Metal
Isolator
Metal
systemer

Speciale af Frank Olsen.

TEKSTER fra

IMFUFA

ROSKILDE UNIVERSITETSCENTER
INSTITUT FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES
FUNKTIONER I UNDervISNING, FORSKNING OG ANVENDELSER
IMFUFA, Roskilde Universitetscenter, postbox 260, 4000 Roskilde.
Metal-Isolator-Metal systemer.
Speciale af: Frank Olsen.
Vejleder: Petr Viscor.

IMFUFA tekst nr. 198/1990 136 sider ISSN 0106-6242

Abstract.

MIM'erne geometri er blevet bestemt vha. elektrisk impedans spektroskopi (EIS). For at kunne tolke EIS målingerne, bliver der præsenteret en nyudviklet MIM-model.

Den elektriske transport gennem MIM, bliver karakteriseret som Fowler-Nordheim tunnellingen. Der udledes et kvantitativt udtryk for tunnellingen gennem MIM, som viser sig at passe med eksperimmentelle resultater.

Desuden behandles negativ differentiel resistans (NDR), idet MIM'erne under visse betingelser udviser NDR. Der gøres rede for Brno's problemer/resultater med NDR. Problemer, fordi det ser ud til, at MIM'er, der udviser NDR, ikke kan bruges som PEES.

Der præsenteres resultater fra EIS, tunnelleringsstrøm og emis- sionsstrøm ved temperaturer fra 100° K til 300° K, ved 10^-6 torr, og ved felte op til 10^9 V/m.

Frank Olsen
RUC, august 1990.
MIMIMIM

Anvendt som PEES

speciale af
Frank Olsen

vejleder
Petr Viscor

IMFUFA
Roskilde Universitetscenter
1990

til Anja
Indholdsfortegnelse.

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Beskrivelse</th>
<th>Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indledning</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Kap. 1. Elektronemitteren</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>MIM-katoden</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Resultater</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Kap. 2. Elektrisk impedans spektroskopi</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>HAT-modellen</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Kap. 3. Ækvivalent elektrisk MIM-model</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Udledning af MIM-model</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Tolkning af resultater</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>Kap. 4. Kvantetunnelling</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>Forudsætninger</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>Kontakter</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>Tunnelling</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>Schottkey-effekt</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>Felt-emission</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>Fejlkilder, afvigelser og utilstrækkeligheder</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>Bestemmelse af barrierehøjde</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Temperaturafhængighed</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>Elastisk og uelastisk tunnelling</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>SCL strøm</td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>Effektiv masse</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Kap. 5. Negativ differentiel resistans</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>Hvad er NDR?</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>NDR i Brno</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>Kulstofffilamenter & memory states</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Hvordan gror filamenter? ON/OFF-switching</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>Emissionsstrøm</td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>Modelvurdering</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>Andre modeller</td>
<td></td>
<td>88</td>
</tr>
</tbody>
</table>
Kap. 6. Resultater

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometri</td>
<td>91</td>
</tr>
<tr>
<td>Guldet</td>
<td>91</td>
</tr>
<tr>
<td>Temperaturafhængighed</td>
<td>98</td>
</tr>
<tr>
<td>Bias</td>
<td>101</td>
</tr>
<tr>
<td>Tunnelleringsstrøm, I_f og I_e</td>
<td>101</td>
</tr>
<tr>
<td>Mætning</td>
<td>113</td>
</tr>
<tr>
<td>Emissionsstrøm, I_e</td>
<td>121</td>
</tr>
<tr>
<td>NDR resultater</td>
<td>122</td>
</tr>
</tbody>
</table>

Appendix A, Apparatur

1. hp 4192A LF Impedance Analyser
2. Prøveholderen

Litteraturliste

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>127</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>127</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>130</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>133</td>
</tr>
</tbody>
</table>
Indledning.

MIM'erne skal bruges som planar elektron emitter strukturer (PEES) til elektronlitografi, f. eks. fremstilling af chips ved gentagne exponeringer af resist, ætsninger og pålægning af metal/halvledermaterialer.

MIM'erne er langt fra færdigudviklede. Faktisk har man kun vidst ganske lidt om, hvordan de virker, og specielt har man ikke vidst noget om, hvordan og hvorfor de holder op med at virke. Det er disse spørgsmål, jeg har arbejdet med.

Baggrunden for specialet er et ønske om et samarbejde RUC/Brno. Kontakten er formidlet af Petr Viscor, som har personlige kontakter i Brno. Instituttet i Brno er et egentligt forskningscenter, f. eks. har de ingen studerende (de har dog et vist samarbejde med universitetet i Brno). Der fremstilles prototyper af forskelligt teknisk udstyr, f. eks. elektronmikroskoper.

Som led i dette samarbejde har jeg (og Tomas Sokoler og Peter Riber) været 3 uger i Brno, foråret 1990. Ultimo 1990 kommer tre ansatte ved instituttet i Brno til RUC. Bl. a. med apparatur, som er nødvendigt for den videre undersøgelse af MIM'erne.

Objektet for samarbejdet er altså MIM'erne. Oprindelig var det meningen, at mit bidrag skulle bestå i at karakterisere MIM'erne vha. elektrisk impedans spektroskopi (EIS, kap. 2). Man havde en formodning om, at EIS kunne afsløre strukturelle ændringer i MIM'erne.

Men det viste sig hurtigt, at de resultater, jeg fik, ikke passede ind i det billede vi på forhånd gik og arbejdede med. Bl. a. derfor blev det nødvendigt at inddrage en del andre undersøgelser. Desuden opstod der fænomener (negativ differentiel resistans, NDR, kap. 5), som vi på forhånd intet kendte til.

Så efterhånden udviklede projektet sig til at blive en beskrivelse af, hvordan MIM'erne virker, og specielt af, hvordan den elektriske transport igennem dem foregår.
For at kunne det, har det været nødvendigt, udover EIS, at inddrage kvantetunnellering (kap. 4) og en undersøgelse af NDR (kap. 5).

Men primært er dette et eksperimentelt speciale, en rapportering af resultater. Ikke alle resultater, men dem omkring hovedlinjen for samarbejdet med Brno. Det skulle gerne sikre, dels kontinuitet i samarbejdet, og dels at andre ikke gentager mine fejl.

Jeg gør opmærksom på, at området absolut ikke er tilfredsstillende teoretisk foreklaret. Som eksempel kan nævnes NDR.

Læsningen vil forudsætte en del kendskab til bl. a. kvantemekanik og faststoffysik.

Projektet indeholder

- en gennemgang af ideen bag MIM'erne, hvordan man fremstiller dem, og hvilke resultater der er opnået (kap. 1)

- en kort gennemgang af målemetoden EIS (kap. 2)

- en ækvivalent elektrisk model for MIM-strukturen (kap. 3)

- et teoretisk udledt udtryk for tunnellering gennem MIM (kap. 4)

- en gennemgang af fænomenet NDR (kap. 5)

- en behandling af mine resultater (kap. 6) og

- et appendix, der omhandler apparaturet.

Jeg vil godt rette en tak til

Petr Viščor, min vejleder, RUC.

Jan Vedde og Anders Gorm Larsen, for hjælp med udvikling af hhv. computerprogrammer og apparatur.

Peder Voetmann Christiansen og Niels Boye Olsen, for afklarende diskussioner.
Og sidst, men ikke mindst, Peter Riber og Tomas Sokoler, mine rejsekammerater til Brno, for inspirerende samvær.

Frank Olsen

RUC, august 1990.
Kap. 1. Elektronemitteren.

Ideen bag at bruge en MIM-katode som planar elektron emitter struktur (PEES) i et projektion litografisk system er ganske enkel, se fig. 1.

![Diagram](image)

Fig. 1. Planar elektron emitter struktur (PEES).

Elektroner fra bundelektroden accelereres gennem isolatoren til topelektroden vha. et meget stort elektrisk felt i isolatoren (op til \(10^9\) V/m). De elektroner, der, trods spredning i isolator og topelektrode, har energi nok, vil fortsætte ud i vacuum. Her kan de yderligere accelereres vha. E-felt og focuseres vha. B-felt.

Systemet har mange nyttige egenskaber:

- Først og fremmest meget store emmisionsstrømtætheder, helt op til \(10^{-4}\) A/cm².

- Mulighed for at bruge projektionsmasker til fremstilling af integrerede kredse i størrelsesforholdet 1:1.

- Stor stabilitet af projektionsmaske, der placeres på et massivt substrat, f.eks. safir eller silicium.

- Mulighed for store exponeringsfelter.

- Submicron opløsning (\(<\ 0,1 \mu m\))

- Hurtig og præcis indstilling af projektionsmaske til efterfølgende projektioner vha. sigtepunkter ('orientation marks').
- Hurtigt tilslutning/afbrydning af elektronemitter ('on/off switch-
ing time').

- Stor dybdefocus (> 20 µm), se fig. 5, hvilket løser eventuelle
problemer med uhomogent substrat.

Ideen om et projektion litografisk system i forholdet 1:1 er ikke ny.
Systemer, der benytter sig af fotoemissionskatoder, har været ud-
viklet i mere end 20 år. Deres største ulempe er for små emis-
sionsstrømtætheder, typisk 10^{-9} A/cm² (Pagnia & Sotnik (1988)).
Desuden er opløsningen ikke særlig god (0,2-0,3 µm) pga. de emit-
terede elektroners vinkel til normalen på overfladen.

MIM-strukturer har været anvendt i mere end 20 år, dog ikke
specielt som emittere, men som f.eks. MIM-tunneledoder (se f.eks.
Sze (1981)). Man gør her brug af andre egenskaber ved MIM-
strukturen, f.eks. den hurtige 'switching time' pga. kvantetunnelle-	ring (typisk tid 10^{-14} sek.), eller 'memory states' pga. negativ dif-
ferential modstand (behandles i kap. 5). Man har dog forsøgt at
bruge MIM-emittere til "displays and cathode ray tubes" (Delong &
Kolařík (1989)).

MIM-katoden.

De undersøgte MIM'ere, består alle af en bundelektrode af alu-
minium (Al), en isolator af amorft aluminiumoxid (Al₂O₃) og en
topolektrode af guld (Au), se fig. 1 og 2. Jeg har målt på tre serier,
ialt ca. 20 prøver, hvoraf jeg selv var med til at fremstille den ene
serie under opholdt i Brno.

Prøverne er alle fremstillet på et isolerende substrat af enten safir
eller silicium + siliciumoxid. Herpå lægges der vha. sputtering et
relativt tykt (1 µm) Al-lag på kanten og den ene side, se fig. 2 a. På
den anden side pådampes ca. 500 Å Al (99.9995 % rent). Det er af
dette lag, der oksideres Al₂O₃. Dette Al pådampes, fordi erfaringen
viser, at det giver den bedste Al₂O₃ film.

Al₂O₃ filmen fremstilles ved anodisk oxidation af bundelektroden,
se fig. 2 c. Som elektrolyt bruges en 3% ammonium citrat opløsning,
pH 5,5. Ved at lægge forskellige spændinger opnås forskellige
tykkeler. I mit tilfælde 8 og 15 volt, hvilket giver ca. 100 og 180 Å
oxid (1 volt giver ca. 12 Å oxid).
Fig. 2. Fremstillingsproces for MIM.
Prøven er løftet en anelse over væsken for at hindre oxidation af bagsiden. Derved har man også en mulighed for at sikre sig, at der ikke sidder luftbobler under prøven.

Der skrues langsomt op for strømmen, så den på intet tidspunkt overstiger 1 mA. Større strømme vil ætse Al. Den ønskede spænding holdes, til strømmen er faldet til 10-20 μA. Processen tager 10-15 min.

Umiddelbart efter at prøven er taget op, bliver den centrifugeret med demineraliseret vand, for at forhindre urenheder i at sætte sig fast. Den må derfor ikke tørre først. Det gør den efter centrifugeringen ved 120-130° C i nogle min.

Med pensel og drejeskive påføres et tyndt lag resist, PMMA\(^1\), hvis funktion er at være spærrelag. Endelig pådampes et tyndt lag Au, ca 95 Å. Tykkelsen af de pådampede lag kontrolleres vha. et piezoelektrisk krystal i fordampningskammeret. Størrelsen af MIM’erne fremgår af fig. 2 f.

En spændingsforskell på blot nogle få volt mellem metallagene, vil skabe et meget stort E-felt i oxiden. F. eks. vil en spænding på 8 volt svare til et felt på 8V/100Å=8·10\(^8\) V/m. Dette felt vil sætte nogle elektroner i stand til at tunnellere ind i dielektrikummet og ud i Au-laget, og nogle vil fortsætte helt ud i vacuum. Disse elektroner vil være spredt, både elastisk og uelastisk, og derfor vil deres energifordeling ændre sig, se fig. 3 a. Kurve 1 repræsenterer den ikke-spredte fordeling, kurve 2 den spredte.

\(^1\)En plast.
Kun elektroner, som, ved Au/vacuum overgangen, har en energi større end Au's arbejdsfunktion, \(w_f \) (ca. 5 eV), vil kunne emitteres, og dermed bidrage til emissionsstrømmen, \(I_e \). Resten vil blot 'drukne i fermihavet' og bidrage til filmstrømmen, \(I_f \).

Sandsynligheden for kollisioner stiger med elektronenergien, og altså vil elektronernes middel kollisionsfri vejlængde (mean free path) aftage for stigende elektronenergi. Bl. a. derfor vil \(I_e \) kun udgøre en lille brøkdel af \(I_f \), typisk 10^{-4} - 10^{-3}.

De optimale tykkelser af de enkelte lag er empirisk bestemt. \(I_e \) falder exponentielt med oxidlagets tykkelse (og Au-lagets), men bliver det for tyndt, går det ud over homogeniteten og holdbarheden. Og hvis Au-laget skal være rimeligt kontinuert, skal det have en vis tykkelse; med de nuværende tekniker ca. 80-90 Å. Desuden skal ledningsevnen af guldet være rimelig stor, herom senere.

Man kunne (teoretisk set) øge \(I_e \) ved at erstatte Au med et materiale med mindre arbejdsfunktion, men det forudsætter adsorption af kemisk meget aktive materialer (f. eks. Cs, Ba), følsomme overfor kemisk aktive gasser. Igen viser erfaringen, at de valgte materialer og tykkelser giver de bedste resultater.

Den brøkdel af elektronerne, der kommer igennem guldet (fra overgangen \(\text{Al}_2\text{O}_3/\text{Au} \) til vacuum) med en energi stor nok til at undslippe til vacuum, er givet ved (Delong & Kolarik (1989))

\[
\beta = \exp(-\frac{t}{\lambda(E)}),
\]

(1.1)

hvor \(t \) er tykkelsen af guldet, og \(\lambda(E) \) er middel fri vejlængde for en elektron med energi \(E \). \(\lambda \) bestemmes experimentielt, og vil typisk være 25-30 Å for en elektronenergi på omkring 5 eV, og altså vil \(\beta \) være 2-4\times10^{-2}. Transmissionskoefficienten helt fra bundelektrode til vacuum, regnet som forholdet \(I_e/I_f \), vil som nævnt typisk være 10^{-3} - 10^{-4}. Resultaterne fra mine målinger fremgår af kap. 6, fig. 72. I dette afsnit refererer jeg til resultater opnået i Brno.

De bedste resultater er \(J_e=10^{-4} \) A/cm^2, hvilket svarer til en exponeringstid på 0.1 sek. for en resist med en følsomhed på 10^{-5} C/cm^2. De bedste MIM'er holder til en times kontinuert exponering eller 36000 exponeringer af 0.1 sek.

Et vigtigt resultat, som sikrer den store opløsning, er den lille sandsynlighed for emission af elektroner med store vinkler til nor-
malen på MIM-katoden. Det er kun de elektroner, der stort set ikke bliver spredt, hverken i dielektrikum eller topelektrode, som emitteres til vacuum. Det betyder, at elektronerne udsendes under en meget lille rumvinkel, hvilket sikrer den store opløsning. Se fig. 3 b.

![Diagram](image)

Fig. 4. Elektron trajectorier.

Elektroner udsendt fra MIM-katoden, med energi U_0, i en retning givet ved vinklen α, accelereres i homogen E- og B-felt gennem spiraltrajectorier og samles i billedpunktet ('image point'), se fig. 4. Billedpunktet afhænger af hastighedsvektoren ved emittering. Et eksempel på grafisk repræsentation af dette er vist fig. 5. Opløsningen er 0.2 μm og dybdefokus 20 μm.

Som det ses, afhænger opløsningen stærkt af emissionsvinklen α. Det er muligt at udtrykke opløsningen ved en simpel empirisk relation (Delong og Kolářik (1989))

$$\delta = d \frac{U_0}{eU} (\sin \alpha)^3$$

(1.2)

hvor δ er opløsningen, d er afstanden katode-anode, U_0 er emissionsenergien, U accelerationsspændingen, og α er emissionsvinklen.
Fig. 5. Opløsning.

Fig. 6. Elektronstepperen.
De MIM-katoder, der skal bruges til fremstilling af chips, vil være større end mine. Men dog ikke større, end de kan honorere krav til mekanisk præcision (ens vinkler og afstande katode-anode) og til homogeniteten af B-feltet, der frembringes af (vandkølede) Helmholtz-spoler, se fig. 6.

Dette betyder, at det er nødvendigt at bruge en ikke for stor projektionsmaske, se fig. 7, og så flytte den fra exponering til exponeering ('step & repeat' metoden). Men selvfølgelig er det stadig hurtigere end konventionelle elektron beam litografi systemer. Systemer som forøvrigt bruges til at fremstille selve projektionsmasken!

Fig. 7. MIM katode.

Resultater.

Der mangler stadig meget udviklingsarbejde, før MIM-stepperen kan bruges til kommerciel fremstilling af chips. Det gælder specielt følgende områder: Præcision (mekanisk og elektronisk), opløsning (hidtil 0.1 μm), fremstillingshastighed (hidtidige resultater: 1) 10^{10} pixel på en chip med dimension 30x30 mm, 2) 24 chips á 15x15 mm, total tid 8 sek., 3) exponering 0.1 sek., flytning 0.2 sek.), automation, produktion (på nuværende stadie, er det kun få af de fremstillede MIM’er, der er brugbare), og endelig levetid af katoden (hidtil op til en time).

Desuden skal der arbejdes med at forstå, hvordan MIM-emitteren virker, og hvorfor den holder op med at virke (som PEES). Mit bidrag til udviklingen har været at arbejde med disse spørgsmål.
Kap. 2. Elektrisk impedans spektroskopi.

Elektrisk impedans spektroskopi (EIS) er baseret på målinger af frekvensafhængig impedans, \(\tilde{Z}(\omega) \), \(\tilde{Z} \) komplex. Jeg har målt med en hp 4192A LF Impedance Analyser i området 5Hz-13MHz. Den måler frekvensafhængig impedans eller admittans, som kan konverteres til f. eks. kapacitans. Måleudstyret er omtalt i appendix A1.

Selv målingerne foregår ved, at målebroen påtrykker prøven en (stiv) ac-spænding, og måler responsen i form af strøm i fase og ude af fase med den påtrykte spænding.

Teori.

Basis for forståelsen af EIS målingerne er, at den målte komplekse impedans afspæller den rumlige (ligevægts-) fordeling af mobile ladninger i den prøve, man undersøger.

Prøven deles op i et stort antal makroskopiske volumenelementer, \(\Delta V(r) \). Man antager termodynamisk ligevægt i de enkelte volumenelementer, og temperaturligevægt i hele prøven. Dvs., at al strøm skyldes elektriske felter og/eller forskelle i kemisk potential, \(\mu \text{ch} \).

Desuden antages det, at det påtrykte felt ikke forstyrer prøven voldsomt, dvs.

\[
e \cdot V_{\text{ext}} < k \cdot T,
\]

(2.1)

hvor \(e \) er elementarladningen, \(V_{\text{ext}} \) er den eksterne spænding og \(T \) er temperaturen. Dette er strengt taget ikke altid opfyldt, eftersom den eksterne spænding typisk er 10 eller (som oftest) 50 mV. Men det synes ikke at påvirke måleresultaterne voldsomt.
For simpelheds skyld gør jeg problemet en-dimensionalt ved at antage, at prøven er tilstrækkelig stor i y- og z-retningen, til at jeg kan se bort fra rand effekter, og blot betragte x-retningen. Endelig vil jeg kun betragte en type ladningsbærere, elektroner. Stort set al ladningstransport gennem MIM'er er elektronbaret. Antallet af mobile ladningsbærere er $n(x,T)$.

Hvis man ser bort fra ydre E-felter, vil ladningsbærerne kun kunne påvirkes af krafter, der skyldes forskelle i μ^e, og de interne E-felter denne forskel giver anledning til.

![Diagram](image)

Fig. 8.

Et eksempel. En ladningsfordeling som fig. 8 a vil give anledning til et indre potential, ϕ, som fig. 8 c/d. Det indses ved at betragte ligningerne (2a) eller (2b) (Gauss og Poisson).

\[
E = - \nabla \phi
\]

\[
\nabla E = \rho/\varepsilon
\]

\[
\nabla^2 \phi = - \rho/\varepsilon
\]

(2.2a)

15
Eller på integralform,

\[E_{int}(x) = \int \rho / \varepsilon \, dx \] (2.2b)

\[\phi_{int}(x) = - \int \int \rho / \varepsilon \, dx \]

For \(t \to \infty \) vil der indstille sig en ligevægt og

\[\mu_{el.ch} = \mu_{ch} + e \phi_{int}(x), \] (2.3)

vil være konstant. \(\mu_{el.ch} \) er det elektrokemiske potential, og \(\phi_{int}(x) \) er det interne potential.

Hvis man, efter at ligevægtsladningsfordelingen, \(\rho_0(x,T) \), er opnået, påtrykker et ydre elektrisk felt, \(E_{ext} \), vil det ændre ladningsfordelingen til \(\rho(x,T) \). Men ved tilstrækkeligt små felter (lign. (2.1)), vil \(\rho_0(x,T) \approx \rho(x,T) \).

For at opnå et analytisk udtryk for \(\rho(x,t,T) \), hvor \(t \) er tiden, må man løse Maxwell ligningerne, hvilket i dette tilfælde kun kan gøres numerisk. Men ved de følgende antagelser kan man opnå et analytisk udtryk for \(\tilde{Z}(\omega) \), der stemmer med de eksperimentelle resultater.

Prøven er delt op i en sum af volumenelementer, \(\Sigma (\Delta V(x_j)) \), hvor hvert volumenelement er karakteriseret ved to materialeparametre, \(\sigma(x,T) \) og \(\varepsilon(x,T) \), ledningsevne og dielektricitetsfunktion, og den dertil hørende karakteristiske responsetid, \(\tau(x,T) = \varepsilon(x,T)/\sigma(x,T) \).

