METHODS AND MODELS FOR ESTIMATING THE GLOBAL CIRCULATION OF SELECTED EMISSIONS FROM ENERGY CONVERSION

BENT SØRENSEN
METHODS AND MODELS FOR ESTIMATING THE
GLOBAL CIRCULATION OF SELECTED EMISSIONS FROM
ENERGY CONVERSION
by Bent Sørensen
IMFUFA Text No. 226 48 pages ISSN 0106-6242

ABSTRAKT

Methods and Models for Estimating the Global Circulation of Selected Emissions from Energy Conversion

BENT SØRENSEN

IMFUFA, Roskilde University
Roskilde, Denmark

Draft April 1992
In final form July 1992

Review prepared for an IAEA meeting in Vienna, 11-15 May, 1992

© 1992 Bent Sørensen
Contents:

1. Introduction 3

2. Releases from energy conversion activities 5
 2.1. Sources 10
 2.2. Substances released 11
 2.3. The physical and chemical form of release 13
 2.4. Pathways 14
 2.5. Removal by deposition and transformation 14

3. Brief survey of models used in the description of the dynamical behaviour of released matter 16
 3.1. The need for models 16
 3.2. Time scales 16
 3.3. General circulation models 18
 3.4. Uncoupled transport models 21
 3.5. Coupled models of circulation, transport and processes 25
 3.6. Compartment models 26

4. Transport of individual materials 28
 4.1. Carbon dioxide and other substantial residues 28
 4.2. Trace materials and minor residues from fuels of biological origin 31
 4.3. Radioactive materials from nuclear fuel cycles 36

5. Discussion 41

References 43
1. Introduction

This overview aims at describing a number of models available or under consideration for the description of large-scale dispersal of releases associated with energy production and use. The ultimate purpose is to provide tools that may contribute to a life-cycle assessment of different energy sources. This is a project of truly interdisciplinary nature, and it both requires the input from experts in fields such as system dynamics, meteorology, biology, agriculture and medicine, and also the overviewing ability of scientists trained in multidisciplinary work.

The models of interest in this context certainly comprise those, where a released substance will follow the general circulation, that is the wind and current fields, before it eventually is deposited or transformed. The wind fields may be derived from measured values, in case of after-the-fact studies, or they may be obtained from meteorological models of the circulation, as they would have to be, in order to provide predictions for the dispersion and derived effects of the substance in question.

A next step may be to construct models that include both the general circulation and the substances released, in a coupled mode. This implies that the release of a given substance can alter the general circulation and vice versa (as for example carbon dioxide may, due to its influence on the radiation balance and due to its transfer between ocean and atmosphere compartments being influenced by e.g. temperature). Both physical and chemical processes may take part in such feed-back processes. The time-scale associated with feed-back loops turn out to be of decisive importance.

General experience with coupled models is becoming available in meteorology, e.g. through coupling of hydro cycle models and wind circulation models. Consideration of clouds, precipitation, ice formation and melting, evaporation, etc., as well as the processes associated with absorption of radiation, have brought to surface many of the issues connected with the coupling of different physical and chemical processes characterized by different time scales and different spatial behaviour.

In some cases, where neither circulation nor geographical dispersal pattern are important, one may simplify the calculations by using a compartment model. A compartment could be all tropical forest, but it could also be a particular forest on a particular location. The effort consists in identifying proper compartments, which make it meaningful to treat these compartments as single en-
tities and to consider only the time-dependent transfer between different com-
partments. Some dispersion models treat ocean volumes in this fashion, while
maintaining a circulation model for the atmosphere. The prime consideration
associated with employing a compartment model is to justify the simplifica-
tion and to demonstrate the plausibility of assuming average transfer rates be-
tween compartments.

The review is structured in the following way: Section 2 describes the releases
of various substances, from their source in the energy handling and conversion
chain, through pathways in soil, water and the atmosphere, noting how they
may undergo changes in chemical or physical form, e.g. by chemical reactions,
by radioactive decay, or by physical processes such as attachment of particles
to rain droplets.

In section 3, models used for the description of long-range transport of various
substances through the ecosphere are described. A variety of models suited for
describing dispersal on different time-scales are mentioned, including com-
partment models as well as models based on general circulation simulation
techniques. The state of each of these model areas is discussed.

Section 4 describes, by way of examples, the knowledge pertaining to the
large-scale or global circulation of individual materials, such as carbon dioxide
from combustion of fossil fuels, trace gases and particulate matter from the
conversion of fossil and other fuels of biological origin, as well as radioisot-
topes arises from nuclear power plants, either in normal operation or being
released during accidents.

In section 5, the models are subjected to a brief discussion, aimed at establish-
ing the limitations of each type of model, identifying the key parameters need-
ed to perform an actual calculation, and the relationship between the nature of
the questions asked, and the model appearing most appropriate for answering
those questions.

One should bear in mind, that the decision-making process eventually relies on
a comparative assessment of a variety of health, social and environmental im-
pacts. Therefore, the models selected should provide outputs suitable for car-
rying out such evaluations.
2. Releases from energy conversion activities

The various emissions, effluents and other reject material arising from the generation and subsequent conversions of energy may differ greatly in substance and form, depending on the type of energy system being considered. Because different energy systems may have their most severe impacts in different stages of the conversion chain, it is important to include all stages of conversion in any assessment. This may be referred to as a life-cycle assessment (Sørensen, 1992). In the case of fuel-based energy systems, the term "fuel-cycle approach" is sometimes used (IAEA, 1992).

In this section, the sources of environmentally important substances associated with energy systems are identified, the nature of the substances is described, the form of release, the pathways through the global environment, and finally the transformations and transfers, that may take place, and in some cases may render the material less offending (deposition, decay, chemical transformation, etc.).

![Diagram of energy conversion chain](image)

Figure 1. Outline of energy conversion chain (Sørensen, 1988).
Figure 2. Coal usage chain with indication of inputs, energy losses, and outputs including environmental impacts. The quantities correspond to annual use by a 1 GW(e) power plant based on hard coal. Alternative usage paths indicated are: A. Gasification or liquefaction, B. Industrial combustion (with use of Jensen and Sørensen, 1984).
Figure 3. Oil product usage chain, highlighting an automobile consuming 2000 litres of gasoline annually, and with indication of energy losses and environmental impacts (Jensen and Sørensen, 1984).
Figure 4. Natural gas usage chain, for production of 1 GJ of low-temperature heat and domestic hot water for a building environment. (Based upon UNEP, 1985).
Figure 5. Uranium usage chain for 1 GW(e) electric power generation, indicating some environmental impacts of normal operation (MCi denotes million curies) (with use of Sørensen, 1974; UNEP, 1985).
Figure 6. Wind power usage chain for 1 GW(e) turbine array, indicating possible environmental impacts during normal operation. For use in isolated mode, impacts associated with some energy storage facility must be added.

2.1. Sources

The sources of possible environmental releases are all stages of energy production and use, throughout the life-cycle stages. Examples are effluents from mining, refining, primary conversion, distribution activities such as transport or transmission, end-use conversion, waste disposal and decommissioning. Figure 1 gives an overview of the chain of conversion, and Figures 2-6 show examples of the primary steps in the chain, for some typical energy sources, along with a number of associated impacts.

The need to consider all stages of fuel handling and energy conversion is of course, that some energy sources have major impacts in one area, while other have their main impacts in a different area.

It is clear that every time some equipment is needed, or an industrial process is required, there will be construction, operation and maintenance work with associated environmental impacts. Furthermore, equipment replacement or de-
commissioning may entail separate impacts, as indicated in the overview of Figure 7.

Figures 2-6 illustrate the normal operation of energy facilities. In all cases there is the further possibility of accidents, ranging from minor to in some cases major ones. Accident types are specific for each type of energy conversion process and involve different impacts, such as fires, release of chemicals, release of radio-nuclides, occupational hazards (physical or health-related), exposure to dangerous materials, etc. Only in some cases, normal operation or accidents lead to global circulation of undesirable substances. These will be looked closer at in the following.

2.2. Substances released

For selected types of energy chains, one may attempt to extract a list of those releases, that can contribute to global dispersal of substances of concern.

In case of fossil fuels, this includes fines and residues from mining and handling, solid and liquid residues from combustion (ashes and filter contents), as well as a number of substances released to the atmosphere. They comprise particulate matter, sulphur and nitrous oxides, carbon monoxide, heavy metal and
radioactive trace elements, and organic compounds such as poly-aromatic and unburned hydrocarbons. Furthermore, there is the main combustion product, carbon dioxide.

Measures are normally being taken to reduce the emissions. A major exception is CO₂, for which current research has not identified removal options, except at costs far above the present cost of the fuel itself. The actual amounts of controllable releases depend on filter efficiencies and other details of the conversion system.

Accidental releases are mainly of the hydrocarbons themselves (oil tanker spills, gas explosions, etc.). Additional environmental impacts along the fuel cycle conversion chain are associated with waste heat, e.g. from power plants.

