensions is

$$\sigma(\omega) = \lim_{\nu \to \infty} \frac{1}{D k_B T V} \int_0^\infty \langle J(0) \cdot J(t) \rangle e^{-i\omega t} dt$$

(4)

where J is the total current in the volume V and T is the temperature. In hopping models the current-current autocorrelation function is negative for $t > 0$, reflecting a negative correlation in the jump-jump directions; besides the negative part the autocorrelation function contains a term $\propto K \delta(t)$ where K determines the high frequency limit of the conductivity, $\sigma(\infty)$. It can be shown that in hopping models $\sigma'(\omega)$ is always an increasing function of frequency [66], as in experiments. In order to get a conductivity that increases several decades when the frequency is increased, the jump rates themselves must vary
several decades. This is realistic; the jump rates are usually taken to be an exponential function of an activation energy and/or a tunnelling distance.

Hopping models are complex and cannot be solved analytically. To evaluate $\sigma(\omega)$ either one has to computer simulate, or some analytical approximation must be evoked. An early approximation was the continuous time random walk (CTRW) approximation derived by Scher and Lax [43]. Today the CTRW is regarded as the simplest available approximation, a mean-field Hartree type approximation [67] (the original derivation that converted the hopping model to a non-markovian random walk was inconsistent [30,68]). The standard approximation usually applied to disordered systems, which is often used for hopping models, is the effective medium approximation (EMA) [9,67,69-71]. A related approach is the extended pair approximation (EPA) of Summerfield and Butcher [72].

While hopping models are reasonably successful, they usually assume non-interacting charge carriers. Thus, the self-exclusion effect (allowing at most one particle at each site [73]) is ignored, as well as are Coulomb interactions. Recent work includes these effects [12], but at the price that the model becomes very complex and has to be studied by means computer simulations. The macroscopic model considered in the next section does include Coulomb interactions via Gauss' law without becoming extremely complex.
3. THE MACROSCOPIC MODEL

This section deals with setting up and discretizing the equations governing AC conduction in a solid with a spatially varying [frequency independent] conductivity [14, 56-59]. It is assumed that the solid has free charge carriers that are characterized by a local conductivity denoted by $g(r)$. The solid also has bound charges that are described by the frequency independent dielectric constant ε_∞ (equal to the $\omega \to \infty$ limit of $\varepsilon(\omega)$ in Eq. (1)). It is not entirely unproblematic to assume distinguishability between free and bound charge carriers [74], but the assumption will be made here without further justification.

The quantity of interest is the macroscopic free charge carrier conductivity, defined as the ratio between the spatially averaged free charge current density and the spatially averaged electric field (the latter is given by the potential drop across the entire sample). If D denotes the displacement vector, J the free charge carrier current density, and ϕ the electrostatic potential, the basic constitutive equations are

$$D(r, t) = -\varepsilon_\infty \nabla \phi(r, t)$$

$$J(r, t) = -g(r) \nabla \phi(r, t) .$$

These equations should be combined with Gauss' law

$$\nabla \cdot D(r, t) = \rho(r, t)$$

(where ρ is the free charge carrier density) and the continuity equation.
\[\dot{\rho}(\mathbf{r}, t) + \nabla \cdot \mathbf{J}(\mathbf{r}, t) = 0. \]

(7)

In a periodically varying field all quantities are written as a factor \(e^{i\omega t} \) times a function of space. Thus the continuity equation becomes \(i\omega \rho + \nabla \cdot \mathbf{J} = 0 \). Substituting Eqs. (5) and (6) into this expression and introducing the "Laplace frequency"

\[s = i\omega_0, \]

(8)

equation one arrives at the following equation for the electrostatic potential:

\[\nabla \cdot \left((s + g(\mathbf{r})) \nabla \phi(\mathbf{r}, s) \right) = 0. \]

(9)

This is an elliptic differential equation and the solution is uniquely determined from a knowledge of \(\phi(\mathbf{r}, s) \) at the boundaries. Once the solution has been found, the average current density is given by (where \(V \) is the volume of the solid)

\[\mathbf{J}(s) = \frac{1}{V} \int_V g(\mathbf{r}) (-\nabla \phi(\mathbf{r}, s)) d\mathbf{r}. \]

(10)

We now turn to the discretization of Eq. (9) [14,59]. A discretization is necessary for solving the equation numerically, but it is also useful for developing an intuition about the problem and arriving at approximate analytical solutions. The discretization will be performed in \(D \) dimensions. It is assumed that the function \(\phi(\mathbf{r}, s) \) is known only at the points of a simple cubic lattice with lattice constant \(\bar{a} \). In principle the lattice constant is to be taken to zero; the determination of \(\bar{a} \) will be returned to below. If Eq. (9) is considered at a lattice point with coordinates \((n_1 \bar{a}, \ldots, n_D \bar{a})\), the first of the \(D \) terms
on the left hand side becomes upon discretization (for simplicity only the first coordinate is written out explicitly, the remaining unchanged coordinates are \(n_2 a, \ldots, n_D a \)):

\[
\frac{\partial}{\partial x_1} [(s+g) \frac{\partial \phi}{\partial x_1}] (n_1 a, s) =
\]

\[
= a^{-2} [s+g((n_1+\frac{1}{2})a, s)] [\phi((n_1+1)a, s) - \phi(n_1a, s)]
\]

\[
- a^{-2} [s+g((n_1-\frac{1}{2})a, s)] [\phi(n_1a, s) - \phi((n_1-1)a, s)]
\]

There are \(D-1 \) other terms like this, and Eq. (9) becomes the condition that the sum of all \(D \) terms is zero. Remembering the definition of \(S \) (Eq. (8)), this zero sum requirement is recognized as the Kirchhoff current conservation law for a lattice where each link is a resistor in parallel to a capacitor (Fig. 1). Clearly it is natural to think of the local conductivities as defined on the links of the lattice and not, e.g., on the points of the lattice. Each link admittance \(y \), determined by a resistor in parallel to a capacitor, is given by \(y = K(s+g) \) where \(K \) is a constant that is determined from requiring the correct continuum limit of the free charge current density \(J \):

If the resistor current is \(I, J \) is numerically given by \(J = I/a^{D-1} \).

On the other hand, if the potential drop across a link is denoted by \(\Delta \phi \) one has \(I = Kg\Delta \phi \) and \(J = g\Delta \phi/a \). Combining these equations we find \(K = a^{D-2} \), so the link admittance is given by

\[
y = a^{D-2}(s+g) \quad (12)
\]

The circuit of Fig. 1 is not a direct physical representa-
tion of the solid. This is because, while the resistor currents are indeed the true free charge currents, the capacitor currents are "ghost" currents that are not just the currents due to the dielectric displacement of the bound charge carriers. For instance, if $\varepsilon_m=\varepsilon_0$ (the vacuum permittivity) there are no bound charges but the capacitors are still important in the circuit. The correct interpretation of Fig. 1 is the following: In an external AC field the circuit determines the electrostatic potential. This potential in turn determines the free charge currents as those running through the resistors. Obviously the capacitors give rise to a frequency dependence of the overall circuit admittance, but this is not the effect we are looking for. The frequency dependence of the free charge currents comes about only as an indirect effect of the capacitors because of their influence on the node potentials.

In the real solid the free charges accumulate at certain places; there is no corresponding charge accumulation in the circuit, where in fact the role of the capacitors is to exactly compensate the free charge accumulation. It follows from Eq. (12) that the continuous analogue of the capacitor currents is nothing but the well-known Maxwell displacement current $J_D=\dot{D}$. At first sight this may seem surprising since the displacement current is usually introduced in connection with completing Maxwell's equations to ensure that $\nabla \cdot (\nabla \times H)=0$. But this is done by adding to the free charge current J the term $J_D=\dot{D}$ constructed so that the divergence of $J+J_D$ is zero; in an AC field this con-
dition is nothing but Eq. (9).

The macroscopic frequency dependent free charge conductivity may be calculated from the overall circuit admittance \(Y(S) \). Here and henceforth the free charge conductivity will be denoted by \(\sigma(S) \), despite the risk of confusing it with the total conductivity appearing in Eq. (1). The latter quantity differs from the former by the factor \(i\omega(\epsilon_\infty-\epsilon_0) \); in most experiments one looks for the real part of the conductivity only, and in any case it turns out that the \(i\omega(\epsilon_\infty-\epsilon_0) \) term is insignificant in the present model at low temperatures and moderately low frequencies, which is the area of main focus below.

Working in \(D \) dimensions, the solid is discretized into \(N^D \) points of a cubic lattice with sidelength \(L=Na \). Two opposing faces of the cube are identified with the electrodes and short-circuited. If the electrodes are subjected to a potential drop \(\Delta \phi(S) \) (with \(S \) indicating that a periodic field is considered), the resulting current between the electrodes is given by (by definition of the overall circuit admittance \(Y(S) \)): \(I(S) = Y(S) \Delta \phi(S) \). In order to calculate the free charge conductivity from \(Y(S) \) one has to subtract from \(Y(S) \) the contribution due to the capacitor currents. Between the electrodes there are \(N-1 \) layers of parallel RC-elements. The total current \(I(S) \) is the same in each layer. Therefore, the sum of all resistor currents and all capacitor currents in the direction perpendicular to the electrodes is given by (with obvious notation)
\[
\sum I_C(s) + \sum I_R(s) = (N-1) I(s) \quad .
\] (13)

The sum of all capacitor currents is easily evaluated. \(\sum I_C(s) \) is rewritten as a sum of \(N^{D-1} \) terms where each term is the "one-dimensional" sum in the field direction (with obvious notation)

\[
\sum a^{D-2} s \Delta \phi(i-i+1) = a^{D-2} s \Delta \phi .
\]

Thus Eq. (13) becomes

\[
\sum I_R(s) = (N-1) I(s) - N^{D-1} a^{D-2} s \Delta \phi(s) \\
= [(N-1) Y(s) - N^{D-1} a^{D-2} s] \Delta \phi(s)
\] (14)

The macroscopic free charge conductivity is defined as the ratio between average free charge current density and average electric field. The former quantity is \(\sum I_R(s) / [a^{D-1} N^{D-1} (N-1)] \) and the latter is \(\Delta \phi(s) / Na \). Using Eq. (14) we finally find (remembering \(L=Na \))

\[
\sigma(s) = \frac{1}{N-1} \frac{1}{L^{D-2}} \sum I_R(s) / \Delta \phi(s) \\
= \frac{Y(s)}{L^{D-2}} - \frac{N}{N-1} s .
\] (15)

For \(N \to \infty \) Eq. (15) reduces to

\[
\sigma(s) = \frac{Y(s)}{L^{D-2}} - s .
\] (16)

Equation (16) expresses the fact that the average capacitor current density, to be subtracted to get the free charge current density, is equal to \(S \) times the electric field.
For a given continuously varying local conductivity \(g(\mathbf{r}) \) the discretization becomes exact for \(a \to 0 \). A few further assumptions are now made. First, it is assumed that the local conductivity is thermally activated and that the spatial variation in conductivity is due to a varying activation energy, \(E(\mathbf{r}) \):

\[
g(\mathbf{r}) = g_0 e^{-\beta E(\mathbf{r})} .
\]

(17)

Here \(\beta = 1/k_B T \). The activation energy is assumed to vary because the local structure of the solid varies, leading to a varying mobility or perhaps to a varying electrostatic potential \([59,75,76] \). In most cases one expects the activation energy to vary relatively little; however our main focus here and below is the low temperature limit where the local conductivity eventually varies several orders of magnitude.

It is realistic to assume a finite correlation length, \(\xi \), for \(E(\mathbf{r}) \), where \(\xi \) as usual is defined by

\[
\langle E(\mathbf{r}) E(\mathbf{r}') \rangle = E_0^2 e^{-|\mathbf{r} - \mathbf{r}'|/\xi} , \quad |\mathbf{r} - \mathbf{r}'| \to \infty .
\]

(18)

We now make an assumption which is very useful both from an analytical point of view (Sec. 4) and a numerical point of view (Sec. 5): It is assumed that, by putting the lattice constant \(a \) equal to the correlation length, correlations beyond \(a \) may be ignored \([57,77] \). The values of \(g \) are thus assumed to be uncorrelated from link to link. In this approximation the problem is fully specified by the local activation energy.
probability distribution, \(p(E) \); details concerning how the activation energy varies in space are ignored.