\(\tau \) er den tid, det tager systemet at 'screene' en ydre elektrisk ladning. \(\varepsilon(x,T) \) afhænger af det totale antal ladningsbærere, \(N \), som er af størrelsesorden \(10^{23}/\text{cm}^2 \). De mobile ladningsbærere betyder intet i denne sammenhæng (\(n << N \)). Derfor kan \(\varepsilon(x,T) \) antages konstant i rummet. Desuden ser jeg bort fra dens minimale temperaturafhængighed, dvs. \(\varepsilon(x,T) = \varepsilon \).

Variationen i \(\tau(x,T) \) er da bestemt af \(\sigma(x,T) \). Det betyder, at for forskellige frekvenser, \(\omega \), af den påtrykte spænding, vil forskellige volumenelementer respondere, alt efter om \(\omega \cdot \tau(x,T) \) er større eller mindre end 1. Det elektriske respons ved forskellige frekvenser vil
derfor afspejle ligevægtsfordelingen af ledningsevnen, dvs. ledningsevnen i forskellige volumenelementer. Det er derigennem et mål for mobiliteten, \(\mu \), og antallet af ladningsbærere, \(n \), idet

\[
\sigma(x,T) = e \int n(x,T,E) \mu(x,T,E) \, dE
\]

(2.4)

\(E > \mu_{ch} \):
\[
\int n(x,T,E) \, dE = N(E) \, f(E) \, dE
\]

(elektroner)

\(E < \mu_{ch} \):
\[
\int n(x,T,E) \, dE = N(E) \, (1-f(E)) \, dE
\]

(huller)

hvor \(f(E) \) er fermifordelingen.

Det er denne sammenhæng mellem placering i prøven (volumenelement) og frekvens, som er det nye ved EIS. Det gør det muligt at bestemme flere materialeparametre samtidigt, hvilket man hidtil har været udelukket fra (Viščor (1990)).

For at nå et analytisk udtryk for \(\tilde{Z}(\omega) \), modelleres prøven som et passivt elektrisk netværk. Hvert volumenelement, karakteriseret ved lokale ligevægtsværdier for \(\varepsilon \) og \(\sigma(x,T) \), modelleres med en lækkende kapacitet, et parallelt RC-led, se fig. 9.

![Diagram](image)

Fig. 9. Prøve opdelt i volumenelementer.

De enkelte kredsløbselementer, \(R(x_j,T) \) og \(C(x_j,T) \), hhv. den elektriske resistans og den geometriske kapacitans for volumenelementet, er givet ved
\[R(x_j, T) = \frac{1}{\sigma(x_j, T)} \frac{\Delta x_j}{A} \]
(2.5)

\[C(x_j, T) = \varepsilon A / \Delta x_j \]

\[\tau(x_j, T) = R \cdot C = \varepsilon / \sigma(x_j, T) \]

Impedansen for \(\Delta V(x_j) \) er

\[\tilde{Z}(\omega, T) = \frac{1}{\tilde{Y}(\omega, T)} = \frac{1}{\frac{1}{R(x_j, T)} + i\omega C(x_j, T)} = \frac{R(x_j, T)}{1 + i\omega \tau(x_j, T)} \]
(2.6)

hvor \(\tilde{Y}(\omega, T) \) er admittansen. Det bemærkes, at \(\text{Re}(\tilde{Z}(\omega, T)) \) er den virkelige elektriske resistans, og at \(\text{Im}(\tilde{Y}(\omega, T)) / \omega \) har dimension af elektrisk kapacitans.

Hele prøven vil være en serieforbindelse af sådanne RC-led, et for hvert volumenelement. Den totale impedans og admittans vil være

\[\tilde{Z}(\omega, T) = \sum_{j=1}^{m} \frac{R(x_j, T)}{1 + i\omega \tau(x_j, T)} = \sum_{j=1}^{m} \frac{R(x_j, T) - i\omega \tau(x_j, T) R(x_j, T)}{1 + \omega^2 \tau^2(x_j, T)} \]
(2.7)

\[\tilde{Y}(\omega, T) = \frac{1}{\tilde{Z}(\omega, T)} = \sum_{j=1}^{m} \frac{R(x_j, T)}{1 + \omega^2 \tau^2(x_j, T)} + \sum_{j=1}^{m} \frac{\omega \tau(x_j, T) R(x_j, T)}{1 + \omega^2 \tau^2(x_j, T)} \]

I visse frekvensområder vil \(\text{Re}(\tilde{Z}) \) og \(\text{Im}(\tilde{Y}) / \omega \) have en direkte fysisk fortolkning, som det vil fremgå af det følgende eksempel. I kap. 3 vil jeg vise det for den model, jeg har udviklet til MIM-systemet.
HAT-modellen.

Som eksempel vil jeg anvende en monokrystallinsk Si-prøve. Den består af tre forskellige slags volumenelementer: Bulk, depletion og interface (Si/elektrode) (etter forskellig τ-værdi). Modellen er navngivet efter profilen af ladningsbærertætheden; den ligner en hat.

![Diagram](image)

Fig. 10.

![Diagram](image)

De tre typer volumenelementer giver anledning til tre typer RC-led, se fig. 10. Af disse kan de 4 slås sammen to og to, idet RC er identiske, se fig. 11. For dette kredsløb fås af lign. (2.7)
\[
\text{Re}(\tilde{Z}(\omega)) = \frac{R_1}{1 + \omega^2 \tau_1} + \frac{R_2}{1 + \omega^2 \tau_2} + \frac{R_3}{1 + \omega^2 \tau_3}
\]

\[
\text{Im}(\tilde{Y}(\omega)) = \frac{\sum_{j=1}^{3} \frac{\tau_j R_j}{1 + \omega^2 \tau_j}}{\omega} + \sum_{j=1}^{3} \frac{\omega \tau_j R_j}{1 + \omega^2 \tau_j} + \sum_{j=1}^{3} \frac{R_j}{1 + \omega^2 \tau_j}
\]

hvor \(\tau_j = R_j C_j \) og

\[
\begin{align*}
R_1 &= 2 \ R_i \\
R_2 &= 2 \ R_d \\
R_3 &= R_b
\end{align*}
\]

\[
\begin{align*}
C_1 &= 1/2 \ C_i \\
C_2 &= 1/2 \ C_d \\
C_3 &= C_b
\end{align*}
\]

og index i,d,b angiver hhv. interface, depletion og bulk, og R og C er hhv. resistans og geometrisk kapacitans af det pågældende volumen, og \(\tau = RC \) er den tilhørende tid.

I forskellige frekvensområder vil \(\text{Re}(\tilde{Z}) \) og \(\text{Im}(\tilde{Y})/\omega \) svare til resistansen og kapacitansen af de tre forskellige områder i prøven, se fig. 12 og nedenstående udregninger.

Af lign. (2.8) følger:

For \(\omega << 1/\tau_i, 1/\tau_d, 1/\tau_b \):

\[
\text{Re}(\tilde{Z}) \rightarrow 2 \ R_i + 2 \ R_d + R_b \equiv R_A
\]

idet man har \(\omega \tau << 1 \).

For \(1/\tau_i << \omega << 1/\tau_d, 1/\tau_b \):

\[
\text{Re}(\tilde{Z}) \rightarrow 2 \ R_d + R_b \equiv R_B
\]

idet man har \(\omega \tau_1 >> 1, \omega \tau_2 << 1 \) og \(\omega \tau_3 << 1 \).
Fig. 12.

For $1/\tau_1, 1/\tau_d \ll \omega < 1/\tau_b$:

$$\text{Re}(\tilde{Z}) \rightarrow R_b \equiv R_C$$

idet man har $\omega \tau_1 >> 1$, $\omega \tau_2 >> 1$ og $\omega \tau_3 < 1$.

For $\omega << 1/\tau_1, 1/\tau_d, 1/\tau_b$:

$$\frac{\text{Im}(\tilde{Y})}{\omega} \rightarrow \sum_{j=1}^{3} \frac{R_j^2C_j}{\sum_{j=1}^{3} R_j}$$

idet man benytter $\omega \tau << 1$.

21
For \(1/\tau_i, 1/\tau_d \ll \omega \ll 1/\tau_b\) :

\[
\text{Im}(\tilde{Y})/\omega \to 1/2 \ C_d
\]

idet man antager, at \(\omega \tau_1 \gg 1, \omega \tau_2 \gg 1\) og \(\omega \tau_3 \ll 1\), og desuden
\(1/R_3 C_3 \gg 1/R_3 C_2 > \omega > 1/R_2 C_2\), dvs. bl. a. \(\omega R_3 C_2 \ll 1\).

For \(\omega \gg 1/\tau_i, 1/\tau_d, 1/\tau_b\) :

\[
\frac{\text{Im}(\tilde{Y})}{\omega} \to \frac{1}{\frac{2}{C_i} + \frac{2}{C_d} + \frac{2}{C_b}}
\]

idet man benytter \(\omega \tau \gg 1\). Hvis den ene af de tre kapaciteter, f. eks. \(C_b\), er klart mindre end de to andre, vil dette niveau være et givet som den.

Niveauerne vil ikke altid være pænt adskilte, måske endda ikke engang til stede i frekvensområdet 5Hz-13MHz. Det afhænger af om tiderne og niveauerne er forskellige af størrelse. Derfor er det ønskværdigt at udvide måleområdet i begge ender (mHz/GHz). Ved at ændre temperaturen, kan man flytte \(1/\tau\), idet faldende temperatur giver stigende tider.

Man har altså her en metode til at udelukke overflade- og depletioneffekter, og måle på rene bulkegenskaber, f. eks. lødningsbærertæthed og mobilitet. Eller omvendt kan man isolere netop overflade- eller kontaktegenskaber.
Kap. 3. Åkvivalent elektrisk MIM-model.

Den første tanke var selvfølgelig at modellere MIM systemet med en serieforbindelse af RC-led, ganske som i eksemplet med Si-prøven, kap. 2. Men de målte EIS-kurver havde ikke meget med en sådan model at gøre. Der blev forsøgt med andre modeller, som tog hensyn til evt. fabrikationsdefekter, eller til effekter som f. eks. 'skvulpende' ladninger (den såkaldte badekareffekt).

Men det var først, da jeg blev opmærksom på problemet med lateral ledningsevne i guldet og fik opstillet en model, der tog højde for det, at det kom til at passe med de målte kurver. Se fig. 13.

![Diagram](image)

Fig.13.

Modellen tager højde for, at der er et spændingsfald hen over topeelektroden. Dvs., at man ikke kan ignorere gulds modstand. Betydningen vil selvfølgelig afhænge af størrelsesforholdet mellem gulds og oxidens modstand.

Den væsentligste forskel fra en model, der blot har et RC-led (til oxiden), er, at den ekstra modstand (guldets, r) introducerer, dels et nyt niveau på Re(Z)-kurverne, dels et 'knæk' på Im(Y)/ω-kurverne. Desuden kan jeg forklare nogle ellers uforståelige fænomenen (se kap. 6, Møtning).

Der er ikke problemer med ledningsevnen i Al-laget, eftersom det er ca. 500 Å tykt. Man kan også se bort fra kapaciteten af Au-laget; den vil først kortslutte efter GHz-området (C_{Au} = 10^{-19} F).
For at kunne undersøge guldets egenskaber, fik jeg fremstillet nogle prøver med Au på glas, hvor Au-laget blev fremstillet på samme måde som ved MIM-systemet. Resultaterne fremgår af kap. 6 (Guldet).

Udledning af MIM-model.

Det er altså ikke muligt at betragte MIM-systemet som en-dimensionelt, som i tilfældet med Si-prøven. Men hvis problemet skal løses analytisk, kan man heller ikke betragte det som man burde, nemlig rumligt1. Man må nøjes med at betragte det to-dimensionalt, se fig. 13.

Jeg betragter det elektriske netværk fig. 14 a, og MIM-systemet fig. 13 og 14 c. Da jeg betragter problemet to dimensionalt, regnes l(x) for konstant. De grundliggende kredsløbselementer Zdx og Ydx, se fig. 14 b, er givet ved

$$Z \, dx = \rho_\text{Au} \frac{dx}{r \cdot l(x)} = r_0 \, dx$$

$$r_0 = \frac{\rho_\text{Au}}{r \cdot l(x)}, \text{ dim } r_0 = \frac{\Omega}{m}$$

$$Y \, dx = \frac{1}{h} + i \omega \varepsilon_0 \frac{l(x) \cdot dx}{h} = (R_0 + i \omega c_0) \cdot dx,$$

$$\frac{1}{\rho_\text{oxid}} \frac{l(x) \cdot dx}{l(x) \cdot dx}$$

$$R_0 = \frac{l(x)}{h \cdot \rho_\text{oxid}}, \text{ dim } R_0 = \frac{1}{\Omega m}$$

$$c_0 = \varepsilon_0 \frac{l(x)}{h}, \text{ dim } c_0 = \frac{F}{m}$$

$$(3.1)$$

1Spændingsfaldet 'hen over' guldet er jo i virkeligheden to-dimensionalt. Og den 3. dimension er ned gennem oxiden.
$R_{DC} = Z\times 2\Omega$
Fig. 14. MIM-model.

a) \[V(x=0) = V_0 \quad I(x=L) = 0 \]

b) \[Z \cdot dx \]

\[\Delta V \quad V(x) \quad \Delta I \]

\[Y \cdot dx \]

\[I(x) \]

\[dx \]

\[l(x) \]

\[t \quad h \]

\[0 \quad L \quad x \]
Ved at anvende Ohms lov på det elementære kredsløbselement fig. 14 b, følgs

$$\Delta V = Z \Delta x \, I(x) \Rightarrow \frac{\Delta V}{\Delta x} = Z \, I(x) ; \quad \frac{dV}{dx} = - Z \, I(x).$$

(3.2)

$$V(x) = \Delta I \, 1/(Y \Delta x) \Rightarrow \frac{\Delta I}{\Delta x} = Y \, V(x) ; \quad \frac{dI}{dx} = - Y \, V(x).$$

Minusserne tilføjes, fordi dV/dx og dI/dx er negative, konfr. fig. 14 b.

Af (3.2) følger

$$\frac{d^2V}{dx^2} = - Z \frac{dI}{dx} = Y Z V(x) = A^2 \, V(x) ; \quad A = \sqrt{YZ}, \quad \text{dim} \, A = m^{-1}$$

(3.3)

Løsningerne er altså

$$V(x) = c_1 e^{Ax} + c_2 e^{-Ax}$$

(3.4)

$$I(x) = - \frac{1}{Z} \frac{dV}{dx} = - \sqrt{\frac{Y}{Z}} \left(c_1 e^{Ax} - c_2 e^{-Ax} \right)$$

Indsættes grænsebetingelserne $V(x=0) = V_0$ og $I(x=L) = 0$, følger

$$c_1 + c_2 = V_0$$

(3.5)

$$c_1 e^{AL} - c_2 e^{-AL} = 0$$

Heraf følger

$$c_1 = \frac{V_0}{(e^{2AL} + 1)}$$

(3.6)

$$c_2 = V_0(1 - 1/(e^{2AL} + 1))$$

Og dermed

$$V(x) = V_0 \left(\frac{1}{e^{2AL} + 1} \, e^{Ax} + \left(1 - \frac{1}{e^{2AL} + 1} \right) e^{-Ax} \right)$$

(3.7)
\[I(x) = V_0 \sqrt{\frac{Y}{Z}} \left(\left(1 - \frac{1}{e^{2AL} + 1}\right) e^{-Ax} - \frac{1}{e^{2AL} + 1} e^{Ax} \right) \]

Derved fås den komplekse impedans og admittans

\[Z \equiv \frac{V(x=0)}{I(x=0)} = \sqrt{\frac{Z}{Y}} \frac{e^{2AL} + 1}{e^{2AL} - 1} \]

\[Y \equiv \frac{I(x=0)}{V(x=0)} = \sqrt{\frac{Y}{Z}} \frac{e^{2AL} - 1}{e^{2AL} + 1} \]

(3.8)

Det ville heller ikke kunne lade sig gøre med den nuværende MIM-geometri. En kontakt placeret oven på 100 Å ubeskyttet oxid, ville gå lige igennem den og kortslutte MIM'en. Men eftersom resultaterne ser ud til at stemme ganske godt med modellen, ser det heller ikke ud til at være nødvendigt med yderligere anstrengelser.

Det er ikke nogen let opgave at opskrive og undersøge funktionerne \(\text{Re}(\tilde{Z}) \) og \(\text{Im}(\tilde{Y})/\omega \), så det har jeg ladet computeren om. Resultaterne og de anvendte materialeparameter fremgår af fig. 15 og 16. Den specifikke modstand af Au er bestemt ved egne målinger på Au-film, se kap.6, Guldet.
Fig. 15. MIM model (a) og virkelighed (b), 100 Å/95 Å.

MODEL
\[R_{\text{Au}} = 10^{-7} \Omega \text{m} \]
\[R_{\text{MgO}} = 10^{10} \Omega \text{m} \]
\[h = 100 \text{ Å} \]
\[t = 95 \text{ Å} \]
\[k = 8 \times 10^{-3} \text{m} \]
$f \Gamma \rho R_{qe}$

$M10^4 \text{ cm}^{-1}$

$T=200\degree K$

$\rho=10^{-6}$ torr

$R_{qe}>30$ MHz

$\log_2 (\text{f (Hz)})$

$\log (\text{C} \cdot \text{PF})$

Φ
Fig. 16. MIM model (a) og virkelighed (b), 180 Å/250 Å.

- $Q_{An} = 10^{-7} \Omega$.
- $\bar{Q}_{Al_2O_3} = 10 \Omega$.
- $h = 180 \AA$.
- $t = 250 \AA$.
- $l = 8 \times 10^{-3} \mu$m.
MIM 10
180/250 Å
T = 300 °K
p = 10^{-6} torr
Som det fremgår af fig. 15 og 16, er der meget fin overensstemmelse mellem model og virkelighed. Modellen afviger fra virkeligheden på to punkter: Den tager ikke højde for den resonans, der forekommer omkring 10 MHz pga. selvinduktion i prøveholderen (se appendix A.2). Og den regner heller ikke med modstand i tilledninger, kontakt og den første modstand i Au, se fig. 17.

Fig. 17. Modstand i tilledninger, kontakt, Au.

Effekten af dette vil svare til at lægge en ohmsk modstand i serie til. Størrelsen vil først og fremmest afhænge af guldets tykkelse, men også af hvor og hvor godt prøven er kontaktet. Et rimeligt skøn vil være fra mindre end 1 ohm (250 Å Au) til ca. 5 ohm (95 Å Au).

Ellers ser det ud til, at modellen beskriver virkeligheden floth. Materialeparametrene er gængse, bortset fra \(\rho_{Au} \), der som nævnt er bestemt ved egne målinger. \(Al_2O_3 \)'s specifikke modstand er sat til \(10^{10} \, \Omega m \) (omtales i kap.6).

Som det vil fremgå af kap. 6, så passer de enkelte niveauers temperaturhængighed med de materialer, de formodes at svare til. Hvilket yderligere dokumenter modellens holdbarhed.

Tolkning af resultater.

Denne model kan bruges til at tolke måleresultaterne. Fig. 18 viser to typiske kurver.
Fig. 18. Typiske EIS-kurver for MIM-model.

Der er to tider i systemet, idet der er en kapacitet, C, og to modstande, R(Al₂O₃) og r(Au). τ₁=RC, τ₂=rC.

Ellers bemærkes, at

\[
\frac{\text{Im}(\tilde{Y})}{\omega} \rightarrow C(\text{Al}_2\text{O}_3) \text{ for } \omega \rightarrow 0
\]

\[
\frac{\text{Im}(\tilde{Y})}{\omega} \rightarrow 0 \text{ for } \omega \rightarrow \infty
\]

(3.9)

Rettelig burde \(\text{Im}(\tilde{Y})/\omega\) gå imod \(C_{\text{Au}}\) for \(\omega \rightarrow \infty\).

Pga den anden tid, \(\tau_2=rC\), får kurven et knæk omkring \(1/RC\), dvs., to forskellige hældninger.

\[
\text{Re}(\tilde{Z}) \rightarrow R(\text{Al}_2\text{O}_3) \text{ for } \omega \rightarrow 0
\]

\[
\text{Re}(\tilde{Z}) \rightarrow 0 \text{ for } \omega \rightarrow \infty
\]

(3.10)

\(\text{Re}(\tilde{Z})\) burde gå imod \(r_0\) for \(\omega \rightarrow \infty\). Knækkene på kurven vil komme for \(f_1=1/(2\pi\tau_1)\) og \(f_2=1/(2\pi\tau_2)\), jvf. kap. 2.

Niveauet på kurven mellem \(1/RC\) og \(1/rC\) skyldes Au-filmen, og er bestemt af dens modstand. For et mindre elektrisk kredsløb, se fig. 19, kan man regne sig frem til dets størrelse, \(r+6/10-r\). Niveauet har altså ikke den store betydning.
Fig. 19. Mindre MIM-model, og Re(\tilde{z}) for samme.

Ved at ændre temperaturen, kan man 'rykke' kurverne, idet tiderne bliver større for faldende temperatur (systemet bliver langsommere). Derved kan man opnå at se et ellers 'skjult' niveau.

Det interessante niveau for \(\omega \to 0 \) rykker meget, alt efter modstanden af Al\(_2\)O\(_3\). Hvis oxid'en er 'ren' (dvs. i OFF-state, se kap. 5), bør det selvfølgelig ligge fast, men det er præcis dette niveau, som pga. NDR rykker ned. Dermed kan det rykke ind i det målelige område, idet 'knæk-frekvensen' vokser med aftagende modstand. Derved har man en mulighed for at undersøge NDR fænomenet.
Niveauet vil også falde, hvis prøven måles med bias (dvs. forspændt med spænding V_{bias}). Det vil mindske $\text{Re}(\tilde{Z})$, eftersom tunnelleringsstrømmen stiger.

Man kan altså ændre tiderne (frekvenserne) i systemet ved at ændre temperatur og/eller bias.

Det vigtigste resultat, denne model har givet, er en forståelse af EIS-målingerne. Kurvernes udseende er nu forstået; de skyldes en oxid, der kan regnes som ideel, og et guldlag. Ikke andre mere eller mindre uforståede effekter.

De interessante niveauer herefter er dem for $\omega \to 0$, nemlig modstanden og kapacitansen af oxiden.
Kap. 4. Kvantetunnellering.

I dette kapitel vil jeg opstille en teoretisk model for elektrisk transport gennem en MIM-struktur. Jeg mener, at dette må være det teoretiske værktøj til at betragte MIM-stepperen (sammen med kap. 5, NDR).

Jeg vil forudsætte en del kendskab til bl.a. faststoffysik og kvantemekanik (jeg kan henvise til f.eks. Kittel (1976) og Scharff (1971)), og blot kort omtale nødvendige teoretiske hjælpemidler, for at komme til det primære: At udlede et udtryk for kvantetunnellering gennem en MIM-struktur, for derigennem at kunne karakterisere den elektriske transport gennem MIM'er som en sådan.