Except for the larger particles, which will settle on the ground near the point of release, most of the releases mentioned are candidates for long range and sometimes global dispersal.

For nuclear fuel cycles, the main problem is radioactive substances, although waste heat is also produced at the power plants. Due to the low concentration of materials such as uranium in nature, the formation of residues, tailings and dust from mining and milling operations are of importance. In the enrichment process, during normal operation of power plants, and during reprocessing of spent fuel, most potential releases are controlled. Exceptions are tritium, ¹⁴C and noble gases, which are often released to the atmosphere.

Spent fuel and power plant decommissioning poses problems of disposal of highly radioactive material. The present philosophy is to attempt to confine these materials for a very long time, possible after extracting those materials that can be re-used (such as plutonium). Sea dumping of lower level radioactive waste materials from the operation of nuclear facilities has been a widespread practice, but the tendency is towards halting this practice, for which a de facto moratorium exists at present.

In case of accidents, core fission and activation products are released into the environment. Notable among these are ¹³¹I, ⁹⁰Sr, ¹³⁷Cs and ²³⁹Pu, plus a number of less abundant isotopes, characterized by a long half-life and thus the possibility of long-range impacts.

For renewable energy, the environmental impacts vary quite substantially among the different technologies. For photovoltaic and thermal solar panels, the impacts are practically restricted to the manufacturing process, and possi-
bly work accidents during construction and maintenance.

For wind turbines, additional impacts include land use, noise and telecommunication interference, none of which are in the global category (Sørensen, 1981; 1986).

For biofuels, the situation is closer to that of fossil fuels. Substantial air pollution and solid residues may derive from burning of wood. For biogas and liquefied biofuels such as ethanol or methanol, there is a co-production of carbon dioxide, which however should be smaller than the amount of carbon dioxide originally assimilated by the plant. Biogas has some positive side-effects, related to the waste treatment processes often associated with biogas production. If the source of biomass is not waste or residues, but energy crops, then there may be environmental side-effects similar to those of agriculture (Jensen and Sørensen, 1984).

Energy storage facilities, which are required to a larger extent in some energy systems, than in others, entail further impacts.

2.3. The physical and chemical form of release

Knowledge of the physico-chemical form of releases from energy facilities is important for modelling the behaviour of substances released into the environment. Typical forms include gases, aerosols and larger particles, soluble substances, liquid wastes and solid waste (fines, residues, complex chemical compounds, including organic material and heavy metal compounds, etc.).

Synergisms between different forms of release have been discussed (IAEA, 1975).

The effect of releases may be direct or indirect. Toxicity of a substance would imply a direct effect, while - as an example of indirect effects - one may consider the change in the radiation balance caused by aerosol releases. These changes may lead to warming or cooling, depending on the aerosol size distribution (Volz, 1983; Sørensen, 1979).
2.4. Pathways

Airborne emissions from energy-related facilities often originate from point-like sources, although there are exceptions (e.g. releases from surface mining activities). If the release is gaseous, it may be transported along with the air, but it may also move independently from the air masses, e.g. due to differences in density or diffusivity. Particulate emissions may travel independently by the rules of gravity and up-draft, or they may become adsorbed on e.g. water particles or droplets. Finally, several emitted substances would be capable of entering into chemical reactions with other substances. Temperature differences between emissions and air play a role for the dispersal. This is relevant, not only during the initial phases, in case of radioactive materials. The physical properties of the released material may change in time, and several of the mechanisms indicated may come into play during different stages of atmospheric transport.

Typical processes of depletion along the path of transport are rainout and washout, which lead to deposition on the underlying surface, as do dry deposition mechanisms.

Material released to waterways are also subject to a multitude of possible pathways, e.g. following the transport of water to a certain degree, but occasionally behaving differently.

Material released to soil or other surfaces may sieve down to ground water, may adhere to soil particles, may be washed away by rain and continue travel along the sewage system. Ground water motion is usually a slow process, that eventually brings the material into streams, rivers and finally into the oceans. However, retention processes are at play all along the chain, and deposition at each stage is possible.

2.5. Removal by deposition and transformation

Processes such as deposition of airborne material on the ground remove the effluents from the pathways relevant for global dispersion. For a review of dry deposition see e.g. Davidson and Wu (1989), for aspects of wet deposition e.g. Barrie and Schemenauer (1989). Figure 8 shows an example of wet deposition (of 137Cs) in Sweden following the Chernobyl nuclear accident.

Chemical processes or radioactive decay may transform the substance into other materials, with altered importance for the global environment. A review
of the sources, sinks and transformation processes for aerosols in the atmosphere may be found in Heintzenberg (1989).

Figure 8. Measured deposition of ^{137}Cs (kBq/m²) in Sweden (aircraft measurements May 1-23, 1986) (Persson and Robertson, 1991).

3.1. The need for models

Models are needed to bring out the messages contained in data, and for allowing evaluation also in cases where insufficient data are available, including of course any attempt to make predictions regarding the future. The final purpose of these efforts is to find mitigating strategies against negative impacts of the releases in question, and models serve to evaluate the implications associated with different strategies. As some impacts are delayed and some releases can cause impacts over very large intervals of time, a number of different models may be needed in order to arrive at a full understanding of short-term and long-term effects and options. The dispersion models generally aim at predicting the amounts of substances with potential impacts, that will be found at different times at locations of interest, whether at sea, on land or in the atmosphere.

3.2. Time scales

Important for the selection of model to use is the time scale of events on which statements need to be derived. Often, the size of the time scale translates into a length scale: short time-interval behaviour of a point release cannot be associated with global effects, but long-term behaviour may. The assumptions on the relation between length and time scales are contained in the ergodic hypothesis (see Sørensen, 1979).

The present survey focusses on impacts requiring large-scale or global outlook. That implies that methods such as plume models aimed at short-term, local dispersal are not of interest. Also models with only regional scope may be unsuited, but there is a smooth transition between regional and large-scale or global model capabilities, and the selection of model will depend very much on the type of release and on the questions likely to be asked.

For example, radioisotopes such as 85Kr and 3H behave very differently, since one is a noble gas and the other enters into a variety of different chemical compounds relevant both for the physical processes of the environment, and also for the biological compartments. In one case, one may be satisfied with a long-term distribution of the radionuclide in a steady state situation, while in
the other case, the dynamical behavior is needed in order to assess the range of possible impacts.

For estimating the impacts associated with radioisotopes, the half-life of the substance is clearly the basic parameter for deciding what time scale that will be appropriate. For non-radioactive substances, the impacts could persist forever, but in many cases, there is an ultimate transfer to a compartment, where little harm is expected, or a transformation of the substance into a form where impacts are considered small. As a general observation, one may say that if a substance is going to remain in the environment for a very long time and with a fairly smooth distribution of concentrations, then a detailed modelling of the dynamical behaviour may not be relevant. In such cases, compartment models may be useful. They allow the calculation of total amounts of substances as function of time, for each compartment used.

The class of models based on general circulation models may be said to be compartment models with so many compartments, that they simulate a continuum. The real difference, however, is in the way the rate of transfer between locations (infinitesimal "compartments") is derived. Real compartment models must derive the transfer rates from data, and thus, a sufficiently long time-series of data is required to be available, and one which grows with the number of compartments in the model. On the other hand, the general circulation is given by basic physical laws, and transport models based on general circulation models also have as foundation the proper physical and chemical laws for describing the substance in question.

Hence, even if the circulation-based transport model is compartmentalized for numerical reasons, it still is based on accepted theory (i.e. laws of nature) and not on ad hoc parametrization of some data. In practice, the distinction may be weaker, because also in general circulation models, an averaging has to be made, which again poses the question of how one can deduce the laws governing averages from the microscopic laws for whatever is inside the boxes being averaged over. More precisely, one can prove that for linear interactions, the averaging leads to meaningful laws for the averages, whereas for most non-linear systems, the averages do not behave dynamically in ways that depend only on averaged quantities. This will be discussed further below.

The question of scales is then a question of averaging, and thus is tightly connected to the problems of averaging over non-linear effects. Any calculation, which confines itself to a certain scale (rather than doing the entire calculation on a microscopic scale and averaging only the results) must address the problem of non-linear couplings to motion on scales below the selected one.
3.3. General circulation models

A model of global circulation can be formed by suitably averaging the physical equations of motion for continuous media (i.e. the motion of air or water). Additional equations may be written for each substance of interest, including sources and sinks to describe processes outside the model.

The basis is Euler's transport equation for a given substance A:

$$D_t(pA) + \text{div}(vpA) + \text{div}(\sigma_A) = S_A$$

where t is time, p density, v the velocity field in the medium, σ a vector describing the transport by molecular processes, and S a source term. Using the density weighted average q^* of a quantity q,

$$q^* = \frac{\langle pq \rangle}{p}$$

one may introduce $q = q^* + q'$ into Euler's equation and obtain

$$D_t(pA^*) + \text{div}(pv^*A^* + \langle pv'A' \rangle) + \text{div}(\langle \sigma_A' \rangle) = S_A$$

It is seen, that it has not been possible to fully eliminate the deviations from the averages, v' and A', from the equation of motion, and hence the description of the general circulation cannot be made without knowledge of the small-scale motion, called turbulence or chaotic motion. In practice, what one does is to neglect the term depending on v' and A', or replace it by some parametrized average, and integrate the remaining terms. Also the source term S will have to be assumed to depend only on averaged quantities. The result is a solution, which will be valid only as long as the chaotic terms stay negligible. For wind fields, this may be periods of a few days to one or two weeks, depending on the conditions. This is the reason, that it is fundamentally impossible to make valid weather predictions for periods exceeding the indicated values.

