Moore Cohomology, Principal Bundles, and Actions of Groups on \mathbb{C}^*-algebras$^{(1)}$

$Iain Raeburn$(2)

and

Dana P. Williams

$^{(1)}$ This research was supported by the Australian Research Council.

$^{(2)}$ Also supported by the Research Academy of Denmark.
Abstract:

We consider two natural invariants associated to an action of an abelian group by inner automorphisms of a continuous-trace C*-algebra: One lies in C.C.Moore's Borel-cochain version of group cohomology, and the other is a principal bundle over the spectrum of the algebra. We discuss a construction of I. Rosenberg which directly relates these variants. In particular, we extend it to a relative Moore cohomology group, appropriate to the classification of action which are only inner on a subgroup, and we obtain a detailed structure theorem for such actions in terms of induced C*-algebras.
Moore Cohomology, Principal Bundles, and Actions of Groups on C*-algebras\footnote{This research was supported by the Australian Research Council.}

\textit{Iain Raeburn}\footnote{Also supported by the Research Academy of Denmark.}

and

\textit{Dana P. Williams}
§ 1 Introduction

In recent years both topological and algebraic invariants have been associated to group actions on C*-algebras. Principal bundles have been used to describe the topological structure of the spectrum of crossed products [18, 19], and as a result we now know that crossed products of even the very nicest non-commutative algebras can be substantially more complicated than those of commutative algebras [19, 5]. The algebraic approach involves group cohomological invariants, and exploits the associated machinery to classify group actions on C*-algebras; this originated in [2], and has been particularly successful for actions of R and tori ([19; §4], [21]). Here we shall look in detail at the relationship between these topological and algebraic invariants, with a view to analyzing the structure of the systems studied in [19; §§2,3].

Our starting point is a theorem of Rosenberg [21, Theorem 2.5] concerning the locally unitary actions of [18]. If A has Hausdorff spectrum X, and $\alpha : G \to \text{Aut}(A)$ is an action of an abelian group which is locally implemented by homomorphisms $u : G \to UM(A)$, then the spectrum of the crossed product $A \rtimes_G G$ is a principal \tilde{G}-bundle over X; the class $\zeta(\alpha)$ of the bundle determines α up to exterior equivalence, and all such bundles arise [18]. If G is connected, the range of α lies in the subgroup $\text{Inn}(A)$ of inner automorphisms, and there is a class $c(\alpha)$ in the Moore cohomology group $H^2(G, C(X, T))$ which is trivial when evaluated at points of X, and which vanishes precisely when α is implemented by a unitary group u [19, §0]. Rosenberg showed how to construct a principal bundle directly from a pointwise trivial class in $H^2(G, C(X, T))$, and that his construction connects up the invariants $c(\alpha)$ and $\zeta(\alpha)$.

We aim to prove a version of Rosenberg's theorem for actions $\alpha : G \to \text{Aut}(A)$ which are locally unitary on a subgroup N. It was shown in [19; §2] that, provided $X = \hat{A}$ is a principal G/N-bundle, there is a commutative diamond of principal bundles describing the spectrum of $A \rtimes_G G$ as a principal \hat{N}-bundle over X/G:

\[
\begin{array}{ccc}
(A \rtimes_G N)^\wedge & \text{Ind} & (A \rtimes_G G)^\wedge \\
\downarrow & & \downarrow \text{Res} \\
X/G & \text{q} & X
\end{array}
\]

When $\alpha(N) \subseteq \text{Inn}(A)$, we shall associate to α an invariant $d(\alpha)$ lying in a relative Moore
cohomology group $\Lambda(G, N; C(X, T))$, which vanishes exactly when there is a homomorphism $u : N \to \mathcal{U}M(A)$ such that (A, G, α, u) is a twisted system in the sense of Green. We shall then show how to construct diamonds of principal bundles directly from appropriate elements of $\Lambda(G, N; C(X, T))$, in such a way that the element vanishes if and only if the bottom left-hand arrow is a trivial bundle. Since applying our construction to $d(\alpha)$ gives the diamond describing $(A \rtimes_\alpha G)\hat{\wedge}$, our main result follows immediately:

Theorem. Let (A, G, α) be a separable C*-dynamical system in which G is abelian and the spectrum X of A is Hausdorff. Suppose N is a closed subgroup of G such that $\alpha|_N$ is locally unitary and $X \to X/G$ is a locally trivial principal G/N-bundle. Then $(A \rtimes_\alpha G)\hat{\wedge}$ is trivial as an \hat{N}-bundle over X/G if and only if α is given on N by a Green twisting map $u : N \to \mathcal{U}M(A)$ (i.e. u satisfies $\alpha|_N = \text{Ad} u$ and $\alpha_s(u_n) = u_n$ for $s \in G$, $n \in N$).

This result has some interesting corollaries. First of all, if (A, G, α, u) is a twisted system then a theorem of Olesen and Pedersen [12] says that $A \rtimes_\alpha G$ is isomorphic to an induced algebra $\text{Ind}_{N\downarrow}^{G\downarrow}(B, \theta)$—indeed, we can take B to be the restricted crossed product $A \rtimes_{\alpha, N} G$, and θ to be the dual action of $N^\perp = (G/N)^\wedge$. Thus, in our setting, the triviality of $(A \rtimes_\alpha G)\hat{\wedge}$ as an \hat{N}-bundle implies that $A \rtimes_\alpha G$ is an induced C*-algebra. If we have a system (A, G, α) as in the theorem and $X \to X/G$ is trivial as a G/N-bundle, then we can apply this reasoning to the dual system $(A \rtimes_\alpha G, \hat{G}, \hat{\alpha})$, and deduce that α is the translation action on an induced algebra. Even if the bundle $X \to X/G$ is only locally trivial, we can still apply this reasoning locally on G-invariant subsets of X, and the resulting local structure theorem for the systems studied in [19,§2] should have some very interesting consequences. In particular, we believe that using it we can identify exactly which commutative diamonds of principal bundles arise from these actions, and we intend to pursue this in the near future.

Although we have so far discussed locally unitary actions and locally trivial principal bundles, it is perhaps more natural to consider pointwise unitary actions, which are easily described as actions which fix the spectrum and whose Mackey obstructions vanish. It was shown in [13] that the results of [18] and [19] remain true for pointwise unitary actions, provided we restrict attention to continuous-trace algebras and use free and proper actions instead of locally trivial bundles. We shall therefore be studying systems (A, G, α) in which A has continuous trace, $\alpha|_N$ is pointwise unitary and G/N acts freely and properly on \hat{A}. We do need to assume A has continuous trace to ensure $(A \rtimes_\alpha G)\hat{\wedge}$ is Hausdorff ([13, Theorem 1.7]; see also [13, §2(c)]); however, this is also true if α is locally unitary and \hat{A} is Hausdorff, and our arguments will apply also in this case, giving the theorem stated
above.

We begin with a short section about free and proper G-spaces, in which we set up our terminology—we call them G-bundles, and reserve the word “principal” for locally trivial ones—and prove a couple of routine lemmas. In section 3 we discuss Rosenberg’s construction of a \tilde{G}-bundle E_w from a pointwise trivial element w of $H^2(G, C(X, T))$, presenting it so that it works also for arbitrary locally compact abelian groups. We prove that $w \mapsto E_w$ is an injection of the pointwise trivial part of $H^2(G, C(X, T))$ into the group of \tilde{G}-bundles over X. Rosenberg’s theorem asserts that this map is surjective when G is connected, but this is not the case when G is not connected, and we begin the identification of the range in Corollary 3.10. The methods of section 3 are direct, making no mention of operator algebras, but in section 4 we connect them up with group actions on continuous-trace algebras. In particular, using C^*-algebraic methods it is easy to identify the range of the map $w \mapsto E_w$, although this is also done directly in section 8.

We introduce our relative cohomology group Λ and the invariant $d(\alpha)$ in section 5. The group Λ is a Borel version of one which is used by algebraists to classify crossed extensions (e.g. [4, 20]), and which has also appeared in classifications of discrete group actions on injective non-Neumann algebras (e.g. [6, 24]); we discuss this further in Remark 5.5. The invariant $d(\alpha)$ lies in a subgroup Λ_{RT} of appropriately pointwise trivial elements, and in section 6 we show how to associate to each element (λ, μ) of $\Lambda(G, N; C(X, T))$ a commutative diamond of bundles, and in particular an \tilde{N}-bundle $q : F(\lambda, \mu) \to X/G$. Our extension of Rosenberg’s theorem asserts that $(\lambda, \mu) \mapsto F(\lambda, \mu)$ is an injection of Λ_{RT} into the group of \tilde{N}-bundles over X/G, and identifies the range; we defer the proof of the last part to section 8 since we do not need it for our applications to C^*-algebras. The results in section 6 lean heavily on the version of Rosenberg’s construction given in section 3.

We prove our main theorem and its corollaries in section 7. As we mentioned above, it follows almost immediately from our earlier results, and indeed this is the point we wish to make. Here we have two natural invariants, the topological one arising concretely as the spectrum of the crossed product, the algebraic one directly measuring the obstruction to solving our problem, and it is the relationship between them which is giving the information we want. Thus while a direct proof would also be possible, we have preferred to stress the connection between the two invariants.

Acknowledgements. We wish to thank Colin Sutherland for drawing our attention to the Λ-invariant and its uses in classification problems for group actions. This research has been supported by the Australian Research Council. The first author has also been supported...
by the Research Academy of Denmark, and he thanks Dorte Olesen, Gert Pedersen and their colleagues for their warm hospitality.
§2 Free and proper G-spaces

As we mentioned in the introduction, we shall refer to free and proper G-spaces as G-bundles, and locally trivial principal G-bundles as principal G-bundles. In this section we shall make this precise, show how to multiply G-bundles if G is abelian, and see what happens when we change the structure group G.

Definition 2.1: Let G be a locally compact group and T a locally compact (Hausdorff) space. A G-bundle over T is a locally compact space X, together with a free and proper action of G on X and a continuous G-invariant map p : X → T which induces a homeomorphism of X/G onto T. Two such G-bundles p : X → T and q : Y → T are isomorphic if there is a G-equivariant homeomorphism h of X onto Y such that q ∘ h = p; we denote by HP(T, G) the set of isomorphism classes of G-bundles over T. (This notation is motivated by the connection with sheaf cohomology; see Remark 2.5 below.)

Remark 2.2: A G-bundle p : X → T is trivial if it is isomorphic to T × G, or, equivalently, if there is a continuous section s : T → X for p. Similarly, a G-bundle is locally trivial if p has local sections; we shall call a locally trivial G-bundle a principal G-bundle. It follows from Palais’s slice theorem [16; Theorem 4.1] that G is a Lie group, then every G-bundle is a principal G-bundle.

Remark 2.3: If p : X → T and q : Y → T are G-bundles, and if h : X → Y is a G-equivariant map satisfying q ∘ h = p, then h must be bijective and Lemma 1.12 of [13] implies that h is an isomorphism of G-bundles.

Lemma 2.4: Suppose that G is a locally compact abelian group, and that p : X → T and q : Y → T are G-bundles. Then the action of G on the fibre product

\[X \times_T Y = \{ (x, y) \in X \times Y : p(x) = q(x) \} \]

defined by \(s \cdot (x, y) = (s \cdot x, s^{-1} \cdot y) \) is free and proper. The formula \(s \cdot [x, y] = [s \cdot x, y] \)
defines a free and proper action of G on the quotient space

\[X \ast Y = (X \times_T Y)/G, \]

and, together with the map \(r : X \ast Y \to T \) sending \([x, y]\) to \(p(x)\), makes \(X \ast Y\) into a G-bundle over T. The binary operation \([X][Y] = [X \ast Y]\) is well-defined on \(HP(T, G)\), and with it \(HP(T, G)\) becomes an abelian group.

Proof: Most of the details are routine, so we shall omit them. We should observe, however, that the identity in \(HP(T, G)\) is the class \([T \times G]\) of the trivial bundle, and that the inverse
of \([X]\) is the class \([X^{\text{op}}]\) of the opposite \(G\)-space \(X^{\text{op}}\). (Recall that \(X^{\text{op}}\) equals \(X\) as a set, but carries the \(G\)-action given by \(s \cdot x = s^{-1} \cdot x\).) To see that \(X \times X^{\text{op}}\) is trivial, notice that the map \(x \mapsto [x, x]\) is a continuous \(G\)-invariant map from \(X\) to \(X \times X^{\text{op}}\), and hence defines a continuous section from \(X/G\) to \(X \times X^{\text{op}}\); the claim follows from Remark 2.2.

\[\square\]

Remark 2.5: As usual, if we denote by \(\mathcal{G}\) the sheaf of germs of continuous \(G\) valued functions, we can use transition functions to identify the group of isomorphism classes of locally trivial \(G\)-bundles with the sheaf cohomology group \(\check{H}^1(T, \mathcal{G})\), and hence realize \(\check{H}^1(T, \mathcal{G})\) as a subgroup of \(H^0(T, \mathcal{G})\) (see Remark 2.7). It is well-known that \(\check{H}^1(T, \mathcal{G})\) can be a proper subgroup of \(H^0(T, \mathcal{G})\); for example, let \(G = \prod_{n=1}^{\infty} \mathbb{Z}_2\), viewed as a subgroup of \(X = T = \prod_{n=1}^{\infty} \mathbb{Z}_2\), and define \(p : X \to T\) by \(p([z_n]) = \{z_n^2\}\). Then \(G = \ker p\) acts freely and properly on \(X\), but \(p\) cannot have local sections since any open set in \(T\) contains one of the form \((\prod_{n=1}^{N} W_n) \times (\prod_{n=N+1}^{\infty} \mathbb{Z}_2)\), and a section defined on this set would, in particular, give a section for the map \(z_{N+1} \mapsto z_{N+1}^2\).

\[\square\]

Proposition 2.6: Suppose that \(\phi : G \to H\) is a continuous homomorphism between locally compact groups, and that \(p : X \to T\) is a \(G\)-bundle. Then the action of \(G\) on \(H \times X\) defined by \(s \cdot (h, x) = (h \phi(s^{-1}), s \cdot x)\) is free and proper. Furthermore, the action of \(H\) on the quotient \(\phi_*(X) \equiv (H \times X)/G\) defined by \(h \cdot [k, x] = [hk, x]\) is also free and proper, and the map \(\pi : \phi_*(X) \to T\), defined by \(\pi([h, x]) = p(x)\), induces a homeomorphism of \(\phi_*(X)/H\) onto \(T\); that is, \(\phi_*(X)\) is an \(H\)-bundle over \(T\).

Proof: The action of \(G\) on \(H \times X\) is free and proper because the action on \(X\) is, and this implies that \((H \times X)/G\) is a locally compact Hausdorff space. The action of \(H\) on \(\phi_*(X)\) is easily seen to be free; to see that it is also proper, fix a compact set \(K\) in \(\phi_*(X)\), and suppose \(\{h_i\}\) is a net in \(\{h \in H : hK \cap K \neq \emptyset\}\). Choose \(k_i \in H, x_i \in X\) such that \([k_i, x_i] \in K\) and \([h_i k_i, x_i] \in K\). Since the orbit map \(q : H \times X \to \phi_*(X)\) is open, we can choose a compact set \(L\) such that \(q(L) = K\). Without loss of generality we may suppose \((k_1, x_1) \in L\), and then choose \(s_i\) such that \((h_i k_i \phi(s_i^{-1}), s_i \cdot x_i) \in L_i\) by passing to a subnet we can assume \((k_i, x_i) \to (k, x)\) and \((h_i k_i \phi(s_i^{-1}), s_i x_i) \to (h, \eta)\). The projection \(L_i\) of \(L\) on \(X\) is compact and the action of \(G\) on \(X\) is proper, so we can pass to another subnet and assume \(s_i \to s\) in \(G\). Thus

\[h_i = h_i k_i \phi(s_i^{-1}) \phi(s_i) k_i^{-1} \to h \phi(s) k^{-1},\]

and we have proved that the action of \(H\) is proper.