Let us consider the low and high frequency limits of \(\sigma(s) \) in the model. For \(s \rightarrow 0 \) the capacitors play no role and all circuit currents are free charge currents. Effectively, the circuit reduces to an ordinary resistor circuit. Such resistor circuits have been investigated extensively in the low temperature limit [78-80]. In this limit the currents mainly follow the percolation paths giving the "easiest" ways between the electrodes. This picture is arrived at as follows. Imagine the resistors being removed from the lattice and then reintroduced in order of decreasing admittance. At a certain filling rate, the so-called link percolation threshold, infinitely large connected clusters appear, creating a connection between the electrodes. In two dimensions the link percolation threshold is given by \(p_c = 1/2 \) exactly [81] while simulations in three dimensions have shown that \(p_c = 0.2488 \) [82]. At low temperatures, adding further admittances beyond the percolation threshold does not change the overall circuit admittance significantly since the added admittances are much smaller than the admittance of the percolation cluster. Therefore, the total admittance is dominated by the admittance of the percolation cluster that in turn is dominated by the largest resistors on the cluster. This idea which is now more than 20 years old [78-82] has been proved rigorously [83]. At low temperatures one finds

\[
\sigma(0) \propto e^{-\beta E_c} \tag{19}
\]
where the percolation energy E_c is defined by

$$\int_{-\infty}^{E_c} p(E) \, dE = p_c \quad . \tag{20}$$

The high frequency limit of the conductivity is straightforward to evaluate. For $S \to \infty$ the capacitors completely dominate the circuit. As a result the potential drop perpendicular to the electrodes is everywhere $\Delta \phi/(N-1)$ and the average resistor current is $a^{D-2} \langle g \rangle \Delta \phi/(N-1)$, implying that the macroscopic conductivity is given by

$$\sigma(\infty) = \langle g \rangle \quad . \tag{21}$$

In one dimension the circuit becomes particularly simple. Since the total circuit impedance is a sum of the impedances of RC-elements, one finds (where $g(E) = g_0 e^{-\beta E}$)

$$\frac{1}{Y(s)} = (N-1) \int_{-\infty}^{\infty} \frac{P(E)}{a^{-1} \{g(E) + s\}} \, dE \quad . \tag{22}$$

Substituted into Eq. (16) this implies for $N \to \infty$ the following equation for $\sigma(s)$

$$\frac{1}{\sigma(s) + s} = \int_{-\infty}^{\infty} \frac{P(E)}{g(E) + s} \, dE \quad . \tag{23}$$

As a simple example consider the "box model", i. e., the case where $p(E) = 1/E^0 \quad (0 < E < E_0)$. In that case the distribution of local admittances is (compare Eq. (A.7) in Appendix 2)

$$p(g) = p(E) \left| \frac{dE}{dg} \right| = \frac{1}{\beta E^0} \frac{1}{g} \quad (g_0 e^{-\beta E_0} < g < g_0) \quad . \tag{24}$$
Equation (23) thus becomes

\[
\frac{1}{\sigma(s) + s} = \frac{1}{\beta E_0 g_0 e^{-\beta E_0}} \int_{g_0}^{g_0 e^{-\beta E_0}} \frac{1}{g(g+s)} \, dg
\]

\[
= \frac{1}{\beta E_0} \frac{1}{s} \ln \left(\frac{1+s/g_0 e^{-\beta E_0}}{1+s/g_0} \right).
\]

(25)

At low Laplace frequencies, \(s < g_0 \), this reduces to

\[
\sigma(s) + s = \beta E_0 s \frac{\ln(1+s/g_0 e^{-\beta E_0})}{1+s/g_0 e^{-\beta E_0}}.
\]

(26)

Letting \(s \) go to zero one finds that the DC conductivity is given by

\[
\sigma(0) = \beta E_0 g_0 e^{-\beta E_0}.
\]

(27)

Thus, the DC conductivity activation energy is equal to the largest activation energy met on the one-dimensional path between the electrodes. Clearly, this is the 1-D analogue of Eq. (19).

According to Eq. (26) the conductivity becomes frequency dependent when \(s \) is of order \(g_0 e^{-\beta E_0} = \sigma(0)/(\beta E_0) \). Thus, at low temperatures the frequency dependence sets in already for \(s < \sigma(0) \).

At these low temperatures and moderate frequencies \(s \) may be ignored in \(\sigma(s) + s \), meaning that the capacitor currents are very small. Introducing \(s_0 = g_0 e^{-\beta E_0} \), Eq. (26) may thus be written

\[
\sigma(s) = \sigma(0) \frac{s/s_0}{\ln(1+s/s_0)}.
\]

(28)

In terms of the real frequency \(\omega \) and the characteristic time
\[\tau = e^{e^{bE_0}/g_0} \text{ Eq. (28) becomes} \]

\[\sigma(\omega) = \sigma(0) \frac{i\omega \tau}{\ln(1 + i\omega \tau)} \] \hspace{1cm} (29)

Note that, even though the capacitor currents for \(\beta \to \infty \) are negligible for a range of low frequencies, the capacitors may not be ignored from the circuit. If the capacitors are removed, there is no frequency dependence left. Thus, while the free charge currents run through the resistors and while the capacitor currents are in some cases extremely small, the latter still have a very important effect on the magnitude of the average free charge currents, resulting in the dramatic frequency dependence of Eq. (29). In the numerical simulations in two and in three dimensions the same effect was found at low temperatures (Sec. 5).

4. TWO APPROXIMATE ANALYTICAL SOLUTIONS

This section develops two analytical approximations for calculating \(\sigma(s) \). In both approximations the problem becomes quite simple in the \(\beta \to \infty \) limit where a universality appears and [except for scaling] the shape of \(\sigma(s) \) becomes independent of the activation energy probability distribution \(p(E) \).

The standard approximation for treating disordered systems analytically is the effective medium approximation (EMA) [77,84]. In other contexts, e. g., in quantum mechanics, this approach is
referred to as the coherent potential approximation (CPA) [85,86]. It has a number of desirable analyticity properties and seems to offer the best available compromise between being simple and being realistic. The present problem is to calculate the overall admittance of a large network whose admittances are independent random variables. The basic idea of the EMA is to focus on one particular admittance of the network, regarding it as placed in an "effective medium" with equal admittances y_m. The effective medium is constructed to best possibly mimic the average surroundings of the particular admittance that is in focus. This is done by requiring that on average the electric field around the particular admittance in focus is equal to the homogeneous field of the surrounding effective medium. This leads to the following equation for determining y_m in D dimensions [77,87]

$$\left\langle \frac{y-y_m}{y+(D-1)y_m} y \right\rangle = 0 \quad .$$

(30)

The total network admittance Y is found from y_m [for $N \to \infty$] via the obvious identity

$$Y = N^{D-2}y_m \quad .$$

(31)

The EMA is exact in one dimension and it becomes exact for $D \to \infty$ [88]. In the high frequency limit the EMA is correct in all dimensions. In two dimensions the EMA is believed to be quite reliable [89]. Here it gives the correct percolation threshold $p_c=1/2$ and in a recent weak disorder perturbation calculation it was
shown that the EMA is correct up to and including the fourth order terms [90]. These results in two dimensions are both consequences of the EMA satisfying the duality symmetry of the square lattice [91], requiring that if all \(y \)'s are replaced by \(y^{-1} \), the total admittance of the network is \(Y^{-1} \). In three dimensions the EMA is less reliable [84,90]; thus the EMA predicts \(p_c = 1/3 \) whereas simulations yield \(p_c = 0.2488 \). Various improvements of the EMA exist [92] but they are rather involved and will not be used here.

Combining Eqs. (12), (16) and (31) yields \(y_m = a^{D-2}(\sigma + s) \).

When this is substituted into Eq. (30) the equation for the conductivity becomes [59]

\[
\left(\frac{g-\sigma}{g+(D-1)\sigma+Ds} \right)_g = 0. \tag{32}
\]

For \(s = \infty \) Eq. (32) implies \(\sigma = \langle g \rangle \) (Eq. (21)) because the denominator becomes almost constant and may be ignored. Equation (32) may be solved numerically (Appendix 1). The predictions of Eq. (32) at finite temperatures are compared to the results of simulations in 2-D in the next section. Here we proceed to investigate the \(T = 0 \) limit where Eq. (32) implies a universal frequency dependence given as the solution of a simple transcendental equation.

Equation (32) may be rewritten as an average over the activation energy probability distribution as
\[
\frac{1}{D(\sigma+s)} = \left(\frac{1}{g(E) + (D-1)\sigma + DS} \right)_E . \tag{33}
\]

Equation (33) simplifies considerably in the \(\beta \to \infty \) limit. In this limit \(g(E) \) varies rapidly and for given \(\sigma \) and \(S \) there are basically just two extreme possibilities, depending on \(E \), \(g(E) < (D-1)\sigma + DS \) or \(g(E) > (D-1)\sigma + DS \). In the former case \(g(E) \) may be ignored while in the latter case the denominator becomes very large and there is little contribution to the right hand side. The energy separating the two cases, \(E_g(s) \), is given by

\[
E_g(s) = -\frac{1}{\beta} \ln \left(\frac{(D-1)\sigma + DS}{g_0} \right) . \tag{34}
\]

For large \(\beta \) Eq. (33) thus becomes

\[
\frac{1}{D(\sigma+s)} = \frac{1}{(D-1)\sigma + DS} \int_{E_g(s)}^\infty p(E) dE , \tag{35}
\]

or

\[
\frac{D-1}{D} + \frac{S}{D(\sigma+s)} = \int_{E_g(s)}^\infty p(E) dE . \tag{36}
\]

Subtracting from Eq. (36) the \(S=0 \) case of Eq. (36) itself leads to

\[
\frac{S}{D(\sigma+s)} = \int_{E_g(s)}^{E_g(0)} p(E) dE . \tag{37}
\]

For large \(\beta \) \(E_g(s) \) is close to \(E_g(0) \) and the integral may be replaced by \(p(E_g(0)) \left[E_g(0) - E_g(s) \right] \); thus
\[
\frac{s}{D(\sigma+s)} = \frac{p(E_g(0))}{\beta} \left[\ln\left(\frac{(D-1)\sigma(0)}{g_0} \right) - \ln\left(\frac{(D-1)\sigma+Ds}{g_0} \right) \right]
\]

\[
= \frac{p(E_g(0))}{\beta} \ln\left(\frac{\sigma}{\sigma(0)} + \frac{Ds}{(D-1)\sigma(0)} \right).
\]

Introducing the dimensionless "reduced" variables

\[
\tilde{\sigma} = \frac{\sigma}{\sigma(0)} ; \quad \tilde{s} = \frac{\beta}{Dp(E_g(0))\sigma(0)} s,
\]

it is easy to see that Eq. (38) for \(\beta \to \infty \) reduces to

\[
\tilde{\sigma} \ln(\tilde{\sigma}) = \tilde{s}.
\]

Equation (40) first appeared in 1980 in a paper by Bryksin who derived it for a hopping model with electrons tunnelling between randomly placed sites [69]. Equation (40) has also been derived for a hopping model with a box type distribution of activation energies [45]. In the present context of macroscopically inhomogeneous solids, Eq. (40) was derived by Fishchuk for the box distribution of activation energies [59].

The importance of Eq. (40), as emphasized in the above derivation, lies in the fact that the equation is completely independent of the activation energy probability distribution (an implicit assumption made above is that \(p(E) \) is smooth around \(E_c \)). Note that Eq. (40) is only valid for \(D>1 \); for \(D=1 \) one has \(E_g(0) = \infty \) and the step leading from Eq. (37) to Eq. (38) is invalid.