If, on the other hand, diurnal weather patterns are not considered important, the same equations may be used to predict long-term behaviour. The reason is, that the forcing of the system (through solar radiation), and the boundary conditions that make oceans and atmosphere stay around the world, place some constraints on the effects of the chaotic terms, which makes it possible to extract climate statements from integrating the Euler equations. Climate is defined as the set of (e.g. 30 years) averages of weather parameters.
The averaged Euler equations may comprise a quite large set of coupled equations: For $A = 1$, it is the mass continuity equation, for A equal to a velocity component, ω_A is the stress tensor and S_A the external forces (gravitational and Coriolis, assuming that a coordinate system following the Earth's rotation is used). By introducing an equation of state for the fluid (ocean or atmosphere; in the latter case, the ideal gas law is often used), and the first law of thermodynamics, Eulers equation becomes an equation for temperature, with source terms representing absorption of solar radiation and heat from condensation of water.

The treatment of releases is made be increasing the number of Eulerian equations. Each substance is described by a mixing ratio A_i, and its injection or removal is described by suitable source terms S_{A_i}. Chemical processes and other transformations (cloud formation, etc.) not covered by the Euler equations must be added through auxiliary equations. In summary, a coupled set of equations of motion will have to be solved with a number of side calculations, describing physical and chemical processes taking place at a given place in the atmosphere-hydrosphere-lithosphere system (Sørensen, 1979).

The averaging time scale is typically of the order of 10 minutes to 1 hour in time for the motion of air in the atmosphere, and much more for water in the oceans. In practice, general circulation models include a number of further approximations needed for numerical purposes. Either, an integration mesh is established in physical space (typical current calculations use about 3' horizontal boxes and around 10 vertical layers in the atmosphere, and a much coarser mesh in the oceans), or a spectral transformation is performed on the horizontal part, with Fourier components up to about 30 included (IPCC, 1990). As stated, the variables describing small-scale motion are neglected, but the coupling terms between small-scale motion and large-scale motion are, as mentioned, averaged in such a way, that only the large-scale variables remain (Boussinesq approximation, cf. Sørensen, 1979). In meshed models, the finite size of each box gives rise to undesired integration effects such as pseudo-diffusion (motion from box to box faster than is physically possible). There are standard techniques for approximately getting rid of such problems.

In case of releases from energy production, they are treated just like other scalar quantities (for example temperature), by adding one more equation describing the transport of the substance (coupled to other equations through the wind velocity), and describing the sources, sinks and transformation properties for the quantity in question (with further possibility of coupling to other among the equations). Many calculations use extremely simplified versions of these relations. For instance, the effect of carbon dioxide doubling would be estimated by simply adjusting the source term describing the heat sources and
sinks in the temperature equation, and repeating the calculations for different fixed amounts of CO₂ being present globally in the atmosphere.

Most recent atmosphere-ocean coupled models have tried to incorporate the mechanisms of transfer of CO₂ between oceans and the atmosphere. This goes along with other ocean-atmosphere transfer, say of heat or of momentum. Each of these transfers have been subjected to detailed study, e.g. exploring the penetration of radiation into the oceans, and the variations in the extent of a mixed layer (Woods, 1985). The boundary conditions between the ocean and the atmosphere have been particularly difficult to reproduce, and in many cases, model fluxes have been arbitrarily adjusted, in order to get an equilibrium ocean model and an equilibrium atmosphere model to match (IPCC, 1990).

Important issues in the construction of circulation models is the modelling of cloud chemistry. This issue is reviewed e.g. by Iribarne and Cho (1989). Present efforts aim at improving the realism of the modelling regarding ocean-atmosphere coupling, cloud behaviour, role of particulate matter and ice dynamics, i.a. (IPCC, 1990). The methods used for solving the models, whether meshed or spectral, are in current implementations reaching the limit of available computer power, especially for time-dependent study of transient behaviour over time-scales of say hundred years (recall that the integration step is typically a fraction of an hour, as required due to the forcing from the diurnal radiation cycle.

Figure 9 shows the horizontal windfield calculated for January over the tropical Pacific (top), and the corresponding measurements (bottom) (Gates et al., 1985; each half barb corresponds to 1 m/s).

Figure 10 shows the key features being modelled by present generations of global circulation models, and Figure 11 shows an example of the validation against available temperature data of a 3-dimensional ocean-atmosphere model. Both validation and sensitivity analysis are important tasks for any modelling effort in this regime. Less interesting are the benchmark studies, that used to be popular some years ago. A benchmark study compares different model implementations and is useful in disclosing e.g. programming errors. However, it does not validate the models, and the mutual agreement between ten models, which do not reproduce experimental data well, may even lead to misinterpretations, if poorly communicated to decision-makers.
3.4. Uncoupled transport models

The number of coupled equations can easily become very large. It is therefore often necessary to neglect some couplings, which will make the calculation manageable. In many cases, the release considered is incapable of causing major alteration on the circulation itself. Exceptions may be substances causing processes where large releases of heat take place, e.g. by releasing significant amounts of chemically-active substances; or cases where physical processes are able to modify the radiation balance, e.g. by altering absorption or by modifying cloud cover. Without couplings, the equations may be solved one after
Figure 10. The components of present-day general circulation models (white arrows indicate processes internal to the calculations, black arrows indicate external processes; some processes are only partly internalized) (Houghton, 1984).

Figure 11. Comparison of observed December-January-February zonal mean temperatures (right) and values calculated by a coupled ocean-atmosphere model (IPCC, 1990; calculation from Washington and Meehl, 1989; observed atmospheric temperatures from Newell et al., 1972, observed oceanic temperatures from Levitus, 1982).
the other, starting with the wind fields, that enter in many of the subsequent transport equations.

For example, in many calculations of the effect of altered carbon dioxide levels, one has decoupled the problem by translating the new CO₂ level into a modified heat source term, with which the standard calculation of the circulation is repeated (either once, for a radical change in CO₂, or in a time-dependent way, with small annual increases in CO₂ incorporated into the radiation terms). Such calculations are still in a preliminary state, with simplified assumptions on the coupling between ocean and atmosphere models, and with *ad hoc* adjustments for discrepancies arising from mismatch between the ocean and atmosphere models (cf. IPCC, 1990).

Simplified calculations would solve only the transport equation for the substance of interest, using standard meteorological data or standard circulation model runs as input. In this approach, dispersal and deposition can easily be included. An example is provided in Figure 12, for SO₂ in the troposphere.

One further step of simplification would be not to use the mixing ratio of the substance as variable, but to consider one or more puffs released from each source. The meteorological data or circulation model (wind fields) are used to transport the pointlike puff, thus decoupling the transport from the dilution (in-

![Figure 12. Longitudinally averaged results of a calculation of tropospheric sulphur distribution (unit: ppt volume), including cloud transport and chemical transformation. Standard monthly wind fields are input as data (Langner and Rodhe, 1991).](image-url)
crease of puff dimensions). Such models, called trajectory models, are clearly inadequate when the puff has grown to such a size, that different parts of it will be affected differently by the wind fields. Trajectory models can be worked backwards, and they have played a role in identifying the origin of pollution observed in given locations. Trajectory models were first highlighted at the UN Environment Conference in Stockholm (Swedish Ministries for Foreign Affairs and Agriculture, 1971). Figure 13 shows a recent example of using the method to trace lead pollution.

The simplest form of trajectory model considers only the wind velocity at the point of release, and uses a uniform (e.g. Gaussian) expansion of the plume. Such plume models, which may be adequate for estimating pollution close to a stack, have been misused extensively for describing radioactive releases associated with nuclear reactor accidents (e.g. Rasmussen, 1975). The inadequacy of models implying monotonously decreasing concentrations as function of distance from the point of release is demonstrated by the measured activity levels in Europe following the nuclear accident in Windscale 1957 (see Figure 14).
Figure 14. Time-integrated ^{131}I-activity in air (pCi-days per m3), following the 1957 Windscale nuclear reactor accident (Stewart and Crooks, 1958; Lindell and Löfveberg, 1972).

3.5. Coupled models of circulation, transport and processes.

In the future, it is likely to become possible to run larger, realistic coupled models, in those cases, where couplings are important. There would still be processes modelled by auxiliary calculations, and transport equations decoupled from the rest.