Først vil jeg karakterisere systemet; hvilke energibånd, kontakter, osv, vil jeg regne med for MIM-systemet.

Dernæst beskrive under hvilke forudsætninger den elektriske transport igennem MIM'erne finder sted. Dvs., tunnelleringssandsynlighed gennem en barriere, fra hvilke niveauer tunnelleres der, hvordan ser barrieren, der tunnelleres igennem, ud, osv.

For at kunne opskrive et kvantitativt udtryk for tunnelleringssstrømmen, er det nødvendigt med en del regnearbejde (afsnittet "Feltemission"). F. eks. tunnelleringssandsynlighed gennem vilkårlig barriere, herunder WKB-approximation.

Er man ikke interesseret i disse udregninger, kan man springe direkte til resultatet, lign. (4.34). Jeg har ment, at det var vigtigt at få disse udregninger med. Dels for at kunne sammenligne mine målinger med teoretisk forudsigte værdier, ikke blot kvalitativt, men også kvantitativt. Det ses alt for ofte, at man stiller sig tilfreds med en kvalitativ afhængighed.

Og dels er udregningerne vigtige for at kunne forstå hvilke approximationer og tilnærmelser, der benyttes. Dvs. for at kunne vurdere resultatet.

For at kunne vurdere mine resultater, dvs. afgøre om der er tale om tunnelleringssstrøm, om MIM-modellen er rigtig, om systemet ser ud, som jeg regner med, er det nødvendigt med yderligere nogle betragtninger, bl. a. om tunnelleringssstrømmens temperaturafhængighed og om evt. begrænsninger af strømmen.
Desuden vil jeg dokumentere og pointere disse resultater for den videre undersøgelses forløb (bl. a. mht. NDR).

Forudsætningerne.

Som omtalt i kap. 1, er det absolut ikke uproblematisk at fremstille tyndfilm og dermed MIM'er. Det er svært at fremstille homogene prøver, både med hensyn til overgange mellem materialer og mht, renheden af disse. F. eks. er Au-laget ikke kontinuert, se fig. 64 b. Desuden vil der være afvigelser fra den ene produktionsserie til den anden.

Enhver uhomogenitet vil give anledning til afvigelser i form af f.eks. overfladetilstande, traps i isolatorbåndgabet, og kapaciteten af dielektrikummet vil forandres meget, hvis der er små (få Å) ujævnheder (fremspring) i overgangen til metallet (Morgan et al. (1973)).

Isolatoren i MIM'erne består af amorft Al₂O₃, ikke krystallinsk, og det betyder, at båndgabet ikke har veldefinerede, men derimod udtværede kanter ('tilstandstæthedshaler'), se fig. 20.

![Diagram](image)

Fig. 20. Energibåndgab for krystallinsk og amorft materiale.

Når jeg har valgt at se bort fra alle extrinsic (de ydre) egenskaber, og blot betragte MIM'ernes intrinsic (de indre) egenskaber, skyldes det ene og alene en ting: Det går godt! Derfor er der ikke grund til at gøre behandlingen mindre enkel, men man må blot være opmærksom på alle disse mulige fejlkilder. Så i det følgende vil jeg kun inddrage det absolut mest nødvendige.
Hvis det f. eks. viser sig, at $I_{f,\text{exp}} \gg I_{f,\text{teori}}$, skyldes det givetvis udefra bestemte egenskaber. Eller i hvert fald egenskaber ved filmen jeg (man!) ikke er opmærksom på. Faktisk er det almindeligt eksperimentielt at få strømtætheder som er meget større end teoretisk beregnet, helt op til 10^5 (!) gange større (Roy (1986) p. 99).

Under disse forudsætninger, og ved $T=0^\circ$ K, vil et energibåndsdigram for en MIM se ud som på fig. 21.

![Diagram](image)

Fig. 21. MIM energibånd.

Ved $T>0^\circ$ K vil fordelingsfunktionen ikke være

$$f(E) = \begin{cases}
1 & \text{for } E > E_{\text{Fermi}} \\
0 & \text{for } E < E_{\text{Fermi}}
\end{cases} \quad (4.1)$$

men derimod fermifordelingen (eftersom elektroner er fermipartikler)\(^1\)

\(^1\)Pga. tradition bruges $\mu_{\text{ch}}(T) = E_f ; (\mu_{\text{ch}}(T=0) = E_f)$.

39
\[f(E) = \frac{1}{\frac{E-E_f}{e^{\frac{kT}{E}}} + 1} \] (4.2)

I litteraturen hersker der ikke enighed omkring arbejdssfunktionen, \(w_f \) og affiniteten, \(\chi \), for hhv. Al, Au og Al\(_2\)O\(_3\). Se fig. 22. \(\Phi_0 = w_f - \chi(\text{Al}_2\text{O}_3) \).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WF (eV)</td>
<td>TERR.</td>
<td>FOTO-ELEKTRISKT</td>
<td>KONTAKT POTENTIEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td>2.98</td>
<td>3.38</td>
<td>4.1 - 4.25</td>
<td>4.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.43</td>
<td>4.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.08*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td></td>
<td>4.0 - 4.58</td>
<td>4.73* (740°C)</td>
<td>4.46</td>
<td>4.8 - 5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.25</td>
<td>4.82* (20°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.32</td>
<td>4.86 - 4.92</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 22 a. Arbejdssfunktion.
Fig. 22 b. Barrierehøjde.

Det skyldes bl. a., at der findes forskellige metoder til at måle ω_f. Bl. a. vha. fotoemission, MOS kapacitans målinger, termionisk emission, og kontaktpotentiale. Præcis hvilken metode kilden anvender, opgives oftest ikke. En speciel metode til bestemmelse af barrierehøjde ved tunnelling (felt-emission) vil jeg behandle senere i dette kapitel i afsnittet "Bestemmelse af barrierehøjde".

To forskellige værdier, hos den samme kilde, for tilsyneladende samme overgang, f. eks. Al-Al_2O_3-Al, kan skyldes forskellig produktionsmetode, til eksempel anodisk oxidation af Al-overflade hhv. pådampning af Al på fri oxidoverflade.

Forskellen i ω_f (eller E_{Fermi}) Au/Al giver anledning til en ladningsfordeling når $t \to \infty$, se fig. 23.

Dette fænomen skulle kunne måles via et kontaktpotentiale, se fig. 24, men det har ikke været muligt at opnå entydige resultater på dette område. Kontaktpotentialel for MIM’erne har svinget fra nul til ca. 300 mV. Måske fordi forskellen mellem de to metallers arbejdsfunktioner ikke er særlig stor i MIM-strukturen, eller fordi de to elektroder, gennem store modstande, er kortsluttet til omgivelserne. Det sidste betyder, at der instiller sig en ligevægt med et lavere kontaktpotentiale.

Fig. 24.

Den vigtigste parameter for det følgende er barrierehøjden Al-Al_2O_3, ϕ_0. Jeg vil antage, at den er 2.0 eV.
Fig. 23. Ladringsfordeling pga. forskel i kontaktpotentiale.

Fig. 24. kontaktpotentiale.
Kontakter.

Desuden vil jeg antage, at kontakterne mellem elektroder og isolator er neutrale, dvs., at der i ligevægtssituationen ikke er nogen nettoladning i isolatoren. En neutral kontakt er altså en hvor ladningsbærerkoncentrationen er den samme i bulk som ved kontakterne.

Modstæningerne til en neutral kontakt er ohmsk og blokerende kontakt. En ohmsk kontakt forekommer ved, at isolatoren’s fermineværdi, før tilslutning af elektroder, ligger under elektrodernes \((E_{F_{-iso}} < E_{F_{-m}})\), se fig. 25. I en perfekt isolator er det intrinsic fermineværdi, \(E_{F_{-in}}\), givet ved

\[
E_{F_{-in}} = E_g/2 + kT/2\cdot \ln(N_V/N_C)
\]

(4.3)

hvor \(N_V\) og \(N_C\) er den effektive tilstandstæthed i hhv valens- og ledningsbånd. For temperaturer under og omkring stuetemperatur, vil \(E_{F_{-in}} = E_g/2\).

Ved tilslutning vil elektroderne, i tilfælde af ohmsk kontakt, tilføre isolatoren et område med negativ nettoladning, se fig. 25. Ohmsk kontakt giver en bulkbegrænset (‘bulk-limited’) ladningstransport, idet ladningsbærertætheden ved kontakterne er stor.

Fig. 25. Ohmsk kontakt. a: Før tilslutning. b: Efter tilslutning.
En blokerende kontakt forekommer i det tilfælde, hvor isolatorens ferminiveau ligger over elektrodernes, se fig. 26. Der vil da opbygges en positiv nettoladning i isolatoren. Altså vil ladningsbærrertætheden (elektroner i ledningsbåndet) i depletionlaget være meget lavere end i bulk af isolatoren. Den elektriske transport vil derfor være elektrodebegrænset.

Fig. 26. Blokerende kontakt. a: Før tilslutning. b: Efter tilslutning.

Den neutrale kontakt repræsenterer overgangen mellem de to øvrige. Hvis isolatoren er perfekt, kan kontakten også være neutral selvom $E_{f, iso} \neq E_{f, m}$. Det samme er tilfældet hvis elektron traps ligger så højt over $E_{f, m}$ (alternativt hul traps under), at den fangne ladning er lille og ikke bøjer energi båndene.

Jeg har ingen observationer, der indikerer andet end neutral kontakt. Det ville f. eks. kunne observeres vha. EIS, hvis der var depletion-områder til stede. Dvs. områder med anden ladningsbærrertæthed, og dermed anden ledningsevne, end bulk, jvf. kap. 2.

Tunnellering.

Uden påtrykt spænding er isolatoren stort set blot en almindelig rektangulær barriere, se fig. 27. (Jeg har undladt vacuumniveauet)

Fra den elementære kvantemekanik (f. eks. Scharff (1971) p.117), fås transmissionssandsynligheden gennem en rektangulær barriere som
T = 16 \cdot k^2/\beta^2 \cdot \exp(-2\beta b), \quad (4.4)

hvor \(b \) er barrieretykkelsen,

\[\beta = \sqrt{\frac{2m(\phi_0 - E)}{\hbar^2}} \]

\[k = \sqrt{\frac{2mE}{\hbar^2}} \]

hvor \(k \) er bølgevektoren, \(E \) er elektronenergien, \(m \) er elektronens frie masse, \(\hbar \) er planck's konstant, og \(\phi_0 \) er barriere højden. Det betyder, at \(\exp(-2\beta b) = 10^{-63} \), altså ingenting.

![Fig. 27. Tilnærmelservis rektangulær barriere.](image)

Ved påtrykt spænding ændrer barrieren form, og ved tilstrækkelig stor spænding bliver den trekantet, se fig. 28. Som det fremgår, falder hele spændingen over isolatoren.

Ved lav temperatur vil stort set alle kvantemekanisk tunnellerende elektroner komme fra ferminiveaufet, eftersom transmissionssandsynligheden aftager exponentielt med tykkelsen, og højere energitilstande er ubesatte. Denne type tunnelling kaldes felt-emission (F-emission).

Ved højere temperatur vil hovedparten tunnellerere fra et niveau et stykke over \(E_F \), den såkaldte termisk assisterede felt-emission (T-F-emission).

Og ved meget høje temperaturer vil størsteparten af den elektriske transport foregå ved termionisk emission (T-emission) over barrieren.
Fig. 28. Emissionsmuligheder.
Jeg har målt film og emissionsstrømme hovedsageligt ved $T=110^\circ$ K, af hensyn til holdbarheden af MIM'erne og stabilitet af strømmene. Ved højere temperatur brød prøverne hurtigere sammen, strømmene var meget svingende, sjældent reproducerbare, og det var ikke muligt at opnå de helt store spændinger.

Ved den lave temperatur vil man forvente felt-emission, men pga. lokal opvarmning og det meget store E-felt (op til 10^9 V/m) kan der forekomme blandet emission. Som jeg senere vil komme ind på, forekommer der ofte rumladingsbegrænsnet strøm ("space charge limited current") ved store felter.

Schottkey-effekt.

Pga. Schottkey-effekten, som er kombinationen af et E-felt i isolatoren og 'image force' effekten, bliver den trekantede barriere sænket\(^3\).

![Diagram of a metal/vacuum interface with an electric field](image_url)

Fig. 29. Image charge.

Når en elektron er afstanden x fra et metal, vil der blive induceret en tilsvarende positiv ladning på metaloverfladen. Denne 'image charge' kan regnes placeret afstanden x inde i metallet, selvom den selvfølgelig er en ladningsfordeling på metaloverfladen. Se fig. 29. Denne ladning giver anledning til en tiltrækkende kraft, 'image force':

\(^2\)Det er lavest mulige stabile temperatur ved høje spændinger pga. varmeudvikling.

\(^3\)Potentialbarrierer, der bliver formet pga. ladningsfordeling, og hvis bredde og højde afhænger af påtrykt felt, refereres generelt i litteraturen som Schottkey-barrierer.
\[F(x) = + \frac{q^2}{4 \pi (2x)^2 \varepsilon} \] \hspace{1cm} (4.5)

Hvilket svarer til den potentielle energi

\[E_p(x) = \int F \, dx = \frac{q^2}{16 \pi \varepsilon x} \] \hspace{1cm} (4.6)

Denne energi svarer til elektronens energi i afstanden \(x \) fra metallet, regnet positiv nedad fra \(x \)-aksen, og med nulpunkt i uendelig, se fig. 30.

![Diagram](image)

Fig. 30. Schottkey-effekt.

Ved et påtrykt felt bliver den samlede potentielle energi

\[\Phi(x) = q E x + \frac{q^2}{16 \pi \varepsilon x} \] \hspace{1cm} (4.7)

Barrieresænkningen, \(\Delta \phi \), og stedet hvor den nye top finder sig, \(x_m \), findes ved betingelsen \(d\Phi/dx = 0 \):
\[x_m = \sqrt{\frac{q}{16 \pi \varepsilon E}} \] (4.8)

\[\Delta \phi = qE x_m + \frac{q^2}{16 \pi \varepsilon x_m} = \sqrt{\frac{q^3 E}{4 \pi \varepsilon}} \]

Eksempel: \(E = 8 \cdot 10^8 \text{ V/m}, \varepsilon = \varepsilon_r \varepsilon_0 = 7.85 \cdot 10^{-12} \text{ F/m} \).
\(\Delta \phi = 0.4 \text{ eV} \)
\(x_m = 2.5 \text{ Å} \).

Det giver ingen mening at lade det potentielle, der skyldes 'image force', gælde for \(x \) gående mod 0. Man kan i stedet forestille sig fermihavet i metallet udstrakt til \(x_0 \) (som er en ganske lille afstand).

Schottkey-efekten runder altså hjørnerne af potentialbarrieren.

En generel indvending mod 'image force' effekten er, at den kræver tid. Effekten bygger på ladringsfordeling, og flytning af ladninger kræver tid. Så det er meget muligt, at afskærmingen sker langsommere end kvantetunnelleringen. Potentialen, som elektronen vil tunnellere i, skal da udregnes vha. de tidsafhængige Maxwell-ligninger.

Og det ligger ganske udenfor, hvad jeg har tænkt mig at bruge dette resultat til; nemlig en påvisning af, at der kan være effekter, der gør barrieren lavere.

Felt-emission.

Jeg vil se bort fra 'image force' effekten, og regne på felt-emission gennem en vilkårlig barriere, se fig. 31.
Fig. 31. Tunnellering gennem vilkårlig barriere.

Tunnelleringsstrømtætheden er givet som

\[J = q \int T(E) \nu_x n(E) \, dE \]
(4.9)

\(T(E) \) er den kvantemekaniske transmissionssandsynlighed ved energien \(E \), \(\nu_x \) er elektronhastigheden i \(x \)-retningen, og elektronstrømtætheden ved energier mellem \(E \) og \(E + dE \) er\(^4\)

\[n(E) \, dE = g(E) \, f(E) \, dE = \frac{8 \pi m \sqrt{2 m E}}{\hbar^3} \, f(E) \, dE = \frac{8 \pi p^2}{\hbar^3} \, f(E) \]
(4.10)

I et rumfangselement \(dp_x dp_y dp_z \) fås

\[n(E) \, dE = \frac{8 \pi p^2}{\hbar^3} \, f(E) \, \frac{dp_x dp_y dp_z}{4 \pi p^2 \, dp} = \frac{2}{\hbar^3} \, f(E) \, dp_x dp_y dp_z \]
(4.11)

\(^4\)Fra statistisk mekanik.
Idet et rumfangselement i polære koordinater er givet ved

\[dV = 4\pi p^2 dp \]

(4.12)

Hvis man tager hensyn til strøm i begge retninger, fås nettostrømmen fra region 1 til region 2 da som

\[J = \frac{2q}{\hbar^3} \int T(E) v_x [f_1(E_1) - f_2(E_2)] \, dp_x \, dp_y \, dp_z \]

(4.13)

hvor

\[f_1(E_1) = \frac{1}{\exp((E_1 - E_\text{fn})/kT) + 1} \]

\[f_2(E_2) = \frac{1}{\exp((E_2 - E_\text{fn})/kT) + 1} \]

\[v_x = \frac{\partial E_x}{\partial p_x} \]

For at udregne T(E) for tunnelling gennem en vilkårlig barriere, benyttes WKB-approximation. Det forudsætter, at elektronbølgelængden er lille, sammenlignet med den afstand, over hvilken der sker en betragtelig ændring af den potentielle energi. Dvs., at formen af potentialbarrieren er 'pæn', f. eks.

\[\frac{1}{\phi - E} \frac{d\phi}{dx} \ll k, \quad k = \sqrt{\frac{2m(\phi - E)}{\hbar^2}} \]

(4.14)

Den vilkårlige barriere deles op i et stort antal approximativt rektangulære barrierer, se fig. 32. Hver med den infinitisimale bredde \(w_i \) og transmissionskonstant \(k_i \), hvor
\[
\begin{align*}
k_i &= \sqrt{\frac{2 \, m \, (\phi_i - E)}{\hbar^2}} \\
\text{(4.15)}
\end{align*}
\]

og \(\phi_i\) er højden af den i'te barriere. Transmissionssandsynligheden er da (af lign. (4.4))

\[
T_i = \exp(-2 \, k_i \, w_i) \\
\text{(4.16)}
\]

Fig. 32. Opdeling af barriere.

Ved at gange \(T_i\)'erne for samtlige barrierer fås transmissionssandsynligheden for den sammensatte barriere

\[
T = \prod_i T_i = \exp(-\sum_i 2 \, k_i \, w_i) \\
\text{(4.17)}
\]

For \(w_i\) gående mod nul kan summen erstattes med et integrale

\[
T = \exp(-2 \, \int_0^w k_i(x) \, dx) \\
\text{(4.18)}
\]

\footnote{Man antager normalt, at den præeksponentielle faktor er 1. Det er ikke trivielt, at det skulle være tilfældet. Derfor indføres der her et betydeligt usikkerhedsmoment i beregningen. Det har ikke været mig muligt at gennemføre udregningen med udtrykket (4.4), eller finde det gjort i litteraturen.}
eller

\[
T(E) = \exp \left(-2 \int_0^w \sqrt{\frac{2m(\Phi(x) - E)}{\hbar^2}} \, dx \right) = \exp \left(-\frac{4\pi}{\hbar} \int_0^w \sqrt{2m(\Phi(x) - E)} \, dx \right)
\]

(4.19)

hvor \(\Phi(x) \) er den vilkårlige potentialbarriere.

Hvis man antager, at elektronerne tunnellerer ved en energi \(E_1 \) ikke langt fra \(E_{f1} \), og lader

\[
\alpha = \frac{4\pi\sqrt{2m}}{\hbar} \quad \text{og} \quad \epsilon_x = E_{f1} - E_x
\]

(4.20)

kan \(T(E) \) Taylorudvikles (omkring \(\epsilon_x = 0 \))

\[
\ln T(E_x) = + \alpha \int_0^w \sqrt{\Phi(x) - E_x} \, dx = + \alpha \int_0^w \sqrt{\Phi(x) - E_{f1} + \epsilon_x} \, dx
\]

\[
= + \left(b_1 + c_1 \epsilon_x + f_1 \epsilon_x^2 + ... \right)
\]

(4.21)

hvor

\[
b_1 = \alpha \int_0^w \sqrt{\Phi(x) - E_{f1}} \, dx
\]

(4.22)

\[
c_1 = \frac{\alpha}{2} \int_0^w \frac{1}{\sqrt{\Phi(x) - E_{f1}}} \, dx
\]

Da det som regel er tilstrækkeligt at betragte de to første led af Taylorudviklingen, får jeg ikke brug for \(f_1 \).

Fra (4.13) haves

\[
J = \frac{2q}{\hbar^3} \int_0^\infty T(E_x) \left[f_1(E) - f_2(E) \right] dE_x \, dp_y \, dp_z
\]

(4.23)

\(^6\)For udtrykket for \(f_1 \) se Kao (1981), p. 104.
hvor \(E_1 = E_2 = E \). Grænserne er valgt med nulpunktet for energien tilstrækkelig langt under vacuumniveauet, så tunnelleringssandsynligheden ved \(E=0 \) er nul. Under alle omstændigheder antages, at al tunnellering foregår lige omkring ferminiveauet.

Eftersom \(T(E_x) \) kun afhænger af \(E_x \) fås

\[
J = \frac{2q}{\hbar^3} \int_{0}^{\infty} T(E_x) \left\{ \int_{0}^{\infty} \left[f_1(E) - f_2(E) \right] dp_y dp_z \right\} dE_x
\]

(4.24)

\[
dp_y dp_z = r dr d\theta
\]

Fig. 33.

Af fig. 33 fås

\[
dp_y dp_z = r dr d\theta
\]

(4.25)
Endvidere haves

\[E = E_x + E_r \]

\[E_r = \frac{p_x^2 + p_z^2}{2m} = \frac{r^2}{2m} \]

\[r \, dr = 2m \, dE_r \]

\[\int d\theta = 2\pi \]

Ved indsatelse i (4.24) fås

\[J = \frac{4\pi q_m}{h^3} \int_0^\infty T(E_x) \left\{ \int_0^\infty \left[f_1(E) \cdot f_2(E) \right] \, dE_r \right\} \, dE_x \]

(4.27)

For \(f_1(E) \) haves

\[f_1(E) = \frac{1}{E \cdot E_r} = \frac{1}{e^{kT} + 1} \]

\[e^{kT} \cdot e^{kT} + 1 \]

(4.28)

Idet

\[u = \exp \frac{E_r}{kT} ; \quad E_r = kT \ln u ; \quad \frac{dE_r}{u} = \frac{kT}{u} \, du ; \quad E_r = 0 \Rightarrow u = 1 \]

fås

\[\int_0^\infty f_1(E) \, dE_r = kT \int_1^\infty \frac{du}{u \left\{ \exp \left((E_x - E_f)/kT \right) \cdot u + 1 \right\}} \]

\[= kT \left[\ln \frac{1 + \exp \left((E_x - E_f)/kT \right) \cdot u}{u} \right]_1^\infty ; \left\{ \int \frac{dx}{x(a+bx)} = -\frac{1}{a} \ln \frac{a+bx}{x} \right\} \]

\[= kT \left[\frac{E_x - E_f}{kT} + \ln \left\{ 1 + \exp \left((E_x - E_f)/kT \right) \right\} \right] \]

55
\[= kT \ln \left\{ 1 + \exp \left(\frac{(E_f - E_x) - E_x}{kT} \right) \right\}. \tag{4.30} \]

Analogt fås

\[\int_0^\infty f_{\tilde{f}_2}(E) dE = kT \ln \left\{ 1 + \exp \left(\frac{(E_f - E_x - qV)}{kT} \right) \right\}. \tag{4.31} \]

Idet \(E_{\tilde{f}_2} = E_f - qV \).