Figure 2a shows the dimensionless conductivity of Eq. (40) (full curve) in a log-log plot for real reduced Laplace frequencies (the numerical solution of Eq. (40) is discussed in Appendix 1 that also gives an analytical approximation to \(\tilde{\sigma}(\tilde{s}) \)).
For large \(\tilde{S} \) the conductivity follows an approximate power law
\(\tilde{\sigma} \approx \tilde{S}^u \) where \(u \) is about 0.9 in a large region. For large
Laplace frequencies Eq. (40) implies the following rough estimate

\[
\tilde{\sigma}_{EMA} = \frac{\tilde{S}}{\ln(\tilde{\sigma}_{EMA})} \approx \frac{\tilde{S}}{\ln(\tilde{S})},
\]

which implies

\[
u = \frac{d \ln(\tilde{\sigma})}{d \ln(\tilde{S})} \approx 1 - \frac{1}{\ln(\tilde{S})} \quad (EMA, \tilde{S} \gg 1)
\]

At real frequencies \(\tilde{S} \) is imaginary. Writing \(\tilde{S} = i\tilde{\omega} \), Fig. 2b
shows the real part \(\tilde{\sigma}'_{EMA}(\tilde{\omega}) \) (full curve) and the imaginary part
\(\tilde{\sigma}''_{EMA}(\tilde{\omega}) \) (dashed curve) of the conductivity. At large
frequencies these functions both follow approximate power laws.
From the approximate expression

\[
\tilde{\sigma}_{EMA} \approx \frac{i\tilde{\omega}}{\ln(i\tilde{\omega})} = \frac{i\tilde{\omega}}{\ln(\tilde{\omega}) + i\frac{\pi}{2}} \quad (\tilde{\omega} \gg 1)
\]

one finds

\[
\sigma'_{EMA} = \frac{\pi}{2} \frac{\tilde{\omega}}{\ln^2(\tilde{\omega})} ; \quad \sigma''_{EMA} = \frac{\tilde{\omega}}{\ln(\tilde{\omega})} \quad (\tilde{\omega} \gg 1)
\]

This implies for the exponents defined by \(\tilde{\sigma}' \sim \tilde{\omega}^{n'} \) and \(\tilde{\sigma}'' \sim \tilde{\omega}^{n''} \)

\[
n' = 1 - \frac{2}{\ln(\tilde{\omega})} ; \quad n'' = 1 - \frac{1}{\ln(\tilde{\omega})} \quad (EMA, \tilde{\omega} \gg 1)
\]

The conductivity at real Laplace frequencies, as well as both its
real and imaginary parts taken at real frequencies, all become
almost proportional to frequency as it goes to infinity. This is
not just a trivial effect reflecting conduction in the capacitors
since, as noted already, the capacitor currents do not contribute
to the free charge conductivity. The latter quantity, in fact,
at any given temperature stabilizes and becomes frequency
independent at sufficiently large frequencies (the range of
validity of Eq. (40) is only finite but becomes very large at low
temperatures).

It is possible to throw light on the EMA solution by
adopting a phenomenological point of view that makes sense in any
dimension $D>1$ at sufficiently low temperatures. In this regime,
the admittances of the network vary many orders of magnitude and
the currents primarily follow paths of least resistance, the
"critical" or "percolation" paths [78,79]. This is the idea
leading to Eq. (19). We now propose an approximation referred to
as the percolation path approximation (PPA) that assumes that not
only the DC currents but also the low frequency AC currents
mainly follow the percolation paths. The solid is regarded as
consisting of several independently conducting "channels", each
channel corresponding to a percolation path. This approximation
ignores the complicated fractal nature of the percolation cluster
[93]. The problem of calculating the conductivity now becomes
one-dimensional and one finds (where K is an unknown numerical
constant)

$$\frac{1}{\sigma(s)+s} = K \int_{-\infty}^{\infty} \frac{d(E)}{g(E)+s} dE .$$

(46)

For a definite range of frequencies around the transition
frequency like, e. g., the 9 decades of Fig. 2, the dominant contribution to Eq. (46) at low temperatures comes from energies close to E_c. Therefore $p(E)$ may be replaced by $p(E_c)$ and the conductivity is the same as that of the one-dimensional box model already solved in Sec. 3. Defining the dimensionless Laplace frequency $\bar{s} = s/s_0$, the PPA thus predicts (compare Eq. (28))

$$\tilde{\sigma}_{PPA}(\bar{s}) = \frac{\bar{s}}{\ln(1 + \bar{s})}. \tag{47}$$

This function is plotted in Fig. 2a for real \bar{s} where S_0 has been adjusted to fit to the EMA solution at low frequencies. The two solutions are very similar. As for the EMA solution one finds from Eq. (47) at real Laplace frequencies $\tilde{\sigma} \sim \bar{s}^u$ where

$$u = 1 - \frac{1}{\ln(\bar{s})} \quad (PPA, \bar{s} \gg 1). \tag{48}$$

At real frequencies $\bar{\omega} = \bar{s}/i$ one finds since

$$\ln(1 + i\bar{\omega}) = \ln(1 + \bar{\omega}^2)/2 + i \arctan(\bar{\omega})$$

$$\tilde{\sigma}'_{PPA}(\bar{\omega}) = \frac{\bar{\omega} \arctan(\bar{\omega})}{\ln^2(1 + \bar{\omega}^2)/4 + \arctan^2(\bar{\omega})}$$

$$\tilde{\sigma}''_{PPA}(\bar{\omega}) = \frac{\bar{\omega} \ln(1 + \bar{\omega}^2)}{\ln^2(1 + \bar{\omega}^2)/2 + 2 \arctan^2(\bar{\omega})}. \tag{49}$$

For $\bar{\omega} \to \infty$ one has $\tilde{\sigma}'_{PPA} \sim \frac{\pi}{2} \bar{\omega}/\ln^2(\bar{\omega})$ and $\tilde{\sigma}''_{PPA} \sim \bar{\omega}/\ln(\bar{\omega})$ leading to the exponents

$$n' = 1 - \frac{2}{\ln(\bar{\omega})} \quad ; \quad n'' = 1 - \frac{1}{\ln(\bar{\omega})} \quad (PPA, \bar{\omega} \gg 1). \tag{50}$$

These exponents are identical to those of the EMA (Eq. (45)).
Both the EMA and the PPA predict a universal frequency
dependence of the low temperature conductivity, independent of
the activation energy probability distribution \(p(E)\) is smooth around \(E_c\). It is interesting that the two
approximations yield similar predictions (Fig. 2), despite being
derived from completely different points of view. The EMA, which
is usually believed to be best for systems with weak disorder
[88,90,94], has here been applied in the limit of extreme
disorder. The PPA, on the other hand, only makes sense for the
extreme disorder found at low temperatures. The similarity
between the two approximations indicates that the EMA may be
reliable even for systems of extreme disorder. On the other
hand, the quantitative EMA prediction for the DC conductivity is
known to be wrong in 3-D because the percolation threshold is
wrongly predicted, and thus one can at most expect the shape of
the conductivity curve to be correct in the EMA. Only computer
simulations can give reliable information as to whether
universality really exists and, if it exists, whether it is well
described by the approximate theories developed here.

5. COMPUTER SIMULATIONS

This section reports the results of computer simulations of
the model in two and three dimensions. In each case a lattice of
admittances is generated where each impedance is determined by an
activation energy randomly chosen according to some probability
distribution \(p(E) \). Several different probability distributions were used: how the activation energies were generated is explained in Appendix 2. At low temperatures large lattices are needed to obtain reasonable statistics. Even for relatively large lattices the system is not self-averaging and it was necessary to average over several lattices to obtain reproducible results. For simplicity all simulations were carried out at real Laplace frequencies; this is enough when one wants to compare the simulations to an analytical expression for the conductivity.

The calculation of the frequency dependent conductivity may be performed by several methods. One possibility, the "brute force method", is to solve Kirchhoff's equations for the potential via some sparse matrix algorithm. Another possibility is to calculate the overall circuit admittance between short-circuited electrodes by "elimination methods". These methods eliminate nodes of the lattice by introducing new admittances without changing the overall admittance, a process that is continued until one is left with only one admittance. The most common elimination method was introduced by Fogelholm in 1980 [95]; it works as follows. Whenever a node is eliminated with \(n \) neighbors and the admittances \(Y_1, \ldots, Y_n \) to its neighbors, all possible connections between the neighbors are introduced such that the \(i \)'th and the \(j \)'th neighbor are given the [additional] admittance \(Y_i Y_j / (Y_1 + \ldots + Y_n) \). For a full lattice the algorithm becomes very inefficient, but it works well for calculations close to the percolation threshold where many admittances are zero [82]. In two dimensions Frank and Lobb have developed a
useful algorithm that eliminates nodes by working each of them towards the lower right corner via consecutive star-triangle transformations [96]. By means of this algorithm it is possible to calculate the admittance of a 200x200 lattice in a few minutes on a modern PC.

Unfortunately no similarly efficient algorithm is available in 3-D. Here it was found most efficient to use brute force methods. It is a rather complex numerical problem to solve large sparse matrix problems when the coefficients vary several decades. The standard Gauss-Seidel, as well as overrelaxation methods [97], converge too slowly. Fortunately, an algorithm has been developed, the algebraic multigrid [98,99], that was made precisely for problems of this type. The algorithm is an algebraic generalization of the standard geometric multigrid method used for solving elliptic differential equations. An excellent introduction to the multigrid idea has been given by Goodman and Sokal [100]. The algebraic multigrid (AMG) solves a problem in a time only proportional to the number of equations. For a N x N lattice in 2-D the computing time varies as N^2, for a N x N x N lattice in 3-D the time varies as N^3. The Frank-Lobb algorithm in 2-D has a computing time varying as N^3; however in practical applications it is still far superior to the AMG because it avoids overflow problems and because the prefactors are clearly in its favor. It should be mentioned that other methods are also available. The transfer matrix method [101] is an elimination method that works in all dimensions, and the Fourier acceleration brute force method [102] is an alternative
to algebraic multigrid for speeding up the Gauss-Seidel relaxation scheme. None of these methods were used in the present work, since it was estimated that they are not competitive.

In two dimensions results of simulations of 100x100 lattices have been reported elsewhere [14] for 5 activation energy probability distributions for the values $\beta=4,16,64$. In Fig. 3 these results are supplemented by simulations of 200x200 lattices for the following activation energy distributions at $\beta=5,10,20,40,80,160$ (see Appendix 2): a) Asymmetric Gaussian, b) Cauchy, c) Symmetric Exponential, d) Powerlaw with exponent -4, e) Box, f) Triangle. For each temperature and activation energy distribution the average of 10 simulations are shown in Fig. 3. The full curve is the EMA prediction found by solving Eq. (32) numerically (Appendix 1), where the reduced variables are given by Eq. (39). Clearly the EMA works well in 2-D at all temperatures. In particular, one finds that universality is approached as $T\rightarrow 0$. Some of the low temperature data deviate from the EMA prediction. However, given the fact that the frequency in some cases (at low temperatures) have been shifted more than 50 decades according to Eq. (39), the fit must be said to be satisfactory. It is unclear whether the deviations from the EMA predictions are real or due to insufficient statistics. The shape of $\bar{S}(S)$ at low temperatures is studied in Fig. 4 where the $\beta=80,160$ data from Fig. 3 have been replotted, this time allowing an empirical scaling of the Laplace frequency to fit the EMA universal prediction (Eq. (40)) best possible.
In three dimensions results for 50x50x50 lattices are shown in Fig. 5 for the values \(\beta = 10, 30, 60 \) for the activation energy distributions: a) Asymmetric Gaussian, b) Cauchy, c) Exponential, d) Box, e) Triangle. The conductivity was found by solving Kirchhoff's equations to determine the potential at each node and subsequently averaging all resistor currents. A potential \(\phi = 0 \) was imposed at one electrode and \(\phi = 1 \) at the other electrode; the remaining 4 faces of the cube were joined by imposing periodic boundary conditions. The 120,000 equations for the node potentials were solved by means of the AMG1R5 Fortran algebraic multigrid subroutine available from the Yale multigrid library [103]. This subroutine was found to be efficient, well documented and providing useful error statements and warnings. The subroutine was previously successfully used for large resistor network calculations by Edwards et al [104]. Still, the present problem is very complex because the area of main interest is at low temperatures where the coefficients of the linear equations vary several orders of magnitude. To avoid overflow and "division by zero" problems, the equations must be "massaged" a bit. This was done by increasing the lowest \(g \)'s to a standard low value, a procedure that is easily justified since these weak links carry little current anyway. The highest \(g \)'s were also changed to a standard value by lowering them; this is allowed because they more or less short-circuit their nodes anyway: they are certainly not "bottlenecks" for the conduction process. In both cases, it was carefully checked that the calculated conductivity is independent of the cut-off's introduced,
indicating that the procedure is permissible. The calculations are rather demanding; the present work was carried out on a modern workstation with 128 MB of memory (the AMG1R5 is quite memory consuming). The results are shown in Fig. 4 where they are compared to the EMA prediction (full curve) only as regards the predicted shape of the conductivity curve (the scaling involved in defining the reduced frequency was here regarded as a fitting parameter). Again one finds at low temperatures that the universal conductivity curve is approached. Unfortunately, it was not possible to go to lower temperatures without serious overflow problems. At present it is therefore not possible to conclude whether the universal conductivity curve in 3-D is slightly less steep than in 2-D.