For example, as the CO$_2$ models have become time-dependent models for the transition to a different climate (as distinguished from earlier steady state calculations for a fixed, higher value of CO$_2$), then it is no longer reasonable to neglect the geographical and temporal distribution of CO$_2$ releases and transfers. Rather than modelling CO$_2$ as an overall change in the radiation source term, one would have to include the effects on the circulation of a realistic CO$_2$ cycle (see section 4.1 below), and to include the influence of clouds, cir-
simulation and ocean-atmosphere transfers, as well as of vegetation, on the disposition of CO2. This is just one example of the more complex models needed at the present stage.

The ingredients of such models are largely available, and the limiting factor is computer power, or ingenuity in selecting and improving numerical methods.

In case of other greenhouse gases, e.g. CFC’s, the stratospheric processes are of decisive importance, implying a need for integrating the chemical modelling with the transport of the CFC’s to the stratosphere, and the geographically varying effects on the radiation source term. The same is true for modelling of ozone.

3.6. Compartment models

Compartment models are characterized by a box structure. The boxes are not necessarily small, but an assumption of homogeneous mixing and a well-defined interaction between boxes has to be made, in order to treat each of them as an entity. Examples of typical compartments are top soil, fresh water lakes, mixed layer of oceans, deep ocean, sea beds, etc. Compartment models can be used to study fairly local problems, such as the consequences for a given region of radioactive fallout (Sørensen, 1975), or entirely global problems of atmosphere, hydrosphere and lithosphere fallout (Björkström, 1983; IAEA,

Figure 15. Simplified compartment model of global hydrological cycle (levels in m3, fluxes in m3/y) (NCRP, 1979).
Sometimes a compartment model can capture the main behaviour of complex systems, at a very small computational effort, and these models are often used to get a first orientation in a new kind of problem.

The compartmentizing of a problem necessarily hides some levels of interaction, and granted that most interactions in systems of interest are non-linear, it is clear that models dealing only with compartment averages can be very wrong. It also implies, that the laws governing the interaction between boxes has to be determined from selected data, because the underlying physico-chemical laws generally cannot be generalized to the averaged compartments, unless they are linear. In other words, there is no way to theoretically derive the laws of transfer between compartments. There is then no guarantee, that the compartment model will be applicable to a new piece of data not used in the construction of the model, and the only type of verification possible is to withhold some fraction of the available data, and then test the model on these. There will be problems if too many data have been used in formulating the model, but also if too few are used.

Scientifically speaking, except for linear systems, compartment models are only suitable for depicting flows and levels in a known system, not for predictive work. For linear systems or systems with small deviations from linearity, compartment models can be very useful. An example of linear behaviour is radioactive decay of given substances, but the transport of such substances may be governed by very non-linear processes.
4. Transport of individual materials

This section will exemplify the results of measurements and modelling for individual substances released from the activities associated with energy production and use. The substances are grouped as large-scale releases from fossil fuel conversion, trace releases from fossil and renewable energy conversion, and finally releases from nuclear energy conversion.

4.1. Carbon dioxide and other substantial residues

Substantial releases from conversion of fossil fuels include carbon dioxide emitted into the atmosphere (Figure 16), and residues (mostly solid) either de-

![Figure 16. Estimated global emissions of CO2 (IPCC, 1990).]
posited or used in construction work (road beds, building materials). Also the combustion of biomass or generation of biogas produces CO$_2$, but in these cases the time delay between CO$_2$ assimilation and re-release is much shorter. The average residence time of carbon dioxide in the atmosphere is several years, and that in oceans is orders of magnitude larger, which makes the problem a global one. CO$_2$ emissions as function of time have been reconstructed from a multitude of data sources, including ice core studies (Siegenthaler and Oeschger, 1987; Tans et al., 1990).

From a global dispersion point of view, CO$_2$ is of interest. Because the possible adverse effect is a long-range modification of the radiation disposal, the short-term distribution of CO$_2$ is of minor interest: CO$_2$ is predominantly emitted into the northern hemisphere, but after a few years, such a release has been fairly homogeneously distributed over the entire atmosphere. The time frame for effects on the greenhouse warming to reach a new equilibrium is believed to be of the order of 70-100 years (IPCC, 1990).

The short-term distribution of CO$_2$ is characterized by the hemisphere differences (Figure 17) and a seasonal pattern (Figure 18). The uncertainty in deriving these values is significant (Enting and Mansbridge, 1989). The main cause of the seasonal pattern is the seasonal variations in CO$_2$ assimilation by green plants. They explain most of the seasonal variation and some of the North-South difference (due to larger land masses on the Northern hemisphere). The rest of the differences may be explained by the difference in burning of fossil

![Figure 17. Amplitude in seasonal CO$_2$ emissions as function of latitude (Woodwell, 1989).](image)
fuels between the hemispheres, and possibly an effect of the higher rate of fossil fuel combustion during winter is contributing, although it cannot quite compete with the spring plant growth peak.

Substantial effort has gone into trying to predict the global warming caused by the measured increase in the atmospheric content of CO₂ from all sources (fuel combustions, land use changes, etc.)(IPCC, 1990). Figure 19 gives the result

![Figure 19. Response to a gradual doubling of CO₂ in the atmosphere over a period of 100 years, as calculated using a two-dimensional, zonally averaged model with atmosphere-ice-ocean couplings (Fichefet et al., 1989). The values indicated are surface temperature changes in °C.](image)
of a global circulation calculation, assuming a gradual doubling of CO₂ over a 100 years period, and viewing the temperature variation as function of time and latitude.

4.2. Trace materials and minor residues from fuels of biological origin

Among the trace substances released from fossil energy conversion activities are SOₓ, NOₓ, N₂O, trace metals, PAH (Polyaromatic hydrocarbons) and unburned hydrocarbons (CH₄, oil products, etc.), plus other particulate matter with different size distributions. Burning of biomass exhibit similar releases, and other biofuel technologies may produce isolated releases, e.g. of methane).

The physical and chemical form of these releases cause them to mainly stay in the lower troposphere and to become deposited during time intervals typically in the range of days or weeks. Thus, the main environmental problem is regional rather than global. For this reason, adequate results have often been obtained with simple models such as forward or backward application of trajectory models. As an example, Figures 21-23 show lead concentration in the air

Figure 20. Emission data for trace lead over Europe 1980-81 (Petersen, Weber and Grassl, 1989).
Figure 21. Lead content of surface air over Europe, January 1980, as calculated by using a trajectory model (Petersen, Weber and Grassl, 1989).

Figure 22. Dry deposition of lead over Europe, January 1980, as calculated by using a trajectory model (Petersen, Weber and Grassl, 1989).
Figure 23. Wet deposition of lead over Europe, January 1980, as calculated by using a trajectory model (Petersen, Weber and Grassl, 1989).

Figure 24. Annual nitrogen emissions from energy activities (mMole/m²/y). The numbers 1-10 indicate remote wet deposition sites (Levy and Moxim, 1989).
Figure 25. Latitude-height distribution of volume mixing ratio (ppb) of NO$_x$ calculated for summer and winter months using a global circulation model (Levy and Moxim, 1989).

Figure 26. Latitude-longitude distribution of volume mixing ratio (ppb) of NO$_x$ at the height 990 mb in the surface layer of the atmosphere, as calculated using a global circulation model (Levy and Moxim, 1989).

Figure 27. Latitude-longitude distribution of wet deposition of nitrogen (mMole/m2/y), as calculated using a global circulation model (Levy and Moxim, 1989).
over Europe, along with dry and wet deposition of lead, as calculated using a trajectory model and available emission data for 1980, depicted in Figure 20.

Global circulation models may give a more detailed view of the dispersal. Assuming the NO\textsubscript{X} sources shown in Figure 24, Levy and Moxim (1989) finds the latitude-height distributions shown in Figure 25, and the latitude-longitude distribution and wet deposition given in Figures 26 and 27.

Several trace elements have natural sources, as well as originating from energy conversion. Among these are sea salt spray processes, volcanic eruptions, forest fires, biogenic emissions, and erosion followed by dust and aerosol dispersal by wind.

Some trace materials may reach the stratosphere and take part in complex chemical reactions there, including ozone depleting processes.

Figure 28 shows the latitude and seasonal distribution of methane in the atmosphere. Indications from radio-isotope analysis are, that about 20% derives from energy production, mainly coal mining activities and wood burning (IPCC, 1990).
4.3. Radioactive materials from nuclear fuel cycles

Among the radioisotopes released from nuclear power plants during normal operation as well as accidents are tritium, 14C, isotopes of noble gases and iodine, cesium, strontium, plutonium and others. A survey of dispersion models used on a medium and long scale may e.g. be found in Reiter (1974). Estimates of emissions and dispersion of radionuclides with potential global impact, such as 3H, 14C, 85Kr and 129I, have been made by IAEA (1985).

Figure 29 shows the oceanic distribution of tritium in the North Atlantic, as modelled by a 3-dimensional general circulation model and compared with available data. The main source of tritium is atmospheric bomb tests. Small fractions presently derive from nuclear facilities and cosmic ray impact. However, it has been estimated, that reactor tritium may become the dominant source in the not so distant future, depending of course on the development of nuclear energy, including possible actions taken to reduce emissions (Cohen, 1975).