Ved indsatelse af (4.30) og (4.31) i (4.27) fås

\[J = \frac{4 \pi q m k T}{\hbar^3} \int_0^\infty T(E_x) \cdot \ln \left\{ \frac{(E_f - E_x)/kT}{1 + \exp \left(\frac{(E_f - E_x - qV)}{kT} \right)} \right\} dE_x \tag{4.32} \]

Fra Taylorudviklingen af \(T(E_x) \) medtages kun de to første led, idet led af anden og højere orden vil være små, for at opfylde betingelsen for WKB-approximation\(^7\).

Derved fås

\[J = \frac{4 \pi q m k T}{\hbar^3} \int_0^\infty \exp(- b_1 - c_1 (E_f - E_x)) \cdot \ln(\) dE_x \tag{4.33} \]

hvor jeg har undladt at gentage argumentet til \(\ln \). Ved integration fås

\[J = \frac{4 \pi q m}{\hbar^3 c_1^2} \exp(- b_1) \left(1 - \exp(- c_1 V) \right) \frac{\pi c_1 k T}{\sin(\pi c_1 k T)} \tag{4.34} \]

For en trekantet barriere (se fig. 28) haves

\[x_1 = 0 \]

\(^7\)Man kan vise, at dette kræver at \(1/kT - c_1 > (2 f_1)^{1/2} \), hvilket er opfyldt i de fleste praktiske tilfælde (Murphy & Good 1956 (ref: Kao (1981))).
\[x_2 = \frac{\phi_0}{(qF)} \]
\[\Phi(x) = E_{f-m} + \phi_0 - qF \times \]
\[E_{f1} = E_{f-m} \]

Ved integration af (4.22) med betingelserne (4.35) fås

\[b_1 = \alpha \frac{2 \phi_0^{3/2}}{3 q F} \]
\[(4.36) \]
\[c_1 = \alpha \frac{\phi_0^{1/2}}{q F} \]

Eftersom \(c_1 V \) er et meget stort tal\(^8\), vil \(\exp(- c_1 V) = 0 \). Så ved indsættelse i (4.34) fås feltemissionen

\[J = \frac{(qF)^2}{8 \pi \hbar} \exp \left\{ + \frac{8 \pi \sqrt{2 m} (\phi_0^{3/2})}{3 \hbar q F} \right\} \frac{\pi c_1 kT}{\sin(\pi c_1 kT)} \]
\[(4.37) \]

Og for lave temperaturer (\(\sin x = x \) for små \(x \))

\[J = \frac{q^2}{8 \pi \hbar t^2} \exp \left\{ + \frac{8 \pi t \sqrt{2 m} (\phi_0^{3/2})}{3 \hbar q} \frac{1}{V} \right\} = a V^2 \exp \left(b \frac{1}{V} \right) \]
\[(4.38) \]

Idet \(F=V/t \), hvor \(t \) er tykkelsen af isolatoren. Udtrykket er kvalitativt ækvivalent til Fowler-Nordheim ligningen.

For de to oxidtykkelser haves:

Eks. 1:

\[t = 100 \ \text{Å} \]
\[\phi_0 = 2 \ \text{eV} \]

\(^8\)Det ses ved indsættelse, men følger også af WKB-approximation: \(1/kT > (2\hbar)^{1/2} \Rightarrow 1 - c_1 kT < kT(2\hbar)^{1/2} \Rightarrow c_1 kT < 1 \), og dermed \(c_1 V \gg 1 \).
a = 7.70 \cdot 10^9 \text{ A/(V}^2\text{m}^2) \\
b = -193 \text{ V.}

Eks. 2:

t = 180 \text{ Å} \\
\phi_0 = 2 \text{ eV} \\
a = 2.38 \cdot 10^9 \text{ A/(V}^2\text{m}^2) \\
b = -348 \text{ V.}

Dvs., at tunnellerringsstrømtætheden gennem en MIM med 100 Å Al$_2$O$_3$ skulle være

\[J = 7.70 \cdot 10^9 \cdot V^2 \cdot \exp(-193/V). \] \hspace{1cm} (4.39)

Hvis strømmen er tunnellerringstrøm ved felt emission, vil strøm og spænding altå have afhængigheden

\[I = a \cdot A \cdot U^2 \cdot \exp(-b/U), \] \hspace{1cm} (4.40)

hvor A er emissionsarealet. Det vil give en lineær afhængighed på et (1/U, ln(I/\text{U}^2)) plot (et såkaldt Fowler-Nordheim plot), med hældningen -b. Og som det vil fremgå af kap. 6, passer det glemrende på MIM-strømmene.

Fejlkilder, afvigelser og utilstrækkeligheder.

Hvis man tager hensyn til 'image force', kan integralerne for b1 og c1 skrives i termer af komplekte elliptiske integraler af 1. og 2. art. Emissionsstrømmen kan udregnes, men der er ikke eksperimenterne belæg for, at dette udtryk skulle beskrive felt-emission mere præcist end lign. (4.34).

"It is most likely that the field emission is filamentary and the current is space charge limited under high fields. If this is so, all expressions for field emission have to be modified."

Kao (1981)

Hvis tunnellerringsstrømmen er filamentary, betyder det, at emissionsstrømtætheden ikke kan være homogen på emissionsarealet. Det er i modstrid med Brno’s resultater. Jeg vil

9O'Dwyer (1973), Murphy & Good (1956) (ref: Kao (1981)).
10Ref: Kao (1981).
senere i dette kapitel komme ind på om strømmen kan være 'space charge limited' (SCL).

Det kan også have stor betydning om tunnellingen foregår hele vejen igennem isolatoren (evt. til dens ledningsbånd), eller om den foregår til lokaliserede tilstande i båndgabet. Det sidste vil betyde en større strøm.

Den fejl jeg begår, ved ikke at tage hensyn til 'image force' effekten, er ikke særlig stor. Det drejer sig om, at barrieren bliver en smule smallere, lavere og hjørnerne rundes af. Dens betydning er størst ved høje spændinger, hvor den kapper toppen af potentialbarrieren, se fig. 34.

\[\Delta \phi \]

Fig. 34. Image force effekt.

Men eftersom stort set al tunnelling forgår lige omkring E_f, og toppen kun bliver kappet af over et lille område, får det ikke den store betydning. Transmissionssandsynligheden er et produkt (lign. (4.17), og denne effekt vil kun påvirke få af faktorerne.

Desuden er afhængigheden af tykkelsen stærkere end afhængigheden af barrierehøjden, se lign. (4.4). Så det er tykkelsen ved tunnellingststedet der tæller mest, og den påvirkes kun med få Å. Det betyder ikke meget i forhold til usikkerheden på tykkelsen ved fremstillingen (skønnet +/- 10 %), usikkerheden på formen af barrieren pga. urenheder, traps, overfladetilstande, udsmurte energibåndkanter, guldets uhomogenitet, osv.

Derfor er der ingen speciel grund til at tage 'image force' effekten med i beregningerne, blot regne den med til usikkerhedsmomenterne.

Hvis man i de forgående beregninger vil tage hensyn til en evt. asymmetri i barrieren (se fig. 23 el. 27), og kun er interesseret i et udtryk for $eV > \phi_2$, kan V blot udskiftes med $V - \Delta \phi$. Alternativet er
at erstatte (4.35) med andre x_2 og $\Phi(x)$. Men eftersom jeg ikke er sikker på, at der er asymmetri, og kun er interesseret i $eV > \phi_2$, er dette tilstrækkeligt for mig.

Der er altså nogle usikkerhedsmomenter, der synes at trække i hver sin retning. 'Image force' effekten gør barrieren mindre. En formodet asymmetri i barrieren gør den større (end antaget). Derudover er der som nævnt mange andre faktorer, der spiller ind og som kan ændre barrieren.

Eftersom resultatet af alt dette er meget usikkert, må det rimeligste være at regne barrieren for rektangulær. Det vil jeg derfor gøre under behandlingen af resultaterne, kap. 6. Og som det vil finde sig: Det ser ud til at passe.

Bestemmelse af barrierehøjde.

Nogle af bestemmelserne af barrierehøjder11 i fig. 22 er fundet ved en særlig metode, man kan benytte sig af ved felthjulpet tunnel-emission.

Af udtrykket (4.34) fås12

$$\frac{J(T)}{J(T = 0)} = \frac{\pi c_1 k T}{\sin(\pi c_1 k T)} = 1 + \frac{1}{6} (\pi c_1 k T)^2 \Rightarrow$$

$$J(T) = J(0)(1 + \frac{1}{6} (\pi c_1 k T)^2) = J(0)(1 + \alpha_{\text{temp}} T^2)$$

hvor

$$\alpha_{\text{temp}} = \frac{1}{6} (\pi c_1 k)^2 [K^2]$$

$$c_1 = \frac{\alpha}{2} \int_0^w \frac{dx}{\sqrt{\Phi(x) - E_{\text{fl}}}} [J^{-1}]$$

I det foregående har jeg regnet på trekantede barrierer. Det er kun tilfældet for meget store spændinger. I det følgende vil jeg betragte spændinger i størrelsesorden med barrierehøjderne, dvs. 0-3 V.

11Det er bl. a. Simmons' opgivelser.
12$J(T=0)$ findes ved at benytte at $x/\sin x \to 1$ for $x \to 0$.

60
Fig. 35. Barriere for forskellig biasspændinger.
Barrieren er som fig. 35, idet jeg pålægger Au-elektroden positiv bias (≡ forward bias).

\[\Phi(x) \text{ vil jeg betragte som givet ved en middelbarrierehøjde,} \]

\[\phi = \left< \Phi(x) - \mathcal{E}_F \right> \quad (4.43) \]

over tunnelleringstykken Δs.

For \(eV < \phi_2 \):
\[\Delta s = s \quad (4.44) \]
\[\phi = \frac{\Phi_1 + (\Phi_2 - eV)}{2} \]

For \(eV > \phi_2 \):
\[\phi = \frac{\Phi_1}{2} \quad (4.45) \]
\[\Delta s = \frac{\Phi_1 s}{eV - \Delta \phi} \]

idet
\[\Phi(x) = \Phi_1 + \frac{\Phi_2 - eV - \Phi_1}{s} x = \Phi_1 + \frac{\Delta \phi - eV}{s} x = 0 \Rightarrow x = \frac{\Phi_1 s}{eV - \Delta \phi} \equiv \Delta s \]

Dermed fås
\[c_1 = \frac{\alpha}{2} \int_{0}^{\Delta s} \frac{dx}{2 \sqrt{\phi}} = \frac{\alpha}{2 \sqrt{\phi}} \int_{0}^{\Delta s} dx = \frac{\alpha \Delta s}{2 \sqrt{\phi}} \quad (4.46) \]

og sålænge
\[J(T) = J(0) \left\{ 1 + \frac{(\pi \alpha k T)^2 \Delta s}{24 \phi} \right\} = J(0) \left\{ 1 + \frac{4 \pi^4 k^2 m \Delta s^2}{3 \hbar^2 \phi} T^2 \right\} \quad (4.47) \]

Stigningen i strømmen hvis temperaturen hæves fra 0° K til \(T^o \) K er

\[\frac{\Delta J(V,T)}{J(V)} = \frac{J(T) - J(0)}{J(0)} \times 100\% = \frac{4 \pi^4 k^2 m \Delta s^2}{3 \hbar^2 \phi} T^2 \times 100\% \quad (4.48) \]
\[\hat{J}(V,T) = 5.13 \cdot 10^{-6} \frac{\Delta s^2}{\phi} T^2 \% \]

(4.49)

For \(eV < \phi_2 \) vil det være

\[\hat{J}(V,T) = 5.13 \cdot 10^{-6} \frac{2s^2}{\phi_1 + \phi_2 - eV} T^2 \% \]

(4.50)

som er proportional med \(-V^{-1}\).

For \(eV > \phi_2 \) vil det være

\[\hat{J}(V,T) = 5.13 \cdot 10^{-6} \frac{2 \phi_1 s^2}{(eV - \Delta \phi)^2} T^2 \% \]

(4.51)

som er proportional med \(V^{-2}\).

Fig. 36. Bestemmelse af barrierehøjder.

Afbildes disse afhængigheder, se fig. 36, fås et teoretisk forudsagt peak for \(eV = \phi_2 \). Det andet peak, for \(eV = \phi_1 \), udledes analogt, idet man for påtrykt negativ spænding på Au-elektroden (reverse bias) får
for $eV < \phi_1$: \[\Delta s = s \] (4.52)

\[\phi = \frac{\phi_2 + \phi_1 - eV}{2} \]

Heraf fås, at $J(V,T)$ er proportional med $-V^{-1}$.

For $eV > \phi_1$: \[\phi = \phi_2/2 \] (4.53)

\[|\Delta s| = \frac{s \phi_2}{\Delta \phi + eV} \]

Heraf fås, at $J(V,T)$ er proportional med V^{-2}.

Disse resultater stemmer kvalitativt overens med eksperimentelle resultater (f. eks. Simmons (1971)), omend de eksperimentelle stigninger er mange gange større end de teoretisk forudsagte (typisk mere end 10 gange større).

Det har ikke været muligt for mig af denne vej at bestemme barrierehøjderne. Den tykkelse oxid, jeg arbejder med (100 Å), giver meget små strømme ved 1-4 V. De strømme, jeg har målt ved disse små spændinger, har været utroligt svingende. Og desuden er jeg ikke gået efter et sådant resultat.

Temperaturafhængighed.

Fra forrige afsnit haves

\[J(T) = J(0)(1 + \frac{1}{6} (\pi c_1 k T^2) = J(0)(1 + \alpha_{\text{temp}} T^2) \] (4.41)

\[\alpha_{\text{temp}} = \frac{1}{6} (\pi c_1 k)^2 [K^{-2}] \] (4.42)

\[c_1 = \frac{\alpha}{2} \int_0^w \frac{dx}{\sqrt{\Phi(x) - E_{fi}}} [J^{-1}] \]
Som det fremgår, afhænger α_{temp} af c_1 og dermed af middelbarrierehøjden, ϕ. For stor bias, dvs. for en trekantbarriere, vil c_1 været givet ved

$$c_1 = \alpha \frac{\phi_0^{1/2}}{qF}$$

(4.36)

og dermed

$$\alpha_{\text{temp}} = 1.2818 \frac{\phi_0}{eF^2} \text{ [K}^{-2}]$$

(4.54)

For $\phi_0 = 2 \text{ eV}$ og $F = 8 \cdot 10^8 \text{ V/m}$ er $\alpha_{\text{temp}} = 4.0 \cdot 10^{-6} \text{ K}^{-2}$. Altså en så lille temperaturafhængighed, at jeg i mit måleområde 100-300° K ikke burde kunne lagtage den.

Som det vil fremgå af kap. 6 er dette i overensstemmelse med mine resultater hvad angår filmstrømmen, I_F. Det er som sagt ganske almindeligt, at den eksperimentelle temperaturafhængighed er mange gange stærkere, end den teoretisk udledte.

Elastisk og uelastisk tunnelling.

Det billede, jeg har brugt på tunnelleringsprocessen, er den elastiske tunnelling, dvs. tunnelling fra elektrode 1 til elektrode 2 uden tab af energi, se fig. 37.

![Diagram of elastic and non-elastic tunneling](image-url)

Fig. 37. Elastisk og uelastisk tunnelling.
Der kan selvfølgelig (og det gør der) forekomme uelastisk tunnelling, hvor de tunnellerende elektroner taber energi i isolatoren (ϕ_i) i guldet hvis man betragter I_C, se fig. 37.

Elektronerne kan blive uelastisk spredt ved at anslå interne 'mode.' (f. eks. vibrationsmodes), og ved at urenheder (eller traps) på bestemte energiniveauer i isolatoren bliver ioniseret.

Hvis uelastisk tunnelling kan finde sted, betyder det en ny tunnelleringskanal, og dermed en stigning i strømmen (fra en vis energi, $eV > \Phi_0$).

Hvis der er stor mulighed for uelastisk tunnelling, f. eks. et helt bånd af traps med en energi i isolatorens båndgab, kan det betyde, at denne kanal bliver den dominerende i tunnelleringsstrømmen. Evt. kan den være dominerende i ét spændingsområde og ikke i andre.

Til en vis grad kan man udtrykke mulighedene for uelastisk tunnelling, som pertubationer i barriereprofilen.

SCL strøm.

Som tidligere nævnt, anser man13 det for sandsynligt, at strømmen gennem isolatorer ved store felter er rumladningsbegrænset (såkaldt 'space charge limited current', SCL strøm). I dette afsnit vil jeg give et eksempel på, at rumladning (space charge, SC), og specielt trapped SC, i en isolator kan begrænse I_f stærkt. Jeg betragter en symmetrisk MIM som fig. 38 a.

Ved påtrykt felt, og uden rumladning, bestemmes I_f af barrierehøjden og -tykkelsen, der ændres med V. Hvis man antager, at der ikke er rumladning for $0 < x < S_1$, og at der er en konstant rumladningsstæthed for $S_1 < x < S$, får barrieren udseendet fig. 38 c (konfr. fig. 38 d). En rumladning vil altså virke, som om man havde en effektiv spænding, V_{eff}, mindre end V.

Pittelli (Kao (1981)) har beregnet tunnelleringsstrømmen, og finder, at hvis trap tætheden er stor, vil rumladning begrænse strømmen meget. Hvis der ikke er traps, dvs., at rumladningen er frie ladningsbærere, eller hvis trap tætheden er lav, påvirker rumladning

66
Fig. 38. SCL strøm.
kun strømmen begrænset, selv for lav mobilitet, og kun for høje spændinger.

Der vil altid være traps til stede i isolator-tyndfilm, som følge af urenheder mm. De vil give anledning til lokaliserede tilstande i isolatorenens bandgab. Hvis de ligger tilstrækkelig tæt, kan elektron-erne tunnellere mellem dem (tunnelleringssandsynligheden afhænger af hvor meget bølgefunktionerne overlapper). Dette kaldes 'impurity conduction'.

Uden traps afhænger påvirkningen af mobiliteten, \(\mu \). Hvis mobiliteten er meget lav i bulk, vil der kunne dannes en nettoladning i bulk. Det er f. eks. tilfældet for ohmske kontakter (\(\mu_{kontakt} > \mu_{bulk} \)).

I MIM'er kan det for store feltet være tilfældet, at der tunnellerer elektroner hurtigere ind i isolatoren, end de kan transporteres væk. Det vil så give anledning til SCL strøm.

Effektiv masse.

Under det forgående har jeg betragtet elektronerne som frie; det er ikke nødvendigvis rigtigt. Jeg har ingen grunde, hverken teoretiske eller eksperimentelle, til at antage noget specielt om elektronernes effektive masse. Men for fuldstændighedens skyld, og for at underbygge etargument i kap. 5, vil jeg **kort** handle den\(^{14} \).

Jeg vil undersøge bevægelsen af en elektron i et energibånd, og be- tragter derfor en bølgepakke under et påtrykt E-felt. Jeg antager, at bølgepakken er sammensat af bølgefunktioner nær en bestemt bølgevektor, k. Gruppehastigheden er

\[
\frac{v_s}{\hbar} = \frac{d\omega}{dk} \tag{4.55}
\]

hvor \(\omega \) er frekvensen associeret en bestemt energi, \(E = \hbar \omega \), dvs.

\[
\frac{v_s}{\hbar} = \frac{1}{\hbar} \frac{dE}{dk} \tag{4.56}
\]

og

\(^{14}\)Jeg vil holde mig til isotrope materialer.
\[
\frac{d^2 E}{dk^2} = \frac{\hbar}{m} \frac{dE}{dk} \frac{1}{m} \frac{d^2 E}{dk^2} \frac{d^2}{dt^2}
\]

(idet)
\[
F = \hbar \frac{d}{dt}
\]

(fås)
\[
\frac{dv}{dt} = \frac{1}{\hbar^2} \frac{d^2 E}{dk^2} \Rightarrow F = \hbar^2 \frac{dv}{dt}
\]

(Denne ligning har form som Newton's 2. lov, når man definerer den effektive masse, \(m^*\), som\(^{15}\))
\[
\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2 E}{dk^2}
\]

Elektronerne reagerer altså på det påtrykte felt, som om de havde massen \(m^*\). Betydningen fremstår, når man betragter et energibånd i (k-E) rummet, fig. 39. Når den effektive masse er stor, tunnellerer elektronerne langsommere.

Fig. 39. Stor og lille effektiv masse.

\(^{15}\)Ved anisotrope materialer erstattes \(m^*\) af en tensor.
Den effektive masse kan være op til 100 gange større/mindre end den frie masse, og den kan også være negativ. I litteraturen om tunnelling gennem isolatorer er forholdet \(m^*/m \), hvad angår elektroner, som regel 1/3 - 2. I metaller er \(m \) (stort set) lig \(m^* \).

Hvis man skulle tage hensyn til den effektive masse, skulle \(m \) overalt erstattes med \(m^* \).
Kap.5. Negativ differentiel resistans.

I det følgende vil jeg behandle begrebet negativ differentiel resistans (NDR). Primært fordi det hænger tæt sammen med elektrisk transport gennem tyndfilm, men også fordi jeg har haft temmelig mange kvaler i den forbindelse. Kvaler som folkene i Brno kender til; hvis deres MIM'er udviser NDR, er de ubrugelige som planar elektron emittere.

Hvad er NDR?

Beskrivelsen af NDR vil ske med en fænomenologisk indgangsvinkel, med udgangspunkt i egne og folkene i Brno's resultater, samt selvfølgelig i litteraturen på området. Desuden vil jeg give nogle kvalitative bud på, hvad NDR kan skyldes. Det er nemlig absolut ikke teoretisk afklaret. Men først; hvad er NDR?

Differentiel resistans (eller ledningsevne) er defineret som dU/dI (hhv. dl/dU). Et eksempel på NDR ses fig. 40 a for $U_1 < U < U_2$.

a) VCND

\[I \]
\[\begin{array}{c}
\text{d}
\end{array}
\]
\[U_1 \]
\[U_2 \]

b) CCND

\[I \]
\[\begin{array}{c}
\text{d}
\end{array}
\]
\[I_1 \]
\[I_2 \]

Fig. 40. NDR.