It is easy to verify that the map \(\pi : [h, x] \to p(x)\) induces a bijection of \(\phi_*(X)/H\) onto \(T\) which will be a homeomorphism if \(\pi\) is continuous and open. We prove first that it is
continuous: if \([h, x_i] \rightarrow [h, x]\), the openness of the quotient map implies there are a subnet \([h, x_i] \rightarrow [h, x]\) and elements \(s_j \in G\) such that \((h, \phi(s_j^{-1}), s_j \cdot x_i) \rightarrow (h, x)\), and then \(p(x_{ij}) = p(s_j \cdot x_i) \rightarrow p(x)\). To see that \(\pi\) is open, suppose \(N\) is open in \(\phi_*(X)\), and \([h, x] \in N\). Let \(M_1\) and \(M_2\) be neighborhoods of \(h\) and \(x\) such that \(M_1 \times M_2 \subset q^{-1}(N) \subset H \times X\). Then

\[\pi([k, \eta]) : k \in M_1, \eta \in M_2 \} = \{ p(\eta) : \eta \in M_2 \}\]

is a neighborhood of \(p(x)\) contained in \(\pi(N)\), so \(\pi\) is open and the last assertion is established.

\[\square\]

Remark 2.7: If \(X\) is locally trivial, its isomorphism class is determined by a class \(c(X)\) in \(\tilde{H}^1(T, G)\), constructed as follows. Choose local sections \(x_i : N_i \rightarrow X\) such that \(T = \bigcup N_i\), and for each pair \(i, j\) define a continuous function \(s_{ij} : N_{ij} = N_i \cap N_j \rightarrow G\) by \(x_i(t) = s_{ij}(t) \cdot x_j(t)\); then the \(s_{ij}\) form a 1-cocycle with values in the sheaf \(G\) of \(G\)-valued functions, and \(c(X)\) is the class in \(\tilde{H}^1(T, G)\) of this cocycle. If we apply the construction of the proposition to \(X\), then \(\eta_i(t) = [e, x_i(t)]\) is a continuous section for \(\phi_*(X)\) over \(N_i\), so \(\phi_*(X)\) is also locally trivial; for \(t \in N_{ij}\) we have

\[\eta_i(t) = [e, s_{ij}(t) \cdot x_j(t)] = [\phi(s_{ij}(t)), x_j(t)] = \phi(s_{ij}(t)) \cdot \eta_j(t)\]

Thus the class \(c(\phi_*(X)) \in \tilde{H}^1(X, G)\) is that of the cocycle \(\phi \circ s_{ij}\), which is the image of \(c(X)\) under the canonical homomorphism: \(\tilde{H}^1(T, G) \rightarrow \tilde{H}^1(T, G)\) induced by \(\phi\).

\[\square\]
§3 Moore cohomology and principal bundles

Throughout this section, \(G \) will be a second countable locally compact abelian group and \(X \) a second countable locally compact Hausdorff space on which \(G \) acts trivially. Recall that a Borel cocycle \(w \in Z^2(G, C(X, T)) \) is pointwise trivial, written \(w \in Z^2_{\tau_T}(G, C(X, T)) \), if composing with each evaluation map \(\epsilon_x : C(X, T) \to T \) gives a trivial cocycle in \(Z^2(G, T) \). We shall construct from each \(w \in Z^2_{\tau_T}(G, C(X, T)) \) a \(\hat{G} \)-bundle \(E_w \) over \(X \) in such a way that

1. the class \([E_w]\) depends only on the class \([w]\) in \(H^2(G, C(X, T)) \), and
2. if \(A \) is a continuous trace \(\mathbb{C}^* \)-algebra with spectrum \(X \), and \(\alpha : G \to \text{Inn}(A) \) is a pointwise unitary action whose obstruction to being unitary (see [19; Corollary 0.12]) is \([w]\), then \(E_w \) is naturally isomorphic to \((A \rtimes_{\alpha} G)^\hat{\gamma}\).

The main object of this section is to show that the map \([w] \mapsto [E_w]\) defines an injective homomorphism of \(H^2_{\tau_T}(G, C(X, T)) \) into \(HP(X, \hat{\Theta}) \) (Proposition 3.8). When \(w \) is locally trivial, our construction reduces to the one given by Rosenberg in the proof of [21, Theorem 2.5(b)], and we merely want to observe that the same construction works in the pointwise trivial case and for arbitrary locally compact abelian groups, not just connected ones.

Let \(C^n(G, T) \) denote the space of Borel cochains \(f : G^n \to T \), and \(C^n(G, T) \) the quotient obtained by identifying cochains which agree almost everywhere. As in [9], \(C^n(G, T) \) has a natural Polish topology for which the coboundary maps \(\partial : C^n \to C^{n+1} \) are continuous [9, Proposition 20]. As in the first paragraph of the proof of [21, Theorem 2.1], \(w \) determines a continuous map \(b_w \) of \(X \) into the quotient \(B^2(G, T) = C^1(G, T) / \ker \partial = C^1(G, T) / \hat{G} \). Now if \(G \) is non-discrete, then \(C^1(G, T) \) is contractible [21, Lemma 2.3]; if \(G \) is also compactly generated, so \(\hat{G} \) is a Lie group, \(C^1(G, T) \) is a locally trivial \(\hat{G} \)-bundle and \(C^1(G, T) \to B^2(G, T) \) is therefore a universal \(\hat{G} \)-bundle [21, Proposition 2.4]. The class in \(H^1(X, \hat{\Theta}) \) associated to \(w \) in [21, p. 310] is that of the \(\hat{G} \)-bundle over \(X \) pulled back from the universal bundle \(C^1(G, T) \) along the map \(b_w \). This \(\hat{G} \)-bundle can be concretely realized as

\[
E_w = \{ (f, x) \in C^1(G, T) \times X : \partial \tilde{f} = b_w(x) \},
\]

where \(\hat{G} \) acts via \(\gamma \cdot (f, x) = (\gamma f, x) \). (Taking \(\partial \tilde{f} \) instead of \(\partial f \) will make our formulas slightly simpler.) Since \(\partial : C^1 \to B^2 \) is a universal \(\hat{G} \)-bundle, the bundle \(E_w \) is trivial if and only if \(b_w \) lifts to a continuous map of \(X \) into \(C^1 \), and Rosenberg argues that such a lifting exists if and only if \([w] = 0 \) in \(H^2(G, C(X, T)) \) (see the second paragraph of the proof of [21, Theorem 2.1]).
We shall show that for arbitrary locally compact abelian \(G \), the space \(E_w \) defined above is a free and proper \(\hat{G} \)-space with \(E_w/\hat{G} = X \), and that its \(\hat{G} \)-isomorphism class still determines \([w] \in H^2(G, C(X, T))\). (Notice that \(C^1(G, T) \) need be neither contractible nor locally trivial in general).

Proposition 3.1: Suppose \(G \) is a locally compact abelian group, \(X \) is a locally compact Hausdorff space, and \(b : X \to \overline{H}^2(G, T) \) is a continuous map. Then

\[
E_b = \{ (f, x) \in C^1(G, T) \times X : \partial f = b(x) \}
\]

is a locally compact Hausdorff space in the product topology, the action of \(\hat{G} \) defined by \(\gamma \cdot (f, x) = (\gamma f, x) \) is free and proper, and \(r(f, x) = x \) induces a homeomorphism of \(E_b/\hat{G} \) onto \(X \). In other words, \(r : E_b \to X \) is a \(\hat{G} \)-bundle.

For the proof we require the following lemma. In the proofs of both the lemma and the proposition we use proper in the sense of [16, Definition 1.2.2]; when \(Y \) is locally compact, this is consistent with standard terminology [16, Theorem 1.2.9].

Lemma 3.2: If \(G \) is a locally compact group acting freely and properly on a metric space \(Y \), and \(Y/G \) is locally compact, then \(Y \) is also locally compact.

Proof: Let \(y \in Y \), and let \(S \) be a small closed neighborhood of \(y \). Since \(p : Y \to Y/G \) is open and \(Y/G \) is locally compact, there is a compact neighborhood \(M \) of \(p(y) \) such that \(M \subset p(S) \). We shall show that \(T = S \cap p^{-1}(M) \) is a compact neighborhood of \(y \). It is obviously a neighborhood, so suppose \(\{ y_n \} \subset T \). By passing to a subsequence, we may suppose \(p(y_n) \) converges to \(w \in M \), say. Choose \(z \in T \) with \(p(z) = w \), and let \(V \) be a neighborhood of \(z \) which is thin relative to \(T \)—in other words, such that

\[
\{ s \in G : s \cdot V \cap T \neq \emptyset \}
\]

is compact in \(G \) (this is possible because a subset of a small set is small). Let \(\{ W_i \} \) be a decreasing sequence of neighborhoods of \(z \) such that \(W_i \subset V \) and \(\bigcap_{i=1}^{\infty} W_i = \{ z \} \). Each \(p(W_i) \) is a neighborhood of \(w = p(z) \), so we may choose a subsequence \(y_{n_i} \) such that \(p(y_{n_i}) \in p(W_i) \). If \(z_i \in W_i \) satisfy \(p(z_i) = p(y_{n_i}) \), then \(z_i \to z \) and there exist \(s_i \in G \) such that \(s_i \cdot z_i = y_{n_i} \). But then \(y_{n_i} \in T \) and \(z_i \in V \), so by passing to another subsequence we may suppose \(s_i \to s \) in \(G \), and \(y_{n_i} = s_i \cdot z_i \to s \cdot z \). Thus \(\{ y_n \} \) has a convergent subsequence, and \(T \) is compact, as claimed.

Proof of Proposition 3.1: Theorem 3 of [9] implies that the natural inclusion \(\hat{G} \to C^1(G, T) \) induces a continuous bijection of \(\hat{G} \) onto the closed subgroup \(\ker \partial \) of \(C^1(G, T) \).
and this bijection is therefore a homeomorphism by [9, Proposition 5(b)]. It follows that the map \(f, \gamma f \to \gamma = (\gamma f)f^{-1} \) is continuous, so that \(G^1(G, T) \) is a Cartan \(\hat{G} \)-principal bundle [16, §1]. Further, the orbit space is regular [3, Theorem 5.21], and thus \(G^1(G, T) \) is a proper \(\hat{G} \)-space by [16, Proposition 1.2.5]. Because \(\partial \) and \(b \) are continuous, the space \(E_b \) is a closed \(\hat{G} \)-invariant subset of \(G^1 \times X \), and as such is itself a proper \(\hat{G} \)-space, which is metrizable because \(G^1 \) and \(X \) are. It can be routinely verified that, because \(\partial \) is open, \(p \) is also open, and hence the bijection of \(E_b \hat{G} \) onto \(X \) induced by \(p \) is a homeomorphism. In particular, this shows that \(E_b \hat{G} \) is locally compact, and by Lemma 3.2 this in turn implies that \(E_b \) is, too.

Remark 3.3: When \(w \in \mathcal{Z}^2_{\Gamma^T}(G, C(X, T)) \), we’ll write \(E_w \) in place of \(E_{b_w} \).

Proposition 3.4: Let \(w \in \mathcal{Z}^2_{\Gamma^T}(G, C(X, T)) \). Then \([w] = 0 \) in \(H^2(G, C(X, T)) \) if and only if \(E_w \) is a trivial \(\hat{G} \)-bundle.

Proof: If \([w] = 0 \), then there is a Borel map \(\rho : G \to C(X, T) \) such that \(\partial \rho = w \). We define \(\psi : X \to C^1(X, T) \) by \(\psi(x)(s) = \rho(s)(x) \); note that \(\psi(x) \) is Borel because it is the composition of \(\rho \) with the continuous map \(\varepsilon_x \) defined by \(f \mapsto f(x) \). The continuity of \(\rho(s) \) implies that \(\psi(x_n) \to \psi(x) \) pointwise, and it follows easily that \(\psi \) is continuous from \(X \) to \(C^1(G, T) \)—or, strictly speaking, that the composition \(\psi : X \to C^1(G, T) \to C^1(G, T) \) is continuous. We clearly have \(\partial(\psi(x)) = b_w(x) \), so that \(x \mapsto (\psi(x), x) \) is a continuous section for \(E_w \) and \(E_w \) is trivial.

Reversing this argument is a bit harder: if \(E_w \) is trivial, then there is a continuous map \(\psi : X \to C^1(G, T) \) such that \(\partial(\psi(x)) = b_w(x) \), but it is not immediately clear how to use \(\psi \) to define a Borel function \(\rho : G \to C(X, T) \). In fact, we do not in general know how to construct elements of \(\mathcal{Z}^n(G, C(X, T)) \) from functions in \(C(X, \mathcal{C}^n(G, T)) \), and we can only handle the case \(n = 1 \) here because we know that \(\partial(\psi) \) can be extended to a function \(w \) which is a cocycle on all of \(G \times G \); the argument we use comes from Rosenberg’s proof of [21; Theorem 2.1]. We need two Lemmas.

Lemma 3.5: Let \(A \) be an abelian Polish \(G \)-module, and let \(\mu \in \mathcal{Z}^2(G, A) \) and \(f \in C^1(G, A) \) satisfy \(\partial f = \mu \) almost everywhere in \(G \times G \). Then there is a unique element \(f_1 \) of \(C^1(G, A) \) such that \(f_1 = f \) almost everywhere and \(\partial f_1 = \mu \) everywhere on \(G \times G \).

Proof: Since the natural inclusion induces an isomorphism of \(H^2 = \mathbb{Z}/2 \mathbb{Z} \) onto \(H^2 = \mathbb{Z}/2 \mathbb{Z} \) [9; Theorem 5], and we are given \([\mu] = 0 \) in \(H^2 \), we know that there exists a Borel map \(g : G \to A \) such that \(\partial g = \mu \) everywhere. Then we have \(\partial(f^{-1}g) = 0 \) in \(\mathbb{Z}^2 \), so that

\[
(f^{-1}g)(st) = (f^{-1}g)(s)(f^{-1}g)(t)
\]
for almost all pairs \((s, t)\) in \(G \times G\). By [9; Theorem 3], there is a continuous cocycle \(\gamma \in Z^1(G, A)\) such that \(f^{-1}g = \gamma\) almost everywhere. Then \(f_1 = \gamma^{-1}g\) equals \(f\) almost everywhere, and satisfies \(\partial f_1 = \partial g = \mu\) everywhere.

Suppose that \(f_2\) is another such element of \(C^1(G, A)\). Then \(\partial f_1 = \partial f_2 = \mu\) implies that \(f_1 = \gamma f_2\) for some \(\gamma \in Z^1(G, A)\), and \(f_1 = \gamma f_2 = f\) almost everywhere implies that \(\gamma = 1\) almost everywhere; thus \(\gamma = 1\) and \(f_1 = f_2\).

\[\square\]

Lemma 3.6: Suppose that \(w \in Z^2_{pr}(G, \mathcal{C}(X, \mathbb{T}))\), and that we have a sequence \((f_n, x_n)\) in \(E_w\) which converges to \((f, x)\). Let \(g_n, g\) be elements of \(C^1(G, \mathbb{T})\) which represent \(f_n, f\) in \(\mathcal{C}^1(G, \mathbb{T})\) and which satisfy \(\partial g_n = (\epsilon_{x_n})(w)\) and \(\partial g = (\epsilon_x)(w)\) everywhere. Then \(g_n(s)\) converges to \(g(s)\) for all \(s \in G\).