Trajectory models have been used to study the transport of 131I following the 1957 Windscale accident, with reasonable agreement with the data (Figure 14) (ApSimon et al., 1980).

![Figure 29. Tritium levels in the North Atlantic one decade after major bomb tests. Left: GEOSSEC observations (IPCC, 1990). Right: results of 12 level circulation model (Sarmiento, 1983).](image-url)
Based upon a compartment model, Figure 30 shows calculated distribution among the compartments of ^{129}I, as function of time after release into the compartment "atmosphere over land". Figure 31 gives similar results for ^3H, based on the compartment model depicted in Figure 15.

The Chernobyl accident gave rise to substantial fallout at large distances from the point of release (Figure 32 and 33). A radionuclide transport model, based upon a calculation of the general circulation and adapted to measured wind speeds, is used to simulate the time evolution of global dispersal. Figures 34-36 show examples of the calculated distribution of ^{131}I as function of time, height and location, while Figure 37 show the activity at a given location as function of time, as compared with measurements. It is seen that this kind of modelling is capable of reproducing quite closely the actual data (Pudykiewicz, 1989).

Figure 30. Distribution of iodine-129 on compartments, calculated as function of time after release into the atmosphere over land (Kočer, 1981; IAEA, 1985).

Figure 31. Distribution of tritium on compartments, calculated as function of time after release into atmosphere over land (NCRP, 1979; IAEA, 1985).
Figure 32. Accumulated 131I fallout pattern following the nuclear accident at Chernobyl (kBq/m2). Numbers in italics are integrated over each quadrant (10^5 Bq) (Sørensen, 1987).

Figure 33. Accumulated 137Cs fallout pattern following the nuclear accident at Chernobyl (kBq/m2). Numbers in italics are integrated over each quadrant (10^5 Bq) (Sørensen, 1987).
Figure 34. ^{131}I activity fields (Bq/kg) at mean sea level, A: 2d, B: 4d, D: 13d after release (Figure 35 give the values 7d after release). Dashed areas have activities between 10^{-4} and 10^{-2}, and black areas above 10^{-2} Bq/kg (Pudykiewicz, 1989).

Figure 35. ^{131}I activity fields (Bq/kg) 7 days after release, at different heights. Dashed areas have activities between 10^{-4} and 10^{-2}, and black areas above 10^{-2} Bq/kg (Pudykiewicz, 1989).

Figure 36. ^{131}I activity field (Bq/kg) 7 days after release, at 300mb, for North America. Dashed areas have activities between 10^{-4} and 10^{-2}, and black areas above 10^{-2} Bq/kg (Pudykiewicz, 1989).
Figure 37. 131I activity fields (Bq/kg) for selected locations (Stockholm, Sweden; Chiba, Honshu Island, Japan; Vancouver, British Columbia, Canada; Chester, New Jersey, USA), as function of time. (Pudykiewicz, 1989).
5. Discussion

The combination of general circulation models and transport models for individual substances of interest is in principle the most proper models for estimating global dispersal. However, these models can become extremely complex, e.g. if the substances of interest interact chemically or undergo many physical transformations. In practice, at least at the present stage of computer technology, one is thus confined to dealing with simplified models, that focus on some aspects deemed important. For instance, the effect of the substance under study on the general circulation of winds and currents is often small and may be neglected. This allows the large number of equations to be partially decoupled, so that the calculation can proceed sequentially.

Still, there may be situations, where this approach is not good enough. One case is that of dispersal depending on chaotic behaviour of winds and currents (i.e. eddies and other motion on a scale below the scale defining the averaging that is part of any actual calculation). Some help may in such cases be furnished by stochastic calculations, but this depends on the kind of questions being asked.

This is a quite general criterion for the selection of models to use. The kind of questions being addressed will to a large degree determine the type of approximations that would be useful and that are permitted. The kind of effects included in combined circulation models with transport and chemistry models of various substances depends strongly on the lengths of time during which it is desired to follow the substances. Much depends on whether the dynamical behaviour on a latitude-longitude-height basis is important for the questions being asked. If the substances of interest move from say atmosphere to soil and water on a short time scale, but lead to health or environmental effects on a much larger time-scale, then a combination of two (or more) differently structured models may be the best solution, just as the time-scales of atmospheric and oceanic motion do often warrant separate treatment, because of the difference in scale involved.

In some cases the model may be simplified to a point-like description of the release (as opposed to a three-dimensional field). This allows trajectory models to be used, for a time-series of such "puffs", eventually with the addition of a dilution estimate. The aim of such models are normally singular events on a regional scale. In special weather situations, even plume models may be used
close to the source of release. Such models predict monotonously decreasing concentrations with distance from the source.

In cases where the dispersal seems to be governed by linear processes, and where natural compartments can be defined, compartment models can serve a useful purpose.

The next years are likely to see a further development in our ability to run coupled models with more and more equations. Still, all dispersal models are approximate, and there are questions that will never become feasible to seek answers to. These are questions influenced by the non-linear couplings to chaotic motion in the atmosphere or in the oceans. An important task will be to identify useful ways of characterizing various kinds of release dispersal, which do involve such non-accessible quantities. In other words, to be able to determine the conditions for being able to answer a given question, or reversely to determine the set of questions, that may be answered in a given situation.
References

"Physical behaviour of radioactive contaminants in the atmosphere", IAEA, STI/PUB/354, Vienna.

1/78 "TANKER OM EN PRAKISIS" - et matematikprojekt.
Projektrapport af: Anne Jensen, Lena Lindenskov, Marianne Kesselhavn og Nicolai Lombolt.
Vejleder: Anders Madsen.

2/78 "OPTIMERING" - Menneskets forgæde beheur-
skelsmæssigheder af natur og samfund.
Projektrapport af: Tom J. Andersen, Tommy R. Andersen, Gert Krønke og Peter H. Lassen.
Vejleder: Bernhelm Booss.

3/78 "OPÇAVEASMILING", breddekursus i fysik.
Af: Lasse Rasmussen, Age Bone Kræmmer og Jens Højgaard Jensen.

4/78 "THE ESSAYS" - om matematikundervisning,
matematiklæreruddannelsen og videnskabs-
redning.
Af: Mogens Niss.
Nr. 4 er p.t. udgået.

5/78 "BIBLIOGRAPHISK VEJLEDNING til studiet af
DEN MODERNE FYSISKE HISTORIE".
Af: Helge Krøgh.
Nr. 5 er p.t. udgået.

6/78 "NOGLE ARTIKLER OG DEBATINDLÆG OM - lærer-
uddannelsen og undervisning i fysik, og de
naturvidenskabelige fags situation efter
studenteroprøret".
Af: Karin Beyer, Jens Højgaard Jensen og
Bent C. Jørgensen.

7/78 "MATEMATIKKENS FORHOLD TIL SAMFUNDSØKONOMIEN".
Af: B.V. Ghedenko.
Nr. 7 er udgået.

8/78 "DYNAMIK OG DIAGRAMMER". Introduktion til
ergy-bond-graph formalismen.
Af: Peder Voetmann Christiansen.

9/78 "OM PRAKISIS INFLUENCE I MATEMATIKKEN UD-
VIKLING". - Motiver til Krønkes "Nova Store-
ometria Dolorum Vinarion".
Projektrapport af: Lasse Rasmussen.
Vejleder: Anders Madsen.

10/79 "TERMODYNAMIK I GYMNASIUM",
Projektrapport af: Jan Christensen og Jeanne Mørtensen.
Vejledere: Karin Beyer og Peder Voetmann Christiansen.

11/79 "STATISTISKE MATERIALER".
Af: Jørgen Larsen.

12/79 "LINÆRE DIFFERENTIALLIGNINGER OG DIFFEREN-
tiallignningssystemer".
Af: Mogens Brun Heefelt.
Nr. 12 er udgået.

13/79 "CAVENISH'S FORSØG I GYMNASIET",
Projektrapport af: Gert Krønke.
Vejleder: Albert Chr. Paulsen.

14/79 "BOOKS ABOUT MATHEMATICS: History, Philosophy,
Education, Models, System Theory, and Work of",
Af: Else Højrup.
Nr. 14 er p.t. udgået.

15/79 "STRUKTURÆL STABILITET" OG KATASTROFER I SYSTEMER
i og udenfor termodynamisk lægesvigt".
Specialtegnagave af: Leif S. Striegler.
Vejleder: Peder Voetmann Christiansen.

16/79 "STATISTIK I KRÆFTFORSKNINGEN",
Vejleder: Jørgen Larsen.

17/79 "AT SPØGE OG AT SVARE i fysikundervisningen".
Af: Albert Christian Paulsen.

18/79 "MATHEMATICS AND THE REAL WORLD", Proceed-
dings of an International Workshop, Ros-
kilde University Centre, Denmark, 1978.
Preprint.
Af: Bernhelm Booss og Mogens Niss (eds.).

19/79 "GEOMETRIS, SKOLE OG VIRKELIGHED",
Vejleder: Mogens Niss.