Man skelner mellem spændingskontrolleret NDR (VCND), fig. 40 a, og strømkontrolleret NDR (CCND), fig. 40 b. Jeg har udelukkende set VCND, selvom jeg har forsøgt at se begge dele.

Fænomenet er velkendt; dioder, der udviser NDR, er kommercielt tilgængelige. De bruges til forskellige former for styring, hvor deres
meget hurtige 'switching' tid udnyttes (grundet at tunnellerings-tider er meget små, typisk 10^{-14} sek). F. eks "low power microwave applications, such as local oscillator & frequency locking circuits." (Sze (1981)). Generelt kan de udnyttet helt ned i millimeterbølge-området: 30-300 GHz.

Et tilfælde, hvor mekanismen bag NDR er velfortstået, er Esakidioden (efter Esaki, der som den første beskrev fænomenet i 1958). Esakidioden er en p-n overgang (f. eks. germanium), hvor begge sider er så kraftigt dopede, at fermineauerne ligger i de tilladte bånd, se fig. 41.

![Diagram of an Esaki-diode](image)

Fig. 41. Esaki-diode.

Depletionlaget er meget smalt (< 100 Å) pga. den store doping. Hvis n-siden forspændes positivt, vil strømmen stige monotont, se fig. 42 a. Hvis n-siden forspændes negativt med V < V_n (eller V < V_p, alt efter hvilken, der er mindst), vil strømmen vokse, da elektronerne kan tunnellere ind i ubesatte tilladte tilstande mellem E_{F,n} og E_v, se fig. 42 b.
Hvis spændingen overstiger V_n (eller V_p), er det kun en del af elektronerne på n-siden, der kan tunnellere til ubesatte tilstande på p-siden, og strømmen falder, fig. 42 c. Ved større spændinger vil strømmen igen vokse, da elektronerne så vil få adgang til p-sidens ledningsbånd, fig. 42 d.

I/V-karakteristikken for Esaki-dioden vil være som fig. 43. Altså kun NDR for én retning bias. De karakteristiske parametre, V_{peak}, V_{valley} og forholdet I_p/I_v, er materialeafhængige.

Fig. 42. Esakidiode med biasspændinger.

Fig. 43. I/V-karakteristik for Esakidiode.
NDR i Brno.

Første gang jeg stiftede bekendtskab med NDR, var under opholdet i Brno. Dels hørte jeg om deres erfaringer med det, dels udførte vi nogle forsøg med MIM'er, der udviste NDR.

Det er kun en lille del af MIM-produktionen, der kan anvendes. Hvilke, findes ved at undersøge deres I/V-karakteristikker (i atm. luft). De mulige udfald fremgår af fig. 44. Det er kun MIM'er med karakteristikker som fig. 44 c, der placeres i vacuum (<10⁻⁶ torr, turbomolekylærpumpe) i stepperen¹.

a) ohmsk b) NDR c) tunnellering

![Graphs of I/V characteristics](image)

Fig. 44. Mulige I/V-karakteristikker for MIM'er.

I stepperen er MIM'en en kold katode, og de emitterede elektroner accelereres over ca. 5 kV mod et scintilator-krytal, der gør, at den geometriske fordeling af de emitterede elektroner kan undersøges. Det er selvfølgelig kun MIM'er med en homogen emissionstæthed, der er anvendelige.

Alle MIM'er med homogen emission har I/V-karakteristikker som på fig. 44 c. MIM'er, der udviser emission i 'spots' (kortvarige, mindre end 0.1 sek.) pulser, der kommer fra skiftende steder, har I/V-karakteristikker som på fig. 44 b, og MIM'er uden emission som på fig. 44 a.

Dette gælder MIM'er, der kun har været testet i stepperen i sek., såvel som dem, der har været testet længe, og evt. er 'brændt sammen' (f. eks. er gået fra homogen emission, til emission i 'spots').

¹Ikke den 'rigtige' stepper, men en prøvestepper; det er jo heller ikke 'rigtige' MIM'er.
Ved første test i luft er det tilstrækkeligt med spændinger under 1 volt til at afgøre, om prøven er brugbar, dvs. har modstand af størrelsesorden Ω. I stepperen er arbejdsspændingen 7-8 Volt.

Da man kun er interesseret i MIM’er med homogen emission, er det af største interesse at få belyst fænomenet NDR. Hvorfor opstår det, og hvordan kan man undgå det?

Det var som sagt først under opholdet i Brno, at jeg blev opmærksom på problemet. Grunden var den simple, at jeg hidtil havde målt ved atm. tryk2, og NDR optræder kun i vacuum. Det var derfor nødvendigt at designe en ny prøveholder, den der er omtalt i appendix A 2.

Kulstoffilamenter & memory states.

![Diagram of filament types](image)

a) sandwich MIM

b) planar MIM

Fig. 45. Filamenter i sandwich og planar MIM.

2I begyndelsen interesserede jeg mig ikke for at kunne måle I_e.

75
Filamenter blev første gang foreslået til forklaring af bl. a. NDR af Dearnaley i 1967. Disse filamenter tænkes udstrakt fra metal til metal, se fig. 45. Hvis MIM'en er af planar type, er der allerede få overflader mellem elektroderne. Hvis den er af sandwich typen, skal der i nogle tilfælde en vis spænding, U_{forming}, til for at skabe sådanne overflader.

Man kan forestille sig, at en MIM, der udviser NDR, har to tilstande, en med lav modstand (ON-state) og en med høj modstand (OFF-state), se fig. 46.

![Graph](image)

Fig. 46. ON/OFF-states.

OFF-state kan opnås ved, at man reducerer spændingen fra U_m til nul volt meget hurtigt (< 0.1 msek). Resultatet bliver, at prøven følger den stiplede linie mod origo, se fig 46. Hvis man derpå igen hæver spændingen, vil I/V-karakteristikken følge den stiplede kurve. MIM'en kan 'huske' ved hvilken spænding, den blev afbrudt.

Men hvis man overskrider en vis spænding, U_{th}, vil man igen nærme sig det oprindelige forløb, se fig. 47. U_{th} afhænger (svagt) af den spænding, U_m, ved hvilken man afbrød strømmen. Men U_{th} er ikke materialeafhængig.

Man forestiller sig, at det i ON-state er filamenter, der leder strømmen, mens de i OFF-state er brændt af. Modstanden i ON-state er typisk fra nogle Ω til kΩ. Afbrændingen af filamenter sker gradvist over et spændingsinterval, fra lidt før U_{peak} til omkring U_{valley}.

76
Fig. 47. Tærskelspanning, U_{th}.

Forløbet derefter skyldes tunnellingning. Hvis man fra høj spænding skruer langsomt ned, regenereres filamenterne gradvist.

Man kan opnå forskellige tilstande af OFF-state (memory states), hvis man afbryder strømmen ved forskellige spændinger, U_m, se fig. 48.

Fig. 48. Memory states.
Hvis spændingen f. eks. går fra U_m til nul meget hurtigt ($< 0.1 \text{ msec}$), vil forløbet være den stiplede kurve 2. Det vil også være tilfældet når der skrues op for spændingen, blot U_{th} ikke overskrides.

Denne egenskab, at kunne 'huske' ved hvilken spænding strømmen blev afbrudt, kan bevares i flere år (afhængig af materialer og opbevaring). Vel at mærke uden nogen form for elektrisk påvirkning, f. eks. tærskelspænding.

Det er disse egenskaber ved NDR, man er interesseret i at udnytte til forskellige former for switching & memory devices.

Tykkelsen af isolatoren varierer fra ca. 20 Å til få µm.

Det er denne skov af materialer, som gør det fornuftigt at lede efter en mekanisme, der ikke skyldes ét af de involverede materialer. F. eks. er Simmons' forklaring med Au, der diffunderer/trækkes ind i isolatoren, refereret ofte. Så vidt jeg kan bedømme, er forklaringen selvkonsistent, men altså ikke almen. Og forøvrigt passer den ikke med de resultater, jeg har opnået.

En anden ting man kan undres over, er den manglende afhængighed af materialeparametre, såsom arbejdsfunktion (w_f) og filmtykkelsel. Ofte er filmtykkelsen slet ikke refereret!

Under UHV vil der ikke være tilstrækkeligt med kulbrinter til at danne filamenter, og en 'cold trap' vil fryse dem ud. Partialtrykket af f. eks. N_2, O_2, Ar og H_2 vil afhænge af en ligevægt mellem pump-

3UHV er $p < 10^{-9}$ torr.
ning og læk, mens H₂O, CO₂ og alle organiske molekyler kan fryses ud.

Et eksempel. En MIM i ON-state er placeret i vacuum uden 'cold trap'. Der fyldes N₂ i kryostaten, og så er der en 'cold trap'. Bl. a. alle kulbrinter i kammeret frysers ud; trykket falder. Men de filamenter, der er i isolatoren er ikke fjernet, derfor vil der stadig være NDR, når der skrues op for spændingen. Men det vil ikke være tilfældet, når der skrues ned igen; da vil alle filamenterne være brændt af, fordampet og frosset ude.

Hvis man fjerner 'cold trap'en, dvs. venter til nitrogenen er fordampet og temperaturen steget, kan man igen se NDR; det er igen muligt at danne filamenter. Præcis dette har jeg iagttaget.

Man har også forsøgt at undersøge andre gassers indflydelse, f. eks. ved tilgang af gasser ('gas inlet') til UHV systemer. Man kan dele forsøgene i tre typer:

Tilgang af

1) konstruktive molekyler (organiske),

2) destruktive molekyler (med høj elektronegativitet, f. eks. O₂, Cl₂ og alkoholer) eller

3) passive molekyler (f. eks. N₂ og ædelgasser).

Disse molekyler kan enten aktivt reagerer med filamenter eller passivt blive bygget ind. Det er desværre ikke enkelt at finde de konstruktive molekyler, selvom man antager, at de er til stede i den tilbageværende gas i vacuumkammeret ('residual gas'). Undersøgelser vha. massespektrografi giver alt for mange 'peaks' pga. det store antal organiske og uorganiske molekyler.

Udover eksperimenter med tilgang af 'residual gas' (fra HV til UHV), er der ikke lavet overbevisende eksperimenter med tilgang (alternativt udfrysning) af type 1).

Tilgang af type 2) reducerer den ledende tilstand. F. eks. vil stigende partialtryk af O₂ gradvist sænke Iₚₑᵃᵏ, vel at mærke hvis spændingen overskrider en grænse, Uₜₕ⁺. Hvis Uₜₕ⁺ ikke overskrider, er ON-state stabil, selv ved atm. tryk.

79
Dette er tilfældet for alle gasser. Dog kan der indtræde ældning. Visse typer MIM'er er stabile i år, andre i dage, afhængig af opbevaring (temperatur, fugtighed, osv).

Hvis jeg - uønsket - har haft en MIM, der udviste NDR eller var ohmsk (fig. 44 a og b), har jeg benyttet mig af denne egenskab: en tur til \(U=4-6\) volt ved atm. tryk, og prøven var tilbage i OFF-state (fig. 44 c). Det går dog ikke i det uendelige; efter en tid ender prøverne definitivt som ohmske.

Præcisk hvordan molekyler af type 2) indvirker på filamenter er ikke afklaret. Nogle resultater tyder på, at \(O_2\) kun angriber filamenter i ON-state, men som sagt først når en vis spænding, \(U_{th}\), er overskredet. Noget tyder på, at denne tærskel er den samme som for regeneration, \(U_{th}\). Betingelserne for \(O_2\) angreb og regeneration (ON-switching) er altså formodentlig de samme.

Molekyler af typen 3), dvs. ædelgasser og gasser med molekyler med lav elektronegativitet (f. eks. \(N_2\), \(H_2O\), \(CO\), \(CO_2\)), synes ikke at have nogen indvirkning på ledningsevnen af filamenterne. Men man kan iagttage, at MIM'erne er længere tid om at regenerere. Formodentlig fordi de passive molekyler også bygges ind i filamenterne.

Hvordan gror filamenter? ON/OFF-switching.

Præcisk hvilken mekanisme, der ligger til grund for, at der dannes kulstoffilamenter er ikke forklaret. Det synes ikke at være en ydre egenskab, som f. eks. et E-felt, der får dem til at line op.

Pagnia og Sotnik (1988) antager, at en filament er en kæde fra metal til metal, hvor hvert led kan være tomt eller besat af et kulstofmolekyle, se fig. 49. Alle led skal være besatte, hvis filamentet skal være ledende.

![Diagram af filament](image)

Fig. 49. Filament.

Omvendt regenereres filamenterne heller ikke ved samme spænding. Overgangen fra OFF- til ON-state sker også gradvist. Det mindste 'step', der menes jagttaget, er ca. 20 nA. Der vil altså være et område, hvor der både sker afbrænding og regeneration, fra lidt før U_p til omkring U_v. Fig. 50 er et eksempel på et NDR forløb, jeg har målt. Det bemærkes, at forløbet ikke er det samme for voksne og aftagende spænding.

Det ville være naturligt at betragte overgangen fra ON- til OFF-state (OFF-switching) som netop en afbrænding; grundet lokal opvarmning frigøres kulstofmolekyler fra deres bindinger og fordamper.

Men det passer tilsyneladende ikke ind i modellen. For at få den til at passe, må Pagnia & Sotnik nemlig antage, at der i det enkelte filament bliver flere og flere ledige pladser, jo højere spændingen skrues op. Og der sker vel ikke opvarmning i et filament, der allerede er 'brændt af' og dermed ikke længere leder strøm?

Pagnia & Sotnik er nødt til at gøre denne antagelse, fordi det observeres, at jo højere man skruer op for spændingen, U_m, og jo længere tid den er påtrykt, desto længere tid tager det at regenerere ON-state.

En sådan undersøgelse kan laves ved, fra forskellige spændinger, hurtigt at gå til nul volt (dvs. uden regeneration), og derfra sætte en regenerationsspænding, $U_r > U_{th}$, og se hvor lang tid, τ_r, det tager at nå ON-state, se fig. 51. Man finder

$$\tau_r \propto \exp(a U_m),$$

(5.1)

for konstant T (se fig. 51). a er en konstant.

Hvis man laver samme eksperiment med forskellige ventetider ved nul volt, kan man iagttage, at det tilsyneladende ikke er det ydre felt, der får ledige pladser fyldt. Den tid, det tager, er nemlig

4Dette er i det mindste ikke en fuldstændig forklaring, eftersom OFF-switching kan ske ved beskydning med lavenergi-elektroner (på planar MIM).
Fig. 51. Regeneration.

Fig. 52. Regeneration med og uden ventetid.
uafhængig af, om man venter ved nul volt eller ved U_r, se fig. 52. Her er der først sat en spænding, U_m, der sikrer, at prøven er i OFF-state. For kurven 1 er spændingen U_r sat uden ventetid ved nul volt, for kurven 2 med ventetid.

Det ser altså ud til at det ikke er det ydre felt, der får hullerne fyldt. Men under de samme betingelser mht. U_m og ventetid, er det alligevel størrelsen af U_r ($U_{th} < U_r < U_m$), som bestemmer, hvor hurtigt ON-state regenereres, se fig. 53. Empirisk fås

$$t_r \propto \exp((U_r - U_{th})^{-1}),$$

(5.2)

for fastholdt U_m.

![Fig. 53. Regeneration som funktion af U_r.](image)

Man kunne tilskrive udfyldningen af huller til et indre felt, som f. eks. i mit tilfælde må formodes at eksistere pga. forskellene i arbejdsfunktion. Det er bare ikke tilfældet for Pagnia & Sotnik; de undersøger hovedsagelig planar MIM-strukturer, hvor begge elektroder er Au på glas (fremstillet i samme proces).

Det ydre felt fylder ikke hullerne, det 'slutter' derimod de enkelte kulstofmolekyler sammen til et ledende filament ("ON-switching"), se fig. 54. Regeneration er altså åbenbart en to-faset proces: Først skal hullerne fyldes, så skal de tilsluttes.

Denne 'ON-switching' kan man forestille sig som 1) en faseovergang af filament bestående af ikke-ledende organisk materiale, 2) en
mekanisme, der 'ordner' materialet, eller 3) en ren mekanisk mekanisme, der tilslutter filamentenderne til elektroderne.

\[\text{ON-STATE} \]

\[U_m \]

\[\text{OFF-STATE}: \]

\[U_r \]

\[\tau_{\text{switching}} \]

\[\alpha : \text{HULLER} \]

\[\tau_{\text{filling}} \]

\[\bigcirc : \text{ТОМТ} \]

\[\otimes : \text{FYLDT} \]

\[\bullet : \text{TILSLUTTER} \]

Fig. 54. Switchingforløb.

\[\tau_{\text{filling}} \] kan altså undersøges ved, for \(t < \tau_f \), at undersøge antallet af ledende filamenter. Man finder, at sandsynligheden for at finde et filament ledende er givet som\(^5\)

\[p(t) = (1 - \exp(-t/\tau_f))^\alpha, \quad (5.3) \]

hvor \(\alpha \) er et udtryk for graden af filament destruktion (\(\alpha \) er en funktion af \(U_m; \alpha(U_m) \)).

\(\tau_{\text{switching}} \) kan undersøges ved, efter tilstrækkelig ventetid, \(t >> \tau_f \), at undersøge hvor hurtigt ON-state regenereres (ved påtrykt \(U_r \)).

Man har selvfølgelig forsøgt at se disse filamenter vha. forskellige former for elektronmikroskopi, transmission electron microscope (TEM), scanning electron microscope (SEM) & scanning tunnelling microscope (STM). Det er bare ikke lykkedes.

Eftersom filamenterne formodes at gå fra metal til metal, er det ikke troligt, at de kan observeres i sandwich MIM'er. I disse er der dog observeret 'huller' i topelektroden, efter at ON-state er skabt

\(^{5}\text{Dette kræver at I(t) } \propto \text{ p(t)}, \text{ dvs parallelle filamenter, metal til metal.}\)
(størrelsesorden 10-100 μm). Dette har jeg også set på mine MIM'er, et foto er forsøgt gengivet fig. 55.

Man har derfor søgt efter filamenter i planar MIM'er. Men altså uden held, også selvom man har forsøgt at gøre dem tykkere (ved at dække dem med yderligere materiale).

Fig. 55. Hul i topelektrode.

Nogle modeller foreslår filamenter, der består af metaløer. For at kvantetunnellering af tilstrækkelig størrelse skulle kunne finde sted, skulle afstanden mellem disse øer være omkring 1 nm, og størrelsen af øerne skulle være ca. 20 nm⁶. Disse øer skulle kunne ses med TEM⁷, men er ikke blevet det.

Det bedste resultat er en bestemmelse af hvor i området mellem de to elektroder, det største spændingsfald er ved U=U_m. Dette område skulle løbe parallelt med elektroderne, se fig. 56.

⁶Grundet målte I/V-karakteristikker ved flydende He-temperatur, der indikerer aktiveret tunnelling, med en aktiveringsenergi (1-5 mV), der svarer til denne ø-størrelse.
⁷Atomar oplysning (2 Å).
Fig. 56. Planar MIM, største spændingsfald ved $U_f = U_m$.

Hvis denne linje repræsenterer de steder, hvor filamenterne afbrændes (idet $U=U_m$), må filamenterne formodes at ligge ortogonalt på den.

Emissionsstrøm.

Man har tidlige resultater med I_e fra MIM'er, der udviser NDR, se fig. 57. Men størrelsen af I_e (nA) og en pletvis emission ('spots') gør den uinteressant.

Fig. 57. I_f og I_e fra MIM, der udviser NDR.
Man har mest interesseret sig for I_e med henblik på at kunne påvise filamenter, hvorfra I_e formodes at stamme. Ved høje spændinger kan I_e beskrives som Fowler-Nordheim tunneling, se kap. 4. Hvilket ikke synes at stemme med formodningen om, at I_e kommer fra filamenter.

Det ses, at I_e har et maximum omkring NDR-grenen. Der udsendes altså en del elektroner ved ON/OFF-switching. Altså kunne man formode, at der også forekom elektroninduceret switching. I_e/V karakteristikken taget i betragtning, kunne I_e skyldes to mekanismer: Del 1 skyldes filamenter (måske endda kun afbrydning af filament), og del 2 skyldes kvantetunnellering.

Modelvurdering.

For mig at se har kulstoffilament-modellen tre svage punkter:

1. Der eksisterer ingen forklaring på de to typer af kulstof-tiislutninger, der finder sted: a) En ikke-ledende ('filling'), som ikke skyldes U_f, og b) en ledende ('switching'), som skyldes U_f.

2. Modellen må antage, at en allerede afbrændt ('ruptured') filament destrueres yderligere, hvis U_m holdes i længere tid, eller hvis U_m stiger.

3. Hvorfor fortsætter antallet af filamenter ikke bare med at vokse, og modstanden dermed med at falde? Grobetingelserne burde være til stede i form af kulbrinter, og der må være plads nok i isolatoren til mange flere filamenter. Og de kan få tid nok til at line op ($t > r$). Spændingsfaldet over isolatoren bestemmer vi; lad os antage, at det er U_f, lidt større end U_{th}. Der sker kun ON-switching, ingen OFF-switching. Hvad skulle begrænse antallet af filamenter? Eller tykkelsen af dem?

Derudover mangler der selvfølgelig en påvisning af, at der faktisk er filamenter og en bestemmelse af deres materiale.

Fra mine undersøgelser har jeg to iagttagelser, der ikke umiddelbart synes at passe ind i modellen. For det første har jeg iagttaget betydelige forskelle i MIM'ernes opførsel, alt efter med hvilken polaritet jeg påtrykte spænding. Ofte kunne jeg kun opnå NDR med en polaritet (oftest med omvendt polaritet, dvs. Au negativ).
For det andet har jeg iagttaget 'fortsat' afbrænding af filamenter ved gentagne kørslер med MIM med 'cold trap', se fig. 58. Filamente, der ikke blev brændt af på første tur, ser altså ud til at blive det på næste. De filamente, der bliver brændt af i b), bliver det ved en spænding, der er passeret i a). Og modstanden 'hjem' i a) er lig med modstanden 'ud' i b), osv. Modstanden går fra kΩ til MΩ.

Fig. 58. 'Fortsat' filamentafbrænding.

Som det bemærkes, sker afbrændingen kun for stigende spænding. Dette var uafhængigt af ventetid ved bestemte spændinger. Men MIM'en skulle omkring nul volt først.

Andre modeller.

Der findes to hovedtyper af modeller til forklaring af NDR, switch-ing, osv. En der tilskriver egenskaberne til filamenter, som beskrevet i det foregående, og en der er baseret på (ændringer i) isolatorens energibehandlingskrav og 'impurity' tilstande i samme.

En oversigt over de forskellige modeller er givet i fig. 59.
Fig. 59. Foreslåede NDR modeller.