Finally, it should be mentioned that in both the 2-D and the 3-D simulations it was found that the capacitor currents at low temperatures are very small compared to the resistor currents in a wide range of frequencies around the transition frequency, thus confirming the result for 1-D box model reported at the end of Sec.3.

6. DISCUSSION

This paper dealt with the AC consequences of having a spatially varying electrical conductivity, focussing on the low temperature limit and the case when the local conductivity is thermally activated. The fact that spatial inhomogeneities give rise to polarization phenomena and therefore to a frequency
dependence of the conductivity has been known since the beginning of the century. Simultaneously, numerous experiments have appeared on AC properties of inhomogeneous media. It is therefore surprising that little work has gone into studying AC aspects of the "macroscopic" model dealing with a range of local conductivities. For instance, no paper were given dealing with AC properties in this model of inhomogeneous media at the two "Conferences on Electrical Transport and Optical Properties of Inhomogeneous Media" held in 1978 and 1988 [105]. Usually, AC properties are modelled by means of hopping models where the disorder is assumed to be on the atomic scale [8-10,35,43-45]. Hopping models usually do not include Coulomb interactions, a problem of recent concern [12]. Via Gauss' law the macroscopic model does include the effect of Coulomb interactions.

The idea of a spatially randomly varying activation energy for the conductivity has been discussed for some time in connection with particular systems like heavily doped or compensated semiconductors [59,75] or granular materials [76]. For any disordered system one expects the various forms of inhomogeneities to influence the exact value of the activation energy of the local conductivity. The question is not whether or not this effect is present, but whether it is so pronounced that the concept of a local conductivity stops making sense, in which case the relevant model to use is a hopping model. It is an open question which disordered solids are best described by the macroscopic model and for which hopping models are best. It is far from obvious that the macroscopic model in general is to be preferred to hopping models. The purpose of the present work was
to investigate a simple approach to the modelling of AC conduction in disordered solids, an approach that may be appropriate for some classes of disordered solids.

For a solid with a spatially varying conductivity, the relevant Maxwell's equations in a periodic external field boils down to the single equation (9) for the electrostatic potential. This equation is discretized by putting it on a cubic lattice. If the lattice constant λ is taken to zero, the discretization becomes exact; in Sec. 3, however, the model was simplified further by choosing λ equal to the activation energy correlation length and thus ignoring correlations beyond λ. Thereby one ignores details of how the conductivity varies in space and the model becomes uniquely defined by the activation energy probability distribution.

The discretization of Eq. (9) corresponds to the electric network of Fig. 1. Similar networks have been used many times before as models for AC properties of disordered solids [11,21,28,34,50-55] and the one-dimensional version of the network lies behind the electric modulus formalism [28]. However, the network is traditionally used just as a suggestive picture of the solid and is not justified from basic principles. When this is done (Sec. 3) it turns out that the interpretation of the circuit is rather subtle. The network is not just to be thought of as a straightforward representation of the solid. This is because the capacitor currents are Maxwell's displacement currents, parts of which do not involve charge transport. Focussing on the free charge contribution to the conductivity, this quantity depends on frequency only as an indirect effect of
the capacitors: The electrostatic potential is determined from Kirchhoff's equations for the network. Thereby the node potentials become frequency dependent, making the local free charge currents that run through the resistors frequency dependent. A simple model which may be solved exactly is the one-dimensional box model. In this model, as $\beta \to \infty$, there is a strongly frequency dependent conductivity. It follows from Eq. (29) (compare Eq. (44)) that well above the transition frequency, the phase difference between field and resistor current is close to $\pi/2$ [for any non-zero temperature Eq. (29) is only valid in a finite range of frequencies, but this range becomes very large at low temperatures]. This happens while at the same time the capacitor currents are very small compared to the resistor currents (!). The same peculiar effect of a strong frequency dispersion simultaneously with small capacitor currents was observed in the computer simulations in 2-D and 3-D. In a sense then, the network of Fig. 2 may after all be said to give a genuine representation of the solid, but only at low temperatures and moderate frequencies where the capacitor currents are small.

In the computer simulations one observes an approach towards low temperature universality both in 2-D and 3-D. In 2-D the results were fitted to the EMA prediction of Eq. (32). In 3-D it is necessary to regard the scaling involved in the definition of the reduced Laplace frequency as a fitting parameter to obtain a fit. There are two conclusions to be drawn from the simulations. First, the simulations strongly indicate that the frequency dependence of the conductivity is universal at low temperatures, and this is the major result reported here. As far as is known
to the author, this is the first time that universality has been demonstrated either analytically or from simulations of any model for AC conduction. In 1985 Summerfield [44] reported that several hopping models involving tunnelling electrons solved in the extended pair approximation (EPA) yield almost identical predictions for the frequency dependence of the conductivity. This phenomenon was referred to as "quasi-universality". Since no simulations were reported it was not clear whether the effect is real or due to the approximation used, and there was no study of the temperature dependence of the conductivity for activated jump rates indicating an approach to true universality as $T \to 0$.

The second conclusion to be drawn from the simulations is that the EMA works very well in 2-D at all temperatures, while in 3-D the predicted universal conductivity is approached as $T \to 0$. These results are highly non-trivial since doubt has often been expressed as to how reliable the EMA is for systems with a broad distribution of admittances [88,90,94]. In one dimension the EMA universality prediction is not valid. But since the EMA becomes exact for $D \to \infty$ [88], there is reason to believe in Eq. (40) for all $D \geq 1$ as a good approximation to the universal conductivity.

The percolation path approximation is based on an insight gained from percolation theory, that the percolation paths are preferred at low temperatures. These paths contain activation energies ranging up to a sharp cut-off at the E_c given by Eq. (20). Furthermore, it is clear that in a fixed frequency range around the transition frequency at sufficiently low temperatures, only a narrow interval of activation energies are important.
(namely those around the percolation energy determining the smallest admittances on the percolation paths). Therefore, the solid admittance is expected to correspond to that of a one-dimensional solid with a sharp activation energy cut-off; this is why the PPA predicts the same frequency response as the one-dimensional box model. The fact that the PPA solution is very similar to the EMA solution shows that, while the world is not one-dimensional and seldomly has a sharp activation energy cut-off, at sufficiently low temperatures a disordered solid looks like this as a consequence of the underlying percolation.

The PPA is not quite as straightforward as it seems at first sight, though. For very small S the currents do follow the percolation paths. As long as $S \ll y_c$, where y_c is the smallest admittance on percolation path, the conductivity is clearly frequency independent. The conductivity starts to increase only for $S = S_m$ where $S_m \sim y_c$. But this is exactly the regime where the percolation picture starts to break down because all surrounding admittances also become of order y_c! In this range of frequencies the currents still mainly follow percolation paths; however when the current meets one of the poorest admittances on a percolation path, it may as well pass through the surrounding admittances. This happens seldomly, though, and one still expects the percolation path calculation to be roughly valid.

Since the DC conductivity is determined by the poorest admittances on a percolation path (of order y_c), the frequency for onset of AC conduction, S_m, is of order $o(0)$. In particular
one expects $\sigma(0)$ and S_m to have the same temperature dependence. This is consistent with the well-known BNN-relation (Eq. (2)) which is seen in all experiments. The EMA has the prediction that S_m scales with $T\sigma(0)$ rather than with just $\sigma(0)$ (Eq. (39)). This is sometimes referred to as "Summerfield scaling" [44] though it was apparently first discussed by Scher and Lax in their important papers on the continuous time random walk approximation [43]. It is interesting to note that the extra factor T in the Summerfield scaling of hopping models [43-45] derive from the $1/T$ factor of the fluctuation-dissipation theorem Eq. (4) that is not used in the macroscopic model.

What are the consequences of the presently reported results for the interpretation of experiments? First, it is to be noted that the EMA (or the PPA) universality prediction does give a good fit to many experiments. This has been shown in detail elsewhere [45] where a box-type hopping model yielding the same frequency dependent conductivity (Eqs. (40) and (47)) was discussed in detail. Thus, like in experiments [45]: 1) Eqs. (40) or (47) imply for $\sigma'(\omega)$ an approximate power law with an exponent n' less that but close to one, where $n'(\omega)$ is weakly increasing and $n'\to 1$ as $T\to 0$ (the latter is because, in a fixed frequency range, as the temperature goes to zero one in effect measures further and further out on the universal conductivity curve). 2) When there is no detectable DC conductivity, the exponent is very close to one. 3) The BNN-relation (Eq. (2)) is satisfied with $p=0.59$ in the EMA and $p=0.42$ in the PPA. 4)
The time-temperature superposition principle is satisfied. 5) The AC conductivity is less temperature dependent than the DC conductivity and for \(n' \) very close to one the AC conductivity becomes almost temperature independent; in particular this always happens as \(T \to 0 \). 6) While \(\sigma(0) \) may vary several orders of magnitude for different solids at different temperatures, the AC conductivity varies only relatively little (a consequence of the fact that \(\Delta \varepsilon \) is usually of order \(\varepsilon_0 \)).

The fact that the universal conductivity gives a good fit to many experiments implies that little can be learnt from AC experiments. For instance, observing a power law dependence for the real part of the conductivity with an exponent of 0.8 a few decades above the transition frequency provides no useful information about the solid under study. This is completely contrary to ones intuition and is perhaps the single most important conclusion to be drawn from the present work. In 1972 Pollak and Pike [106] suggested that the microscopic details of a solid are reflected in deviations from \(n'=1 \). But it now appears that the situation is more complex. Apparently, details are to be deduced from deviations from the universal conductivity curve, that itself has a non-trivial structure.

The universality seen in the macroscopic model at low temperatures is also present at low temperatures in hopping models, with an identical predicted universal frequency dependence [107]. At first sight this is surprising, since in many ways hopping models are complementary to the macroscopic model: 1) Hopping models are microscopic, not macroscopic, 2)
they usually involve non-interacting charge carriers and ignore Coulomb interactions, 3) in hopping models one controls the local electric field while in the macroscopic model the overall potential difference is controlled, and finally 4) hopping models are stochastic while the macroscopic model is deterministic. Still, both types of models lead to large systems of sparse linear equations with coefficients that at low temperatures vary several orders of magnitude. Apparently this is enough to produce the same universality. Several mathematical connections exist between hopping models and resistor networks [10,108], but it is not possible to transform a hopping model into the network of Fig. 2: the Miller-Abrahams equivalent circuit for a hopping model has capacitors from each node to the ground [47]. In conclusion, AC measurements alone cannot determine what is the relevant model for conduction in a given disordered solid. To this end other measurements have to be performed [30] like, e. g., transient current experiments [30,109,110], non-linear conductivity measurements (the macroscopic model becomes non-linear much earlier than hopping models), 1/f noise measurements [111], or Hall effect measurements [112].

Some open questions remain. Is the universality seen in computer simulations as \(T \to 0 \) a mathematically exact fact (as believed by the author) or is there just "quasi-universality"? It is clear that the universality is closely linked to the percolation phenomenon, but around the percolation threshold it has recently been shown [113,114] (albeit in a different context than the present) that there are non-universal critical exponents when a broad distribution of admittances is involved. If the
universality is confirmed, what is the exact form of the universal frequency dependence? From the ubiquitous existence of long time tails one expects the universal conductivity curve to be non-analytic at $\bar{\omega}=0$. However, since the universal conductivity exists as a limit only, it is possible that the function is analytic and that one of Eq. (40) or Eq. (47) is exact.
ACKNOWLEDGEMENT

The author wishes to thank P. V. Christiansen, H. Larsen, N. B. Olsen, I. H. Pedersen, and T. Riedel for fruitful discussions and technical assistance. This work was supported by the Danish Natural Science Research Council.
APPENDIX 1: Solving the EMA equation

Equation (32) may easily be solved at any temperature and real Laplace frequency. The full curves of Fig. 3 were obtained by discretizing the equation into 3000 terms using regularly spaced energies; then the conductivity was determined at fixed S and β by the bisection method [97]. Before this is done, however, it is convenient to rewrite Eq. (32) in terms of the reduced variables $\bar{\sigma}$ and \bar{S} defined in Eq. (39).