20/79 "STATISTISKE MODELLER TIL BESTEMMELSE AF SIKRE
DOSE FOR CARCINOGENE STUFFER".
Vejleder: Jørgen Larsen.

21/79 "KONTROL I GYMNASIET- FORMÅL OG KONSEKVENSER",
Projektrapport af: Crilles Bacher, Per S. Jensen,
Proben Jensen og Torben Myrem.

22/79 "SEMSPAN'T OG SYSTEMEØKONOMI (I)",
1-port lineør response og strøj i fysikken.
Af: Peder Voetmann Christiansen.

23/79 "ON THE HISTORY OF EARL WAVE MECHANICS - with
special emphasis on the role of reality".
Af: Helge Krøgh.

24/80 "MATEMATIKKOPPETELEGER HOS 2.C'ERE",
afh. 1. En analyse. 2. Interviewmateriale.
Projektrapport af: Jan Christensen og Knud Lindhardt Rasmussen.
Vejleder: Mogens Niss.

26/80 "OM MATHEMATIFISK MODELLER".
En projektrapport og to artikler.
Af: Jens Højgaard Jensen m.fl.

27/80 "METODOLOGY AND PHILOSOPHY AF SCIENCE IN PAUL
DIRAC'S PHYSICS".
Af: Helge Krøgh.

28/80 "DELLEKRANSERELAXATION - et forsøg til en
y model bygget på vaskernes viskoelastiske egenskaber".
Projektrapport af: Gert Krønke.
Vejleder: Niels Boye Olsen.

29/80 "ODON - undervisningsmateriale til et kursus i
differentialligningssystemer".
Projektrapport af: Tommy R. Andersen, Per H.H. Larsen og Peter H. Lassen.
Vejleder: Mogens Brun Heefelt.

30/80 "FUSIONENERGIEN - -- AVONSKAMFIKTNS ENERGI\-
ON".
Af: Oluf Danielsen.
Nr. 30 er udgået.

31/80 "VIDENSKABSTORSTIiske PROBLEME VED UNDERSVINING" -
SYSTEMER BASERET PÅ MODELLER".
Projektrapport af: Troels Lønne og Jørgen Kar-
røbæk.
Vejleder: Stig Andrø Pedersen.
Nr. 31 er p.t. udgået.

32/80 "POLYMERE STOPPERS VISCOSITÆTSDÅRENDSKABER -
BEVÆGT VED HVARE AF MECHANISK IMPEDANCEMÅL -
GER MISSBAUERREFLEKTÆR".
Projektrapport af: Crilles Bacher og Proben Jensen.
Vejledere: Niels Boye Olsen og Peder Voet-
mann Christiansen.

33/80 "KONSTITUERING AF FAG I ENK, FOR DEMSK - NATUR-
VIDENSKABELIGE UDVIKELSER, I-II".
Af: Arne Jakobsen.

34/80 "ENVIRONMENTAL IMPACT OF WIND ENERGY UTILIZATION",
ENERGY SERIES NO. 1.
Af: Bent Sørensen.
Nr. 34 er udgået.
35/80 "HISTORISKE STUDIER I DEN NYE ATOMFYSIKS UDVIKLING". Af: Helge Kragh.
36/80 "HAVAD ER MENINGEN MED MATEMATIKUNDERSKINVISNINGEN". Fire artikler. Af: Mogens Niss.

39/81 "TIL KRITIKKEN AF VÆKSTOMKRONEN". Af: Jens Højgaard Jensen.

41/81 "PLANNING AND POLICY CONSIDERATIONS RELATED TO THE INTRODUCTION OF RENEWABLE ENERGY SOURCES INTO ENERGY SUPPLY SYSTEMS". ENERGY SERIES NO. 3. Af: Bent Sørensen.
42/81 "VIDENSKAB TEORI SAMFUND - En introduktion til materialistiske videnskabsefiantsele". Af: Helge Kragh og Stig Andur Pedersen.

45/82 Er aldrig udkommet.
47/82 "BÆRÆKØR OG DET VÆST OFFICIELLE- Tingelige held". ENERGY SERIES NO. 5. Af: Bent Sørensen.
49/82 "ANALYSE AF MULTISPEKTrale SATELLITBILDER". Projekt rapport af: Preben Nørregaard. Vlegeder: Jørgen Larsen og Rasmus Ole Rasmussen.
51/82 "HVIS KAN DER QMRS FOR AT AFFOLLE FICHERS BLOKERING OVERFOR MATHEMATIK?" Projekt rapport af: Lis Ellertsen, Lissis Pedersen, Lill Røn og Susanne Stender.
52/82 "DESIFICATION OF SPLUTTING ELLIPTIC SYMBOLS". Af: Bernhelm Booss og Krzysztof Wojciechowski.

63/83 "CREATING ENERGY FUTURES: A SHORT GUIDE TO ENERGY PLANNING". ENERGY SERIES NO. 8. Af: David Crossley og Bent Sørensen.
64/83 "VON MATHMATIK UNG KRIEG". Af: Bernhelm Booss og Jens Høyrup.
74/84 "MINIMALISERING AF MIKROELEKTRONIK" - om vi-
denskabelig rapport teknologi og nyttig af at lære
fysik.
Projektrapport af: Bodil Ruder og Linda Sel-
tak Jensen.
Vejleder: Jens Højgaard Jensen og Bent C. Jørgensen.

75/84 "MATMATIK-REVISNINGEN I FRIMÆRDES GYMNASIUM" - Case: Linear programming.
Projektrapport af: Morten Blomhøj, Klaus Frisdaal
og Frank Møggaard Olsen.
Vejleder: Mogens Brün Høffelt og Jens Bjombebe.

76/84 "KERNKRAFT I DANMARK?" - Et hærgningsvar indkaldt af miljøministeriet, med kritik af miljøstyrerkens
ENERGY SERIES No. 1a

77/84 "POLITISKE INDEKS - PUP ELLER PAKA?" -
Opinionssurveyresultater beslægt ved statistiske
modeller.
Projektrapport af: Svend Åge Houmann, Keld Nielsen
og Susanne Stender.
Vejleder: Jørgen Larsen og Jens Bjørneboe.

78/84 "JUNIKØRNELEGENSHEJNE OG GITSTERSTIKT I
ANDERT GERMANIUM" - Specialrapport af: Hans Hedal, Frank C. Ludvigsen
og Finn C. Pihl mant.
Vejleder: Niels Boye Olsen.

79/84 "MATHEMATIK OG ALGEBRANSELSER" -
Projektrapport af: Henrik Osterg, Mikael Wanner-
berg Johansen, Poul Katterl, Birgitte Lyholm
og Morten Overgaard Nielsen.
Vejleder: Bent Boes.

80/84 "KURSMATERIALE TIL MATHEMATIK B".
Af: Mogens Brün Høffelt.

81/84 "FYSIKERHÅØGNING LEELINDSEJNE I ANDERT GERMANIUM", Specialrapport af: Jørgen Wind Petersen og Jan
Christensen.
Vejleder: Niels Boye Olsen.

82/84 "MATHMATIK - OG FYSIKREVISNINGEN I DET AUTO-
MATISERTE SAMFUND". Rapport fra et seminar aholdt i Hvidovre
Red.: Jens Højgaard Jensen, Bent C. Jørgensen
og Mogens Niss.

83/84 "ON THE QUANTIFICATION OF SECURITY":
PEACE RESEARCH SERIES No. 1.
Af: Bent Sørensen.

84/84 "NOLE ARTIKLER OM MATEMATIK, FYSIK OG ALGEBRANSELSER".
Af: Jens Højgaard Jensen, Mogens Niss m. fl.

85/84 "CENTRIFUGALKRAFTLAGTER OG MATHEMATIK".
Specialrapport af: Per Hedegaard Andersen, Kari Hulst-
Jensen, Else Marie Pedersen og Erling Møller Pedersen.
Vejleder: Stig Andur Pedersen.

86/84 "SECURITY IMPLICATIONS OF ALTERNATIVE DEFENSE OPTIONS FOR WESTERN EUROPE".
PEACE RESEARCH SERIES No. 2.
Af: Bent Sørensen.

87/84 "A SIMPLE MODEL OF AC HOPPING CONDUCTIVITY IN DISORDERED
SOLID". Af: Jesper C. Dyre.

88/84 "RISE, FALL AND RESURRECTION OF INFINITIVSMALES".
Af: Ditlef Laugwitz.

89/84 "TJERNHÅMØDTEMAK".
Af: Bjarne Lillevorup og Jacob Mattich Pedersen.

90/84 "ENERGI I L.G. - EN TEORI FOR TILVÆRENLÆGE".
Af: Albert Chr. Paulsen.

91/85 "Kvantekore for Gymnasiet".
1. Lærebog
Projektrapport af: Bjørn Lundgren, Henning Sten Hansen
og John Johansen.
Vejleder: Torsten Meyer.

92/85 "Kvantekore for Gymnasiet".
2. Materiale
Projektrapport af: Bjørn Lundgren, Henning Sten Hansen
og John Johansen.
Vejleder: Torsten Meyer.