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>ON/OFF-STATES</th>
<th>ON/OFF-SWITCHING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-SiO$_x$-Au</td>
<td>bredt impurity-bånd i båndgab med el. uden rumladning</td>
<td>Trapping/removing af rumladning (space charge, SC)</td>
</tr>
<tr>
<td>MIM sandwich</td>
<td>helt eller afbrændt filament af ukendt materialet</td>
<td>termisk afbrænding/gromekanisme (bl. a. ionflytning)</td>
</tr>
<tr>
<td>MIM sandwich</td>
<td>impurity-bånd i amorf mat. med fluktuerende tæthed (isoelekt. tunnell.)</td>
<td>'hot' elektron trapping/detrap.</td>
</tr>
<tr>
<td>forskellige</td>
<td>krystallinsk el. amorf termisk faseovergang tilstand af filament</td>
<td></td>
</tr>
<tr>
<td>Au-luft-Au</td>
<td>Au filament el. luft afbrænding/vækst i stort E-felt</td>
<td></td>
</tr>
<tr>
<td>Al-SiO$_x$-Au (bl. a.)</td>
<td>kæde af metal-øer, aktiveret tunnelle- ring med høj el. lav barriere</td>
<td>SC el. ej</td>
</tr>
<tr>
<td>Al-polystyren-Al</td>
<td>kulstof filament el. afbrændt afbrænding/vækst, mekanisme ukendt</td>
<td></td>
</tr>
<tr>
<td>Au på quartz glas</td>
<td>kulstof filament el. afbrændt afbrænding/vækst og switching (ukendt)</td>
<td></td>
</tr>
</tbody>
</table>

For egen regning vil jeg godt komme med et helt andet bud, der som bærende ide har begrebet effektiv masse, m*, se kap. 4 "Effektiv masse". Elektronerne bevæger sig langsommere eller hurtigere, alt efter deres effektive masse. Hvis den effektive masse er stor, vil mobiliteten (ledningsevnen) synes lille, og hvis den effektive masse er lille, vil mobiliteten (ledningsevnen) synes stor.

Afgørende for størrelsen af den effektive masse, er det energibånd i (k,E) rummet, som elektronen bevæger sig i. Så hvis elektronerne,
af den ene eller anden grund, gik fra at bevæge sig i ét energibånd, der svarer til en lille m^*, til at bevæge sig i ét energibånd, der svarer til en større m^*, ville deres mobilitet falde.

Det skulle selvfølgelig være spændingen, der fik dem til at skifte bånd, for at det kunne være en forklaring på NDR. Kunne det så være spændingen? Ja, for med spændingen får de større energi, og dermed adgang til højereeliggende energibånd!

At højereeliggende energibånd har en større m^* forekommer, men det er stadigt uheldigt, hvis forklaringen er materialeafhængig. Energibånd i (k,E) rummet er jo materialebestemt. Så måske skal dette kombinieres med kulstoffilamenterne, på den måde, at det er dem, energibåndene tilhører.
Kap. 6. Resultater.

Hovedresultatet af mit arbejde, set i forhold til ideen bag projektet og hensigten med at samarbejde med Brno, er

- at jeg har fået opstillet en model for elektrisk ledning gennem MIM-strukturer og (bl. a. ved hjælp af EIS) vist, at den passer, kvalitativt såvel som kvantitativt,

Mht. den elektriske transport gennem MIM'er, har jeg påvist, at den foregår ved tunnellering (ideelt set, dvs. i tilfælde uden NDR). Jeg har opstillet et kvantitativt udtryk for tunnelleringsstrømmen, som passer med de målte resultater.

Af resultater derudover, som er af direkte interesse for Brno, kan jeg nævne de oplagte muligheder for forbedrede resultater (mht. anvendelsen af MIM som PEES) ved lav-temperatur (stabilitet, holdbarhed, ingen NDR). Jeg er overbevist om, at mine resultater vil være af stor nytte i bestræbelserne på at undgå NDR, men det kan ikke afgøres før ultimo 90, hvor IMFUFA køber apparatur (af Brno), som kan vise fordelingen af I_e.

I det følgende vil jeg gå nærmere ind på de enkelte resultater. Til belysningen vil jeg fremdrage enkelte eksemplariske resultater, men absolut ikke behandle dem alle.

Geometri.

Jeg har målt på fire typer MIM'er, se fig. 60. Tallene refererer til de antal MIM'er jeg har gode, brugbare resultater fra.

Typiske resultater fra EIS er som fig. 15 b),16 b) , 61 og 62. Eftersom hp 4192 A 'kun' kan måle fra 5 Hz til 13 MHz, er det ikke sikkert, at alle relevante informationer er kommet med. Det skulle
jo bl. a. betyde, at alle 'knæk-frekvenser' skulle ligge i dette frekvensområde, og det gør de som regel ikke¹.

<table>
<thead>
<tr>
<th>Al₂O₃</th>
<th>100 Å</th>
<th>180 Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>95 Å</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>250 Å</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Fig. 60. MIM typer.

Typisk vil en MIM i OFF-state have en tid, der svarer til en frekvens mindre end 5 Hz, f. eks. R = 1 MΩ og C = 400 nF

\[f = \frac{1}{2\pi\tau} = \frac{1}{(2\pi RC)} = \frac{1}{(2 \cdot \pi \cdot 10^6 \cdot 4 \cdot 10^{-7})} = 0.4 \text{ Hz.} \]

Derfor er det vigtigt at udvide måleområdet vha. andre metoder.

Den forventede geometriske kapacitet af isolatoren (dielektrikummet) vil være

\[C_{100 \text{ Å}} = \frac{\varepsilon \varepsilon_0 A}{d} = 394 \text{ nF} \] (6.1)

\[C_{180 \text{ Å}} = \frac{\varepsilon \varepsilon_0 A}{d} = 219 \text{ nF} \]

hvor jeg har brugt

\[\varepsilon_r = 7, \varepsilon_0 = 8.85 \cdot 10^{-12} \text{ F/m} \]

\[A = \pi \cdot r^2 = \pi \cdot (9 \cdot 10^{-3} / 2)^2 = 6.36 \cdot 10^{-5} \text{ m}^2 \]

\[d = 100 \text{ Å hhv. 180 Å.} \]

Eftersom Al₂O₃ dannes ved en ikke særlig velkontrolleret anodisk oxidation², skal man ikke forvente præcise værdier for den geometriske kapacitans, men snarere tage de målte værdier som et reelt udtryk for oxidlagets tykkelse og en vurdering af oxidationsmeto

¹Se igyvrigt kap. 3.
²Se kap. 1.
Fig. 61 b.

Min 4
T = 100 K
P = 10^{-6} torr
$\log Z'$ (kohm) vs $\log f$ (Hz)

- Osc1: 0.05
- fr$ = 27$

MIM 0.7, 120 Å
$T = 110$ K
$P = 2 \times 10^{-6}$

(Au: 95 Å)

Fig. 62a.
Fig. 62 b.

M_{110^7}

$180/95^\circ$

$T = 110^\circ K$

192 MHz

$\log f$ (Hz)

$\log (\mathrm{C}^\prime)$
dens kvalitet. Eller som et udtryk for præcis den produktionsseries kvalitet.

Metoden med, at 1 V svarer til 12 Å oxid vil altid være præcis; oxideringen vil afhænge af andre ting, f. eks. Al-lagets kvalitet, temperaturen ved oxideringen og ammonium citratets kvalitet. Desuden kan kapaciteten ændre sig med tiden pga. påvirkninger (f. eks. afbrændinger, lokal opvarmning). Erfaringen viser, at den enkelte prøves kapacitet ikke er præcis mere end indenfor ca. 10 %. Dvs, at den fra måling til måling kan vinge i værdi, se fig. 63.

<table>
<thead>
<tr>
<th>MÅLTE KAPACITÆRER, nF</th>
<th>serie 3</th>
<th>serie 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Å</td>
<td>284 - 305</td>
<td>367</td>
</tr>
<tr>
<td>Oxid</td>
<td>292</td>
<td>390</td>
</tr>
<tr>
<td>180 Å</td>
<td>192 - 207</td>
<td>172</td>
</tr>
<tr>
<td>Oxid</td>
<td>181</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>212</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 63. Målte kapaciteter.

Som det fremgår, så har serie 3 en noget mindre kapacitet for 100 Å oxid, end serie 2 har. At det er et træk ved hele serien indikerer, at det skyldes produktionen. F. eks. kunne ammonium citrat have været af en ringere kvalitet (svagere opløsning, ældre) ved produktionen af serie 3.

EIS kan altså anvendes til at teste tykkelsen af isolatoren i MIM'er.

Det er ikke muligt at opgive én bestemt værdi for Al₂O₃'s specifikke modstand. Den vil variere alt efter oxidens kvalitet, tykkelse og målemetode (f. eks. feltets størrelse). Desuden er den temperaturafhængig.

For en god oxid, dvs. en jævnt 'tyk' oxid (> 50 Å) uden urenheder, vil den specifikke modstand være ca. 10¹⁰-10¹² Ωm (f. eks. Sze (1981)), indenfor det temperaturområde hvor jeg måler (100-300° K). I modellen (kap. 3) har jeg valgt ρ(Al₂O₃) til 10¹⁰ Ωm. Det betyder en forventet modstand på

\[R_{100 \text{ Å}} = \rho \cdot l / A = 1.57 \text{ MΩ} \]

\[R_{180 \text{ Å}} = \rho \cdot l / A = 2.83 \text{ MΩ}. \]
Hvis man anvender den største værdi for den specifikke modstand, får man altså modstande, der er 100 gange større end disse.

Dc-modstanden for prøver i OFF-state (uanset tykkelse), har ligget fra omkring 1 MΩ til over 30 MΩ (i enkelte tilfælde op mod 100 MΩ). Altså passer mine målinger godt med tabelværdier.

Guldet.

Tabelværdien for gulds specifikke modstand er $\rho_{Au} = 2.44 \cdot 10^{-8}$ Ωm3. Denne værdi stiger brat, når Au-filmens tykkelse når under en kritisk grænse, hvor filmen går fra at være kontinuerligt til semikontinuerligt. Denne grænse ligger omkring 80-100 Å, alt efter fremstilling (bl. a. fordampningsteknik). For filmtykkelser blot lidt over denne grænse, vil den specifikke modstand være som tabelværdien. Fig. 64 b er et billede af Au-elektroden på en MIM (Au tykkelse: 95 Å). Så det kan forventes, at den specifikke modstand af guldfilmen på MIM'erne er større end tabelværdien.

Ved endnu mindre tykkelser vil guldet samles i 'øer', og filmen vil ikke længere være kontinuerligt. Karakteren af den elektriske ledning skifter, fra at være ohmsk til aktivert tunnelling.

Nye fordampningsteknikker skulle give mulighed for tyndere kontinuerligt Au-film, helt ned til 30 Å. En mulighed, som Brno vil forsøge, er overfladebehandling før Au-fordampning.

Fig. 64 a. EIS på Au-film, 95 Å tyk.
Men en sådan forskel har jeg ikke opserveret. Jeg har målt tilsvarende resultater (indenfor 10 %) ved at måle på topolektroden af en MIM i OFF-state. Resultaterne fremgår af fig. 64 a. Som forventet har jeg ikke kunnet måle nogen kapacitet af Au-filmen.

Fig. 64 b. Au-elektrode (95 Å) på MIM. Forstørret 29000 gange (venstre) hhv. 28000 gange (højre) vha. transmissionsmikroskop. Den højre film er lidt tykkere end den venstre.

Fig. 65. Au på glas.
Modstanden af en en cirkulær Au-film, kontaktet som på fig. 65 a, er altså ca. 25 Ω. Geometrien af filmen er ikke klar, men ved at antage en effektiv film som fig. 65 b, fås den specifikke modstand

$$\rho_{Au} = R \cdot A/l = 1.19 \cdot 10^{-7} \Omega \cdot m = 10^{-7} \Omega \cdot m.$$ (6.3)

Altså mindst 4 gange større end tabelværdien. Det er denne værdi jeg har anvendt ved modelberegninger. Dette resultat er vigtigt. Det er afgørende for min model (kap. 3), og det er ikke muligt at opnå på anden vis. Og det er som sagt i overensstemmelse med, hvad man måtte forvente at finde.

Temperaturafhængighed.

Endnu en observation, der styrker modellen, er de enkelte modstanden temperaturafhængighed⁴. Modstanden af Al₂O₃ (ved bias = 0 V) skal være stort set temperaturafhængig ($\alpha_{temp} = 10^{-6} \text{ K}^{-2}$), hvorimod modstanden af metal stiger med temperaturen⁵. At dette er tilfældet fremgår af fig. 66 og 67. Altså et vigtigt resultat, som styrker modellen.

På fig. 66 a kan niveauet for Al₂O₃ ikke ses. At det ikke forandres med temperaturen fremgår af, at knækfrekvensen på fig. 66 b ikke ændres. På fig. 67 er det første niveau meget lavt (ca. 2 kΩ); prøven er tydeligvis ikke i ren OFF-state. Men dette ON-state niveau er altså heller ikke temperaturafhængigt. Dette er et meget interessant resultat, og selvfølgelig vigtigt for den videre undersøgelse af NDR.

Den geometriske kapacitans ændres næsten ikke med temperaturen. Det retfærdiggør antagelsen, at $\varepsilon(T) = \varepsilon$. Et eksempel på sammenhængen mellem niveauer og 'knæk-frekvenser' ses fig. 67.

Bias.

Hvis MIM'en er forspændt med en (+/-) bias spænding, skal det kun påvirke niveauet for Re(\mathcal{Z}) for $\omega \to 0$, idet det kun er strømmen gennem Al₂O₃, der påvirkes. Det ses af fig. 68-70 for forskellig tykkelse og bias (+/-).

⁴'De enkelte modstande' refererer til, at modstanden i forskellige frekvensområder svarer til Al₂O₃ hhv. Au, se kap. 3.

⁵Au's specifikke modstand stiger med temperaturkoefficienten, $\alpha_{temp} = 3.4 \cdot 10^{-3} \text{ K}^{-1}$. $\alpha_{temp}(metal)$ er ca. $3.4 \cdot 10^{-3} \text{ K}^{-1}$. Alle ved 20° C.
$M_{1H} 03$

$10^5 \Omega$

$P = 10^{-6}$ Torr
Fig. 66 b.
$f = \frac{1}{2\pi RC} = \frac{1}{2\pi \cdot 2 \cdot 10^{3} \cdot 3 \cdot 10^{-7}} = 265 \text{ Hz}$

$\approx 2 \text{kΩ}$

$\approx 14 \Omega$

MIMO 01

$100/95^\circ$

$P = 10^{-6} \text{ torr}$

$\text{Ox. L.} : 10 \text{ mV}$
Fig. 67 c.
MIM O1
100\textdegree /95 \textdegree K
T=100K
P=10^{-6} \text{ torr}
\Omega_{50\mu V}=50mV
MIM 01

100/95 K

T=150 K

P=10^{-6} torr

fr. 12
--- Bias: 0
--- Bias: -2.0
--- Bias: -4.0
--- Bias: -6.0
--- Bias: -8.0

Fig 69a.
MIM 6
180/95 Å
T=24°C
P=2.10^-6 torr
Det ses også hvorledes 'knæk-frekvensen' vokser med atagende \(R(Al_2O_3) \). At der er forskelle, alt efter fortegn af bias, er ikke underligt, eftersom elektroderne er forskellige. Dette resultat, og resultater fra målinger af \(I_f(U_f) \), tyder på, at barrieren \(Al_2O_3/Au \) er større end barrieren \(Al_2O_3/Al \). Det kan ikke udelukkes, at der opstår yderligere asymmetri pga. Au-elektrodens tykkelse.

Som det fremgår påvirkes kapaciteten som forventet ikke af moderate bias-spændinger. For større bias ser der ud til at blive introduceret yderligere et større niveau ved lave frekvenser. Det ser ikke ud til, at niveauet er der for mindre bias; der passer de kendte modstande og kapaciteter med de observerede 'knæk-frekvenser'.

Det ser snarere ud til, at niveauet skal tilskrives den abnorme situation med den meget store bias (det meget store felt)\(^7\). Foreløbig er problemet uløst, men det vil være muligt at undersøge det nærmere ved at måle ved mindre frekvenser.

Kapaciteten påvirkes stort set ikke af trykket. Det kunne se ud til, at kapaciteten stiger en anelse med trykket, men det ligger inden for den almindelige variation på kapaciteten (som er ca. 10 %).

Tunnelleringsstrøm, \(I_f \) og \(I_e \).

Fra kap. 4 haves for en oxidtykkelse på 100 Å

\[
J = 7.70 \cdot 10^9 \cdot V^2 \cdot \exp(-193/V) \tag{4.39}
\]

eller

\[
I = J \cdot A = 4.90 \cdot 10^5 \cdot V^2 \cdot \exp(-193/V). \tag{6.4}
\]

hvor \(A \) er emissionsarealet. Heraf fås\(^8\)

\[
\log \frac{I}{V^2} = -\frac{193}{\ln 10} \frac{1}{V} + 5.69 = -83.8 \frac{1}{V} + 5.69. \tag{6.5}
\]

Altså en lineær kurve med hældning ca. -84 i et \((1/V, \log(I/V^2))\) plot, se fig. 71.

\(^6\)\(I_f \) er mindre for modsat polaritet (Au -).
\(^7\)Omtales senere.
\(^8\)Idet \(\ln x = \ln 10 \cdot \log x \).
\[\log \frac{I_F}{U_F^2} = \frac{1}{6} \times 33.3 \times \frac{1}{V} + 5.69 \]
Fig. 73.
Som det fremgår af fig. 72 (og 73), så passer resultaterne utrolig flot over 3 hhv. 7 dekader af strøm for I_f hhv. I_c. Hældningen på kurverne, såvel for I_f som for I_c, ligger præcis omkring den teoretisk forudsagte værdi. For I_f's vedkommende fra ca. -70 til ca. -93 og for I_c's vedkommende fra ca. -83 til ca. -98, alle ved $T = 110^\circ$ K. Og alle for samme MIM! For MIM 01 har jeg resultaterne -91 og -93 for I_f hhv. I_c, ved hhv. 200$^\circ$ K og 100$^\circ$ K.

Hvordan passer det målte niveau for I_f så med det teoretisk forudsagte? Ved at sammenholde fig. 71 og 72 ses, at

- for fig. 72 c passer det perfekt

- for fig. 72 b er det målte niveau en faktor 2 til 3 større end det forudsagte, og

- for fig. 72 a er det målte ca. en faktor 5-10 større (mest for U_f lille, mindst for U_f stor).

Og alle målinger stammer fra samme MIM! Dette er et meget flot resultat, eftersom eksperimentelle resultater, som tidligere nævnt, oftest er mange flere gange større end teoretisk forudsagt, helt op til 10^5.9

Hvad angår I_c, er niveauet selvfølgelig meget lavere. Det interessante forhold I_c/I_f er fra ca. 10^{-4} til $4\cdot10^{-4}$, se fig. 72. Altså i overensstemmelse med Brno's resultater. Dette resultat, og denne type målinger, kan hjælpe til at opstille en mere detaljeret model for I_c. Hvorfor den brøkdel, osv.

Disse resultater bestyrker mine hidtidige antagelser. Det ser ud til, at barrieren er ca. 2 eV, osv. Altså må den elektriske transport være karakteriseret ved beregningerne i kap. 4.

Måleresultaterne er fremkommet ved, at jeg har skruet op/ned for spændingen i step af 0.25 V, og ventet til strømmene ikke mere ændrede sig. Det tager typisk 5-15 min, i nogle tilfælde op til 30 min.

Desværre har det kun været muligt for mig at måle I_f og I_c på MIM'er med 100 Å oxid. Samtlige MIM'er med 180 Å oxid er gået i stykker. Enten ved dielektrisk gennembrud, eller ved uafvendeligt at havne i ON-state.

9Eneste forbehold er den manglende præeksponentielle faktor i (4.16).
Det skyldes måske, at denne tykkelse ligger i yderkanten af, hvad det er muligt at opnå med denne type oxidation. Det har heller ikke været muligt at lave disse målinger med tykt guldlag, måske fordi oxiden ikke kan 'bære' det.

Forløbet af I_f kurverne er ikke så pænt lineært som I_e kurverne. Det kan skyldes, at I_f kan tilskrives flere processer, mens I_e skyldes ren tunnelling. I_e skyldes jo elektroner, der ikke bliver spredt overhovedet (eller kun meget lidt). Man kunne forstille sig, at der var et bidrag til strømmen fra transport gennem lokaliserede tilstande med energier i isolatorens båndgab, se fig. 74.

![Diagram](image)

Fig. 74. Transport i lokaliserede tilstande.

Ved små spændinger skulle dette bidrag være dominerende, mens det for store spændinger var tunnelleringsstrøm, der var dominerende. Det ville betyde, at strømmen var større end teoretisk beregnet.

Der kan ses bort fra ledning gennem filamenter. Målingerne er foretaget ved lave temperaturer med 'cold trap', og har ikke forandret sig ved gentagne kørsler. Den eneste forskel har været en vis hysterese, når man igen skruede ned for spændingen, se fig. 72 c.
Ved de lave temperaturer kan termisk exitation over barrieren udelukkes.

Mætning.

Begge kurver (I_f og I_e) mætter for høje spændinger\(^1\), se fig. 72 og 73. Jeg kan forstille mig to grunde til denne mætning. Den ene skyldes den laterale ledningsevne i guldet. Ved høje spændinger er modstanden af Al\(_2\)O\(_3\) så lille, at modstanden af Au spiller ind som spændingsdeler.

Spændingsfaldet over Al\(_2\)O\(_3\) bliver altså mindre end over hele MIM'en (U_{oxid} < U_{bias}). Modstanden af guldet er ca. 20 \(\Omega\), og for \(U = 8 \text{ V}\) er modstanden af hele MIM'en af størrelsesorden 100 \(\Omega\).

Det reelle spændingsfald kan altså være over 10 % mindre end det målte. Denne effekt spiller selvfølgelig først ind, når de to modstande er sammenlignelige, altså for høje spændinger. Hvis man På fig. 72 a tænker sig en mindre effektiv spænding for høje spændinger, f. eks. trækker 1 V fra, ser det rimeligt ud.

Men fordi MIM'en ikke er en almindelig spændingsdeler, se fig. 13, kan man ikke simpelt finde den korrekte spænding. Jeg har forsøgt at undersøge denne forklarings holdbarhed, ved at måle på MIM'er med et tykt guldlag (og dermed lavere modstand), men det har desværre ikke været muligt, eftersom prøverne gik ned.

Den anden mulige forklaring på fænomenet skulle være, at strømmen, som omtalt i kap. 4, var SCL. I litteraturen mener man ofte, at elektrisk transport gennem isolatorer er SCL ved høje felter. En forklaring kunne altså være, at der lå en nettoladning og 'screenede'.