The universal conductivity given by Eq. (40) may be determined by means of the Newton-Raphson method. Consider first the case of real reduced Laplace frequencies \bar{S}. Introducing $\lambda = \ln(\bar{\sigma})$, Eq. (40) is rewritten by taking \ln on both sides:

$$\lambda + \ln(\lambda) = \ln(\bar{S}) \quad \text{(A.1)}$$

The Newton-Raphson method [97] for solving the equation $f(\lambda) = 0$ consists in iterating after the recipe

$$\lambda_{n+1} = \lambda_n - \frac{f(\lambda_n)}{f'(\lambda_n)} \quad \text{(A.2)}$$

In the case $f(\lambda) = \lambda + \ln(\lambda) - \ln(\bar{S})$, Eq. (A.2) becomes

$$\lambda_{n+1} = \lambda_n \frac{1 - \ln(\lambda_n) + \ln(\bar{S})}{1 + \lambda_n} \quad \text{(A.3)}$$

Equation (A.3) is iterated until convergence by starting with $\lambda_1 = \bar{S}$ if $0 < \bar{S} < 1$ (utilizing the fact that $\lambda = \ln(\bar{\sigma}) \approx \bar{S}$ for small frequencies) and starting with e. g. $\lambda_1 = 1$ if $\bar{S} > 1$.

46
An analytic fit to $\bar{\sigma}(\bar{s})$ is the following expression

$$
\bar{\sigma}(\bar{s}) = \frac{\bar{s}}{LN1(\bar{s}) + b*LN2(\bar{s}) + c*LN3(\bar{s}) - (b+c)*LN4(\bar{s})}
$$

(A.4)

where $LN1(\bar{s}) = \ln(1+\bar{s})$ and one recursively defines $LN(i+1)(\bar{s}) = \ln(1+LNi(\bar{s}))$. The case $b=c=0$ corresponds to the PPA solution Eq. (47). For $b=-2.2$ and $c=3.5$ Eq. (A.4) provides a fit whose logarithm (base 10) for all \bar{s} is within 0.01 of the logarithm of the true solution.

At real frequencies $\bar{\omega}=\bar{s}/i$ the EMA equation becomes complex, but it can still be solved by the Newton-Raphson method. Writing $\lambda=x+iy$ Eq. (A.3) becomes

$$
\begin{align*}
X_{n+1} &= X_n - \frac{A1(n)*B1(n)-A2(n)*B2(n)}{DN(n)} \\
Y_{n+1} &= Y_n - \frac{A1(n)*B2(n)+A2(n)*B1(n)}{DN(n)}
\end{align*}
$$

(A.5)

where, if $L1(n)=\ln(x_n^2+y_n^2)/2$ and $L2(n)=\arctan(y_n/x_n)$, the following abbreviations have been introduced:

$$
\begin{align*}
A1(n) &= x_n^2-y_n^2+x_n[L1(n)-\ln(\bar{\omega})] + y_n[\frac{\pi}{2}-L2(n)] \\
A2(n) &= 2x_ny_n+x_n[L2(n)-\frac{\pi}{2}] + y_n[L1(n)-\ln(\bar{\omega})]
\end{align*}
$$

(A.6)

$$
\begin{align*}
B1(n) &= 1+x_n \\
B2(n) &= y_n \\
DN(n) &= B1^2(n) + B2^2(n)
\end{align*}
$$

Equation (A.5) is iterated until convergence starting with e.g. $X_1=0.01$.

47
and \(y_1 = \tilde{\omega} \) if \(0 < \tilde{\omega} < 1 \) (reflecting \(\ln(\tilde{\sigma}) \times i\tilde{\omega} \) at low frequencies) and with e.g. \(x_1 = 1 \) and \(y_1 = 0 \) if \(\tilde{\omega} > 1 \).

Substituting \(z = i\tilde{\omega} \) into Eq. (A.4) provides an analytic approximation both \(\tilde{\sigma}'(\tilde{\omega}) \) and \(\tilde{\sigma}''(\tilde{\omega}) \). For the real part the fit (again with \(b = -2.2 \) and \(c = 3.5 \)) has logarithm (base 10) within 0.03 of the exact solution; for the imaginary part the logarithm of the fit is within 0.05 of the exact value for \(\tilde{\omega} > 10^{-2} \) (for smaller frequencies the fit becomes poor).

APPENDIX 2: Activation energy probability distributions

In the computer simulations dimensionless activation energies were used. With the exceptions of the two Gaussian distributions (see below) the activation energies for a given probability distribution \(p(E) \) were generated by utilizing the following well-known fact. If \(X \) is a random number between 0 and 1 and \(E(X) \) is some function of \(X \), \(E \) is distributed according to \(p(E) \) given by \(p(E) \frac{dE}{dx} = dp = p(x) \frac{dx}{dx} \). Since \(p(x) = 1 \) one thus finds

\[
p(E) = \frac{1}{|\frac{dE}{dx}|}.
\]

(A.7)

To avoid spurious effects due to subtle correlations in system supplied random numbers, the random numbers were generated
using the function RANO [97]. This function starts by setting up an array RAN[i] of 97 system-supplied random numbers. Reliable random numbers \(X \) are supplied from RANO by using the given random pointer to an index \(i_y \) between 1 and 97: RANO then returns \(X = \text{RAN}[i_y] \) and a new system-supplied random number is filled into the RAN-array to replace \(X \). The same system-supplied random number is used to generate the new pointer index \(i_y \), which is used to point out the next random number, etc.

The percolation threshold \(p_c \) is given by \(p_c = 0.5000 \) (exactly) in 2-D and \(p_c = 0.2488 \) in 3-D [81,82]. The percolation energy \(E_c \) that determines the DC conductivity activation energy (Eq. (19)) is found from

\[
\int_{-\infty}^{E_c} p(E) \, dE = p_c. \tag{A.8}
\]

If \(E(X) \) is an increasing function of \(X \) one finds from Eqs. (A.7) and (A.8)

\[
E_c = E(X = p_c) \tag{A.9}
\]

Some of the distributions used involve only positive activation energies, others involve also negative activation energies. The latter is justified since one should think of \(p(E) \) as centered around some energy \(E_0 > 0 \) [which is left out here because it just gives an extra multiplicative factor \(e^{-\beta E_0} \) to the conductivity while simultaneously displacing the range of frequencies so that
both \bar{S} and $\bar{0}$ are unchanged].

The following activation energy distributions were used in the simulations of Ref. 14 and this paper:

Gaussian

From 12 random numbers X_i (between 0 and 1): $E = \sum_{i=1}^{12} X_i - 6$ gives a nice Gaussian distribution of E with variance 1 [97]:

$$p(E) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{E^2}{2}\right) \quad (-\infty < E < \infty) \quad . \quad \text{(A.10)}$$

The percolation energies are determined from Eq. (A.8) that implies $\text{erf}(-E_c/\sqrt{2}) = 1 - 2p_c$. Denoting the percolation energy in 2-D by $E_c^{(2)}$ and in 3-D by $E_c^{(3)}$ one finds

$$E_c^{(2)} = 0 \quad ; \quad E_c^{(3)} = -0.678 \quad . \quad \text{(A.11)}$$

Asymmetric Gaussian

For 12 random numbers one calculates $E = |\sum_{i=1}^{12} X_i - 6|$; this generates the distribution

$$p(E) = \frac{2}{\pi} \exp\left(-\frac{E^2}{2}\right) \quad (0 < E < \infty) \quad . \quad \text{(A.12)}$$

Equation (A.8) implies for $\text{erf}(E_c/\sqrt{2}) = p_c$; thus
\[E_{c}^{(2)} = 0.674 \quad ; \quad E_{c}^{(3)} = 0.317 \quad . \quad (A.13) \]

\textbf{Cauchy}

Writing \(E = \tan \left(\frac{\pi}{2} x \right) \) where \(x \) is random, produces according to Eq. (A.7)

\[p(E) = \frac{2}{\pi} \frac{1}{1+E^2} \quad (0<E<\infty) \quad . \quad (A.14) \]

Equation (A.9) implies \(E_{c} = \tan \left(\frac{\pi}{2} p_{c} \right) \); thus

\[E_{c}^{(2)} = 1 \quad ; \quad E_{c}^{(3)} = 0.412 \quad . \quad (A.15) \]

\textbf{Exponential}

If \(E = -\ln(1-x) \) one finds

\[p(E) = e^{-E} \quad (0<E<\infty) \quad . \quad (A.16) \]

Equation (A.9) implies \(E_{c} = -\ln(1-p_{c}) \); thus

\[E_{c}^{(2)} = 0.693 \quad ; \quad E_{c}^{(3)} = 0.286 \quad . \quad (A.17) \]

\textbf{Symmetric exponential}

If \(E = \pm \ln(1-x) \) with a random sign one finds
\[p(E) = \frac{1}{2} e^{-|E|} \quad (-\infty < E < \infty) \quad (A.18) \]

Equation (A.8) implies \(E_c = \ln(2p_c) \); thus

\[E_c^{(2)} = 0 ; \quad E_c^{(3)} = -0.698 \quad (A.19) \]

Power law with exponent -4

If \(E = x^{-\frac{1}{3}} - 1 \) one finds

\[p(E) = 3(1+E)^{-4} \quad (0 < E < \infty) \quad (A.20) \]

Equation (A.8) implies \(E_c = (1-p_c)^{-\frac{1}{3}} - 1 \); thus

\[E_c^{(2)} = 0.260 ; \quad E_c^{(3)} = 0.100 \quad (A.21) \]

Box

If \(E = x \) one finds

\[p(E) = 1 \quad (0 < E < 1) \quad (A.22) \]

and

\[E_c^{(2)} = 0.500 ; \quad E_c^{(3)} = 0.249 \quad (A.23) \]

Triangle

If \(E = x^{\frac{1}{2}} \) one finds
\[P(E) = 2E \quad (0 < E < 1) \quad \text{.} \quad \text{(A.24)} \]

Equation (A.9) implies \[E_c = P_c^{\frac{1}{2}} \]; thus

\[E_c^{(2)} = 0.707 \quad ; \quad E_c^{(3)} = 0.499 \quad . \quad \text{(A.25)} \]
REFERENCES

47. A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960).
73. B. I. Shklovskii and A. L. Efros, "Electronic Properties of
Doped Semiconductors" (Springer-Verlag, Berlin, 1984).

81. H. Kesten: "Percolation Theory for Mathematicians" (Birkhauser, Boston, 1982).

103. The AMG1R5 Fortran subroutine is available from "clientr@CS.Yale.Edu" (128.36.12.1); login as anonymous, then look for the file "amg.tar.Z" in the "gmd" directory under the "magnet" directory.

FIGURE CAPTIONS

Fig. 1: Electrical equivalent circuit of Maxwell's equations discretized in 2-D for an inhomogeneous conductor. Similar circuits exist in higher dimensions. All capacitors are equal while the resistors vary, reflecting the spatially varying conductivity of the solid. In the model studied here the resistors were assumed to vary randomly (and uncorrelated) according to some activation energy distribution. In any external field the electrostatic potential defined at each node is found from Kirchhoff's equations. The currents through the resistors are the free charge currents while the capacitor currents are Maxwell's displacement currents. The latter are non-zero in an AC field, thus allowing free charge accumulation (the Maxwell-Wagner effect) without violating the Kirchhoff equation expressing that no "total charge" accumulation at a node is allowed.

Fig. 2: Comparison of the predictions of the effective medium approximation (EMA) and the percolation path approximation (PPA) for the low temperature universal frequency dependent conductivity (Appendix 1). Fig. 2a shows a log-log plot (base 10) of the function $\sigma_{EMA}(\tilde{S})$ (Eq. (40), full curve) and the function $\sigma_{PPA}(\tilde{S'})$ (Eq. (47), dots) where $\tilde{S'}=2\tilde{S}$ was chosen with a scaling of the Laplace frequency so that the Taylor expansion
of the two functions agree to first order at $\tilde{S}=0$. Similarly, Fig. 2b compares the real and imaginary parts of the two approximations where $\tilde{\sigma}_{EMA}(\tilde{S})$ is the full curve, $\tilde{\sigma}''_{EMA}(\tilde{S})$ is the dashed curve, $\tilde{\sigma}'_{PPA}(\tilde{S}')$ is given by the circles, and $\tilde{\sigma}''_{PPA}(\tilde{S}')$ is given crosses. The two approximations yield very similar predictions for the universal conductivity. Analytically, one finds that their asymptotic behavior are identical for $\tilde{S} \to \infty$ (Eqs. (42) vs. (48) and (45) vs. (50)).