Proof: Suppose there exists \(s \in G\) such that \(g_n(s)\) does not converge to \(g(s)\). By passing to a subsequence, we may suppose that

\[|g_n(s) - g(s)| \geq \epsilon\quad \text{for all } n,\]

which ensures that no subsequence of \(\{g_n(s)\}\) can converge to \(g(s)\). We know that \(f_n \to f\) in \(\mathcal{C}^1(G, \mathbb{T})\), and hence by [9; Proposition 6] there is a subsequence \(\{f_{n_j}\}\) converging almost everywhere to \(f\). Since \(g_{n_j} = f_{n_j}\) almost everywhere, there is a Borel null-set \(L\) such that

\[g_{n_j}(t) \to g(t)\quad \text{for all } t \in G \setminus L.\]

Since \(w\) takes values in \(C(X, \mathbb{T})\), \(g_{n_j}(st)g_{n_j}(s)^{-1}g_{n_j}(t)^{-1} = w(s, t)(x_{n_j})\) converges to \(w(s, t)(x) = g(st)g(s)^{-1}g(t)^{-1}\), which, in view of (3.1) and (3.2), implies that \(\{g_{n_j}(st)\}\) cannot converge to \(g(st)\) for our fixed \(s\) and any \(t \in G \setminus L\). Therefore, \(t \in G \setminus L\) implies that \(st \in L\), and we have \(G = L \cup s^{-1} \cdot L\), which is impossible since \(L\) has Haar measure zero.

\[\square\]

End of the proof of Proposition 3.4: As before, if \(E_w\) is trivial, then there is a continuous map \(\psi : X \to \mathcal{C}^1(G, \mathbb{T})\) such that \(\partial \circ \psi = b_w\). By Lemma 3.5, for each \(x \in X\) there is a unique element \(\psi(x)\) of \(\mathcal{C}^1(X, \mathbb{T})\) such that \(\psi(x)\) represents \(\psi(x)\), and such that \(\partial(\psi(x)) = w(\cdot, \cdot)(x)\) everywhere. Lemma 3.6 implies that if \(x_n \to x\), then \(\psi(x_n) \to \psi(x)\) pointwise. Thus we can define \(\rho : G \to C(X, \mathbb{T})\) by \(\rho(s)(x) = \psi(x)(s)\). Then formally we have

\[\partial(\rho(s, t))(x) = \partial(\psi(x))(s, t) = w(s, t)(x),\]

but we still have to show that \(\rho\) is Borel.
Since the Borel structure on \(C(X, T) \) is generated by the (compact-open) topology, it will be enough to prove that for each \(g \in C(X, T) \), \(K \) compact in \(X \), and \(\epsilon > 0 \), the set
\[
E = \rho^{-1}(\{ f \in C(X, T) : |f(x) - g(x)| \leq \epsilon \text{ for all } x \in K \})
\]
\[
= \{ s \in G : |\psi(x)(s) - g(x)| \leq \epsilon \text{ for all } x \in K \}
\]
is Borel in \(G \). Let \(\{ x_n \} \) be a countable dense set in \(K \). Since for each fixed \(x \), the function \(\psi(x) \) is Borel,
\[
E_n = \{ s \in G : |\psi(x_n)(s) - g(x_n)| \leq \epsilon \}
\]
is Borel, and hence so is \(\bigcap_{n=1}^{\infty} E_n \). But both \(\psi(\cdot)(s) \) and \(g \) are continuous, so \(E = \bigcap_{n=1}^{\infty} E_n \), and \(E \) is Borel too.

Remark 3.7: We have actually shown that every global section \(\sigma \) of \(E_w \) has the form
\[
\sigma(x) = (\rho(\cdot), x)
\]
for some \(\rho \in C^1(G, C(X, T)) \) such that \(\partial \rho = w \).

Proposition 3.8: The map \(w \mapsto E_w \) constructed in Proposition 3.1 induces an injective homomorphism of \(H^2_{\tau_T}(G, C(X, T)) \) into \(HP(X, \mathcal{E}) \).

Proof: If \(b \) and \(c \) are continuous maps of \(X \) into \(B^2(G, T) \), then it can be routinely verified that the map \(((f, x), (g, x)) \mapsto (fg, x) \) induces a continuous bijection of \(E_b \times E_c = (Eb \times Ec)/\hat{G} \) onto \(E_{bc} \), and by Remark 2.3 this must be an isomorphism of \(\hat{G} \)-bundles. Thus, in particular, \([E_{w_r}] = [E_w][E_r] \) in \(HP(X, \mathcal{E}) \). If \([w] = [\tau] \) in \(H^2(G, C(X, T)) \), then \([w\tau] = 0 \), and hence by Proposition 3.4, \([E_w] = [E_{w\tau}][E_\tau] \). Therefore the map \([w] \mapsto [E_w] \) is a well-defined homomorphism, which is injective by Proposition 3.4.

We shall now start the process of identifying the range of the homomorphism \(w \mapsto E_w \). We shall show that, if \(\psi_s : \hat{G} \to T \) denotes evaluation at \(s \in G \), then the \(T \)-bundle \((\psi_s)_* (E_w) \) (see Proposition 2.6) is trivial for all \(s \in G \). In fact, this property characterizes the \(\hat{G} \)-bundles of the form \(E_w \), and we shall later give two proofs of this: the first, in §4, uses operator algebras, whereas the second, which is a special case of the argument in §8, is direct but harder.

Proposition 3.9: Suppose that \(\phi : H \to G \) is a continuous homomorphism of locally compact abelian groups. Then the induced homomorphism \(\phi^* : H^2(G, C(X, T)) \to H^2(H, C(X, T)) \) carries \(H^2_{\tau_T}(G, C(X, T)) \) into \(H^2_{\tau_T}(H, C(X, T)) \), and the bundle \(E_{\phi^*(w)} \) is naturally isomorphic to \(\hat{\phi}_*(E_w) \).
Proof: The induced homomorphism \(\phi^* \) is defined by

\[
\phi^*(w)(h, k) = w(\phi(h), \phi(k))
\]

for \(w \in Z^2(G, C(X, T)) \), so if \(\rho : G \to T \) satisfies \(\partial \rho = (\varepsilon_x)_*(w) \), then \(\partial(\rho \circ \phi) = (\varepsilon_x)_*(\phi^*(w)) \), and \(\phi^*(w) \) is pointwise trivial if \(w \) is. We define a map \(\Phi : \hat{H} \times E_w \to E_{\phi^*(w)} \)

by \(\Phi(\gamma, f, x) = (\gamma(g \circ \phi), x) \), where \(g \) is the unique function in \(C^1(G, T) \) representing \(f \in SC^1(G, T) \) and satisfying \(\partial g = (\varepsilon_x)_*(w) \) (see Lemma 3.5): since \(\gamma \) is a homomorphism,

\[
\partial(\gamma(g \circ \phi)) = \partial(g \circ \phi) = \partial g \circ (\phi \times \phi) = (\varepsilon_x)_*(w \circ \phi \times \phi) = (\varepsilon_x)_*(\phi^*(w)),
\]

so \(\Phi \) does take values in \(E_{\phi^*(w)} \). To see that \(\Phi \) is continuous, we suppose that \((\gamma_n, f_n, x_n) \to (\gamma, f, x) \). Lemma 3.6 implies that \(g_n \to g \) pointwise on \(G \), and hence \(\gamma(g_n \circ \phi) \to \gamma(g \circ \phi) \) pointwise on \(H \). By [9; Proposition 6], this implies that \(\gamma(g_n \circ \phi) \to \gamma(g \circ \phi) \) in \(C^1(H, T) \), and hence \((\gamma(g_n \circ \phi), x_n) \to (\gamma(g \circ \phi), x) \) in \(E_{\phi^*(w)} \).

The space \(\hat{\phi}_*(E_w) \) is by definition the orbit space for the action of \(\hat{G} \) on \(\hat{H} \times E_w \) given by

\[
\chi \cdot (\gamma, f, x) = (\gamma(\hat{\phi}(\chi)^{-1}), \chi f, x) = (\gamma(\chi \circ \phi), \chi f, x);
\]

if \(g \) is the unique lifting of \(f \) to \(C^1(G, T) \), then \(\chi g \) is the unique lifting of \(\chi f \), and hence \(\Phi \) is constant on \(\hat{G} \)-orbits. We now have a continuous \(\hat{H} \)-equivariant map \(\Phi' \) of \(\hat{\phi}_*(E_w) = (\hat{H} \times E_w)/\hat{G} \) into \(E_{\phi^*(w)} \), which clearly respects the bundle projections onto \(X \), and is therefore a bundle isomorphism by Remark 2.3. \(\square \)

Corollary 3.10: For \(s \in G \), define \(\psi_s : \hat{G} \to T \) by \(\psi_s(\gamma) = \gamma(s) \). If \(w \in Z^2_{TT}(G, C(X, T)) \),

then \((\psi_s)_*(E_w) \) is a trivial \(T \)-bundle for all \(s \in G \).

Proof: The map \(\psi_s \) is \(\hat{\phi}_s \), where \(\phi_s : Z \to G \) is defined by \(\phi_s(n) = s^n \). Thus the proposition implies that \((\psi_s)_*(E_w) = E_{\phi_s^*(w)} \). But \(H^2(Z, C(X, T)) = 0 \) (because the associated group extensions obviously split), so \(E_{\phi_s^*(w)} \) must be trivial by Proposition 3.4. \(\square \)

Remark 3.11: The class of \(\hat{G} \)-bundles \(E \) over \(X \) satisfying

\[
(\psi_s)_*(E) \cong X \times T \quad \text{for all } s \in G \quad (3.3)
\]

has occurred before in work of Smith [22, 23]. He calls a \(\hat{G} \)-bundle \(p : E \to X \) characteristic if there is a function \(f : G \times E \to T \), which is Borel on \(G \) and continuous on \(E \), and which satisfies

\[
f(s, \gamma \cdot \xi) = \gamma(s)f(s, \xi) \quad (3.4)
\]

13
for $s \in G$, $\xi \in E$, and $\gamma \in \hat{G}$. It is easy to check that, given such an f and $s \in G$, the map

$$\phi : (\psi_s)_*(E) \to X \times T$$

defined by

$$\phi([z, \xi]) = (p(\xi), f(s, \xi), z)$$

(3.5)

is a bundle isomorphism, and hence his characteristic bundles satisfy our criterion (3.3). On the other hand, it follows from Theorem 4.4 (or from §8) that (3.3) implies $E \cong E_w$ for some $w \in Z^2_{\rho_*}(G, C(X, T))$, and then we can set $f(s, (g, x)) = g_1(s)$, where g_1 is the unique representative of $g \in C^1(G, T)$ such that $\partial g_1 = (\epsilon_x)_*(w)$ everywhere. (Lemma 3.6 implies that $f(s, \cdot)$ is continuous on E_w for each fixed s, and the argument used to prove Proposition 3.4 shows that $s \mapsto f(s, \cdot)$ is Borel as a map from G to $C(E, T)$.) Therefore a bundle satisfies criterion (3.3) if and only if it is characteristic. It is mildly interesting to note that, if for each $s \in G$ we can find $f(s, \cdot)$ satisfying (3.4), then (3.5) defines a trivialization of $(\psi_s)_*(E)$, and E is characteristic; thus the measurability requirement on f appears to be unnecessary.

Smith was interested in those principal \hat{G}-bundles over X which could arise as the spectrum of commutative twisted crossed products $A \rtimes_{\alpha, u} G$ [22]. (Here we use the C^*-algebraic twisted crossed products of [15], rather than those based on $L^1(G, A)$ which Smith was using, but his results would apply to these ones too.) For such a crossed product to be commutative, A must be commutative, say $A = C_0(X)$, G must be abelian and act trivially on X, and $u \in Z^2(G, C(X, T))$ must be symmetric; since Kleppner has shown that for G abelian a cocycle in $Z^2(G, T)$ is symmetric if and only if it is trivial in $H^2(G, T)$ [7], and since symmetry of an element of $Z^2(G, C(X, T))$ is a pointwise property, u is symmetric if and only if it is pointwise trivial in our sense. Hence Smith was studying the spectrum of the twisted crossed products $C_0(X) \rtimes_{id, w} \hat{G}$ for $w \in Z^2_{\rho_*}(G, C(X, T))$. He showed that it was always a principal \hat{G}-bundle over X, and that the \hat{G}-bundles which arose this way were precisely the characteristic ones.

Smith’s results are of course compatible with ours. Indeed, by Theorem 3.7 of [15], there is an action β of G on $C_0(X, \mathcal{K})$ by inner automorphisms such that $c(\beta) = [w]$ and

$$C_0(X) \rtimes_{id, w} \hat{G} \cong C_0(X, \mathcal{K}) \rtimes_{\beta} G.$$
§4 Pointwise unitary actions

Suppose now that $\alpha : G \to \text{Aut}(A)$ is a pointwise unitary action on a continuous-trace algebra consisting of inner automorphisms. We want to show that the map $[w] \mapsto [E_w]$ carries $c(\alpha) \in H^2_{pt}(G, C(X, \mathbb{T}))$, the algebraic obstruction to lifting $\alpha : G \to \text{Inn}(A)$ to a homomorphism $u : G \to \mathcal{U}\mathcal{M}(A)$ [19; Theorem 0.11], into the class $\zeta(\alpha)$ of the \hat{G}-bundle $\text{Res} : (A \rtimes_{\alpha} G)^\wedge \to X$ defined by restriction of irreducible representations to $A \subseteq \mathcal{M}(A \rtimes_{\alpha} G)$ [13; Theorem 1.7]. We shall then use this to complete our identification of the image of the homomorphism $[w] \mapsto [E_w]$, and discuss the relationship of our results to Rosenberg’s.

Proposition 4.1: Suppose A is a separable continuous-trace C^*-algebra with spectrum X, $\alpha : G \to \text{Inn} A$ is a pointwise unitary action of an abelian group as inner automorphisms, and $u : G \to \mathcal{U}\mathcal{M}(A)$ is a Borel map implementing α, so that $c(\alpha) \in H^2(G, C(X, \mathbb{T}))$ is represented by the cocycle $w \in Z^2(G, C(X, \mathbb{T}))$ satisfying $u_s u_t = w(s, t)u_{st}$. Then the map $h : (f, \pi) \mapsto \pi \times f \pi(u)$ is a \hat{G}-equivariant homeomorphism of E_w onto $(A \rtimes_{\alpha} G)^\wedge$ such that

$$
\begin{array}{ccc}
E_w & \xrightarrow{h} & (A \rtimes_{\alpha} G)^\wedge \\
\downarrow p & & \downarrow \text{Res} \\
X & \rightarrow &
\end{array}
$$

commutes.