En sådan nettoladning ville give en anden, lavere ledningsevne (mobilitet), og dermed give anledning til et nyt kapacitansniveau, præcis som det er tilfældet for høje spændinger, se f. eks. fig. 68 b! Eftersom dette område kunne være fysisk begrænset, kunne det godt give anledning til et større kapacitansniveau.

\(^1\)Fænomenet er reelt; for at sikre mig det, har jeg målt strømmene med forskelligt apparatur, bl. a. C-V meter, electrometer og multimeter. Alle viser denne mætning.
Emissionsstrøm, I_e.

Til målingerne af I_f og I_e har opstillingen været som fig. 75. Mellem opsamlingselektrode og amperemeter sidder tre batterier (ialt 28 V), for at sikre en stabil spænding. De sidder afskærmet i en metalkasse. De 28 V giver et tilstrækkeligt felt, til at I_e er mættet, selvom potentialen på Au-elektroden vinger fra 0-10 V. Opstillingen er skærmet fra resten af vacuumkammeret med alu-folie.

Fig. 75. Opstilling til måling af I_f og I_e.

Uden spænding over MIM’en ($U_f = 0$) er

$$I_e = I_{e, tomgang} < -3 \cdot 10^{-13} \text{ A}, \quad (6.6)$$

uanset polariteten af batterierne. Denne strøm kan skyldes en læk til omgivelserne (gennem isolering), en termospænding, og strøm fra kammeret.

Hvis prøverne har udvist NDR, har jeg målt I_e fra ca. 2-3 V, ellers først fra ca. 5.0 V. Resultater med NDR vil blive behandlet senere; her vil jeg behandle MIM’er uden NDR.

For at undgå NDR har jeg først sat spænding over prøverne, når de befandt sig i vacuum (10^{-6} torr) og ved omkring 100° K. Derved er det lykkedes mig at måle på prøver, der aldrig har udvist NDR. Jeg har ikke observeret nogen forskel på, om en prøve aldrig havde udvist NDR, eller om den havde været i ON-state før den kom i OFF-state.

Af fig. 72 og 73 ses, at I_e afhænger af U_f som

$$I_e = a_e \cdot (U_f)^2 \cdot \exp(-b_e/U_f), \quad b_e = b_f \quad (6.7)$$
hvor 'e' refererer til emission og 'f' til film. I_e udgør altså brødkdelen ae/a_f af I_f, ca. 10^{-4} til $4\cdot10^{-4}$.

Dette svinger meget med temperaturen, idet I_f stort set er uafhængig af temperaturen, mens I_e vokser op til en faktor 100-1000 fra $T=100^\circ$ K til $T=300^\circ$ K, se fig. 73. Det fremgår, at uanset temperatur, så mætter I_e på nogenlunde samme niveau.

Dvs., at det kun er i et spændingsområde, at I_e stiger meget med temperaturen. Når det ser ud til, at I_e er temperaturafhængig, og I_f ikke er det, må det formodes at hænge sammen med emissionsmekanismen. Og man bemærker også af fig. 73, at I_e mætter for forskellige spændinger. Disse resultater er vigtige for den videre undersøgelse af emissionsstrøm.

Det synes ikke umiddelbart logisk, at I_e vokser med temperaturen. Spredningen stiger med temperaturen, og da I_e skyldes ikke-spredte elektroner, burde det være omvendt.

En mulig forklaring kunne være kondensation på Au-elektroden. Men i så fald ville jeg forvente et mere brat fald omkring en bestemt temperatur. Jeg har kun observeret, at strømmen bliver meget roligere under ca. -100° C.

I_e udviser ikke nogen anden, af mig kendt, afhængighed af temperaturen, f. eks. som Schottkey eller Frenkel-Poole emission.

Et andet ganske opsigtsvækkende resultat er, at jeg har opserveret I_e for begge polariteter, dvs. også med negativ potentiale på Au-elektroden og positiv på Al-elektroden! Delong (Brno) har set det samme.

Jeg har foreslået, at det skyldes tunnelling i ikke-kontinuert Au-film. En tunnellerende elektron i vacuum, mellem Au-'øer', vil blive tiltrukket af opsamlingselektroden.

Det ser ud til, at der kun er I_e ved 'forkert' polaritet (Au -), hvis prøven er lavohmsk ($< 100 \, \Omega$), altså hvis der er et betragteligt spændingsfald over guldet. Hvilket kræves, for at der er tunnellerende elektroner.

11 Den stigning i I_e, der skyldes ændring i $f(E)$ pga. temperatur, er meget lille, jvf. kap. 4.
Jeg har ikke målt I_e ved 'forkert' polaritet, hvis prøven ikke udviste NDR. Og I_e ved 'forkert' polaritet har altid været meget lille ($< 10^{-10}$ A).

Ved $T=300^\circ$ K er I_e meget fluktuerende, op til flere hundrede procent. Denne fluktuation aftager brat, ved omkring -100$^\circ$ C til -110$^\circ$ C, til ca. 10% og er ved 100$^\circ$ K ca. 5%.

Jeg har målt I_e som funktion af tid ved fastholdt U_f og temperatur. I_e udviser en svagt aftagende tendens, men ser ud til at konvergere over længere tid. Se fig. 76. Et andet eksempel er en I_e på 1 til 1/2 μA over 24 timer, for MIM B (100Å/95Å) ved $U_f=8.5$ V, $T=110^\circ$ K og $P<10^{-6}$ torr. Areal: 0.636 cm2.

Den største strømtæthed, jeg har målt, er ca. 1.5·10$^{-5}$ A/cm2. Det er knapt så stort som de bedste af Brno's resultater. Men til gengæld har disse værdier været holdt over meget lang tid. Og det kan vise sig at være et meget vigtigt resultat for MIM-stepperens fremtid. Der skal forskes meget mere i lavtemperaturanvendelsen.

![Graph](image)

Fig. 76.

NDR resultater.

De mest interessante resultater er dem, der angår mulighederne for at undgå NDR. Faktisk burde Brno - ifølge Pagnia & Sotnik - ikke kunne undgå NDR, eftersom prøverne tilbringer $t>>r_f$ i atm. luft. Men det kan de altså.

Derudover skulle det være muligt at undgå NDR ved at holde prøverne i UHV fra produktion til anvendelse, eller ved at anvende en 'cold trap'.
MIM 01

$T = 300K$

$P = 10^{-6}$ torr
Det interessante spørgsmål er: Hvis der én gang har været filament-
er, vil det så ødelægge mulighederne mht. homogen emission?
Berno's resultater peger på, at det er tilfældet. Det ser jo ud til, at
NDR og spot-emission hænger sammen. Altså en klar sammenkob-
ling af NDR-teori og MIM-emitteren.

Som sagt har jeg set NDR for begge polariteter, omend der ofte efter
et stykke tid kun kunne ses NDR for den ene. Området med NDR har
c. været fra 2.75 V til 5.5 V, ofte mindre, og ikke det samme fra
gang til gang. Forholdet I_p/I_v har været op til 50.

Størrelsen af I_e har varieret meget, men aldrig været særlig stor i
områder med NDR.

Modstanden af ON-state kan variere meget, fra få Ω til kΩ, alt efter
'graden' af ON-state. På fig. 77 ses en kørsel hvor prøven starter i
OFF-state (den er lige varmet op fra 100° K, hvor kørslen så ud som
fig. 68) og ender i ON-state. Det ON-state niveau, der er markeret,
stammer fra en kørsel efter, at prøven er gået fra OFF til ON state.
Dvs. efter bias-kørslen.

Man kan altså undersøge NDR og ON/OFF-states niveauer vha. EIS.
Et eksempel, jeg tidligere har nævnt, er temperaturafhængigheden.

Et eksempel på en kørsel med en MIM, derudviser NDR, er på side
25. Den uheldige placering skyldes et kiks i udprintningen. Håber
læseren bærer over med den utidige motion.

Hvad jeg derudover har opnået af forståelse (resultater) for NDR, er
omtalt i kap. 5. Det handler jo først og fremmest om at forstå, hvad
NDR er, og hvad det skyldes. Og som sagt om hvordan man undgår
det.

Jeg mener, det vil være muligt at undersøge NDR yderligere, når
IMFUFA får det nye tjekkiske udstyr. Indtil videre rækker indsigt-
en til en fænomologisk forståelse.
Appendix A.

Apparatur.

1. hp 4192A LF Impedance Analyser.

hp målebroen kan måle impedans parametre af en 'device under test' (DUT) (komponent eller kreds) ved forskellige frekvenser, test signal styrke (oscillation level) og dc bias:

Frekvensområde: 5 Hz - 13 MHz.
Oscillation level: 5 mVrms - 1.1 Vrms.
Dc bias: -35V til +35V.

De forskellige testparametre kan ændres manuelt såvel som automatiskt. Jeg har benyttet mig af et måleprogram udviklet af Jan Vedde, hvor jeg, udover de nævnte parametre, også kan vælge temperatur og delay time, samt udføre flere på hinanden følgende måleserier.

![Diagram](image)

Fig. 78.

Som det fremgår af fig. 78, foretager målebroen en 4-punktsmåling, ved for påtrykt spænding at måle responsen i form af strøm. Derved måler det samtidigt to uafhængige impedansparametre, som repræsenterer hhv. den resistive og den reaktive del af DUT'en. Disse størrelser kan konverteres til andre ønskede parametre,
enten af målebroen, eller, som i mit tilfælde, af en computer, se fig.
79.

| \(|Z|/|Y|\) | DISPLAY A Function | DISPLAY B Function |
|-----------|-------------------|--------------------|
| \(\text{Absolute Impedance/Absolute Admittance}\) | \(\theta\) (deg) | Phase Angle in degrees |
| \(\theta\) (rad) | Phase Angle in radians |
| \(R/G\) | Resistance/Conductance | \(X/B\) | Reactance/Susceptance |
| \(L\) | Inductance | \(Q\) | Quality Factor |
| \(C\) | Capacitance | \(D\) | Dissipation Factor |
| \(R/G\) | Resistance/Conductance |

<table>
<thead>
<tr>
<th>Measurement Parameter</th>
<th>Measurement Equivalent Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>Z</td>
</tr>
<tr>
<td>(</td>
<td>Y</td>
</tr>
<tr>
<td>(\theta)</td>
<td>(\tan^{-1} \left(\frac{X}{R} \right))</td>
</tr>
<tr>
<td>(\tan^{-1} \left(\frac{B}{G} \right))</td>
<td></td>
</tr>
<tr>
<td>(L)</td>
<td>(\frac{X}{\omega})</td>
</tr>
<tr>
<td>(-\frac{1}{\omega B})</td>
<td></td>
</tr>
<tr>
<td>(C)</td>
<td>(-\frac{1}{\omega X})</td>
</tr>
<tr>
<td>(\frac{B}{\omega})</td>
<td></td>
</tr>
<tr>
<td>(Q)</td>
<td>(\frac{</td>
</tr>
<tr>
<td>(\frac{</td>
<td>B</td>
</tr>
<tr>
<td>(D)</td>
<td>(\frac{R}{</td>
</tr>
<tr>
<td>(G)</td>
<td></td>
</tr>
<tr>
<td>(</td>
<td>B</td>
</tr>
</tbody>
</table>

Fig. 79.

Som det fremgår har målebroen to 'circuit modes', en hvor den repræsenterer DUT'en ved en seriel RC-kreds, og en hvor den repræsenteres af en parallel RC-kreds. Følgelig vil de to parametre den arbejder med være hhv. resistans/reaktans (dvs. impedans, \(\bar{Z}=R+iX\)) og konduktans/susceptans (dvs. admittans, \(\bar{Y}=G+iB\)).

Det er muligt at repræsentere et hvilket som helst impedanselement med den af de to kreds man måtte vælge, eftersom de kan have identisk impedans, blot ved forskellig fitting af de to komponenter.

Fordelen, ved at vælge den ene frem for den anden, er først og fremmest opløseligheden, som det fremgår af fig. 80. Kapacitans og induktans kan beregnes ud fra begge de to 'modes', men de beregnede værdier kan være forskellige pga. de to 'modes' tabsværdier ('dissipation factor', D). Hvor forskellige fremgår af fig. 81.
<table>
<thead>
<tr>
<th>ZY RANGE</th>
<th>Measurement Range</th>
<th>Resolution</th>
<th>Measurement Range</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Ω/10S</td>
<td>0.0001Ω ~ 1.2999Ω</td>
<td>0.1 mΩ</td>
<td>0.01S ~ 12.999S</td>
<td>10 mS</td>
</tr>
<tr>
<td>10Ω/1S</td>
<td>0.001Ω ~ 12.999Ω</td>
<td>1 mΩ</td>
<td>0.0001S ~ 1.2999Ω</td>
<td>100 μS</td>
</tr>
<tr>
<td>100Ω/100mS</td>
<td>0.01Ω ~ 129.99Ω</td>
<td>10 mΩ</td>
<td>0.01 mΩ ~ 129.99mΩ</td>
<td>10 μS</td>
</tr>
<tr>
<td>1kΩ/10mS</td>
<td>0.0001kΩ ~ 1.2999kΩ</td>
<td>100 mΩ</td>
<td>0.0001 mΩ ~ 129.99mΩ</td>
<td>1 μS</td>
</tr>
<tr>
<td>10kΩ/1mS</td>
<td>0.001kΩ ~ 129.99kΩ</td>
<td>1 kΩ</td>
<td>0.001 mΩ ~ 129.99mΩ</td>
<td>100 nS</td>
</tr>
<tr>
<td>100kΩ/100μS</td>
<td>0.01kΩ ~ 129.99kΩ</td>
<td>10 Ω</td>
<td>0.01 μΩ ~ 129.99μΩ</td>
<td>10 nS</td>
</tr>
<tr>
<td>1MΩ/10μS</td>
<td>0.0001MΩ ~ 1.2999MΩ</td>
<td>100 Ω</td>
<td>0.001 μΩ ~ 129.99μS</td>
<td>1 nS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Circuit Mode</th>
<th>Dissipation Factor</th>
<th>Conversion to Other Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(D = \frac{G}{\omega C_p} = \frac{1}{Q})</td>
<td>(C_s = (1 + D^2) C_p, \quad R = \frac{D^2}{1 + D^2} \cdot \frac{1}{G})</td>
</tr>
<tr>
<td></td>
<td>(D = \omega C_s R = \frac{1}{Q})</td>
<td>(C_p = \frac{1}{1 + D^2} C_s, \quad G = \frac{D^2}{1 + D^2} \cdot \frac{1}{R})</td>
</tr>
<tr>
<td></td>
<td>(D = \omega L_p G = \frac{1}{Q})</td>
<td>(L_s = \frac{1}{1 + D^2} L_p, \quad R = \frac{D^2}{1 + D^2} \cdot \frac{1}{G})</td>
</tr>
<tr>
<td></td>
<td>(D = \frac{R}{\omega L_s} = \frac{1}{Q})</td>
<td>(L_p = (1 + D^2) L_s, \quad G = \frac{D^2}{1 + D^2} \cdot \frac{1}{R})</td>
</tr>
</tbody>
</table>
De to sæt værdier for kapacitans og induktans vil være ens, hvis R og G begge er nul:

$$G + iB = \frac{1}{R + iX} = \frac{R - iX}{R + X^2} \Rightarrow$$

$$G + i\omega C = \frac{i}{\omega C}$$

$$\Rightarrow \frac{R + i}{\omega C} = \frac{1}{\omega^2 C_s^2}$$

hvor C_s og C_p er kapacitans i serie hhv. parallel mode.

Generelt kan man sige, at jo længere tider (dvs. mindre frekvens), jo større usikkerhed. På de målte kurver giver det sig udslag i lidt 'mudren' for lave frekvenser. Usikkerheden er søgt mindsket ved at måle i 'average-mode', dvs., at målebroen måler en antal gange (f. eks. 10), og sender så en gennemsnitsværdi til computeren.

Det er ikke muligt generelt at bestemme usikkerheden; den afhænger af størrelsesforholdet mellem de to parametre målebroen måler. Hvis den ene er meget lille, betyder det en stor usikkerhed. For det meste er usikkerheden mindre end kurvestregens tykkelse.

2. Prøveholderen.

Målebroen er tilsluttet prøven gennem 4 styks coaxialkabler med gode ac egenskaber. Skærmene er forbundet indbyrdes tættest muligt prøven. Men eftersom inderkablerne (og prøven) er fri under selve forbindelsen til prøven, vil der være en mindre selvinduktans. Se fig. 82.

Kontrolmålinger viser, at den er af størrelsesorden 2.5×10^{-8} H. Målingerne er foretaget ved i stedet for en MIM, at sætte kendte kapaciteter, C, i serie med den ukendte selvinduktans, L. Herved fås resonansfrekvensen:

$$f_0 = \frac{1}{2 \pi \sqrt{L/C}}$$ (A.2)
for Im(\(\bar{Y}\)). For en MIM giver denne selvinduktans anledning til en resonans for (stort set) samme frekvens.

Som det fremgår af målingerne, ligger denne resonans i området fra ca. 1.8 MHz op til knap 10 MHz. At resonansen flytter sig, skyldes dels forskellig kapacitet, dels at tilslutningen (og dermed L) aldrig kan blive ens fra gang til gang. Ej heller vil den være ens MIM/kendt C.

Når jeg har observeret resonanser i dette område, svarer det til selvinduktanser fra ca. 10\(^{-9}\) H til 10\(^{-8}\) H. Det svarer til friarealet på omkring 1 cm\(^2\). Mindre er det stort set ikke muligt at opnå.

Computerprogrammet er designet til at ignorere 'forkerte' målinger. Målinger fra omkring resonansen vil derfor ikke blive påtegnet.

Selv prøveholderen er designet til lettest muligt kontakt, størst mulig varmekontrol, og mulighed for måling af \(I_e\). Se fig. 82. Den er placeret i et vacuumkammer, pumpet til ca. 10\(^{-6}\) torr vha. oliediffusionspumpe.

Temperaturen kontrolleres vha. en kryostat påfyldt flydende kvælstof (N\(_2\)) og en varmeforsyning (30 W).

God kontakt fra prøven til tilledninger sikres vha. sølvpasta og alufolie.

Fig. 82. Prøveholderen.
Litteraturliste.

133

"Operation manual" Operation and service manual, hp 4192A LF Impedance Analyser, 5 Hz - 13 Mhz.

Riber, P. & Sokoler, T.

Ridley, B. K.

Ridley, B. K. & Pratt, R. G.

Roy, D. K.

Scharff, M.

Simmons, J.G. & Verderber, R. R.

Simmons, J. G. & Verderber, R. R.

Simmons, J. G.

Simmons, J. G.

Soukop, R. J. & Tiwald, T.E.

Sze, S. M.
Viščor, P.
(upub. 1990)

Application of electrical impedance spectroscopy (EIS) in experimental determination of mobile electrical charge carrier density and its electrical mobility. IMFUFA, RUC, upub. 1990.

5/78 "BIBLIOGRAFISK VEJLEDNING TIL STUDIET AF DEN MODERNE FYSISKE HISTORIE". Af: Helge Kragh. Nr. 5 er p.t. udgået.

7/78 "MATEMATIKKENS FORHOLD TIL SAMFUNDSØKONOMIEN". Af: B.V. Gnedenko. Nr. 7 er udgået.

11/79 "STATISTISKE MATERIALER". Af: Jørgen Larsen.

26/80 "OM 'MATEMATISKE MODELLER". En projekt rapport og to artikler. Af: Jens Højgaard Jensen m.fl.

27/80 "METODOLOGY AND PHILOSOPHY OF SCIENCE IN PAUL DIRAC'S PHYSICS". Af: Helge Kragh.

30/80 "FUSIONSENERGIEN - ALTSomMINDets ENDESTACIOn". Af: Oluf Danielsen. Nr. 30 er udgået.

33/80 "KONSTITUTEREN AF FAG IDEN FOR TÆKNSK - NATURVIDENSKABELIGE UDDANNELSER". I-II. Af: Arne Jakobsen.

34/80 "ENVIRONMENTAL IMPACT OF WIND ENERGY UTILIZATION". ENERGY SERIES NO. 1. Af: Bent Sørensen. Nr. 34 er udgået.
38/81 "TIL EN HISTORIEBØK OM NATURRENSEELSE, TEGNOLOGI OG SAMFUNN".
Projektrapport af: Erik Gade, Hans Medal, Henrik Lau og Finn Nyhavn.
Vejleder: Stig Andur Pedersen, Helge Krath og Ib Thuesen.
Nr. 38 er p.t. udedt.

39/81 "TIL KROPPEN AF VÆKSTØKONOMIEN".
Af: Jens Højgaard Jensen.

40/81 "TELEKommUNIKATION I DANMARK - oplæg til en teknolojiværdipris".
Vejleder: Per Nygaard.

41/81 "PLANNING AND POLICY CONSIDERATIONS RELATED TO THE INTRODUCTION OF RENEWABLE ENERGY SOURCES INTO ENERGYSUPPLY SYSTEMS".
ENERGY SERIES NO. 3.
Af: Bent Sørensen.

42/81 "VIDENSKAB TIL SAMFUNN - En introduktion til materialistiske videnskabeligt forfatterer".
Af: Helge Krath og Stig Andur Pedersen.

43/81 1. "COMPARATIVE RISK ASSESSMENT OF TOTAL ENERGY SYSTEMS".
2. "ADVANTAGES AND DISADVANTAGES OF DECENTRALIZATION".
ENERGY SERIES NO. 4.
Af: Bent Sørensen.

44/81 "HISTORISKE UNDERVISNINGER AF DE EKSPERIMENTELLE FORLØBEGEBER FOR RIBERFORDS AMODELL".
Vejleder: Bent C. Jørgensen.

50/82 "BESTILLING OG DEN VÆKST OFFICIELLE-TENDENTIELLE UDELÆWRITING.
ENERGY SERIES NO. 5.
Af: Bent Sørensen.

50/82 "BESELSK - MILJØKADER FOR VEDGANGEN ENERGI E N LANDSPY.
ENERGY SERIES NO. 6.
Rapport af: Bent Christensen, Bent Hove Jensen, Dennis M. Moller, Bjarne Larsen, Bjarne Lilletorup og Jacob Munch Pedersen.
Vejleder: Bent Sørensen.

51/82 "HAR KOR DÖRE GESES FOR AT AFHÆLPE PIkkERS BLOKKERING OVERFOR NATURUSK ?"
Projektrapport af: Lis Eltelsen, Lisel Pedersen, Lilli Møn og Susanne Strøder.

52/82 "DESEPSION OF SPLITTING ELIPTIC SYMBOLS".
Af: Bernhelm Booss og Krystof Wojciechowski.

53/82 "THE CONSTITUTION OF SUBJECTS IN ENGINEERING EDUCATION".
Af: Arne Jacobsen og Stig Andur Pedersen.

54/82 "FUTURES RESEARCH" - A Philosophical Analysis of Its Subject-Matter and Methods.