Fig. 3: Log-log plots (base 10) of results of computer simulations in two dimensions compared to the EMA predictions (full curves; Appendix 1). Each figure shows the results of averaging 10 simulations using the Frank-Lobb algorithm [96] of a 200x200 lattice at real Laplace frequencies. The following inverse temperatures are shown: $\beta=5$ (△), $\beta=10$ (○), $\beta=20$ (▼), $\beta=40$ (◇), $\beta=80$ (□), $\beta=160$ (+), for the following activation energy probability distributions (Appendix 2): (a) Asymmetric Gaussian, (b) Cauchy, (c) Symmetric exponential, (d) Power Law with exponent -4, (e) Box, (f) Triangle. The dimensionless conductivity and Laplace frequency are defined by Eq. (39). The EMA predictions were found by solving Eq. (32) numerically (Appendix 1). Given the fact that the EMA has no fitting parameters and that \tilde{S} is constructed by scaling S by a factor which is in some cases larger than 10^{50}, the EMA provides
a good fit to the simulations. In particular, the frequency
dependent conductivity at low temperatures becomes universal both
in the EMA and in the simulations.

Fig. 4: Test of the EMA prediction for the low temperature
universal conductivity (full curve) in log-log plots (base 10).
An empirical rescaling of $\tilde{\sigma}$ has been allowed to facilitate a
comparison to the EMA focussing only on the shape of $\tilde{\sigma}(\tilde{S})$.
The figure shows data from the simulations reported in Fig. 3 at
$\beta=80$ and $\beta=160$ for Asymmetric Gaussian (Δ), Cauchy (\circ),
Symmetric Exponential (\bigcirc), Power law with exponent -4 (Π), Box
($+$), Triangle (\triangledown).

Fig. 5: Approach towards universality at low temperatures in
three dimensions plotted in log-log plots (base 10). The five
figures show results for $\beta=10$ (Δ), $\beta=30$ (\circ), and $\beta=60$ (\bullet),
for the following distributions: Asymmetric Gaussian (a), Cauchy
(b), Exponential (c), Box (d), and Triangle (e). Each point
represents the average of 5 simulations of a 50x50x50 lattice
where Kirchhoff's equations were solved by the algebraic
multigrid algorithm using the AMG1R5 Fortran subroutine [103].
The full curve is the EMA prediction for the low temperature
universal conductivity (Eq. (40)). No curves were drawn for the
finite temperature EMA predictions [these are known to be
inaccurate because, while $\sigma(S^{-\infty})$ is accurate, $\sigma(0)$ is wrong
because the EMA has the percolation threshold wrong in 3-D]. As in Fig. 4 an empirical rescaling of the real dimensionless Laplace frequency was allowed, to focus on the shape of the conductivity curve only. It is clear that universality is approached at low temperatures. Unfortunately, it was not possible to go to low enough temperatures to allow a detailed study of the exact shape of the universal conductivity in 3-D.
Fig 2b: EMA–PPA Comparison
(Real Frequencies)

Fig 2a: EMA–PPA Comparison
(Real Laplace Frequencies)
Fig 3a: Asymmetric Gaussian
Dimension 2

Fig 3b: Cauchy
Dimension 2
Fig 3c: Symmetric Exponential
Dimension 2

Fig 3d: Power Law (exponent \(-4\))
Dimension 2
Fig 3e: Box
Dimension 2

Fig 3f: Triangle
Dimension 2
Fig 4a: Beta=80
Dimension 2
△ Asym. ○ Cauchy ◊ Sym. E
□ Power I + Box ▼ Triangle

Log(Conductivity)

Log(Laplace Frequency)

Fig 4b: Beta=160
Dimension 2
● Box ○ Cauchy ◊ Sym. E
□ Power I △ Asym. ▼ Triangle

Log(Conductivity)

Log(Laplace Frequency)
Fig 5a: Asymmetric Gaussian
Dimension 3

Fig 5b: Cauchy
Dimension 3
Figure 5c: Exponential
Dimension 3

Figure 5d: Box
Dimension 3
Fig 5e: Triangle
Dimension 3
73/83 "PIGER OG FYSIK" - et problem og en udfordring for skolen?
Af: Karin Beyer, Susanne Blegaa, Birthe Olsen, Jette Reich og Mette Vedelaby.

72/83 "VERDEN I NYLE FEJIDE" - to metafysiske essays, om og af C.S. Peirce.
Af: Peder Voetmann Christiansen.

73/83 "EN ENERGIANALYSE AF LANDBRUГ" - økologisk contra traditionelt.
ENERGY SERIES No. 9
Specialeopgave i fysik af: Bent Hove Jensen.
Vejleder: Bent Sørensen.

74/84 "VINTAKTURISERING AF MIKROELEKTRONIK" - om vi-
denskabelig løsning og nytten af at lære fysik.
Projektrapport af: Bodil Hager og Linda Sekot-
tak Jensen.
Vejledere: Jens Højgaard Jensen og Bent C. Jørgensen.

75/84 "MATDIDaktURISNINGEN I FREMDIGS GYMNASIUM" - Case: Lineær programmning.
Projektrapport af: Morten Blomhøj, Klavs Frisdaal og Frank Møller Nielsen.
Vejledere: Mogens Brun Høefelt og Jens Bjørnboe.

76/84 "TÆKNERI AANilateS" - et hærvægssvar indkaldt af miljøministeriet, med kritik af miljøstyrelsens rapporter af 15. marts 1984.
ENERGY SERIES No. 10
Af: Niels Bøye Olsen og Bent Sørensen.

77/84 "TOLENTI INDER - PIP ELLE PÅTA?" Omnionændringsvælser belyst ved statistiske modeller.
Projektrapport af: Svend Åge Houmann, Keld Nielsen og Susanne Stender.
Vejledere: Jørgen Larsen og Jens Bjørnboe.

Vejleder: Niels Bøye Olsen.

79/84 "MATEMATIK OG ALÆNDANDELS". Projektrapport af: Henrik Coster, Mikael Wenner-
berg-Johansen, Povl Katterl, Birgitte Lydhom og Morten Overgaard Nielsen.
Vejleder: Bernhelm Boes.

80/84 "KURSUSMATERIALE TIL MATEMATIK B".
Af: Mogens Brun Høefelt.

81/84 "FREKVENSÅRHANGIG LEIDIGSEVNE I ANDORPT GERMANIUM".
Specialrapport af: Jørgen Wind Petersen og Jan Christensen.
Vejleder: Niels Bøye Olsen.

82/84 "MATEMATIK OG FYSIKERISNINGEN I DET AUTO-

83/84 "ON THE QUANTIFICATION OF SECURITY":
PLACE RESEARCH SERIES No. 1
Af: Bent Sørensen
nr. 83 er p.t. udgivet

84/84 "NOBLE ARTIKLER OM MATEMATIK, FYSIK OG ALÆNDANDELS":
Af: Jens Højgaard Jensen, Mogens Niss m.fl.

85/84 "CENTRIFUGALFORSKNINGER OG MATEMATIK".
Specialrapport af: Per Hedejgaard Andersen, Carsten Holst-
Jensen, Else Marie Pedersen og Erling Møller Pedersen.
Vejleder: Stig Andur Pedersen.

86/84 "SECURITY IMPLICATIONS OF ALTERNATIVE DEFENSE OPTIONS FOR WESTERN EUROPE".
PLACE RESEARCH SERIES No. 2
Af: Bent Sørensen.

87/84 "A SIMPLE MODEL OF AC HOPPING CONDUCTIVITY IN DISORDERED SOLIDS".
Af: Jeppe C. Dyre.

88/84 "RISE, FALL AND RESURRECTION OF INFINITESIMALS".
Af: Detlef Laugwitz.

89/84 "TÆNKNINGSFÆLTETNDE".
Af: Bjarne Lillethorup og Jacob Mørch Pedersen.

90/84 "ENERGI I 1,6 - EN TEORI FOR TILSTELLELSE".
Af: Albert Chr. Paulsen.

91/85 "KANTETHORI FOR GYMNASET":
1. Læsevejledning
Projektrapport af: Bager Lundgren, Henning Sten Hansen
og John Johansen.
Vejleder: Torsten Meyer.

92/85 "KANTETHORI FOR GYMNASET".
2. Materiale
Projektrapport af: Bager Lundgren, Henning Sten Hansen
og John Johansen.
Vejleder: Torsten Meyer.

93/85 "THE SEMIOTICS OF QUANTUM - NON - LOCALITY".
Af: Peder Voetmann Christiansen.

94/85 "TÆNKEDREJEN KONRUDI - generelle, matematikeren
og 'inden'.
Projektrapport af: Morten Blomhøj, Klavs Frisdaal
og Frank M. Olsen.
Vejledere: Mogens Niss.

95/85 "AN ALTERNATIVE DEFENSE PLAN FOR WESTERN EUROPE".
PLACE RESEARCH SERIES No. 3
Af: Bent Sørensen.

96/85 "ASPECTER VED KRAFTVARMEFORSYNING".
Af: Bjarne Lillethorup.
Vejleder: Bent Sørensen.

97/85 "ON THE PHYSICS OF A.C. HOPPING CONDUCTIVITY".
Af: Jeppe C. Dyre.

98/85 "VALGÆLDIGEDE I INFORMATIONSDREJEREN".
Af: Bent Sørensen.

99/85 "Der er langt fra Q til R".
Projektrapport af: Niels Jørgensen og Mikael Klintorp.
Vejleder: Stig Andur Pedersen.

100/85 "TÆLESTUFFETS OVARITIL".
Af: Mogens Niss.

101/85 "EXTRAORDINÆRT FØRSLAG TIL KRAFTVARMESTRUKTUR".
Af: Ganoosh Sengupta.

102/85 "OPSTILLING OG ANALYSER AF MATEMATISKE MODELLER, BELAST
VED MODELLER OVER NESTE REDEKOPERATION OG - OPTIMERING.
Projektrapport af: Lis Eløfften, Kirsten Habekost, Lill Røn
og Susanne Stender.
Vejleder: Klaus Grünbaum.
103/85 "JEGLE KOLKISÆPERE OG VIDENSKABENS LYSE IDEER".
Projekttrapport af: Niels Ole Dam og Kurt Jensen.
Vejleder: Bent Sørensen.

104/85 "ANALOGIEBRÆKENDE OG FORHENLIGTERINGER".
Af: Jens Jørgen.

105/85 "THE FREQUENCY DEPENDENCE OF THE SPECIFIC HEAT OF THE CLASS HELIOTROPIUM".
Af: Tage Christensen.

106/85 "A SIMPLE MODEL OF AC HOPPING CONDUCTIVITY".
Af: Jeppe C. Dyre.
Contributions to the Third International Conference on the Structure of Non - Crystalline Materials held in Grenoble July 1985.

107/85 "EN NY GOD INGEN EPIDEMI".
- flodbinding som eksempel på matematisk modellering af et epidemiologisk problem.
Projekttrapport af: Per Hedegaard Andersen, Lars Boye, Carlstenklit Jensen, Else Marie Pedersen og Erling Møller Pedersen.
Vejleder: Jesper Larsen.

108/85 "APPLICATIONS AND MODELLING IN THE MATHEMATICS CURRICULUM - state and trends -
Af: Mogens Niss.

109/85 "COX I STUDIERTIDEN" = Cox's regressionsmodel anvendt på studenteproblemer fra RKE.
Vejleder: Jørgen Larsen.

110/85 "PLANNING FOR SECURITY".
Af: Bent Sørensen.

111/85 "BØRGEN BARTP På FLADE KOPF".
Af: Birgit Andreasen, Beatrix Quinones og Jimmi Staal.
Vejleder: Mogens Niss.

112/85 "VIDENSKABELIGE PROFILERE AF DANSK TECNOLOGISK INNOVATION FRA 1910 - 1950 - BEVIS TID EKSEMPLER".
Vejleder: Claus Bryld og Bent C. Jørgensen.