Proof: We view A as the algebra $\Gamma_0(E)$ of sections of a C^*-bundle E over X, so that \hat{A} can be naturally identified with the set of evaluation maps $\epsilon_x : a \mapsto a(x)$. Next we observe that $h(f, x)$ is a well-defined representation of $A \rtimes_{\alpha} G$: if $(f, x) \in E_w$, then $s \mapsto f(s)u_s(x)$ is almost everywhere a Borel homomorphism, and hence is equal almost everywhere to a continuous homomorphism $U : G \to \mathcal{U}\mathcal{M}(A_x)$ such that (ϵ_x, U) is a covariant representation of (A, G, α), which we shall denote by $(\epsilon_x, fu(x))$. By [18, Proposition 2.1], every element of $\text{Res}^{-1}(x)$ then has the form

$$
\gamma \cdot (\epsilon_x \times fu(x)) = \epsilon_x \times (\gamma fu(x)) = h(\gamma f, x) = h(\gamma \cdot (f, x)),
$$

so h is \hat{G}-equivariant and surjective and two such elements $h(f_i, x)$ agree if and only if $f_i = f_j$ almost everywhere, i.e., if and only if $f_i = f_j$ in $L^1(G, \mathbb{T})$. Since the diagram trivially commutes and h is a bijection, it will automatically be a homeomorphism if it is continuous ([13, Theorem 1.7] and Remark 2.3). Suppose $(f_n, x_n) \to (f, x)$ in E_w. Then
Since the problem is local in X, we may as well suppose that A is the C*-algebra defined by a Hilbert bundle H over X. Then $H(\pi_n) = H_{x_n}$, $H(\pi) = H_x$, and each unit vector in H_x has the form $\eta(x)$ for some $\eta \in \Gamma(H)$: by localizing and normalizing, we may suppose $||\eta(x_n)|| = 1$ for all n. For any $a \in A$, the function $y \mapsto (a(y)\eta(y) | \eta(y))$ is continuous, and each $z(s)u_s$ is in A, so

$$f_n(s)(z(s)(x_n)u_s(x_n)\eta(x_n) | \eta(x_n)) \to f(s)(z(s)(x)u_s(x)\eta(x) | \eta(x))$$

for almost all $s \in G$. Further, we have

$$|f_n(s)(z(s)(x_n)u_s(x_n)\eta(x_n) | \eta(x_n))| \leq ||z(s)||,$$

and the dominated convergence theorem implies

$$(\pi_n(z)\eta(x_n) | \eta(x_n)) = \int (z(s)(x_n)f_n(s)u_s(x_n)\eta(x_n) | \eta(x_n))ds$$

$$\to \int (z(s)(x)f(s)u_s(x)\eta(x) | \eta(x))ds$$

$$= (\pi(z)\eta(x) | \eta(x)).$$

Thus $\pi_n \to \pi$ in $(A \times_\alpha G)^\wedge$, h is continuous, and the result follows.

Lemma 4.2: Suppose $\phi : G \to H$ is a continuous homomorphism between two locally compact abelian groups, A is a separable continuous-trace algebra and $\alpha : H \to \text{Aut} A$ is pointwise unitary. Then the map

$$\theta : (\gamma, \pi \times U) \mapsto \pi \times \gamma(U \circ \phi)$$

induces a \widehat{G}-equivariant homeomorphism h of $\widehat{\phi}_*((A \times_\alpha H)^\wedge)$ onto $(A \times_{\alpha \circ \phi} G)^\wedge$ such that

$$\widehat{\phi}_*((A \times_\alpha H)^\wedge) \xrightarrow{h} (A \times_{\alpha \circ \phi} G)^\wedge$$

\[\xrightarrow{\text{Res}} \text{Res} \]
commutes.

Proof: It follows easily from [18, Proposition 2.1] that θ is a well-defined map of \((A ×_α H)^\hat{\wedge}\) onto \((A ×_{αφ} G)^\hat{\wedge}\). To see that θ is continuous, first observe that it is the composition

\[
\hat{G} × (A × H)^\hat{\wedge} \overset{id × Φ}{\longrightarrow} \hat{G} × (A ×_{αφ} G)^\hat{\wedge} \overset{\text{dual action}}{\longrightarrow} (A ×_{αφ} G)^\hat{\wedge},
\]

where \(Φ\) sends \(π × U\) to \(π × (U ◦ φ)\). The homomorphism \(φ\) induces a homomorphism \(id × φ : A ×_{αφ} G → M(A ×_{α} H)\), and it in turn induces a continuous map \((id × φ)^*\) from the space \(I(A × H)\) of closed ideals to \(I(A × G)\) [1, Proposition 9]: if \(π × U \in (A ×_{α} H)^\hat{\wedge}\), then

\[
(id × φ)^*(\ker(π × U)) = \{ z ∈ A × G : (id × φ)(z) · (A × H) ∈ \ker π × U \}
= \{ z ∈ A × G : π × U(id × φ(z)) = 0 \}
= \ker(π × (U ◦ φ)).
\]

Since both \(π × U\), \(π × (U ◦ φ)\) are irreducible, and \(A ×_{αφ} G\), \(A ×_{α} H\) are type I (they have Hausdorff spectrum by [13, Proposition 1.5]), this implies that \(Φ : π × U → π × (U ◦ φ)\) is continuous. It follows that \(θ\) is continuous.

It is easy to check that \(θ\) is constant on \(\hat{H}\)-cosets, and hence induces a continuous map \(h : (\hat{G} × (A ×_{α} H)^\hat{\wedge})/\hat{H} \rightarrow (A ×_{αφ} G)^\hat{\wedge}\). We trivially have that \(\text{Res}_{\hat{H}}h = p\) and \(h\) is \(\hat{G}\)-equivariant. Since both actions of \(\hat{G}\) are free and proper ([13, Theorem 1.7] and our Proposition 3.1), it follows from Remark 2.3 that \(h\) is a homeomorphism.

Corollary 4.3: Suppose \(G\) is a locally compact abelian group, \(A\) is a continuous-trace \(C^*\)-algebra and \(α : G → \text{Aut} A\) is pointwise unitary. For \(s ∈ G\), we define \(φ_s : Z → G\) by \(φ_s(n) = s^n\). Then \(α_s\) is inner if and only if the \(T\)-bundle \(\tilde{φ}_s((A ×_{α} G)^\hat{\wedge})\) is trivial.

Proof: The automorphism \(α_s\) is inner if and only if the action \(α ◦ φ_s\) of \(Z\) is unitary, which happens if and only if \((A ×_{αφ} Z)^\hat{\wedge}\) is a trivial \(T\)-bundle [18, Proposition 2.5]. Therefore the result follows from the proposition.

Theorem 4.4: Let \(G\) be a second countable locally compact abelian group acting trivially on a second countable locally compact space \(X\), and for \(s ∈ G\) define \(ψ_s : \hat{G} → T\) by \(ψ_s(γ) = γ(s)\). Then the map \(w → E_w\) of Proposition 3.1 induces an isomorphism of \(H^2_{p,T}(G, C(X, T))\) onto

\[
\left\{ [E] ∈ HP(X, Ω) : (ψ_s)_*(E) \text{ is trivial for all } s ∈ G \right\}.
\]
Proof: After the results of section 3, it only remains to show the surjectivity. So suppose E is a \hat{G}-bundle over X such that $(\psi_s)_*(E)$ is a trivial T-bundle for all $s \in G$. By [13, Proposition 1.13] there is a pointwise unitary action α of G on $A = C_0(X, K)$ such that $(A \rtimes_{\alpha} G)^\wedge$ is \hat{G}-isomorphic to E. By Lemma 4.2, we have

$$(\psi_s)_*(E) = (\hat{\phi}_s)_*(E) \cong (A \rtimes_{\alpha \circ \phi_s} T)^\wedge,$$

and because this is trivial, $\alpha_s = \alpha \circ \phi_s(1)$ is inner (Corollary 4.3). Thus $\alpha : G \to \text{Inn} A$, and is implemented by a Borel map $u : G \to UM(A)$. If $u_s u_t = w(s, t) u_{st}$, then $w \in Z^2(G; C(X, T))$ is pointwise trivial because α is pointwise unitary, and Proposition 4.1 implies $E_w \cong (A \rtimes_{\alpha} G)^\wedge \cong E$, as required.

As we mentioned in the introduction, our results have been motivated by a theorem of Rosenberg concerning connected groups [21; Theorem 2.5], and this can be deduced from our Proposition 4.1 using duality.

Theorem 4.5: (Rosenberg) Let G be a second countable connected locally compact abelian group, and X a second countable locally compact space. Suppose that $H^2(X; \mathbb{Z})$ is countable, and that G acts trivially on X. Then the map $w \mapsto E_w$ induces an isomorphism of $H^2_{pr}(G; C(X, T))$ onto $H^1(X, \hat{G})$.

Proof: Since G is connected, it is compactly generated, \hat{G} is a Lie group, and all \hat{G}-bundles are locally trivial [16; Theorem 4.1]; hence $H^1(X, \hat{G}) = HP(X, \hat{G})$. Thus we only have to prove that every principal \hat{G}-bundle E has the form E_w. But if E is a \hat{G}-bundle, the dual action of G on $A = C_0(E) \times \hat{G}$ is locally unitary [19; Proposition 3.1], and $\alpha(G) \subseteq \text{Inn}(A)$ because G is connected and $\text{Inn}(A)$ is open in $\text{Aut}C_0(X)(A)$ [19; Theorem 0.8]. If $w \in Z^2(G; C(X, T))$ represents $c(\alpha)$, then w is pointwise trivial because α is pointwise unitary, and $E_w \cong (A \rtimes_{\alpha} G)^\wedge$ by Proposition 4.1. Since $(A \rtimes_{\alpha} G)^\wedge \cong E$ by [18; Proposition 3.1], this proves the result.

This proof of Rosenberg’s theorem does use some fairly heavy tools from operator algebras, and therefore seems to be substantially more complicated than the original. However, Rosenberg agrees with us that the argument in [21] may be inadequate as it stands, and the alternative direct proof of Theorem 4.5 which he has shown us also relies on some sophisticated machinery. The potential problem in [21] occurs at the end of the proof of part (b), where it is asserted that a continuous function $f : X \to B^2(G, T)$ gives an element of $B^2(G, C(X, T))$ (see the comments concerning Lemma 3.5 above); for this
to be true one will certainly need some hypotheses on G, since we give an example below (Example 4.7) where G is non-discrete, so $\mathcal{G}^1(G, T)$ is still contractible, but $w \mapsto [E_w]$ is not surjective.

Putting our theorem together with Rosenberg's gives an amusing topological corollary:

Corollary 4.6: If G is connected and E is a \tilde{G}-bundle with $\tilde{H}^2(E/\tilde{G}, \mathcal{Z})$ countable, then $(\psi_s)_*(E)$ is a trivial T-bundle for all $s \in G$.

Of course, the above proof of this purely topological fact must be unnecessarily convoluted, and at least for compact X a simple direct argument can be given. For if E has transition functions $\lambda_{ij} : N_{ij} \to \tilde{G}$ and X is compact, we may suppose the cover is finite and the ranges of the λ_{ij} all lie in a compact subset K of \tilde{G}. Then $\psi_t \to \psi_s$ uniformly on K as $t \to s$, and there is a neighborhood N of s such that $t \in N$ implies that $|\lambda_{ij}(x)(t) - \lambda_{ij}(x)(s)| < \sqrt{2}$ for all i, j and $x \in N_{ij}$. Then applying the principal branch of log to $\lambda_{ij}(\cdot)(t)\lambda_{ij}(\cdot)(s)^{-1}$ gives a cocycle with values in R, which has the form $k \rho$ since $H^1(X, R) = 0$, and we have $\partial(\exp \rho) \{ \psi_t \circ \lambda_{ij} \} = \{ \psi_t \circ \lambda_{ij} \}$. Since G is connected and $(\psi_s)_*(E)$ is the trivial bundle, this proves that $(\psi_s)_*(E)$ is trivial for all s. Presumably some sort of abstract nonsense will allow one to extend this argument to the locally compact case provided X is not too nasty—maybe $\tilde{H}^2(X, \mathcal{Z})$ countable is just what is needed.

Example 4.7: Let $G = R \times \mathcal{Z}$. The map $(r, s) \to (r, \exp(2\pi is))$ of R^2 onto $R \times T$ induces (via the long exact sequence of sheaf cohomology) an isomorphism of $H^1(X, \tilde{\mathcal{G}})$ onto $\tilde{H}^2(X, \mathcal{Z})$, and the evaluation map $\psi_{(0,1)} : (r, z) \to z$ induces an isomorphism of $H^1(X, \tilde{\mathcal{G}})$ onto $H^1(X, \mathcal{S})$. Thus there are no non-trivial locally trivial \tilde{G}-bundles E such that $(\psi_s)_*(E)$ is trivial for all $s \in G$. This is consistent with our theorem, since $H^2_{pT}(G, C(X, T)) = 0$ for any space X. To see this, we recall from [19, Theorem 4.1] that

\[
H^2(R, C(X, T)) = H^3(R, C(X, T)) = 0 = H^2(\mathcal{Z}, C(X, T)).
\]

We can therefore deduce from the Lyndon-Hochschild-Serre spectral sequence for Moore cohomology that

\[
H^2(R \times \mathcal{Z}, C(X, T)) \cong H^1(R, H^1(\mathcal{Z}, C(X, T)));
\]

indeed, a specific isomorphism is given by sending $\phi \in Z^1(R, H^1(\mathcal{Z}, C(X, T)))$ to the cocycle $\mu_{\phi} \in Z^2(G, C(X, T))$ given by

\[
\mu_{\phi}((s, n), (t, m)) = \phi(t)(n)
\]

19
(see, for example, [14, Appendix 2]). Now

\[H^1(\mathbb{R}, H^1(\mathbb{Z}, C(X, T))) \cong \text{Hom}(\mathbb{R}, C(X, T)) \cong C(X, \hat{\mathbb{R}}), \]

and this isomorphism is functorial in \(X \), so we have a commutative diagram

\[
\begin{array}{ccc}
H^2(\mathbb{R} \times \mathbb{Z}, C(X, T)) & \to & C(X, \hat{\mathbb{R}}) \\
\downarrow (\epsilon_x) & & \downarrow \epsilon_x \\
H^2(\mathbb{R} \times \mathbb{Z}, T) & \to & \hat{\mathbb{R}}.
\end{array}
\]

In particular, \((\epsilon_x)_x(\mu) = 0\) for all \(x \) if and only if the corresponding function vanishes identically, and therefore the pointwise trivial part of \(H^2(\mathbb{R} \times \mathbb{Z}, C(X, T)) \) is 0, as claimed.
§5 The Λ-invariant

We are interested in the Moore groups $H^2(G,\cdot)$ because they contain the obstruction to implementing an automorphism group $\alpha : G \to \text{Inn}(A)$ by a unitary group $u : G \to U\mathcal{M}(A)$. When this happens, of course, the system is easy to analyze; for example, the crossed product $A \rtimes_{\alpha} G$ is isomorphic to $A \otimes_{\text{max}} C^*(G)$. Even if α does not consist of inner automorphisms we can try to implement $\alpha|_N$ whenever N is a normal subgroup of G such that $\alpha(N) \subseteq \text{Inn}(A)$. However, in order to obtain useful information about $A \rtimes_{\alpha} G$, we have to know also that the resulting homomorphism $u : N \to U\mathcal{M}(A)$ is compatible with the action of all of G; specifically, we require that

$$\alpha_s(u_n) = u_{s\alpha_n^{-1}} \quad \text{for } n \in N, \text{ and } s \in G.$$ \hspace{1cm} (5.1)

We shall call a strictly continuous homomorphism $u : N \to U\mathcal{M}(A)$ satisfying $\alpha|_N = \text{Ad} u$ and Equation (5.1) a Green twisting map for α on N, for reasons we shall shortly explain.

When α has a Green twisting map u on N, we can form the restricted crossed product $A \rtimes_{\alpha,u,N} G$, which is the quotient of $A \rtimes_{\alpha} G$ whose representations are given by covariant pairs (π, U) satisfying $\pi(u_n) = U_n$ for all $n \in N$. These crossed products were introduced and used by Green in his version of the Mackey machine for crossed products $[1]$ (see also $[11]$). They behave very much like ordinary crossed products by G/N, and it is often possible to obtain information about $A \rtimes_{\alpha} G$ from $A \rtimes_{\alpha,u,N} G$. Indeed, Olesen and Pedersen $[12; \text{Theorem } 2.4]$ showed that when G is abelian we can recover $A \rtimes_{\alpha} G$ as the induced C^*-algebra $\text{Ind}_{N,1}^\widehat{G} (A \rtimes_{\alpha,u,N} G, \widehat{\alpha})$ consisting of those functions $f \in C_b(G, A \rtimes_{\alpha,u,N} G)$ satisfying

(a) \hspace{0.5cm} $\gamma \in N \implies \|f(\gamma)\|$ vanishes at infinity on \widehat{G}/N.