55/82 "MATEMATISCHE MODELLER" - Litteratur på Roskilde Universitetsbibliotek.
En biografi.
Af: Else Höyrup.

56/82 "EN - TO - MAN" - En undersøgelse af matematiske skøler.
Projektrapport af: Troels Lange.
Vejleder: Anders Madsen.

57/83 "ASPECT ENKSPERIMENTET" - Skulle variable i kvantemekanikken?
Projektrapport af: Tøn Juul Andersen.
Vejleder: Per Overmann Christiansen.

58/83 "MATEMATISCHE VANDRINGER" - Modelbetrachtungen über vor der Warum zwischen mathematischen theorie.
Projektrapport af: Per Hammershøj Jensen og Lena Vang Rasmussen.
Vejleder: Jørgen Larsen.

59/83 "THE METHODOLOGY OF ENERGY PLANNING".
ENERGY SERIES NO. 7.
Af: Bent Sørensen.

60/83 "MATEMATISK MODERKÆMPERE" - et eksempel.
Projektrapport af: Erik O. Gade, Jørgen Kørrebæk og Per Møller.
Vejleder: Anders Madsen.

61/83 "FYSIK IDEOGJEGNE Funktion, som et eksept på en naturfænomenisk - historisk set".
Projektrapport af: Annette Post Nielsen.
Vejledere: Jens Höyrup, Jens Højgaard Jensen og Jørgen Vogelius.

62/83 "MATEMATISCHE MODELLER" - Litteratur på Roskilde Universitetsbibliotek.
En biografi 2. rev. udgave.
Af: Else Höyrup.

63/83 "GENERATING ENERGY FUTURES: A SHORT GUIDE TO ENERGY PLANNING".
ENERGY SERIES NO. 8.
Af: David Crossley og Bent Sørensen.

64/83 "VON MATHMATIC KUND KRIEG".
Af: Bernhelm Booss og Jens Höyrup.

65/83 "VON MATHMATIC KUND KRIEG".
Af: Bernhelm Booss og Jens Höyrup.

66/83 "MATEMATISCHE MODELLER FOR PERIODISK SELFAAGT I ESCHERICHIA COLI".
Projektrapport af: Hanne Lisabet Andersen, Ole Richard Jensen og Klavs Frisohel.
Vejledere: Jørgen Larsen og Anders Hedo Madsen.

67/83 "ELEKTRIFIKER METODE - EN NY METODE TIL LINÆR PROGRAMMERING".
Projektrapport af: Lone Billmann og Lars Boye.
Vejleder: Mogens Bruun Hoefelt.

68/83 "STOKASTISCHE MODELLER I POPULATIONSGENETIK" - til kritikken af tilladte modeller.
Projektrapport af: Idee Østergaard Gade, Susanne Hansen, Michael Hvidt og Frank Møgel Olsen.
Vejleder: Jørgen Larsen.
79/84 "ON THE QUANTIFICATION OF SECURITY":
PEACE RESEARCH SERIES NO. 1
Af: Bent Sørensen
nr. 83 er p.t. udgivet

84/84 "HOGLE ARTIKLER OM MATEMATIK, FYSIK OG ALGEMENNASELINGE":
Af: Jens Høygaard Jensen, Mogens Niss m. fl.

85/86 "CENTRIFUGALKALKULATORER OG MATEMATIK":
Specialarkrapport af: Per Hedegaard Andersen, Carsten Holst-Jensen, Else Marie Pedersen og Erling Møller Pedersen.
Vejleder: Stig Andur Pedersen.

86/84 "SECURITY IMPLICATIONS OF ALTERNATIVE DEFENSE OPTIONS FOR WESTERN EUROPE":
PEACE RESEARCH SERIES NO. 2
Af: Bent Sørensen.

87/84 "A SIMPLE MODEL OF AC HOPPING CONDUCTIVITY IN DISORDERED SOLIDS":
Af: Jeppe C. Dyre.

88/84 "RISE, FALL AND RESURRECTION OF INFINITESIMALS":
Af: Detlef Laugwitz.

89/84 "FEJNARMSOPTIMERING":
Af: Bjørne Lillevorup og Jacob Mørch Pedersen.

90/84 "ENERGI I I.G. - EN TEORI FOR TILSTELDELSE":
Af: Albert Chr. Fauslen.

91/85 "KVANTEMODER FOR GYMNASIET":
1. Lærervejledning
Vejleder: Torsten Meyer.

92/85 "KVANTEMODER FOR GYMNASIET":
2. Materiale
Vejleder: Torsten Meyer.

93/85 "THE SEMIOTICS OF QUANTUM - NON - LOCALITY":
Af: Peder Voetmann Christiansen.

94/85 "TREHEDEN BOURBAK - generalen, matematikeren og ansønder":
Projektrapport af: Morten Blomhøj, Klavs Fris Dahl og Frank M. Olsen.
Vejleder: Mogens Niss.

95/85 "AN ALTERNATIVE DEFENSE PLAN FOR WESTERN EUROPE":
PEACE RESEARCH SERIES NO. 3
Af: Bent Sørensen

96/85 "ASPECTER VED KRAFTVANDETS VASNilLENG":
Af: Bjørne Lillevorup.
Vejleder: Bent Sørensen.

97/85 "ON THE PHYSICS OF A.C. HOPPING CONDUCTIVITY":
Af: Jeppe C. Dyre.

98/85 "VALGMULIGHEDER I INFORMATIONSALDER":
Af: Bent Sørensen.

99/85 "Det er langt fra Q til R":
Projektrapport af: Niels Jørgensen og Mikael Klintorp.
Vejleder: Stig Andur Pedersen.

100/85 "TALSYSTEMETS OPBYGNING":
Af: Mogens Niss.

101/85 "EXTENDED MOMENTUM THEORY FOR WINDKILLS IN PERCUTIVE FORM":
Af: Ganesh Senapati.

102/85 "OPSTEMMELSE OG ANALYSER AF MATEMATISKE MODELLER, BELYST VED MODELLER OVER KØRS PÅSOTOPISSELSE OG - OMSPRING":
Projektrapport af: Lis Ellertzen, Kirsten Høbekes, Lilli Røn og Susanne Stender.
Vejleder: Klaus Grünbaum.
103/85 "VOGEL KOLLEKTIONER OG VIDENSKABENS LYSE IDEER".
Projektrapport af: Niels Ole Dam og Kurt Jensen.
Vejleder: Bent Sørensen.

104/85 "ANALOGENHEDSKEN OG LOGEENHEDSKEN".
Af: Jens Jørgen.

105/85 "THE FREQUENCY DEPENDENCE OF THE SPECIFIC HEAT OF THE GLASS TRANSITION".
Af: Tage Christensen.
"A SIMPLE MODEL OF AC HOPPING CONDUCTIVITY".
Af: Jeppe C. Dyre.

106/85 "QUANTUM THEORY OF EXTENDED PARTICLES".
Af: Bent Sørensen.

107/85 "EN NY OGR INGEN EPIDEMI".
- floedlinhed som eksempel på matematisk modellering af et epidemiologisk problem.
Projektrapport af: Per Hedegaard Andersen, Lars Boye, Carsten Holst Jensen, Else Marie Pedersen og Erling Møller Pedersen.
Vejleder: Jesper Larsen.

108/85 "APPLICATIONS AND MODELLING IN THE MATHEMATICS CURRICULUM - ECHELON" - state and trends -
Af: Mogens Niss.

109/85 "COX I STUDIEN" - Cox's regressionsmodel anvendt på studenterpolynomer fra RUC.
Vejleder: Jørgen Larsen.

110/85 "PLANNING FOR SECURITY".
Af: Bent Sørensen.

111/85 "JORDEN BUNDT PÅ FLADE KORT".
Projektrapport af: Birgit Andreassen, Beatriz Quinones og Jimmi Staal.
Vejleder: Mogens Niss.

112/85 "VIDENSKABELIGE KGER AF DANSK TEGNOLIG INNOVATION FRAM TIL 1950 - HELST VED EKSEMPLER".
Vejleder: Claus Bryld og Bent C. Jørgensen.

113/85 "TELEGRESNING AF SPATIALT ELLIPTIC SYMBOLS II".
Af: Børnholm Booss og Krzysztof Wojciechowski.

114/85 "ANNEXERE AF GRAFISK METHODER TIL ANLÆGE AF KONTINERTEKSPOLER".
Projektrapport af: Lone Billmann, Ole R. Jensen og Anne-Lise von Boos.
Vejleder: Jørgen Larsen.

115/85 "MATEMATIKKENS UDVIDELSE AF TIL RENNAISSANCE".
Af: Mogens Niss.

116/85 "A PHENOMENOLOGICAL MODEL FOR THE MEYER-NITZEL RULE".
Af: Jeppe C. Dyre.

117/85 "KRAFT OG KUNNAVNEOPTERING"
Af: Jacob Mørch Pedersen.
Vejleder: Bent Sørensen.

118/85 "TILFÆLLEDERNING OG NATURLIGE GJæRDER TILGRE FEIERE OG PÆDELEN".
Af: Peter Voetmann Christiansen.

119/86 "DET ENSENE VIST - - EUKLIDENS FEMTE POSTULAT KUNNE NOK SKAVE RÆR I ANDEKAMMEN".
Af: Hen ni Christensen.
Vejleder: Mogens Niss.

120/86 "ET ANTAL STATISTISKE STANDERMODELLER".
Af: Jørgen Larsen.

121/86 "SIMULATION STUDIUM OM".
Af: Peter Voetmann Christiansen.

122/86 "ON THE MECHANISM OF GLASS IONIC CONDUCTIVITY".
Af: Jeppe C. Dyre.

123/86 "GYMNASTIKÆRISKEN OG SIN STORE VERDEN".
Fysiklærerforeningen, IFPER, RUC.

124/86 "OPGAVESAMLING I MATEMATIK".

125/86 "MØB LØ - system - en effektiv fotometrisk spektral-klassifikation af B-A- og F-stjerner".
Projektrapport af: Birger Lundgren.

126/86 "OM UDVIKTlingen AF DEN SPECIEN RELATIVITETSTOR".
Projektrapport af: Lise Olesen & Linda Sørensen Jensen
Vejledere: Karin Beyer & Stig Andur Pedersen.

127/86 "CAIOLIS' HIDING TIL UDVIKTlingen AF DEN ABSTRAKTE ALGEBRA".
Projektrapport af: Perinic Sand, Heine Larsen & Lars Frandsen.
Vejleder: Mogens Niss.

128/86 "SMÅBRØD - om ikke-standard analyse.
Projektrapport af: Niels Jørgensen & Mikael Klintorp.
Vejleder: Jeppe Dyre.

129/86 "PHYSICS IN SOCIETY"
Lecture Notes 1983 (1986)
Af: Bent Sørensen.

130/86 "Studies in Wind Power"
Af: Bent Sørensen.

131/86 "FYSIK OG RAMMEN" - et integreret fysik/historie-projekt om naturanskuelserens historiske udvikling og de samfundsmæssige betingelser.
Projektrapport af: Jakub Hecksher, Søren Brønd, Andy Wiered.
Vejledere: Jens Højrup, Jørgen Vogelius, Jens Højgaard Jensen.

132/86 "FYSIK OG DANÆRLING"
Projektrapport af: Søren Brønd, Andy Wiered.
Vejledere: Karin Beyer, Jørgen Vogelius.

133/86 "CHERNObyl ACCIDENT; ASSESSING THE DATA.
ENERGY SERIES NO. 15.
AF: Bent Sørensen.

134/87 "THE D.C. AND THE A.C. ELECTRICAL TRANSPORT IN ANORG SYSTE"
Authors: M.B.EL-Den, N.B.Olsen, Ib Hest Pedersen, Peter Visčor.

135/87 "INTUITIONISTISK MYTROGIFISITEGEVSTORKESTORISKE FORUGSNING"
MÅLGIFISITEGEVSTORIE: Claus Larsen
Vejledere: Anton Jensen og Stig Andur Pedersen.

136/87 "Mystisk og naturlig filosofi: En skitse af kristendommens første og andet møde med græsk filosofi"
Projektrapport af Frank Colding Ludvigsen

137/87 "HOPMODELLER FOR ELEKTRISK LEDNING I UORDNEDE FASTE STOFFER" - Resume af licentiat afskrivning
Af: Jeppe Dyre
Vejleder: Niels Olesen og Peter Voetmann Christiansen.
138/87 "JOSEPHSON EFFECT AND CIRCLE MAP."
By: Peder Voetmann Christiansen

139/87 "Nychbarkeit nichtbeherrschbarer Technik durch Fortschritte in der Erkenntnis der Natur"
Af: Bernhelm Boose-Bavnbek
Martin Bohle-Carbonell

140/87 "ON THE TOPOLOGY OF SPACES OF HOLONOMIC MAPS"
By: Jens Gravesen

141/87 "RADIOMETERS UDVIKLING AF BLOCSASAPARAT - ET TEKNOLOGIHISTORISK PROJKT"
Projektrapport af Finn C. Physant
Vejleder: Ib Thiersen

142/87 "The Calderón Prokjektor for Operators With Splitting Elliptic Symbols"
by: Bernhelm Boose-Bavnbek og Krysztof P. Wojciechowski

143/87 "Kursusmateriale til Matematik på NAT-BAS"
af: Mogens Brun Heefelt

144/87 "Context and Non-Locality - A Pelican Approach"
By: Peder Voetmann Christiansen

145/87 "AIMS AND SCOPE OF APPLICATIONS AND MODELLING IN MATHEMATICS CURRICULA."
Manuscript of a plenary lecture delivered at ICMA 1, Kassel, FRG 8.-11.9.1987.
By: Mogens Niss

146/87 "BESTEMMELSE AF BULKRESISTIVITETEN I SILICON - en ny frekvensbaseret målemetode."
Fysikspeciale af Jan Vedde
Vejledere: Niels Boye Olsen & Petri Viščor

147/87 "Rapport om BIS på NAT-BAS"
redigeret af: Mogens Brun Heefelt

148/87 "Naturvidenskabsevndersvinsning med Samfundsperspektiv"
af: Peter Colding-Jørgensen DLH
Albert Chr. Paulsen

149/87 "In-Situ Measurements of the density of amorphous germanium prepared in ultra high vacuum"
by: Petri Viščor

150/87 "Structure and the Existence of the first sharp diffraction peak in amorphous germanium prepared in UHV and measured in-situ"
by: Petri Viščor

151/87 "SYNTHESISK PROGRAMMERING"
Matematikprojekt af:
Birgit Andreason, Keld Nielsen og Jimmy Staa
vVejleder: Mogens Niss

152/87 "PSYKOL-DIFFERENTIAL PROJECTIONS AND THE TOPOLOGY OF CERTAIN SPACES OF ELLIPTIC BOUNDARY VALUE PROBLEMS"
by: Bernhelm Boose-Bavnbek
Krysztof P. Wojciechowski

153/88 "HALVLEDERTÆKNIKENS UDVIKLING MELLEM MILITÆRE OG CIVILE KREFTER"
Et eksempel på humanistisk teknologihistorie
Historiespeciale
Af: Hans Medal
Vejleder: Ib Thiersen

154/88 "MASTER EQUATION APPROACH TO VISCOUS LIQUIDS AND THE GLASS TRANSITION"
by: Jeppe Dyre

155/88 "A NOTE ON THE ACTION OF THE POISSON SOLUTION OPERATOR TO THE DIRICHLET PROBLEM FOR A FORMALLY SELFADJOINT DIFFERENTIAL OPERATOR"
by: Michael Pedersen

156/88 "THE RANDOM FREE ENERGY BARRIER MODEL FOR AC CONDUCTION IN DISORDERED SOLIDS"
by: Jeppe C. Dyre

157/88 "STABILIZATION OF PARTIAL DIFFERENTIAL EQUATIONS WITH FINITE DIMENSIONAL BOUNDARY FEEDBACK CONTROL. A pseudo-differential approach."
by: Michael Pedersen

158/88 "UNIFIED FORMALISM FOR EXCESS CURRENT NOISE IN RANDOM WALK MODELS"
by: Jeppe Dyre

159/88 "STUDIES IN SOLAR ENERGY"
by: Bent Sørensen

160/88 "LOOP GROUPS AND INSTANTONS IN DIMENSION TWO"
by: Jens Gravesen

161/88 "PSYKOL-DIFFERENTIAL PERTURBATIONS AND STABILIZATION OF DISTRIBUTED PARAMETER SYSTEMS: Dirichlet feedback control problems"
by: Michael Pedersen

162/88 "PIGER & FYSIK - OG MEGET MERE"
AF: Karin Beyer, Susanne Biegaa, Birthe Olsen, Jette Reich, Mette Vedeløby

163/88 "EN MATEMATISK MODELL TIL BESTEMMELSE AF PERMEABILITETER FOR BLOD-METHINDE-BARRIEREN"
Af: Finn Langberg, Michael Jarden, Lars Freillesen
Vejleder: Jesper Larsen

164/88 "Vurdering af matematisk teknologi
Technology Assessment
Technikfolgenabschatzung"
AF: Bernhelm Boose-Bavnbek, Glen Pate med
Martin Bohle-Carbonell og Jens Højgaard Jensen

165/88 "COMPRESS STRUCTURES IN THE NASH-MOORE CATEGORY"
by: Jens Gravesen
166/88 "Grundbegreber i Sandsynlighedsregningen"
Af: Jørgen Larsen

167a/88 "BASISTATISTIK 1. Diskrete modeller"
Af: Jørgen Larsen

167b/88 "BASISTATISTIK 2. Kontinuerlige modeller"
Af: Jørgen Larsen

170/88 "OVERFLADEN AF PLANETEN MARS"
Laboratorie-simulering og MARS-analoger undersøgt ved Mouhounpektroskopi.
Fysikspeciale af:
Birger Lundgren
Vejleder: Jens Martin Knudsen
Fys. Lab./HCH

169/88 "CHARLES S. PEIRCE: MUR STEN OG MORTEL TIL EN MÆTAFYSIK."
Fem artikler fra tidsskriftet "The Monist" 1901-03.
Introduktion og oversættelse:
Peder Voetmann Christiansen

170/88 "OPGAVESAMLING I MATematik"
Samtalte opgaver stillet i tiden 1974 - juni 1988

171/88 "The Dirac Equation with Light-Cone Data"
af: Johnny Tom Ottesen

172/88 "FYSIK OG VIRKELIGHED"
Kvantemekanikken grundlæggende problem i gymnasiet.
Fysikprosjekt af:
Erik Lund og Kurt Jensen
Vejledere: Albert Chr. Paulsen og
Peder Voetmann Christiansen

173/89 "NUMERISKE ALgoritmer"
af: Mogens Brun Heefelt

174/89 "GRAFISK FREMSTILLING AF FRAKTALER OG KAG"
af: Peder Voetmann Christiansen

175/89 "AN ELEMENTARY ANALYSIS OF THE TIME-DEPENDENT SPECTRUM OF THE NON-STATIONARY SOLUTION TO THE OPERATOR BISQUIT EQUATION"
af: Michael Pedersen

176/89 "A MAXIMUM ENTROPY ANSATZ FOR NONLINEAR RESPONSE THEORY"
af: Jeppe Dyre

177/89 "HVAD SKAL ADAM STA MODEL TIL"
af: Morten Andersen, Ulla Eneström, Thomas Graversen, Manna Lund, Pia Mundén, Dina Ravn, Peter Torstensen
Vejleder: Mogens Brun Heefelt

178/89 "BIOSYNTESSEN AF PENCILLIN - en matematisk model"
af: Ulla Egheve Rasmussen, Hans Ovang Mortensen, Michael Jarden
vejleder i matematik: Jesper Larsen
biof: Erling Lauridsen

179a/89 "LÆRERVEJLEDNING M.M. til et eksperimentelt forløb om kaos"
af: Andy Wierød, Søren Brønd og Jimmy Staal
Vejledere: Peder Voetmann Christiansen
Karim Beyer

179b/89 "ELEVHEfte: Nøter til et eksperimentelt kursus om kaos"
af: Andy Wierød, Søren Brønd og Jimmy Staal
Vejledere: Peder Voetmann Christiansen
Karim Beyer

180/89 "KAOS I FYSIKS SYSTEMER eksemplificeret ved torsions- og dobbeltpendel".
af: Andy Wierød, Søren Brønd og Jimmy Staal

181/89 "A ZERO-PARAMETER CONSTITUTIVE RELATION FOR PURE SHEAR VISCOELASTICITY"
by: Jeppe Dyre

183/89 "MATHEMATICAL PROBLEM SOLVING, MODELLING. APPLICATIONS AND LINKS TO OTHER SUBJECTS - State trends and issues in mathematics instruction"
by: Verner Blum, Kassel (FRG) og
Mogens Niess, Roskilde (Denmark)

184/89 "En metode til bestemmelse af den frekvensafhængige vornefryde af en underafselet væske ved glasovergang"
af: Tage Emil Christensen

185/90 "EN MESTER PERIODISK HISTORIE"
Et matematisk projekt
af: Steen Grobe og Thomas Jeussen
Vejleder: Jacob Jacobsen

186/90 "RITUAL OG RATIONALITET i videnskabens udvikling"
redigeret af Arne Jakobsen og Stig Andur Pedersen

187/90 "RSA - et kryptisk system"
af: Annette Sofie Olofson, Lars Frellsen og Ole Møller Nielsen

Vejledere: Michael Pedersen og Finn Huck

188/90 "FERMICONDENSATION - AN ALMOST IDEAL GLASS TRANSITION"
by: Jeppe Dyre

189/90 "DATAMATER I MATematikundervisningen på Gymnasiet og Højere Læreanstalter"
af: Finn Langborg
190/90 "FIVE REQUIREMENTS FOR AN APPROXIMATE NONLINEAR RESPONSE THEORY"
by: Jeppe Dyre

191/90 "MOORE COHOMOLOGY, PRINCIPAL BUNDLES AND ACTIONS OF GROUPS ON C*-ALGEBRAS"
by: Iain Raeburn and Dana P. Williams

192/90 "Age-dependent host mortality in the dynamics of endemic infectious diseases and SIR-models of the epidemiology and natural selection of co-circulating influenza virus with partial cross-immunity"
by: Viggo Andreasen

193/90 "Causal and Diagnostic Reasoning"
by: Stig Andur Pedersen

195/90 "STADIER PÅ PARADIGMETS VEJ"
Et projekt om den videnskabelige udvikling der førte til dannelsen af kvantemekanikken.
Projekt rapport for 1. modul på fysikuddenelsen, skrevet af:
Anja Boisen, Thomas Hougård, Anders Gorm Larsen, Nicolai Ryge.
Vejleder: Peder Voetmann Christiansen

196/90 "ER KAOS NØDVENDIGT?"
- en projekt rapport om kaos' paradigmatiske status i fysikken.
af: Johannes K. Nielsen, Jimmy Staal og Peter Bøggild
Vejleder: Peder Voetmann Christiansen