113/85 "KESSELFØNOMIETRY OF SPILLING ELLITOMIC SYMBOLOLOGY III".
Af: Bernhelm Booss og Krzysztof Wojciechowski.

114/85 "ANNENDELE AF GRAFIKKE METODER TIL ANALYSE AF KONTINUITETSMODELE".
Projekttrapport af: Lone Billmann, Ole R. Jensen og Anne-Lise van den Moos.
Vejleder: Jørgen Larsen.

115/85 "MATHEMATIKENS UDVIDELSE OG TIL RENAISSANCE".
Af: Mogens Niss.

116/85 "A PHENOMENOLOGICAL MODEL FOR THE MEYER-NEELDEL RULE".
Af: Jeppe C. Dyre.

117/85 "KRAFT- EJNEVERERSEMINERING"
Af: Jacob Møhle Pedersen.
Vejleder: Bent Sørensen.

118/85 "TILFÆLLEDIGENHED OG ØVNINGENHEDER INDHOLD".
Af: Peder Voetmann Christiansen.

119/86 "DE E R E GEERE VIST - E BLUDS FEMTE POSTULAT KUNNE NOG GRÅNE RØDE I ANEDEMMEN".
Af: Ibien Mej Christiansen.
Vejleder: Mogens Niss.

120/86 "ET ANTAL STATISTISKE STANDARDMODELLER".
Af: Jørgen Larsen.

121/86 "SIMULATION I KONTINUER TID".
Af: Peder Voetmann Christiansen.

122/86 "ON THE MECHANISM OF GLASS IONIC CONDUCTIVITY".
Af: Jeppe C. Dyre.

123/86 "GAMMASFYSIKKEN OG DEN STORE VERDEN".
Fysiklærerforeningen, IMFA, RKE.

124/86 "OPGAVESAMLING I MATEMATIK".
Samlige opgaver stillet i tiden 1974-1986.

125/86 "MÆKK - systemet - en effektiv fotometrisk spektral - klassifikation af B- A- og F-stjerners".
Projekttrapport af: Birger Lundgren.

126/86 "OM UDVIKLINGEN AF DEN SPEZIELLE RELATIVITETSTeorI".
Projekttrapport af: Lise Odgaard og Linda Søkotak Jensen.
Vejledere: Karin Beyer og Stig Andur Pedersen.

127/86 "CAGOS! BIDRAG TIL UDVIKLINGEN AF DEN ABSTRAKTE ALGEBRA".
Projekttrapport af: Pernille Sand, Heine Larsen og Lars F. Strand.
Vejleder: Mogens Niss.

Projekttrapport af: Niels Jørgensen og Mikael Klintorp.
Vejleder: Jeppe Dyre.

129/86 "PHYSICS IN SOCIETY".
Lecture Notes 1983 (1986)
Af: Bent Sørensen.

130/86 "Studies in Wind Power".
Af: Bent Sørensen.

131/86 "FYSIK OG SATMUND" - Et integreret fysik/historie - projekt om naturanskuelsens historiske udvikling og dens samfundsmæssige betingelser.
Projekttrapport af: Jakob Heckscher, Søren Brønd, Andy Wiered.
Vejledere: Jens Højrup, Jørgen Vogelius, Jens Højgaard Jensen.

132/86 "FYSIK OG DANNELE".
Projekttrapport af: Søren Brønd, Andy Wiered.
Vejledere: Karin Beyer, Jørgen Vogelius.

133/86 "CHERNOBYL ACCIDENT: ASSESSING THE DATA. ENERGY SERIES NO. 15.
AF: Bent Sørensen.

134/86 "THE D.C. AND THE A.C. ELECTRICAL TRANSPORT IN ASBÆR SYSTEM".
Authors: M.B. El-Den, N.B. Olsen, Ib Møt Pedersen, Petr Visčor.

135/87 "INTUITIONISTSK MATHEMATIKS METODER OG ERKENDELSELSE-THEORETISKE FORHOLDSEMNER".
MATEMATIKSPECIAL: Claus Larsen
Vejledere: Anton Jensen og Stig Andur Pedersen.

136/87 "MYSTERI Og NATURLIG FILOSOFI: En skitse af kristendommens første og andet møde med gnostisk filosofi".
Projekttrapport af Frank Colding Ludvigsen.
Vejledere: Historie: Ib Thiersen.
Fysik: Jens Højgaard Jensen.

137/87 "HOPMODELLE FOR ELEKTRISK LEDNING I UORDNEDE FASTE STOFFER" - Resume af licentiatafhandling
Af: Jeppe Dyre.
Vejledere: Niels Boye Olsen og Peder Voetmann Christiansen.
138/87 "JOSEPHSON EFFECT AND CIRCLE MAP."
By: Peder Voetmann Christiansen

139/87 "Nachbarkeit nichtbeherzglicher Technik durch Fortschritte in der Erkennbarkeit der Natur"
Af: Bernhelm Boose-Bavnbek
Martin Bohle-Carbonelli

140/87 "ON THE TOPOLOGY OF SPACES OF HOLONOMORPHIC MAPS"
By: Jens Gravesen

141/87 "RADIOEMETERS UDKVILKING AF BLODGASAPPARATUR - ET TECNOLOGIHISTORISK PROJEKT"
Projektrapport af Finn C. Physant
Vejleder: Ib Thiersen

142/87 "The Calderon Projector for Operators With Splitting Elliptic Symbols"
by: Bernhelm Boose-Bavnbek og
Krzysztof P. Wojciechowski

143/87 "Kursusmateriale til Matematik på NAT-BAS"
af: Mogens Brun Heefelt

144/87 "Context and Non-Locality - A Peirclean Approach"
By: Peder Voetmann Christiansen

145/87 "AIMS AND SCOPE OF APPLICATIONS AND MODELLING IN MATHEMATICS CURRICULA"
Manuscript of a plenary lecture delivered at ICMTA 3, Kassel, FGS 8.-11.9.1987
By: Mogens Niss

146/87 "BESTEMMELSE AF BUKRRESISTIVITETEN I SILICIUM" - en ny frekvensbaseret målmetode.
Fysikspeciale af Jan Vedde
Vejledere: Niels Boye Olsen & Petri Viščor

147/87 "Rapport om BIS på NAT-BAS"
redigeret af: Mogens Brun Heefelt

148/87 "Naturvidenskabsundervisning med Samfundsperspektiv"
af: Peter Colding-Jørgensen DLH
Albert Chr. Poulsen

149/87 "In-Situ Measurements of the density of amorphous germanium prepared in ultra high vacuum"
by: Petri Viščor

150/87 "Structure and the Existence of the first sharp diffraction peak in amorphous germanium prepared in UHV and measured in-situ"
by: Petri Viščor

151/87 "DYNAMISK PROGRAMMERING"
Matematikprojekt af:
Birgit Andrensen, Reid Nielsen og Jimmy Staal

152/87 "PSEUDO-DIFFERENTIAL PROJECTIONS AND THE TOPOLOGY OF CERTAIN SPACES OF ELLIPTIC BOUNDARY VALUE PROBLEMS"
by: Bernhelm Boose-Bavnbek
Krzysztof P. Wojciechowski

153/88 "HALVLEDTERTEKNOLOGIENS UDKVILKING MELLEM MILITÆRE OG CIVILE KREFTER"
Et eksempel på humanistisk teknologihistorie
Historiespeciale
Af: Hans Hedal
Vejleder: Ib Thiersen

154/88 "MASTER EQUATION APPROACH TO VISCOUS LIQUIDS AND THE GLASS TRANSITION"
By: Jeppe Dyre

155/88 "A NOTE ON THE ACTION OF THE POISSON SOLUTION OPERATOR TO THE DIRICHLET PROBLEM FOR A FORMALLY SELFADJOINT DIFFERENTIAL OPERATOR"
by: Michael Pedersen

156/88 "THE RANDOM FREE ENERGY BARRIER MODEL FOR AC CONDUCTION IN DISORDERED SOLIDS"
by: Jeppe C. Dyre

157/88 "STABILIZATION OF PARTIAL DIFFERENTIAL EQUATIONS BY FINITE DIMENSIONAL BOUNDARY FEEDBACK CONTROL: A pseudo-differential approach."
by: Michael Pedersen

158/88 "UNIFIED FORMALISM FOR EXCESS CURRENT NOISE IN RANDOM WALK MODELS"
by: Jeppe Dyre

159/88 "STUDIES IN SOLAR ENERGY"
by: Bent Sørensen

160/88 "LOOP GROUPS AND INSTANTONS IN DIMENSION TWO"
by: Jens Gravesen

161/88 "PSEUDO-DIFFERENTIAL PERTURBATIONS AND STABILIZATION OF DISTRIBUTED PARAMETER SYSTEMS: Dirichlet feedback control problems"
by: Michael Pedersen

162/88 "PIGSK & FYSIK - OG MEGET MERE"
Af: Karin Beyer, Susanne Blegaa, Birthe Olsen, Jette Reich, Mette Vedelsby

163/88 "EN MATHEMATISK MODEL TIL BESTEMMELSE AF PERMEABILITETEN FOR BLOD-NETHINDE-BARRIERER"
Af: Finn Langberg, Michael Jarden, Lars Frølleesen
Vejleder: Jesper Larsen

164/88 "Vurdering af matematisk teknologi
Technology Assessment
Technikfolgenabschatzung"
Af: Bernhelm Boose-Bavnbek, Glen Pate med
Martin Bohle-Carbonelli og Jens Højgaard Jønne

165/88 "COMPLEX STRUCTURES IN THE NASH-MOSES CATEGORY"
by: Jens Gravesen
166/88 "Grundbegreber i Sandsynlighedsregningen"
Af: Jørgen Larsen

167a/88 "BASISSTATISTIK 1. Diskrete modeller"
Af: Jørgen Larsen

167b/88 "BASISSTATISTIK 2. Kontinuerte modeller"
Af: Jørgen Larsen

168/88 "OVERFLADEN AF PLANETEN MARS" Laboratorie-simulering og MARS-analoger undersøgt ved Mønsbaurerspektroskopien.
Fysikspecialle af: Birger Lundgren
Vejleder: Jens Martin Knudsen Fys.-Løeb/HCU

169/88 "CHARLES S. PEIRCE: MURSTEN OG MORTEL TIL EN METAFYSIK.
Førstehold af tidskriftet "The Monist". 1891-93.
Introduktion og overordnete: Peder Voetmann Christiansen

170/88 "OPGAVESAMLING I MATematIK"
Samtlige opgaver stillet i tiden: 1974 - juni 1988

171/88 "The Dirac Equation with Light-Cone Data af: Johnny Tom Ottesen

172/88 "Fysik og Virkelighed"
Kvantemekanikkens grundlæggende problem i gymnasiets.
Fysikprojekt af: Erik Lund og Kurt Jensen
Vejledere: Albert Chr. Poulsen og Peder Voetmann Christiansen

173/89 "NUMERISKE ALGORITMER"
af: Mogens Brun Høefelt

174/89 "GRAFISK FREMSTILLING AF FRAKTALER OG KÄOS"
af: Peder Voetmann Christiansen

175/89 "AN ELEMENTARY ANALYSIS OF THE TIME DEPENDENT SPECTRUM OF THE NON-STATIONARY SOLUTION TO THE OPERATOR RICCATI EQUATION"
af: Michael Pedersen

176/89 "A MAXIMUM ENTROPY ANSWER FOR NONLINEAR RESPONSE THEORY"
af: Jeppe Dyre

177/89 "HVAD SKAL ADAM STÅ MODEL TIL"
af: Morten Andersen, Ulla Engström, Thomas Gravesen, Nanna Lund, Pia Madsen, Dina Rawat, Peter Torstensen
Vejleder: Mogens Brun Høefelt

178/89 "BIOSYNTesen AF PENICILLIN - en matematisk model"
af: Ulla Eghave Rasmussen, Hans Ovvang Mortensen, Michael Jørgen
Vejleder i matematik: Jeppe Dyre
biologi: Erling Lauridsen

179a/89 "LÆRERVEJLEDNING M.M. til et eksperimentelt forløb om kæd" af: Andy Wiered, Søren Breid og Jimmy Staal
Vejledere: Peder Voetmann Christiansen, Karin Beyer

179b/89 "ELEVHÆFTE: Noter til et eksperimentelt kursus om kæd"
af: Andy Wiered, Søren Breid og Jimmy Staal
Vejledere: Peder Voetmann Christiansen, Karin Beyer