(b) \hspace{0.5cm} $f(\gamma \chi) = \widehat{\alpha}_\chi^{-1}(f(\gamma))$ for $\chi \in N$, and

We would like, then, a group homological invariant which measures the obstruction to implementing an action $\alpha : G \to \text{Aut}(A)$ with $\alpha(N) \subseteq \text{Inn}(A)$ by a Green twisting map $u : N \to U\mathcal{M}(A)$. For this section, we shall not assume that G is abelian or that A is continuous-trace, but we do still require G to be second countable and A to be separable.

We proceed exactly as in the case where $\alpha(G) \subseteq \text{Inn}(A)$. Since $\alpha : N \to \text{Inn}(A)$ is continuous for the quotient topology on $\text{Inn}(A) = U\mathcal{M}(A)/UZ\mathcal{M}(A)$ $[19; \text{Corollary } 0.2]$, we can find a Borel map $u : N \to U\mathcal{M}(A)$ such that $\alpha_u = \text{Ad} u_n$ for all $n \in N$. As usual, there is a Borel map $\mu : N \times N \to UZ\mathcal{M}(A)$ such that

$$u_m u_n = \mu(m,n) u_{mn} \quad \text{for } m, n \in N,$$ \hspace{1cm} (5.2)

21
and \([\mu] \in H^2(N,\mathcal{UM}(A))\) is the obstruction \(c(\alpha)\) to implementing \(\alpha|_N\) by a unitary group. For \(s \in G, n \in N,\) and \(a \in A\) we have
\[
\text{Ad} \alpha_s(u_{s^{-1}n}) = \alpha_s(\text{Ad} u_{s^{-1}n}\alpha^{-1}_s(a)) \\
= \alpha_s(\alpha_{s^{-1}n}\alpha^{-1}_s(a)) \\
= \text{Ad} u_n(a),
\]
and therefore \(\alpha_s(u_{s^{-1}n})\) and \(u_n\) differ by an element of \(\mathcal{UM}(A)\). Thus there is a Borel map \(\lambda : G \times N \to \mathcal{UM}(A)\) such that
\[
\alpha_s(u_{s^{-1}n}) = \lambda(s, n) \cdot u_n \quad \text{for } s \in G, n \in N. \tag{5.3}
\]
(We have chosen this rather than the more obvious comparison of \(\alpha_s(u_n)\) with \(u_{sn^{-1}}\) to make (5.8) below more palatable.) We can, and shall, always assume that the pair \((\lambda, \mu)\) has been normalized so that
\[
\mu(u, e) = 1 = \mu(e, n) \tag{5.4}
\]
\[
\lambda(e, n) = 1 = \lambda(s, e) \tag{5.5}
\]
for all \(n \in N\) and \(s \in G\). (This is done by insisting that \(u_e = 1\).)

Lemma 5.1: Suppose that \((A, G, \alpha)\) is a separable dynamical system and that \(N\) is a closed normal subgroup of \(G\) such that \(\alpha(N) \subseteq \text{Im}(A)\). Choose a Borel map \(u : N \to \mathcal{UM}(A)\) such that \(\alpha|_N = \text{Ad} u\) and \(u_e = 1\). Define \(\lambda, \mu\) by (5.2) and (5.3), respectively. Then for \(m, n, p \in N\) and \(s, t \in G\) we have, in addition to Equations (5.4) and (5.5),
\[
\mu(m, n)\mu(mn, p) = \mu(m, np)\mu(n, p), \tag{5.6}
\]
\[
\lambda(m, n) = \mu(m, m^{-1}nm)\mu(n, m)^{-1}, \tag{5.7}
\]
\[
\lambda(st, n) = \lambda(s, n)\alpha_s(\lambda(t, s^{-1}ns)), \quad \text{and} \tag{5.8}
\]
\[
\lambda(s, mn) = \alpha_s(\mu(s^{-1}ms, s^{-1}ns))^{-1}\mu(m, n)\lambda(s, m)\lambda(s, n). \tag{5.9}
\]
Proof: Item (5.6) is just the usual cocycle identity for \(\mu\), and to establish (5.7), expand Equation (5.3) using (5.2) and \(\alpha_n = \text{Ad} u_n\). The identities (5.8) and (5.9) follow from similar calculations.

Remark 5.2: Condition (5.8) says that the function \(\tilde{\lambda} : G \to C^1(N,\mathcal{UM}(A))\) defined by \(\tilde{\lambda}(s)(n) = \lambda(s, n)\) is a 1-cocycle for the action of \(G\) on \(C^1(N,\mathcal{UM}(A))\) given by \((s \cdot \phi)(n) = \alpha_s(\phi(s^{-1}ns))\). There is also a natural action of \(G\) on \(Z^2(N,\mathcal{UM}(A))\) given by \(s \cdot \mu(m, n) = \alpha_s(\mu(s^{-1}ms, s^{-1}ns))\), and then Condition (5.9) says that \(\partial(\tilde{\lambda}(s)) = \mu^{-1}(s \cdot \mu)\). We observe that \(\tilde{\lambda}\) is a Borel cocycle if we pass to the quotient \(C^1(N,\mathcal{UM}(A))\) of \(C^1(N,\mathcal{UM}(A))\). (This follows from the first part of the proof of [10; Theorem 1].)
The pairs \((\lambda, \mu)\) will form the cocycles in our relative cohomology group \(\Lambda\). To identify the appropriate equivalence relation, we suppose that we had chosen a different Borel map \(u' : N \to \mathcal{UM}(A)\) satisfying \(\alpha|_N = \text{Ad} u'\). Then there is a Borel function \(\rho : N \to \mathcal{UM}(A)\) such that \(u' = \rho \cdot u\). As usual the 2-cocycles are related by \(\mu' = (\partial \rho)\mu\), and the \(\lambda\)'s by
\[
\lambda'(s, n) = \alpha_s(\rho(s^{-1}ns))\rho(n)^{-1}\lambda(s, n).
\]
If we let \(\Delta \rho\) denote the pair \((\lambda_1, \mu_1)\), where
\[
\mu_1(m, n) = \partial \rho(m, n) = \rho(m)\rho(n)\rho(mn)^{-1}, \quad \text{and} \quad (5.10)
\]
\[
\lambda_1(s, n) = \alpha_s(\rho(s^{-1}ns))\rho(n)^{-1}, \quad \text{and} \quad (5.11)
\]
then we have \((\lambda', \mu') = \Delta \rho (\lambda, \mu)\). We are now ready for the formal definition of our \(\Lambda\)-invariant.

Definition 5.3: Let \(G\) be a second countable locally compact group, \(N\) a closed normal subgroup, and \(M\) an abelian Polish \(G/N\)-module. For consistency, denote the action of \(s \in G\) on \(m \in M\) by \(\alpha_s(m)\). Let \(Z(G, N; M)\) denote the group of pairs \((\lambda, \mu)\), where \(\mu : N \times N \to M\) and \(\lambda : G \times N \to M\) are Borel maps satisfying Conditions (5.4)-(5.9), and the group operation is pointwise multiplication. Let \(B(G, N; M)\) denote the subgroup of all pairs of the form \(\Delta \rho\) (see Conditions (5.10), (5.11)) for some Borel map \(\rho : N \to M\), and let \(\Lambda(G, N; M)\) be the quotient \(Z(G, N; M)/B(G, N; M)\).

Proposition 5.4: Let \((A, G, \alpha)\) be a separable C*-dynamical system, and suppose that \(N\) is a closed subgroup of \(G\) such that \(\alpha(N) \subseteq \text{Inn}(A)\). Define \((\lambda, \mu) \in Z(G, N; \mathcal{UM}(A))\) in terms of a Borel lifting \(u\) for \(\alpha|_N\) by Equations (5.2) and (5.3). Then the class \(d(\alpha) = [\lambda, \mu]\) of \((\lambda, \mu)\) in \(\Lambda(G, N; \mathcal{UM}(A))\) is independent of any of the choices made, and vanishes if and only if there is a Green twisting map for \(\alpha\) on \(N\).

Proof: We have already proved everything except the last statement. But one direction is obvious—if \(u\) is a Green twisting map, then \(\mu\) and \(\lambda\) are identically 1. Conversely, if \((\lambda, \mu)\) are defined using \(u : N \to \mathcal{UM}(A)\) and \((\lambda, \mu) = \Delta \rho\), then \(v_n = \rho(n)^{-1}u_n\) defines a Borel homomorphism \(v : N \to \mathcal{UM}(A)\), which is automatically continuous and satisfies
\[
\alpha_n = \text{Ad} u_n = \text{Ad} v_n, \quad \text{and}
\]
\[
\alpha_s(v_n) = \alpha_s(\rho(n))^{-1}\alpha_s(u_n) = \alpha_s(\rho(n))^{-1}\lambda(s, sn^{-1})u_{sn^{-1}}^{-1}
\]
\[
= \rho(sn^{-1})^{-1}v_{sn^{-1}}^{-1} = v_{sn^{-1}}^{-1}.
\]
\(\square\)
Remark 5.5: We have referred to the group $\Lambda(G, N; M)$ as a relative Moore cohomology group, and of course we should explain why we have done this. For discrete G, it has been shown by several authors that the group Λ fits into an eight term exact sequence

$$
0 \longrightarrow H^1(G/N, M) \overset{\text{Inf}}{\longrightarrow} H^1(G, M) \overset{\text{Res}}{\longrightarrow} H^1(N, M) \longrightarrow H^2(G/N, M) \longrightarrow
$$

$$
\overset{\text{Inf}}{\longrightarrow} H^2(G, M) \longrightarrow \Lambda(G, N; M) \longrightarrow H^3(G/N, M) \overset{\text{Inf}}{\longrightarrow} H^3(G, M)
$$

(e.g., [4], [6], [8], [20]); indeed, in Loday’s proof of this, he defined the relative cohomology to be that of the quotient complex $\{ C^\ast(G, M)/C^\ast(G/N, M) \}$, so that there is almost by definition a long exact sequence, and then identified H^3 with Λ [8]. Huebschmann [4] and Ratcliffe [20] defined $\Lambda(G, N; M)$ to consist of the G-crossed extensions of N by M; roughly speaking, these are the ordinary group extensions with a compatible action of G. Although we shall not pursue them here, there will be similar results relating our Borel version of Λ to Moore cohomology and to Polish crossed extensions—in fact, we originally formulated our arguments in terms of Polish extensions, and one still appears in §8.

The relevance of Λ to group actions on operator algebras was pointed out to us by Colin Sutherland, who has been heavily involved in the classification of discrete group actions on injective von Neumann algebras (e.g., [6], [24]). If $\alpha : G \to \text{Aut}(M)$ is such an action, two ingredients in the classification are the subgroup $N = \alpha^{-1}(\text{Inn}(M))$ and the obstruction $d(\alpha|_{N})$ to implementing α on N by a homomorphism $u : N \to \mathcal{U}(M)$ satisfying Equation (5.1). Our Borel version will not be so useful for actions of locally compact groups, since $\text{Inn}(M)$ is in general not a closed subgroup of $\text{Aut}(M)$; however, for continuous-trace C^\ast-algebras we do often have $\text{Inn}(A)$ closed in $\text{Aut}(A)$ [19; Theorem 0.8], and hence our invariant should be particularly relevant in this case.
§6 The Λ-invariant and diamonds of bundles

We say that an element (λ, μ) of $Z(G, N; C(X, T))$ is pointwise trivial if μ belongs to $Z^2_{pr}(N, C(X, T))$, and we write $(\lambda, \mu) \in Z^{\mu}_{pr}(G, N; C(X, T))$. Suppose that G is abelian. Our goal here is to construct from each pointwise trivial (λ, μ) a commutative diamond

$$
\begin{array}{c}
\text{E} \\
\text{F}_{(\lambda, \mu)} \\
\text{X/G} \\
\text{X} \\
\end{array}
\begin{array}{c}
\text{F}_{(\lambda, \mu)} \\
\text{X} \\
\text{X/G} \\
\text{X} \\
\end{array}

$$

in which the southeast arrows are \widehat{N}-bundles and the southwest arrows are G/N-bundles, such that $F_{(\lambda, \mu)} \to X/G$ is trivial if and only if $[\lambda, \mu] = 0$ in $\Lambda(G, N; C(X, T))$. The idea is to take $E = E_{\mu}$, use λ to define an action of G on E which commutes with the action of \widehat{N}, and define $F_{(\lambda, \mu)} = E/G$. We begin with two straightforward results on diamonds of bundles.

Lemma 6.1: Suppose that H and Q are locally compact groups, that $p : X \to T$ is a Q-bundle, and that $r : E \to X$ is an H-bundle. Suppose there is a free and proper action of Q on E which commutes with the action of H and for which r is equivariant. Then the formula $h \cdot (Q \cdot \xi) = Q \cdot (h \cdot \xi)$ defines a free and proper action of H on E/Q. Further, the map $p \circ r : E \to T$ induces a continuous open surjection $q : E/Q \to T$, which in turn induces a homeomorphism of $(E/Q)/H$ onto T; in other words, $q : E/Q \to T$ is an H-bundle.

Proof: The action of H on E/Q is well-defined because the actions on E commute, and it is free because r is equivariant, Q acts freely on X, and H acts freely on E. To see that the action is proper on E/Q, consider nets $Q \cdot \xi_k \to Q \cdot \xi$ and $h_k \cdot Q \cdot \xi_k \to Q \cdot \eta$; it will suffice to show that $\{ h_k \}$ has a convergent subnet. By passing to a subnet, we may suppose that $\xi_k \to \xi$ in E, and that there are $s_k \in Q$ such that $h_k \cdot s_k \cdot \xi_k \to \eta$ in E. However, this implies that $r(\xi_k) \to r(\xi)$ and that $r(h_k \cdot s_k \cdot \xi_k) = s_k \cdot r(\xi_k) \to r(\eta)$, so the properness of the Q-action allows us to assume, by passing to yet another subnet, that $\{ s_k \}$ converges to some $s \in Q$. Now we have $s_k \cdot \xi_k \to s \cdot \xi$ and $h_k \cdot (s_k \cdot \xi_k) \to \eta$, which since \widehat{N} acts properly on E implies that $\{ h_k \}$ has a convergent subnet. Thus, H acts properly on E/Q. The map $p \circ r$ is open and constant on Q-orbits, and hence induces a continuous open map $q : E/Q \to T$ which is easily seen to be surjective. This map is constant on H-orbits since
is, and induces a bijection of \((E/Q)/H\) onto \(T = (E/H)/Q\), which is a homeomorphism because \(q\) is open and continuous.

Lemma 6.2: Suppose we have a commutative diamond

![Diagram](image)

in which \(i\) and \(p\) are \(Q\)-bundles; \(r\) and \(q\) are \(H\)-bundles; and \(i\) and \(r\) are \(H\) and \(Q\)-equivariant, respectively. Then the map \(f(\xi) = (i(\xi), r(\xi))\) is an isomorphism of the \(H\)-bundle \(E\) onto the pull back \(p^*(Y)\), and carries the action of \(Q\) into that given by \(q \cdot (y, x) = (y, q \cdot x)\).

Proof: This follows from Remark 2.3. □

We now return to the main construction. For the rest of this section, \(G\) will be a second countable locally compact abelian group, \(N\) a closed subgroup, and \(X, T\) second countable locally compact spaces such that \(p : X \to T\) is a \(G/N\)-bundle.