93/85 "THE SIMOTICS OF QUANTUM - NON - LOCALITY".
Af: Peter Voetman Christiansen.

94/85 "TREDHÆLEN BØRNUK" - generalen, matematikeren
og fænken.
Projektrapport af: Morten Blomhøj, Klaus Frisdaal
og Frank M. Olsen.
Vejleder: Mogens Niss.

95/85 "AN ALTERNATIV DEFENSE PLAN FOR WESTERN EUROPE".
PEACE RESEARCH SERIES No. 3.
Af: Bent Sørensen.

96/85 "ASPECTER VED KRAFTVÆRKSSTYRING".
Af: Bjarne Lillevorup.
Vejleder: Bent Sørensen.

97/85 "ON THE PHYSICS OF A.C. HOPPING CONDUCTIVITY".
Af: Jesper C. Dyre.

98/85 "VALGMULIGHEDER I INFORMATIONSALDEREN".
Af: Bent Sørensen.

99/85 "Der er langt fra Q til R".
Projektrapport af: Niels Jørgensen og Mikael Klintorp.
Vejleder: Stig Andur Pedersen.

100/85 "TALSYSTEEMETS OPLYVNING".
Af: Mogens Niss.

101/85 "EXTENDED MOMENTUM THEORY FOR WINDMILLS IN
PERUPTURATIVE FORM".
Af: Ganesh Senapala.

102/85 "OPSTILLING OG ANALYSE AF MATEMATISKE MODELLER, BELYST
VED MODELLER OVER KÆRERS FØRDEROPPÆDELSE O PLÆSHNING"
Projektrapport af: Lis Ellerthøen, Kirsten Halskast, Idil Røn
og Susanne Stender.
Vejleder: Klaus Grünbaum.

104/85 "ANTIFREGEMÆRKED OG LORENZLIGNINGER". Af: Jens Jørgensen.

106/85 "QUANTUM THEORY OF EXTENDED PARTICLES". Af: Bent Sørensen.

110/85 "PLANNING FOR SECURITY". Af: Bent Sørensen.

113/85 "DESIGN OF SPLITTING ELLIPTIC SYMBOLS II". Af: Bernhelm Booss og Krzysztof Wojciechowski.

115/85 "PHYSICAL PHENOMENA IN THE BENEDICT". Af: Mogens Niss.

117/85 "KRAFT & EJENDAMEOPTIMISERING". Af: Jacob Møch Pedersen. Vejleder: Bent Sørensen.

118/85 "TILFÆLDELIGHEDER OG MÅNVINDIGHEDER TILFÆLDE PÆDE og FYSIK". Af: Peder Voetmann Christiansen.

120/86 "ET ANIM. STATISTISKE STANDARDMODELLER". Af: Jørn Sørensen.

121/86 "SIMULATION I KONTINUERLIG TID". Af: Peder Voetmann Christiansen.

122/86 "ON THE MECHANISM OF GLASS IONIC CONDUCTIVITY". Af: Jeppe C. Dyre.

123/86 "KNÆBANDSDISKERN OG DEN STORE VEDESEN". Fysiklærerenksen, IMPU, UUC.

130/86 "STUDIES IN WIND POWER" Af: Bent Sørensen.

133/86 "CHERNOBIL ACCIDENT: ASSESSING THE DATA". ENERGO SERIES NO. 15. AF: Bent Sørensen.

138/87 "JOSEPHSON EFFECT AND CIRCLE MAP."
By: Peder Voetmann Christiansen

139/87 "Nebchezarkeit nichtbeheerzbarer Technik
durch Fertigfichte in der Erkennbarkeit
der Natur"
Af: Bernhelm Booss-Bavnbek
Martin Bohle-Carbonell

140/87 "ON THE TOPOLOGY OF SPACES OF HOLOMORPHIC MAPS"
By: Jens Gravesen

141/87 "RADIONECHER NEUVEK NACH BROEGASAPPARATUR -
ET TÆNKTEHISTORISK PROJEKT"
Projektrapport af Finn C. Physant
Vejleder: Iben Thiersen

142/87 "The Calder\éon Projector for Operators With
Splitting Elliptic Symbols"
by: Bernhelm Booss-Bavnbek og
Krzysztof P. Wojciechowski

143/87 "Kursusmateriale til Matematik på NAT-BAS"
af: Mogens Brun Heefelt

144/87 "Context and Non-Locality - A Peircean Approach"
Paper presented at the Symposium on the
Foundations of Modern Physics The Copenhagen
Interpretation 60 Years after the Cono Lecture.
Joensuu, Finland, 6 - 8 August 1987.
By: Peder Voetmann Christiansen

145/87 "AIGS AND SCOPE OF APPLICATIONS AND
MODELLING IN MATHEMATICS CURRICULA"
Manuscript of a plenary lecture delivered at
ICM 3, Kasel, FRG 8.-11.9.1987
By: Mogens Niss

146/87 "BESTEMMELSE AF BULKRESISTIVITETEN I SILICIUM -
en ny frekvensbaseret målemetode.
Fysikspeciale af Jan Vedde
Vejledere: Niels Boye Olsen & Petri Vičior

147/87 "Rapport om BIS på NAT-BAS"
redigeret af: Mogens Brun Heefelt

148/87 "Naturvidenskabsundervisning med
Samfundsperspektiv"
af: Peter Colding-Jørgensen DLH
Albert Chr. Paulsen

149/87 "In-Situ Measurements of the density of amorphous
germanium prepared in ultra high vacuum"
by: Petri Vičior

150/87 "Structure and the Existence of the first sharp
diffraction peak in amorphous germanium
prepared in UHV and measured in-situ"
by: Petri Vičior

151/87 "DYNAMIK PROGRAMERING"
Matematikprojekt på:
Birgit Andresen, Keld Nielsen og Jimmy Staal
Vejleder: Mogens Niss

152/87 "PSEUDO-DIFFERENTIAL PROJECTIONS AND THE TOPOLOGY
OF CERTAIN SPACES OF ELLIPTIC BOUNDARY VALUE
PROBLEMS"
by: Bernhelm Booss-Bavnbek
Krzysztof P. Wojciechowski

153/88 "HALVLEDDERTEKNOLOGIENS UDVIKLING NELLEM MILITÆRE
OG CIVILE KRÆFTER"
Et eksempel på humanistisk teknologihistorier
Historiespeciale
Af: Hans Hedal
Vejleder: Ib Thiersen

154/88 "MASTER EQUATION APPROACH TO VISCOUS LIQUIDS AND
THE GLASS TRANSITION"
By: Jeppe Dyre

155/88 "A NOTE ON THE ACTION OF THE POISSON SOLUTION
OPERATOR TO THE DIRICHLET PROBLEM FOR A FORMALLY
SELFADJOINT DIFFERENTIAL OPERATOR"
by: Michael Pedersen

156/88 "THE RANDOM FREE ENERGY BARRIER MODEL FOR AC
CONDUCTION IN DIODEHRED SOLIDS"
by: Jeppe C. Dyre

157/88 "STABILIZATION OF PARTIAL DIFFERENTIAL EQUATIONS
BY FINITE DIMENSIONAL BOUNDARY FEEDBACK CONTROL:
A pseudo-di
terential approach."
by: Michael Pedersen

158/88 "UNIFIED FORMALISM FOR EXCESS CURRENT NOISE IN
RANDOM WALK MODELS"
by: Jeppe Dyre

159/88 "STUDIES IN SOLAR ENERGY"
by: Bent Sørensen

160/88 "LOOP GROUPS AND INSTANTONS IN DIMENSION TWO"
by: Jens Gravesen

161/88 "PSEUDO-DIFFERENTIAL PERTURBATIONS AND STABILIZATION
OF DISTRIBUTED PARAMETER SYSTEMS:
Dirichlet feedback control problems"
by: Michael Pedersen

162/88 "FIPER & FYSIK - OG MEGET MERE"
AF: Karin Beyer, Susanne Blegaa, Birthe Olsen, Jette Reich, Mette Vedelsby

163/88 "EN MATHEMATISK MODEL TIL BESTEMMELSE AF
PERMEABILITETEN FOR BLOD-NETHINDE-BARRIERER"
Af: Finn Langberg, Michael Jarden, Lars Frølessen
Vejleder: Jesper Larsen

164/88 "Vurdering af matematisk teknologi
Technology Assessment
Technikfolgenægtsætning"
Af: Bernhelm Booss-Bavnbek, Ken Pate med
Martin Bohle-Carbonell og Jens Højgaard Jensen

165/88 "COMPLEX STRUCTURES IN THE NASH-MOSER CATEGORY"
by: Jens Gravesen
169/88 "CHARLES S. PEIRCE: MURSTEN OG MØNTEL TIL EN METAFYSIK."
Fem artikler fra tidskriftet "The Monist" 1891-93.
Introduktion og oversættelse: Peder Voetmann Christansen

170/88 "OPGAVESAMLING I MATematik"
Samtale opgaver stillet i tiden 1974 - juni 1988