180/89 "KÆOS I FYSIKSKE SYSTEMER eksemplificeret ved torsione- og dobbeltspendul" af: Andy Wiered, Søren Breid og Jimmy Staal
Vejledere: Peder Voetmann Christiansen

181/89 "A ZERO-PARAMETER CONSTITUTIVE RELATION FOR PURE SHEAR VISCOELASTICITY"
by: Jeppe Dyre

183/89 "MATHEMATICAL PROBLEM SOLVING, MODELLING. APPLICATIONS AND LINKS TO OTHER SUBJECTS - State, trends and issues in mathematics instruction
by: Werner Blun, Kassel (FRG) og Mogens Miss, Roskilde (Denmark)

184/89 "En metode til bestemmelse af det frekvensafhængige varmefyld af en underafsekt væske ved glasovergangen"
af: Tage Emil Christiansen

185/90 "EN NESTEN PERIODISK HISTORIE"
Et matematisk projekt
af: Steen Grode og Thomas Jensen
Vejleder: Jacob Jacobsen

186/90 "RITUAL OG RATIONALITET I videnskabens udvikling" redigeret af Arne Jakobsen og Stig Andur Pedersen

187/90 "ASA - et kryptografisk system"
af: Annemette Sofie Oulosen, Lars Freiluen og Ole Møller Nielsen
Vejledere: Michael Pedersen og Finn Munk

188/90 "FERMICONDENSATION - AN ALMOST IDEAL GLASS TRANSITION" by: Jeppe Dyre

189/90 "DATAMATER I MATEMATIKUNDervISNINGEN PÅ GYMNASIET OG HØJERE LÆREanstatter af: Finn Langberg
190/90 "FIVE REQUIREMENTS FOR AN APPROXIMATE NONLINEAR RESPONSE THEORY"
by: Jeppe Dyre

191/90 "MOORE COHOMOLOGY, PRINCIPAL BUNDLES AND ACTIONS OF GROUPS ON C*-ALGEBRAS"
by: Iain Raeburn and Dana P. Williams

192/90 "Age-dependent host mortality in the dynamics of endemic infectious diseases and SIR-models of the epidemiology and natural selection of co-circulating influenza virus with partial cross-immunity"
by: Viggo Andreasen

193/90 "Causal and Diagnostic Reasoning"
by: Stig Andur Pedersen

194a/90 "DETERMINISTISK KAOS"
Projektrapport af: Frank Olsen

194b/90 "DETERMINISTISK KAOS"
Kærselrapport
Projektrapport af: Frank Olsen

195/90 "STADIER PÅ PARADIGMETS VEJ" Et projekt om den videnskabelige udvikling der førte til dannelse af kvantemekanikken.
Projektrapport for 1. modul på fysikuddannelsen, skrevet af: Anja Boisen, Thomas Hougaard, Anders Gorm Larsen, Nicolai Ryge.
Vejleder: Peder Voetmann Christiansen

196/90 "ER KAOS NØDVENDIGT?" en projektrapport om kaos’ paradigmatiske status i fysikken.
af: Johannes K. Nielsen, Jimmy Staal og Peter Bøggild
Vejleder: Peder Voetmann Christiansen

197/90 "KontraktAktiske konditionaler i HOL"
af: Jesper Voetmann, Hans Osvang Mortensen og Aleksander Hest-Madsen
Vejleder: Stig Andur Pedersen

198/90 "Metal-Isolator-Metal systemer"
Speciale
af: Frank Olsen

199/90 "SPREDT FÆGTNING" Artikelsamling
af: Jens Højgaard Jensen

200/90 "LINEÆR ALGEBRA OG ANALYSE"
Noter til den naturvidenskabelige basisuddannelse.
af: Anne Nielson

201/90 "Undersøgelse af atomære korrelationer i amore stoffer ved røntgendiffraktion"
af: Karen Birkelund og Klaus Dahl Jensen
Vejledere: Petr Viščor, Ole Bakander

af: Peder Voetmann Christiansen

203/90 "OPGAVESAMLING I MATEMATIK" 1974-1990
af: Peder Voetmann Christiansen

204/91 "EKKENDESELSE OG KVANTEMEKANIK" et Brededemodul Fysik Projekt
af: Thomas Jørgensen
Vejleder: Petr Viščor

205/91 "PEIRCE’S LOGIC OF VAGUENESS" by: Clauudine Engel-Tiercelin Department of Philosophy Université de Paris-1 (Panthéon-Sorbonne)

206a+b/91 "GERMANIUMDEAMALYSSE SAMT A - GE TYNDFILMS ELEKTRISKE EGENSKABER" Eksperimentelt Fysikspædag og Annette Post Nielsen
Vejleder: Petr Viščor

207/91 "SOME REMARKS ON AC CONDUCTION IN DISORDERED SOLIDS"
by: Jeppe C. Dyre

208/91 "LANGEVIN MODELS FOR SHEAR STRESS FLUCTUATIONS IN FLOWS OF VISCO-ELASTIC LIQUIDS"
by: Jeppe C. Dyre

209/91 "LORENZ GUIDE" Kompendium til den danske fysiker Ludvig Lorenz, 1829-91.
af: Helge Krabbe

210/91 "Global Dimension, Tower of Algebras, and Jones Index of Split Separable Subalgebras with Unitality Condition."
by: Lars Kadison

211/91 "I SÅNDÆKKETS TIERKUNST" - historien bag teorien for de komplekse tal.
Vejledere: Jesper Larsen og Bernhelm Bøde-Brandbek

212/91 "Cyclic Homology of Triangular Matrix Algebras"
by: Lars Kadison

213/91 "Disease-induced natural selection in a diploid host"
by: Viggo Andreasen and Fredrik H. Christiansen
214/91 “Habilej i steren” - om elektromagnetiske Oplag til undervisningsmateriale i gymnanti.
Af: Nils Kruse, Peter Gastrup, Kristian Hoppe, Jeppe Guldager
Vejledere: Petir Viscor, Hans Hedal

215/91 "Physics and Technology of Metal-Insulator-Metal thin film structures used as planar electron emitters"

216/91 "Kvantesmekanik på PC'eren"
af: Thomas Jessen

217/92 "Two papers on APPLICATIONS AND MODELLING IN THE MATHEMATICS CURRICULUM"
by: Mogens Nisse

218/92 "A Three-Square Theorem"
by: Lars Kadison

219/92 "RUPMOK - stationær strømning i elastiske rør"
af: Anja Boisen, Karen Birkelund, Mette Olufsen
Vejleder: Jesper Larsen

220/92 "Automatisk diagnosticerig i digitale kredsløb"
af: Bjørn Christensen, Ole Møller Nielsen
Vejleder: Stig Anker Pedersen

221/92 "A BUNDLE VALUED RADON TRANSFORM, WITH APPLICATIONS TO INVARIANT WAVE EQUATIONS"
by: Thomas P. Branson, Gestur Olafsson and Henrik Schlichtkrull

222/92 On the Representations of some Infinite Dimensional Groups and Algebras Related to Quantum Physics
by: Johnny T. Ottesen

223/92 THE FUNCTIONAL DETERMINANT
by: Thomas P. Branson

224/92 UNIVERSAL AC CONDUCTIVITY OF NON-METALLIC SOLIDS AT LOW TEMPERATURES
by: Jeppe C. Dyre

225/92 "HATMODELLER" Impedansextraskopi i ultræret en-kristallinsk sillicium
af: Anja Boisen, Anders Gorm Larsen, Jesper Varmer, Johannes K. Nielsen, Kit R. Hansen, Peter Bøggild
og Thomas Hougaard
Vejleder: Petir Viscor

226/92 "METHODS AND MODELS FOR ESTIMATING THE GLOBAL CIRCULATION OF SELECTED EMISSIONS FROM ENERGY CONVERSION"
by: Bent Sørensen

227/92 “Computersimulering og fysik”
af: Per M. Hansen, Steffen Holm, Peter Malbom, Mads K. Dall Petersen, Perunie Postgaard, Thomas B. Schröder, Ivar F. Zeeck
Vejleder: Peder Voetmann Christiansen

228/92 "Teknologi og historie"
fire artikler af:
Mogens Niss, Jens Høyrup, Ib Thiersen, Hans Hedal

229/92 "Masser af information uden betydning" En diskussion af informationstheorien, i Tor Nørretranders’ "Mærk Verden" og en skitse til et alternativ bæredygtig på andenordens kybernetik og semiotik.
af: Søren Brier

230/92 “Vinklens tredeling - et klassisk problem”
et matematiskt projekt af
Karen Birkelund, Bjørn Christensen
Vejleder: Johnny Ottesen

231A/92 “Elektronidiffusion i sillicium - en matematisk model”
af: Jesper Voetmann, Karen Birkelund, Mette Olufsen, Ole Møller Nielsen
Vejledere: Johnny Ottesen, H.B. Hansen

231B/92 "Elektronidiffusion i sillicium - en matematisk model" Kildetekster
af: Jesper Voetmann, Karen Birkelund, Mette Olufsen, Ole Møller Nielsen
Vejledere: Johnny Ottesen, H.B. Hansen

232/92 "Undersøgelse om den simultane opdagelse af energiens bevarelse og isærdeles om de af Mayer, Colding, Joulle og Helmholtz udførte arbejder”
af: L. Arleth, G.I. Dybkar, M.T. Østergård
Vejleder: Dorthe Posselt

233/92 “The effect of age-dependent host mortality on the dynamics of an endemic disease and Instability in an SIR-model with age-dependent susceptibility”
by: Viggo Andreasen

234/92 "THE FUNCTIONAL DETERMINANT OF A FOUR-DIMENSIONAL BOUNDARY VALUE PROBLEM"
by: Thomas P. Branson and Peter B. Gilkey

235/92 OVERFRADESTRUKTUR OG POREUDVIKLING AF KOKS - Modul 3 fysik projekt -
af: Thomas Jessen
236a/93 INTRODUKTION TIL KVANTE
HALL-EFFEKTEN
af: Anja Boisen, Peter Bøggild
Vejleder: Peder Voetmann Christiansen
Erland Brun Hansen

236b/93 STRØMSSAMMENBRUD AF KVANTE
HALL-EFFEKTEN
af: Anja Boisen, Peter Bøggild
Vejleder: Peder Voetmann Christiansen
Erland Brun Hansen

237/93 The Wedderburn principal theorem and
Shukla cohomology
af: Lars Kadison

238/93 SEMIOTIK OG SYSTEMEGENSKABER (2)
Vektorbånd og tensorer
af: Peder Voetmann Christiansen

239/93 Valgsystemer - Modelbygning og analyse
Matematik 2. modul
af: Charlotte Gjerrild, Jane Hansen,
Marin Hermannsson, Allan Jørgensen,
Ragna Clauson-Kaas, Poul Lützen
Vejleder: Mogens Niess

240/93 Patologiske eksempler.
Og andre matematiske fysiske betydning for
den matematiske udvikling
af: Claus Døoby, Jørn Skov Hansen, Runa
Ulsæ Johansen, Peter Melbon, Johannes
Kristoffer Nielsen
Vejleder: Mogens Niess

241/93 FOTOVOLTAISK STATUSNOTAT 1
af: Bent Sørensen

242/93 Brovedigeholdelse - bevar mig vel
Analyse af Vejdirektoratets model for
optimering af broreparationer
af: Linda Kyndlev, Køre Fundal, Kamma
Tulinius, Ivar Zeck
Vejleder: Jesper Larsen

243/93 TANKEEKSPERIMENTER I FYSIKKEN
Et 1.modul fysikprojekt
af: Karen Birkelund, Stine Sofia Korremann
Vejleder: Dorthe Posselt

244/93 RADONTRANSFORMATIONEN og dens anvendelse
i CT-scanning
Projektrapport
af: Trine Andreasen, Tine Guldager Christiansen,
Nina Skov Hansen og Christine Iversen
Vejledere: Gestur Olafsson og Jesper Larsen

245a+b /93 Time-Of-Flight målinger på krystallinske
halvedere
Specialrapport
af: Linda Székotak Jensen og Lise Odgaard Gade
Vejledere: Petr Viscor og Niels Røye Olsen

246/93 HVERDAGSVIDEN OG MATEMATIK
- LÆREPROCESSER I SKOLEN
af: Lena Lindenskov, Statens Humanistiske
Forskningsråd, RUC, IMFUFA