Proposition 6.3: Let \((\lambda, \mu) \in Z_{\mu}(G, N; C(X, 1))\), and let \(E_\mu\) be the \(\hat{N}\)-bundle of Proposition 3.1. The formula

\[
s \cdot (f, x) = (\lambda(s, \cdot)(s \cdot x)f, s \cdot x)
\]

defines an action of \(G\) on \(E_\mu\), which is free and proper, and commutes with the action of \(\hat{N}\) on \(E_\mu\). If we set \(q(G \cdot (f, x)) = p(x)\) and \(F(\lambda, \mu) = E_p/G\), then \(q : F(\lambda, \mu) \to T\) is an \(\hat{N}\)-bundle.

Proof: We first observe that since \(G\) is abelian, Equation (5.9) implies that

\[
\partial(\lambda(s, \cdot)(s \cdot x)f)(m, n) = \lambda(s, m)(s \cdot x)f(m)\lambda(s, n)(s \cdot x)f(n)\lambda(s, mn)(s \cdot x)f(mn)
\]

\[
= \alpha_s(\mu(m, n))(s \cdot x)\mu(m, n)(s \cdot x)\partial f(m, n) = \mu(m, n)(x)\mu(m, n)(s \cdot x)\mu(m, n)(x) = b_\mu(s \cdot x)(m, n),
\]

26
so \(s \cdot (f, x) \) does belong to \(E_\mu \). Similarly, Equation (5.8) implies that \(s \cdot (t \cdot (f, x)) = s t \cdot (f, x) \), and Equation (6.1) does define an action of \(G \) on \(E_\mu \).

To see that this action is jointly continuous, recall that \(\mathcal{C}^1(N, C(X, T)) \), topologized as in [9], is a polish \(G \)-module for the \(G \)-action given pointwise on \(C(X, T) \). It follows from Remark 5.2 and [9; Theorem 3] that \(\hat{\lambda} \) is continuous from \(G \) to \(\mathcal{C}^1(N, C(X, T)) \). Therefore if \(s_k \to s \) in \(G \) and \(x_k \to x \) in \(X \), then we need to show that \(f_k \to f \) in \(\mathcal{C}^1(N, T) \), where

\[
f_k(n) = \hat{\lambda}(s_k)(n)(x_k) = \lambda(s_k, n)(x_k).
\]

Replacing \(\{ f_k \} \) by a subsequence and relabeling, it will suffice to show that \(\{ f_k \} \) has a subsequence converging almost everywhere on \(N \). But by again replacing \(\{ f_k \} \) by a subsequence and relabeling, we can assume that \(\hat{\lambda}(s_k) \to \hat{\lambda}(s) \) almost everywhere on \(N \), say on \(N \setminus S \) [9; Proposition 6]. Of course, then \(\hat{\lambda}(s_k)(n)(x_k) \to \hat{\lambda}(s)(n)(x) \) for each \(n \in N \setminus S \), since \(C(X, T) \) carries the topology of uniform convergence on compacta. It now follows that the action is jointly continuous.

Since \(\mu \) is pointwise trivial, it is symmetric, and condition (5.7) of Lemma 5.1 implies that \(\hat{\lambda}(n) \equiv 1 \) for all \(n \in N \). Thus, our \(G \)-action has constant isotropy \(N \). Since the action of \(G \) on "the second factor" of \(E_\mu \) is already proper, we have now established that \(E_\mu \) is a \(G/N \)-bundle. Because the actions of \(G \) and \(\tilde{N} \) commute, the result follows from Lemma 6.1.

\[\square \]

Proposition 6.4: Suppose that \((\lambda, \mu) \in Z_{\mu\mu}(G, N; C(X, T)) \). Then the \(\tilde{N} \)-bundle \(q : F_{(\lambda, \mu)} \to T \) of Proposition 6.3 is trivial if and only if \([\lambda, \mu] = 0 \) in \(\Lambda(G, N; C(X, T)) \).

Proof: If \((\lambda, \mu) = \Delta \rho \), then as in the proof of Proposition 3.4, \(h(x) = (\rho(\cdot)(x)^{-1}, x) \) is a continuous section of \(E_\mu \). Further, we have from Equation (5.11) that

\[
s \cdot h(s^{-1} \cdot x) = (\lambda(s, \cdot)(x)\rho(\cdot)(s^{-1} \cdot x), s \cdot (s^{-1} \cdot x))
= ([\lambda(s, \cdot)\rho(\cdot)^{-1}](x), x)
= (\rho(\cdot)(x), x)
= h(x),
\]

and we can therefore define a section \(k \) of \(F_{(\lambda, \mu)} = E_n/G \) by \(k(G \cdot x) = G \cdot h(x) \).

Conversely, suppose that \(F_{(\lambda, \mu)} = E_n/G \) is trivial. It follows from Lemma 6.2 that \(E_\mu \cong p^*(F_{(\lambda, \mu)}) \) is trivial and has a continuous section \(h : X \to E_\mu \). By Remark 3.7, \(h \) has the form

\[
h(x) = (\rho(\cdot)(x)^{-1}, x)
\]

27
for some Borel map \(\rho : N \to C(X, \mathbb{T}) \) with \(\partial \rho = \mu \). The equivariance of \(h \) implies that

\[
(\rho(\cdot)(s \cdot x), s \cdot x) = h(s \cdot x) = s \cdot h(x) = (\lambda(s \cdot \cdot \cdot)(s \cdot x)\rho(\cdot)(x), s \cdot x),
\]

which reduces to Equation (5.11) since \(G \) is abelian, and we have \((\lambda, \mu) = \Delta \rho \). \(\square \)

Theorem 6.5: Let \(G \) be a second countable locally compact abelian group, \(N \) a closed subgroup, and \(X \) a second countable locally compact \(G \)-space such that the orbit map \(p : X \to X/G \) is a \(G/N \)-bundle. Then the map \((\lambda, \mu) \mapsto F_{(\lambda, \mu)} \) of Proposition 6.3 induces a well-defined isomorphism of \(\Lambda(G, N; C(X, \mathbb{T})) \) onto

\[
\left\{ [F] \in HP(X/G, \mathbb{N}) : (\psi_n)_* (p^*(F)) \text{ is a trivial } T\text{-bundle for all } n \in N \right\}.
\]

Proof of all but surjectivity: It follows from the definition of \(F_{(\lambda, \mu)} \) as \(E_{\rho}/G \) and Lemma 6.2 that \(p^*(F_{(\lambda, \mu)}) \cong E_{\rho} \), and Corollary 3.10 implies that \([F_{(\lambda, \mu)}] \) lies in the given subgroup of \(HP(X/G, \mathbb{N}) \). If we can show that

\[
F_{(\lambda, \mu)} * F_{(\lambda', \mu')} \cong F_{(\lambda \lambda', \mu \mu')},
\]

then the argument of Proposition 3.8, using Proposition 6.4 in place of Proposition 3.4, will show that \((\lambda, \mu) \mapsto [F_{(\lambda, \mu)}] \) is a well-defined monomorphism.

Suppose, therefore, that \((\lambda, \mu) \) and \((\lambda', \mu') \) are in \(Z_{\rho T}(G, N; C(X, \mathbb{T})) \). We start by defining a \(G \) action on the \(\mathbb{N} \)-bundle \(E_{\rho} * E_{\rho'} \) by the formula \(s \cdot [\xi, \eta] = [s \cdot \xi, s \cdot \eta] \) (this is well-defined because the \(G \)- and \(\mathbb{N} \)-actions commute). Notice that if \(s \cdot [\xi, \eta] = [\xi, \eta] \), then there exists \(\gamma \in \mathbb{N} \) such that \(s \cdot \xi, s \cdot \eta = (\gamma \xi, \gamma \eta) \). Because the bundle projection \(r : E_{\rho} \to X \) is \(G \)-equivariant and \(\mathbb{N} \)-invariant, we see that such an \(s \) must be in \(N \). Thus, \(E_{\rho} * E_{\rho'} \) is a free \(G/\mathbb{N} \)-space. It is also proper. To see this, suppose that \([\xi_k, \eta_k] \to [\xi, \eta] \) while \(s_k \cdot [\xi_k, \eta_k] \to [\xi', \eta'] \). Without loss of generality, we may assume that \((\xi_k, \eta_k) \to (\xi, \eta) \) and that there are \(\gamma_k \in \mathbb{N} \) so that \(s_k \cdot \gamma_k \cdot \xi_k, s_k \cdot \gamma_k \cdot \eta_k \to (\xi', \eta') \). Then we also have \(r(\xi_k) \to r(\xi) \) and \(s_k \cdot r(\xi_k) = r(s_k \cdot \gamma_k \cdot \xi_k) \to r(\xi') \). It follows that \(\{s_k\} \) has a convergent subsequence, and hence that \(E_{\rho} * E_{\rho'} \) is a \(G/\mathbb{N} \)-bundle.

Now Lemma 6.2 implies that \(E_{\rho} * E_{\rho'}/G \) is a \(\mathbb{N} \)-bundle over \(X/G \). Define \(\psi : E_{\rho} * E_{\rho'} \to F_{(\lambda, \mu)} * F_{(\lambda', \mu')} \) by

\[
\psi((f, x), (g, x)) = (G \cdot (f, x), G \cdot (g, x)).
\]

Since \(\psi \) is continuous, constant on \(G \)-orbits, \(\mathbb{N} \)-equivariant, and induces the identity on \(X/G \), \(\psi \) implements an isomorphism of \(E_{\rho} * E_{\rho'}/G \) onto \(F_{(\lambda, \mu)} * F_{(\lambda', \mu')} \). On the other hand,
we have already observed that the map \(((f, x), (g, x)) \mapsto (fg, x)\) induces an isomorphism \(\phi\) of \(E_\mu * E_{\mu'}\) onto \(E_{\mu\mu'}\) (see the proof of Proposition 3.8), and since \(\phi\) is \(G\)-equivariant, it implements an isomorphism of \(E_\mu * E_{\mu'}/G\) and \(F(\lambda\lambda', \mu\mu')\). This completes the proof that \(\Psi\) is an injective homomorphism. \(\square\)
§7 N-proper actions

Let \((A, G, \alpha)\) be a separable dynamical system in which \(A\) is a continuous-trace algebra with spectrum \(X\), \(G\) is abelian, \(\alpha\) is pointwise unitary on a closed subgroup \(N\) of \(G\), and \(p : X \to X/G\) is a \(G/N\)-bundle; we shall sum this up by saying that \((A, G, \alpha)\) is an \(N\)-proper system. We now want to show that if in addition \(\alpha(N) \subseteq \text{Inn}(A)\), then the construction of the previous section connects up the algebraic and topological invariants associated with \(\alpha\). From this we shall deduce our structure theorems for \(N\)-proper actions.

Proposition 7.1: Suppose that \((A, G, \alpha)\) is an \(N\)-proper dynamical system such that \(\alpha(N) \subseteq \text{Inn}(A)\) and \(\hat{A} = X\). If \(q(\alpha)\) is the class of \(q : (A \rtimes_\alpha G)^\wedge \to X/G\) in \(HP(X/G, \hat{\mathfrak{M}})\) ([13; Corollary 2.1]), \(d(\alpha)\) is the class in \(\Lambda_{PT}(G, N; C(X, T))\) corresponding to \((A, G, \alpha)\), and \(\Psi\) is the isomorphism defined in Theorem 6.5, then \(\Psi(d(\alpha)) = q(\alpha)\).

Proof: Recall that we obtain a representative \((\lambda, \mu)\) for \(d(\alpha)\) by choosing a Borel map \(u : N \to \mathcal{UM}(A)\) satisfying \(\alpha_n(a) = u_n a u_n^*\) for all \(n \in N\) and \(a \in A\), and using Equations (5.2) and (5.3) to determine \((\lambda, \mu)\). We resume the notation of Proposition 3.8. As in that Proposition, each \((f, x) \in E_\mu\) determines a unitary representation \(fu(x)\) of \(N\) which is defined by \(n \mapsto f(n)u_n(x)\). Furthermore, \((\epsilon_x, fu(x))\) is an irreducible covariant representation of \(A \rtimes_\alpha N\), and there is an \(\tilde{N}\)-bundle isomorphism \(h : E_\mu \to (A \rtimes_\alpha N)^\wedge\) defined by \((f, x) \mapsto (\epsilon_x, fu(x))\). For the moment, fix \(s \in G\) and \(x \in X\). We have

\[h(s \cdot (f, x)) = (\epsilon_{s \cdot x}, f\alpha_s(u)(s \cdot x)),\]

where \(f\alpha_s(u)(s \cdot x)\) stands for the representation which coincides almost everywhere with \(n \mapsto f(n)\alpha_s(u_n)(s \cdot x)\). Recall that \(s \cdot \epsilon_x\) is defined by \(a \mapsto \epsilon_x(\alpha_s^{-1}(a))\). By assumption, \(s \cdot \epsilon_x\) is unitarily equivalent to \(\epsilon_{s \cdot x}\): let \(V\) be a unitary which implements the equivalence, so that

\[Va(s \cdot x)V^* = \alpha_s^{-1}(a)(x)\]

for \(a \in A\). Now one computes that \(V\) implements an equivalence between the representations \(L = (\epsilon_{s \cdot x}, f\alpha_s(u)(s \cdot x))\) and \(M = (s \cdot \epsilon_x, fu(x))\). That is, \(h(s \cdot (f, x)) = [s \cdot \epsilon_x, fu(x)]\). It follows from the proof of [19; Proposition 2.2] that \(h\) is \(G\)-equivariant from \(E_\mu\) to \((A \rtimes_\alpha N)^\wedge\) and induces the identity on \(X/G\). Thus the proposition follows from Remark 2.3 and [19; Proposition 2.2].

Theorem 7.2: Suppose that \((A, G, \alpha)\) is a \(N\)-proper dynamical system with \(\hat{A} = X\). Then \((A \rtimes_\alpha G)^\wedge\) is a trivial \(\tilde{N}\)-bundle over \(X/G\) if and only if there is a Green twisting map for \(\alpha\) over \(N\).
Proof: By [13; Proposition 2.1] and Lemma 6.2, \((A \rtimes_\alpha N)^\wedge\) is isomorphic to the pull-back of \((A \rtimes_\alpha G)^\wedge\) over the orbit map \(p : X \to X/G\). Therefore, if \((A \rtimes_\alpha G)^\wedge\) is a trivial bundle, then so is \((A \rtimes_\alpha N)^\wedge\). It then follows from [13; Corollary 1.11] that \(\alpha(N) \subseteq \text{Inn}(A)\). Thus Proposition 7.1 applies and the result follows from Proposition 6.4 and Proposition 5.4. On the other hand, if there is a Green twisting map for \(\alpha\) over \(N\), then by definition \(\alpha(N) \subseteq \text{Inn}(A)\). Therefore the converse also follows from Proposition 7.1, Proposition 6.4, and Proposition 5.4.

Corollary 7.3: Let \((A, G, \alpha)\) be an \(N\)-proper dynamical system with \(\hat{A} = X\). Then \((A \rtimes_\alpha G)^\wedge\) is trivial as an \(\hat{N}\)-bundle over \(X/G\) if and only if there is a continuous-trace \(C^*\)-algebra \(B\) with spectrum \(X/G\) and a pointwise unitary action \(\beta\) of \(N\) on \(B\) such that \((A \rtimes_\alpha G, \hat{G}, \hat{\alpha})\) is covariantly isomorphic to \((\text{Ind}_{N\perp}^G(B, \beta), \hat{G}, \tau)\).