171/88 "The Dirac Equation with Light-Cone Data"
af: Johnny Tom Ottesen

172/88 "FYSIK OG VIRKELIGHED"
Kvantemekanikkens grundlagsproblem i gymnasiet.
Fysikprojekt af: Erik Lund og Kurt Jensøn
Vejledere: Albert Chr. Paulsen og Peder Voetmann Christansen

173/89 "BIOSYNTESSEN AF PENICILLIN - en matematisk model"
av: Ulla Eghave Rasmussen, Hans Osvang Mortensen, Michael Jarden
Vejleder i matematik: Jesper Larsen
Biologi: Erling Lauridsen

174/89 "LÆRERVEJLEDNING M/M. til et eksperimentelt forløb om knøs"
av: Andy Wiered, Søren Brønd og Jimmy Staal
Vejledere: Peder Voetmann Christansen, Karin Beyer

175/89 "ELEVÆRTE: Noter til et eksperimentelt kursus om
knøs"
av: Andy Wiered, Søren Brønd og Jimmy Staal
Vejledere: Peder Voetmann Christansen, Karin Beyer

180/80 "KAOS I FYSISKE SYSTEMER eksemplificeret ved torsions- og dobbeltpendul".
av: Andy Wiered, Søren Brønd og Jimmy Staal
Vejledere: Peder Voetmann Christansen

181/89 "A ZERO-PARAMETER CONSTITUTIVE RELATION FOR PURE SHEAR Viscoelasticity"
by: Jeppe Dyre

182/89 "MATEMATICAL PROBLEM SOLVING, MODELLING, APPLICATIONS AND LINKS TO OTHER SUBJECTS - State. trends and issues in mathematics instruction"
by: WERNER BLUM, Knudsen (FRG) og MOGENS NISS, Roskilde (Denmark)

183/89 "En metode til bestemmelse af den frekvensafhængige varmefyldte af en underarmet værme ved glasovergangen"
av: Tage Emil Christensen

184/90 "EN NÆSTEN PERIODISK HISTORIE"
Et matematis projekt
av: Steen Grode og Thomas Jessen
Vejleder: Jacob Jacobsen

186/90 "RITUAL OG RATIONALITET i videnskabens udvikling"
redigeret af Arne Jakobsen og Stig Andur Pedersen

187/90 "RSA - en kryptografisk system"
av: Annemette Sofie Olofsen, Lars Frølesen og Ole Møller Nielsen
Vejledere: Michael Pedersen og Finn Munk

188/90 "FERMICONDENSATION - AN ALMOST IDEAL GLASS TRANSITION"
by: Jeppe Dyre

189/90 "DATAMATER I MATEMATIKUNDERSØKNINGEN PÅ GYMNASIET OG HØJERE LÆREANSTALT"
av: Finn Langberg
190/90 "FIVE REQUIREMENTS FOR AN APPROXIMATE NONLINEAR RESPONSE THEORY"
by: Jeppe Dyre

191/90 "MOORE COHOMOLOGY, PRINCIPAL BUNDLES AND ACTIONS OF GROUPS ON C* -ALGEBRAS"
by: Iain Raeburn and Dana P. Williams

192/90 "Age-dependent host mortality in the dynamics of endemic infectious diseases and SIR-models of the epidemiology and natural selection of co-circulating influenza virus with partial cross-immunity"
by: Viggo Andersen

193/90 "Causal and Diagnostic Reasoning"
by: Stig Andur Pedersen

194a/90 "DETERMINISTISK KAOS"
Projektrapport af: Frank Olsen

194b/90 "DETERMINISTISK KAOS"
Kørselsrapport
Projektrapport af: Frank Olsen

195/90 "STADIER PÅ PARADIGMETS VEJ"
Et projekt om den videnskabelige udvikling der førte til dannelse af kvantemekanikken.
Projektrapport for 1. modul på fysikkuddannelsen, skrevet af:
Anja Boisen, Thomas Hougaard, Anders Gorm Larsen, Nicolai Byge.
Vejleder: Peder Voetmann Christiansen

196/90 "ER KAOS NØDVENDIG?"
- en projektrapport om kaos' paradigmatiske status i fysikken.
af: Johannes K. Nielsen, Jimmy Staal og Peter Bøggild
Vejleder: Peder Voetmann Christiansen

197/90 "Kontrafaktiske konditionaler i HOL"
af: Jesper Voetmann, Hans Oxvogn Mortensen og
Alesander Høst-Madsen
Vejleder: Stig Andur Pedersen

198/90 "Metal-Isolator-Metal systemer"
Speciale
af: Frank Olsen

199/90 "SPREDT FÄGTNING" Artikelsamling
af: Jens Højgaard Jensen

200/90 "LINEÆR ALGEBRA OG ANALYSE"
Noter til den naturvidenskabelige basis-
uddannelse.
af: Mogens Niss

201/90 "Undersøgelse af atomære korrelationer i amorfe stoffer ved røntgendiffraktion"
af: Karen Birkolund og Klaus Dahl Jensen
Vejledere: Petr Viščor, Ole Bakander

202/90 "TEGN OG KVANTER"
af: Peder Voetmann Christiansen

203/90 "OPGAVESAMLING I MATEMATIK" 1974-1990
afslører tekst 170/88

204/91 "ERKENDELSE OG KVANTEMEKANIK"
et Breddemodul Fysik Projekt
af: Thomas Jessen
Vejleder: Petr Viščor

205/91 "PEIRCE'S LOGIC OF VAGUENESS"
by: Claudine Engel-Tiercelin
Department of Philosophy
Université de Paris -1 (Panthéon-Sorbonne)

206a+b/91 "GERMANIUMBREMANALYSE SAMT A - GE TUNFILMS ELEKTRISKE EGENSKABER"
Ekspерimentelt Fysikspeziale
af: Jeanne Linda Mortensen
og Annette Post Nielsen
Vejleder: Petr Viščor

207/91 "SOME REMARKS ON AC CONDUCTION IN DISORDERED SOLIDS"
by: Jeppe C. Dyre

208/91 "LANGEVIN MODELS FOR SHEAR STRESS FLUCTUATIONS IN FLOWS OF VISCOELASTIC LIQUIDS"
by: Jeppe C. Dyre

209/91 "LORENZ GUIDE" Kompendium til den danske fysiker Ludwig Lorenz,
1829-91.
af: Heige Kragh

210/91 "Global Dimension, Tower of Algebras, and Jones Index of Split Separable Subalgebras with Unitality Condition."
by: Lars Kadison

211/91 "I SÅRHEDENS DIENESTE"
- historien bag teorien for de komplekse tal.
Vejledere: Jesper Larsen og Bernhelm Booss-Bavnbek

212/91 "Cyclic Homology of Triangular Matrix Algebras"
by: Lars Kadison

213/91 "Disease-induced natural selection in a diploid host"
by: Viggo Andersen and Preddy B. Christiansen
214|91 "Halle i stenen" - om elektromagnetisme. Oplag til undervinningsmateriale i gymnasiet.
Af: Nils Kruse, Peter Gastrup, Kristian Hoppe, Jeppe Guldager
Vejledere: Petr Viscor, Hans Medal

215|91 "Physics and Technology of Metal-Insulator-Metal thin film structures used as planar electron emitters"

216|91 "Kvantemekanik på PC’eren"
af: Thomas Jessen

217|92 "Two papers on APPLICATIONS AND MODELLING IN THE MATHEMATICS CURRICULUM"
by: Mogens Niss

218|92 "A Three-Square Theorem"
by: Lars Kadison

219|92 "RUPNOK - stationær stremning i elastiske rer"
af: Anja Boisen, Karen Birkelund, Mette Olufsen
Vejleder: Jesper Larsen

220|92 "Automatisk diagnosticering i digitale kredsløb"
af: Bjørn Christensen, Ole Møller Nielsen
Vejleder: Stig Andur Pedersen

221|92 "A BUNDLE VALUED RADON TRANSFORM, WITH APPLICATIONS TO INARIANT WAVE EQUATIONS"
by: Thomas P. Branson, Gestur Olafsson and Henrik Schlichtkrull

222|92 On the Representations of some Infinite Dimensional Groups and Algebras Related to Quantum Physics
by: Johnny T. Ottesen

223|92 THE FUNCTIONAL DETERMINANT
by: Thomas P. Branson

224|92 "UNIVERSAL AC CONDUCTIVITY OF NON-METALLIC SOLIDS AT LOW TEMPERATURES"
by: Jeppe C. Dyre

225|92 "HÅMODELLEN" Impedansspektroskop i ultrarønt em-krystallisk silicium
af: Anja Boisen, Anders Gorm Larsen, Jesper Varmer, Johannes K. Nielsen, K. Petersen, Peter Bøggild og Thomas Hougaard
Vejleder: Petr Viscor

226|92 "METHODS AND MODELS FOR NATURAL CIRCULATION OF SELECTED EMISSIONS FROM ENERGY CONVERSION"
by: Bent Sørensen