Proof: Since \(\text{Ind}_{N\perp}^G(B, \beta)\) has spectrum \((\hat{G}/N\perp) \times \hat{B} = \hat{N} \times (X/G)\) (e.g., [19; Proposition 3.2]), one direction is easy. Conversely, if \((A \rtimes_\alpha G)^\wedge\) is trivial, the theorem implies that there is a Green twisting map \(u : N \to \mathcal{U}M(A)\) for \(\alpha\). By [12; Theorem 2.4], there is then an isomorphism

\[A \rtimes_\alpha G \cong \text{Ind}_{N\perp}^G(A \rtimes_{\alpha,N} G, \hat{\alpha}|_{N\perp}) \]

which carries the dual action of \(\hat{G}\) into the canonical action \(\tau\) of \(\hat{G}\) by translation on the induced algebra. Thus it only remains to verify that \(A \rtimes_{\alpha,N} G\) is a continuous-trace algebra with spectrum \(X/G\), and that \(\hat{\alpha}\) is pointwise unitary on \(N\).

The twisted covariant system \((A, G, N, \alpha, u)\) is essentially free in the sense of Green [1], and hence it follows from Theorem 24 of [1] that \(A \rtimes_{\alpha,N} G\) has spectrum \(X/G\); it has continuous trace because it is a quotient of \(A \rtimes_\alpha G\), which has continuous trace by [19; Corollary 2.5(2)]. It also follows from [1; Theorem 24] that every irreducible representation of \(A \rtimes_{\alpha,N} G\) is equivalent to one of the form \(\text{Ind}_{N}^{G}(\pi)\), where \(\pi\) is an irreducible representation of \(A \cong A \rtimes_{\alpha,N} N\). The covariant representation \((A, G, \alpha)\) corresponding to \(\text{Ind}(\pi)\) can be identified with \((\tilde{\pi}, \lambda)\), acting on the Hilbert space \(\mathcal{H}\) consisting of those Borel functions \(f : G \to \mathcal{H}_{\pi}\) which satisfy

\[f(sn) = \pi(n)^{-1}(f(s)) \text{ for } s \in G, n \in N \quad \text{and} \quad \int_{G/N} \|f(s)\|^2 d(sN) < \infty, \]

according to the formulas

\[\tilde{\pi}(a)f(t) = \pi(\alpha^{-1}_t(a))(f(t)), \quad \text{and} \quad \lambda_a(f)(t) = f(s^{-1}t). \]
(It is easy to check directly that this covariant representation preserves the twist—i.e., that \(\bar{\pi} \circ u = \lambda|_N \)—and hence gives a representation of \(A \rtimes_{\alpha} N \)). The dual action of \(\hat{\alpha}_\gamma \) fixes the copy \(i_A(A) \) of \(A \) in \(\mathcal{M}(A \rtimes \alpha G) \), and multiplies the generators \(i_G(s) \) for \(s \in G \) by \(\gamma(s) \). Thus we may define \(U : \mathcal{N} \to \mathcal{H} \) by \(U_\gamma(f)(s) = \gamma(s)f(s) \), and verify easily that for \(\gamma \in \hat{N}, a \in A, \) and \(s \in G \), we have

\[
\bar{\pi} \times \lambda(\hat{\alpha}_\gamma(i_A(a))) = \bar{\pi}(i_A(a)) = U_\gamma \bar{\pi}(i_A(a)) U_\gamma^* = U_\gamma \bar{\pi} \times \lambda(i_A(a)) U_\gamma^*, \text{ and}
\]
\[
\bar{\pi} \times \lambda(\hat{\alpha}_\gamma(i_G(s))) = \gamma(s) \lambda s = U_\gamma \lambda s U_\gamma^* = U_\gamma \bar{\pi} \times \lambda(i_G(s)) U_\gamma^*.
\]

The action \(\hat{\alpha}|_{\mathcal{N}^\perp} \) is therefore pointwise unitary, and the Corollary is proved. \(\square \)

Corollary 7.4: Let \((A, G, \alpha)\) be an \(N \)-proper dynamical system with \(\hat{A} = X \), and suppose that \(p : X \to X/G \) is trivial as a \(G/N \)-bundle. Then there is a pointwise unitary action \(\theta \) of \(N \) on a continuous-trace algebra \(B \) with spectrum \(X/G \) such that \((A \otimes \mathcal{K}(L^2(G)), G, \alpha \otimes \text{Ad}\rho)\) is covariantly isomorphic to \((\text{Ind}^G_N(B, \theta), G, \tau)\). (So that essentially the only examples with \(\hat{A} \) trivial are the ones studied in [19; §3(a)].)

Proof: We apply the previous corollary to the dual system \((A \rtimes \alpha G, \hat{G}, \hat{\alpha})\): we know from [13; Proposition 2.1] that \(\hat{G}/\mathcal{N}^\perp = \hat{N} \) acts freely and properly on \((A \rtimes \alpha G)^\wedge\), so the only point to check is that \(\hat{\alpha} \) is pointwise unitary on \(\mathcal{N}^\perp \). But [19; Proposition 2.1] implies in particular that every irreducible representation of \(A \rtimes \alpha G \) has the form \(\text{Ind}^G_N(\pi \times U) \) for some \(\pi \times U \in (A \rtimes \alpha N)^\wedge \), and the argument in the proof of the previous corollary carries over verbatim. We can therefore deduce that

\[((A \rtimes \alpha G) \rtimes \alpha \hat{G}, G, \hat{\alpha}) \cong (\text{Ind}^G_N(B, \theta), G, \tau),\]

and the result follows from the Takai duality theorem [17; Theorem 7.9.3]. \(\square \)
§8 Surjectivity

In this section we merely want to fill in the remaining bit of the proof of Theorem 6.5—namely, we need to show that the map Ψ defined in Theorem 6.5 is surjective. Precisely, we must show that, given a G/N-bundle $p : X \to X/G$ and a \tilde{N}-bundle $q : F \to X/G$, such that the pull-back $E = p^*(F)$ has the property that $(\psi_n)_*(E)$ is a trivial T-bundle for each $n \in N$, then there are invariants (λ, μ) representing a class in $\Lambda_{rT}(G, N; C(X, T))$ with $F(\lambda, \mu)$ isomorphic to F as \tilde{N}-bundles. Equivalently, we will show that E is isomorphic to E_μ both as a \tilde{N}- and as a G/N-bundle.

First observe that $T \times N \times E$ becomes a \tilde{N}-bundle when given the action

$$\gamma \cdot (t, n, \xi) = (\gamma(n)t, n, \gamma \cdot \xi).$$

The quotient B is a T-bundle over $N \times X$ with the bundle map given by $h([t, n, \xi]) = (n, r(\xi))$. Define continuous maps $\kappa : B \to X$ and $\delta : B \to N$ by the formulas

$$\kappa([t, n, \xi]) = r(\xi), \text{ and}$$

$$\delta([t, n, \xi]) = n.$$

Finally, notice that the spaces

$$B_n = h^{-1}([\{ (n, x) : x \in X \}])$$

are easily seen to be isomorphic to $(\psi_n)_*(E)$. Since the latter space is a trivial T-bundle over X, there will be continuous sections. The next lemma will be useful for describing these sections. We shall need the extra generality later.

Lemma 8.1: Let $B' = E \times_X B = \{ (\xi, b) \in E \times B : r(\xi) = \kappa(b) \}$. For each $(\xi, b) \in B'$. define $\theta(\xi, b)$ to be the unique value in T such that

$$[\theta(\xi, b), \delta(b), \xi] = b.$$

Then $\theta : B' \to T$ is continuous.

Proof: Suppose that $\{ (\xi_k, b_k) \}$ converges to (ξ, b): it suffices to show that every subsequence of $\{ \theta(\xi_k, b_k) \}$ has a convergent subsequence. Thus we may as well assume that there are $\gamma_k \in \tilde{N}$ such that $\gamma_k \cdot (\theta(\xi_k, b_k), \xi_k) \to (\theta(\xi, b), \delta(b), \xi)$. Now as $\xi_k \to \xi$ and $\gamma_k \cdot \xi_k \to \xi$, we may also assume that $\gamma_k \to 1$. Since $\delta(b_k) \to \delta(b)$, it follows from

$$\gamma_k(\delta(b_k))\theta(\xi_k, b_k) \to \theta(\xi, b)$$

that $\theta(\xi_k, b_k) \to \theta(\xi, b)$ as well. \qed
Definition 8.2: Let C denote the collection of continuous functions $c : X \to B$ which satisfy

1. $\kappa(c(x)) = x$, for all $x \in X$; and
2. there exists $n_0 \in N$ so that $\delta(c(x)) = n_0$ for all $x \in X$.

We give C the relative topology as a subspace of $C(X, B)$ with the compact-open topology.

Lemma 8.3: Suppose that $f : E \to T$ is continuous and there exists $n_f \in N$ such that

$$f(\gamma \cdot \xi) = \overline{\gamma(n_f)}f(\xi) \quad \text{for all } \gamma \in \hat{N} \text{ and } \xi \in E.$$ \hfill (8.1)

1. The function $c_f : X \to B$ defined by

$$c_f(r(\xi)) = [(f(\xi), n_f, \xi)]$$

belongs to C, and every element of C has this form for some continuous $f : E \to T$ satisfying Equation (8.1).

2. A sequence $\{c_{f_k}\}$ converges to c_f in C if and only if $n_{f_k} \to n_f$ and $f_k \to f$ uniformly on compacta in E.

3. Given $n \in N$, there is a $c_f \in C$ with $n_f = \delta(c_f) = n$.

Proof: It is easy to verify that $c_f \in C$. To see that every $c \in C$ has this form we just apply Lemma 8.1 to the subset $\{(\xi, c(r(\xi)))\}$ of B', and define f by $f(\xi) = \theta(\xi, c(r(\xi)))$. Part (3) follows immediately from part (1) and the observation that each B_n is a trivial T-bundle. Now suppose $c_{f_k} \to c_f$ in C, and $\xi_k \to \xi$ is an arbitrary convergent sequence in E. Then

$$f_k(\xi_k) = \theta(\xi_k, c_{f_k}(r(\xi_k))) \to \theta(\xi, c_f(r(\xi))) = f(\xi),$$

and hence $f_k \to f$ uniformly on compacta. Since we trivially have that the constant value n_{f_k} of $\delta \circ c_{f_k}$ converges to n_f, this gives one implication of part (2). Since any compact set in X has a compact preimage in E, the converse implication is straightforward. \hfill \Box

In view of this lemma we can define a group structure on C by the rules $cfcg = cf_h$ and $c_f^{-1} = c_f$, where

$$c_{fg}(r(\xi)) = [f(\xi)g(\xi), n_fn_g, \xi], \ \text{and}$$

$$c_f(r(\xi)) = [f(\xi), n_f^{-1}, \xi],$$

34
and these operations are continuous for the topology of $C(X,B)$. Since C is clearly a closed subspace of the polish space $C(X,B)$, we have shown that C is an abelian polish group.

Now it is evident from Lemma 8.3 that $\delta|_C$ is a continuous surjection of C onto N with kernel $i(C(X,T))$, where $i : C(X,T) \to C$ is the continuous injection defined by

$$-i(\phi)(r(\xi)) = [\phi(r(\xi)), 1, \xi].$$

It is a consequence of [9, Proposition 5] that

$$1 \longrightarrow C(X,T) \xrightarrow{i} C \xrightarrow{\delta} N \longrightarrow 1$$

is an exact sequence of polish groups.

Since C is polish, we can choose a Borel cross section σ for δ. Define $g : N \times E \to T$ by

$$\sigma(n)(r(\xi)) = [g(n, \xi), n, \xi].$$

In the notation of Lemma 8.1, $g(n, \xi) = \theta(\xi, \sigma(n)(r(\xi)))$. Therefore, we can conclude that g is Borel, that g is continuous in the second variable, and that g satisfies

$$g(n, \gamma \cdot \xi) = \overline{g(n)}g(n, \xi)$$

for each $n \in N$, $\xi \in E$, and $\gamma \in \tilde{N}$. Now we can define $\mu : N \times N \to C(X,T)$ and $\lambda : G \times N \to C(X,T)$ by

$$\mu(n,m)(r(\xi)) = g(n,\xi)g(m,\xi)\overline{g(nm,\xi)}$$

$$\lambda(s,n)(r(\xi)) = \overline{g(n,\xi)}g(n,s^{-1} \cdot \xi).$$

It is a routine matter to verify that (λ, μ) satisfy conditions (5.6)--(5.9). Furthermore, μ is symmetric, and hence is pointwise trivial [7], so that (λ, μ) represents a class in $\Lambda_{PT}(G, N; C(X,T))$. Finally, we can define $\Theta : E \to E_\mu$ by

$$\Theta(e) = (\overline{g(\cdot, e)}, r(e)).$$

Since the action of G on E_μ is defined in terms of the λ given by Equation (8.4), one can verify that Θ is G-invariant as well as \tilde{N}-invariant; since

$$E \xrightarrow{\Theta} E_\mu \xrightarrow{r} X \xrightarrow{r_\mu} E_\mu$$

35
commutes, Θ will be the required isomorphism provided it is continuous (Remark 2.3). However, since g is continuous in its second variable, $\xi_k \to \xi$ implies that $g(\cdot, \xi_k) \to g(\cdot, \xi)$ pointwise, and hence in $\mathcal{C}^1(N, \mathbb{T})$. This completes the proof that Ψ is surjective.

\[\square\]

Remark 8.4: The Polish group C carries a natural action of G, given by $s \cdot c(x) = s \cdot (c(s^{-1} \cdot x))$, and the extension (8.2) is then a G-crossed extension of N by $C(X, \mathbb{T})$. Thus although we have deliberately chosen to work in terms of cocycles, a Polish version of the theory of crossed extensions is lurking close by.

\[\square\]
References

37

Usual addresses:

School of Mathematics
University of New South Wales
P. O. Box 1
Kensington, N. S. W. 2033
Australia

Department of Mathematics
Dartmouth College
Hanover, New Hampshire 03755
U. S. A.
1/78 "TANKER OM EN PRAKISIS" - et matematikprojekt.
Projektrapport af: Anne Jensen, Lena Lindenskov, Marianne Kesselhahn og Nicolai Lohbalt.
Vejleder: Anders Madsen.

2/78 "OPTIMERING" - Menneskets forgjede beher- skelsesmuligheder af natur og samfund.
Projektrapport af: Tom J. Andersen, Tommy R. Andersen, Gert Krenode og Peter H. Lassen.
Vejleder: Bernhelm Boss.

3/78 "OPGAVESAMLING", breddedkursus i fysik.
Af: Lasse Rasmussen, Aage Bonde Krammer og Jens Højgaard Jensen.

4/78 "TRE ESSAYS" - om matematikundervisning, matematiklæreruddannelsen og videnskabss- rinalisme.
Af: Mogens Niss.
Nr. 4 er p.t. udgået.

5/78 "BIBLIOGRAFSK VEJLEDNING til studiet af DEN MODERNE FYSIK HISTORIE".
Af: Helge Kragh.
Nr. 5 er p.t. udgået.

6/78 "NOGLE ARTIKLER OG DEBATINDLÆG OM - lærer- uddannelsen og undervisning i fysik, og - de naturvidenskabelige fags situation efter studenteroprådet".

7/78 "MATEMATIKKENS FORHOLD TIL SAMFUNDSØKONOMIEN".
Af: B.V. Gudzénko.
Nr. 7 er p.t. udgået.

8/78 "DYNAMIK OG DIAGRAMMER", Introduktion til energy-bond-graph formalismen.
Af: Peter Voetmann Christiansen.

9/78 "OM PRAKISIS: INDFYDLÆSE PÅ MATEMATIKKENS UD- VIKLING", Motiver til Kepler's: "Nova Stereometria Dolorum Vinarium".
Projektrapport af: Lasse Rasmussen.
Vejleder: Anders Madsen.

10/79 "TERMODYNAMIK I GYMNASIET".
Projektrapport af: Jan Christensen og Jeanne Mortensen.
Vejledere: Karin Beyer og Peter Voetmann Christiansen.

11/79 "STATISTISKE MATERIALER".
Af: Jørgen Larsen.

12/79 "LINEÆRE DIFFERENTIALLIGNINGER OG DIFFERENTIIALLIGNINGSSYSTEMER".
Af: Mogens Brun Heefelt.
Nr. 12 er udgået.

13/79 "CAVENDISH'S FORSØG I GYMNASIET".
Projektrapport af: Gert Kreinø.
Vejleder: Albert Chr. Paulsen.

14/79 "BOOKS ABOUT MATHMATICS: History, Philosophy, Education, Models, System Theory, and Works of".
Af: Else Høyrup.
Nr. 14 er p.t. udgået.

15/79 "STRUKTURERE STABILITET OG KATASTROFER I SYSTEMER i og udenfor termodynamisk ligevægt".
Special Rapport af: Leif S. Strierger.
Vejleder: Peter Voetmann Christiansen.

16/79 "STATISTIK I KRÆFTFORSKNINGEN".
Vejleder: Jørgen Larsen.

17/79 "AT SPØGE OG AT SVARE i fysikundervisningen".
Af: Albert Christian Paulsen.

Projektrapport af: Bernhelm Boss og Mogens Niss (eds.)

19/79 "GEOMETRI, SKOLE OG VIRKELIGHED".
Vejleder: Mogens Niss.

20/79 "STATISTISKE MODELER TIL BESTEMMELSE AF SINKE DÆGER PER CARCINOGENE STOFFER".
Vejleder: Jørgen Larsen.

21/79 "KONTROL I GYMNASIET- FORMÅL OCH KONSEKVENSER"
Projektrapport af: Crilles Bacher, Per S. Jensen, Preben Jensen og Torben Nøstsen.

22/79 "SEMOUT OCH SYSTEMENGESKRABER (1)"
1-port linært respons og spjæl i fysikken.
Af: Peter Voetmann Christiansen.

23/79 "ON THE HISTORY OF EARLY WAVE MECHANICS - with special emphasis on the role of relativity".
Af: Helge Kragh.

24/80 "MATEMATIKFÆLLELSER I 2.C'EEB".
avb l. En analyse. 2. Interviwemateriale.
Projektrapport af: Jan Christensen og Knud Lindhardt Rasmussen.
Vejleder: Mogens Niss.

26/80 "OF MATEMATISKE MODELER".
En projektrapport og to artikler.
Af: Jens Højgaard Jensen m.fl.

27/80 "METODOLGY AND PHILOSOPHY OF SCIENCE IN PAUL DIRAC'S PHYSICS".
Af: Helge Kragh.

28/80 "DLELEKTRISK RELATION - et forsøg til en ny model bygget på værkerne visoelastiske egen- skaber".
Projektrapport af: Gert Kreinø.
Vejleder: Niels Boye Olsen.

29/80 "ODIN - undersømningsmateriale til et kursus i differentiaalligningsmodeller".
Projektrapport af: Tommy R. Andersen, Per H.H. Larsen og Peter H. Lassen.
Vejleder: Mogens Brun Heefelt.

30/80 "FUSIONSENERGI - - - ATOMERFUENTETS ENERDIASI"
Af: Oluf Danielsen.
Nr. 30 er udgået.

31/80 "VIDEENERGIFÆLLELSER TIL JUNKERVEINDISKIGE SYSTEMER guitar på MINICHEL".
Projektrapport af: Troels Lange og Jørgen Karrebæk.
Vejleder: Stig Anvar Pedersen.
Nr. 31 er p.t. udgået.

32/80 "POLYMERE STOFFERS VISKOELASTISKE EGENSKAPER - BEPROVET VED HULP AF VERKNINGS INDHÆNGSÆMLAN - GER MØLLERENFJÆLMØLG".
Projektrapport af: Crilles Bacher og Preben Jensen.
Vejledere: Niels Boye Olsen og Peter Voetmann Christiansen.

33/80 "KONSTITUERING AF FAG INDEN FOR TEGNISK NATUREN-VIDENSKABLIGE UDVIDELSER. I-IT"
Af: Arne Jakobsen.

34/80 "ENVIRONMENTAL IMPACT OF WIND ENERGY UTILIZATION".
ENERGY SERIES NO. 1.
Af: Bent Sørensen.
Nr. 34 er udgået.
38/81 "TIL EN HISTORISERET OM NATURVEDEDELSE, TEKNOLOGI OG SANITÆR"
Projektrapport af: Erik Gade, Henk Hedal, Henrik Lau og Finn Phynant.
Vejledere: Stig Andur Pedersen, Helge Krach og Ib Thiersen.
Nr. 38 er p.t. udgivet.

39/81 "TIL KRITIKKEN AF VEDEGMONIEN"
Af: Jens Højgaard Jensen.

40/81 "TELEKOMMUNIKATION I DANMARK - oplæg til en teknologiudvikling"
Projektrapport af: Anne Jørgensen, Bruno Petersen og Jan Vedde.
Vejleder: Per Nørgaard.

41/81 "PLANNING AND POLICY CONSIDERATIONS RELATED TO THE INTRODUCTION OF RENEWABLE ENERGY SOURCES INTO ENERGY SUPPLY SYSTEMS"
ENERGY SERIES NO. 3.
Af: Bent Sørensen.

42/81 "VIDENSKAB TØR I SAMFUNN - En introduktion til materialistiske videnskabsopfattelser"
Af: Helge Krach og Stig Andur Pedersen.

43/81 1. "COMPARATIVE RISK ASSESSMENT OF TOTAL ENERGY SYSTEMS" 2. "ADVANTAGES AND DISADVANTAGES OF DECENTRALIZATION"
ENERGY SERIES NO. 4.
Af: Bent Sørensen.

44/81 "HISTORISKE UNDERVISKELSER AF DE EXPERIMENTELLE FOR- UDSTEMNINGER FOR KUNSTPÆDE ATOMMODER"
Vejleder: Bent C. Jørgensen.

45/82 Er aldrig udkommet.

46/82 "EKSAMPLARISK UNDERVISNING OG FYSISK ENGENDEE - ILLUSTRERET VED TO EKSAMPLER"
Projektrapport af: Torben Olesen, Lasse Rasmussen og Niels Dreyer Sørensen.
Vejleder: Bent C. Jørgensen.

47/82 "RASMUSSEN OG DER VÆST OFFICIELT EN BRÆKELIG UHOLD"
ENERGY SERIES NO. 5.
Af: Bent Sørensen.

48/82 "EN UNDERVISSELSE AF MATEMATIKUNDERVISNINGEN PÅ AADVANCE-KURSUS TIL KOMMUNENS TÆKTUR"
Projektrapport af: Lis Ellertsen, Jørgen Karrbek, Troels Lange, Per Nørregård, Lissi Pedersen, Laust Risejø, Lill Røn og Isaac Shoukli.
Vejleder: Mogensen Niss.

49/82 "ANALYSE AF MULTIPLESPOTTE SATELLITBILDELER"
Projektrapport af: Per Nørregård.
Vejledere: Jørgen Larsen og Rasmus Ole Rasmussen.

50/82 "MÆLEV - MILICETERS FOR VEDEVAENDE ENERGI I EN LANDSHE"
ENERGY SERIES NO. 6.
Rapport af: Bent Christensen, Bent Hove Jensen, Dennis B. Møller, Bjarne Lausen, Bjarne Lillethorup og Jacob Mørch Pedersen.
Vejleder: Bent Sørensen.

51/82 "HvaD KAN DER GEMDES FOR AT AFSTÆLDE FICERS BLOCKING OVERFORD MATRÆR"
Projektrapport af: Lis Ellertsen, Lissi Pedersen, Lill Røn og Susanne Stender.

52/82 "DESPENZION OF SPLITTING ELLIPTIC SYMBOLS"
Af: Bernhelm Booss og Krzysztof Wojciechowski.

53/82 "THE CONSTITUTION OF SUBJECTS IN ENGINEERING EDUCATION"
Af: Arne Jacobsen og Stig Andur Pedersen.

54/82 "FUTURES RESEARCH - A PHILOSOPHICAL ANALYSIS OF ITS SUBJECT-MATTER AND METHODS"

Af: Else Høyrup.
Vdr. tekst nr. 55/82 se også tekst nr. 62/83.

56/82 "EN - TO - MANGE" - En undersøgelse af matematisk ægologi.
Projektrapport af: Troels Lange.
Vejleder: Anders Madsen.

57/83 "ASPECT EXPERIMENTET"
Skulje variable i kvantemekanikken?
Projektrapport af: Tam Juhl Andersen.
Vejleder: Peter Voitmann Christiansen.
Nr. 57 er udgivet.

58/83 "MATHEMATISKE VANDRINGER" - Modelbetrætning
Projektrapport af: Per Hammershøj Jensen og Lene Vagn Rasmussen.
Vejleder: Jørgen Larsen.

59/83 "THE METHODOLOGY OF ENERGY PLANNING"
ENERGY SERIES NO. 7.
Af: Bent Sørensen.

60/83 "MATHEMATISKE MÆLEFÆLTTER" - et eksempel.
Projektrapport af: Erik O. Gade, Jørgen Karrebæk og Per Nørregård.
Vejleder: Anders Madsen.

61/83 "FYSISK TIDSLIGEGE Funktion, som et Ensemble Pa en Naturvidenskab - Historisk Set"
Projektrapport af: Annetta Post Nielsen.
Vejledere: Jens Høyrup, Jens Højgaard Jensen og Jørgen Vojvola.

62/81 "MATHEMATISKE MODeller" - Litteratur på Roskilde Universitetsbibliotek.
En biografi 2. rev. udgave.
Af: Else Høyrup.

63/81 "CREATING ENERGY FUTURE: A SHORT GUIDE TO ENERGY PLANNING"
ENERGY SERIES NO. 8.
Af: David Crossley og Bent Sørensen.

64/81 "VON MATHMATIK UND KRIEG"
Af: Bernhelm Booss og Jens Høyrup.

65/83 "AVNIVET MATHEMATIK - TØREELLE KRANSIS"
Vejledere: Bernhelm Booss og Claus Grønbaun.

66/81 "MATHEMATISKE MODeller FOR PERIODISKE SELEKtion I ESCHERICHIA COll"
Projektrapport af: Hanne Lisbet Andersen, Ole Richard Jensen og Klaus Frisvåd.
Vejledere: Jørgen Larsen og Anders Hede Madsen.

67/83 "TELEPOST MÆDEL - EN NY METODE TIL ENERGI PROGRAMMERING"
Projektrapport af: Lone Billmann og Lars Boye.
Vejleder: Mogens Brunn Høefelt.

68/81 "STOKASTISKE MODeller I POPULATIONSTHEORI - til kritikken af teoriladte modeller.
Projektrapport af: Lis Øyafjord Gade, Susanne Hansen, Michael Hvid og Frank Mølgård Olsen.
Vejleder: Jørgen Larsen.

74/84 "MINIMUMADURSERING AF MIKROELEKTRONIK" - om vi-
denskabeliggjort teknologi og ryttet om at lære fysik.
Projektrapport af: Bodil Harder og Linda Søs-
tak Jensen.
Vejledere: Jens Højgaard Jensen og Bent C. Jørgensen.

75/84 "MATEMATIKUNDERVISNINGEN I FREMDIENS GYMNASIUM" -
Case: Lineær programmering.
Projektrapport af: Håvard Blomhøj, Klavs Fraadahl
og Frank M. Olsen.
Vejledere: Mogens Brun Høefelt og Jens Bjørnboe.

76/84 "RENRENKRAFT I DANMARK" - Et høringssvar indkaldt
af miljøministeriet, mod kritik af miljøstyrrelsens
ENERGY SERIES No. 10
Af: Niels Boye Olsen og Bent Sørensen.

77/84 "POLITISKE INDES - RUP ELLER FANT?"
Opinionsundersøgelser belyst ved statistiske
modeler.
Projektrapport af: Svend Åge Hounæ, Keld Nielsen
og Susanne Stender.
Vejledere: Jørgen Larsen og Jens Bjørnboe.

78/84 "JENSHEMIKLEDNINGEN OG GITTERKRYDIT I
AMORPT GERMANIUM".
Specialrapport af: Hans Hedal, Frank C. Ludvigsen
og Finn C. Rysant.
Vejleder: Niels Boye Olsen.

79/84 "MATEMATIK OG ALGEMEINNÆLSE".
Projektrapport af: Henrik Caster, Mikael Wanner-
berg Jensen, Poul Kattler, Birgitte Lyholt og
Herton Overgaard Nielsen.
Vejleder: Børnholt Boos.

80/84 "KURSERMATERIELTIL MATEMATIK B".
Af: Mogens Brun Høefelt.

81/84 "PROBEKAMPANJENLEDNINGEN I AMORPT GERMANIUM".
Specialrapport af: Jørgen Wind Petersen og Jan
Christensen.
Vejleder: Niels Boye Olsen.

82/84 "MATEMATIK - OG FYSIKUNDERVISNINGEN I DET AUTO-
MATISERTE SARFUN".
Rapport fra et seminar afdelt i Aalborg
24-27 april 1983.
Red.: Jens Højgaard Jensen, Bent C. Jørgensen
og Mogens Niss.
101/86 "ÆKTE KOLKOGYÆS OG VEDENSKABENS LIJE IDERE".
Projektrapport af: Niels Ole Dam og Kurt Jensen.
Vejleder: Bent Sørensen.

104/85 "ANALOGREONIKKEN OG LØRSENLIGNINGER".
Af: Jens Jørgen.

105/85 "THE FREQUENCY DEPENDENCE OF THE SPECIFIC HEAT AT THE CLASS TRANSITION".
Af: Tore Christensen.

106/85 "A SIMPLE MODEL OF AC HOPPING CONDUCTIVITY".
Af: Jette C. Dyre.
Contributions to the Third International Conference on the Structure of Non - Crystalline Materials held in Grenoble July 1985.

108/85 "QUANTUM THEORY OF EXTENDED PARTICLES".
Af: Bent Sørensen.

107/85 "EN NY GØR IGEN EPIDEMI",
- flodbilinhed som eksempel på matematisk modelle-
ing af et epidemiologisk problem.
Projektrapport af: Per Hedegård Andersen, Lars Boye, Carsten Bolat Jensen, Else Marie Pedersen og Helge Møller Pedersen.
Vejleder: Jesper Larsen.

108/85 "APPLICATIONS AND MODELLING IN THE MATHEMATICS CUR.
RICULUM" - state and trends -
Af: Mogens Niss.

109/85 "COX I STUDIETIEN" - Cox's regressionsmodel anvendt på studenteroplysninger fra RIC.
Projektrapport af: Mikael Wrenenberg Johansen, Poul Ket-
er og Torben J. Andenasen.
Vejleder: Jørgen Larsen.

110/85 "PLANNING FOR SECURITY".
Af: Bent Sørensen.

111/85 "ÆRENBRENT PÅ FLADE KORT".
Projektrapport af: Birgit Andresen, Beatriz Quinones og Jimmy Staal.
Vejleder: Mogens Niss.

112/85 "VEDENSKABELIGGÆRELSE AF DANSK TERNOROLIG INNOVATION FRIM TIL 1950 - KONEN VED EKSEMPLER".
Vejleder: Claus Bøyle og Bent C. Jørgensen.

113/85 "DESIGNATION OF SPLITTING ELLIPTIC SYMBOIS II".
Af: Bernhelm Booss og Krzysztof Wojciechowski.

114/85 "ANVENDELSE AF GRAPHISK METODER TIL ANLÆGE AF KONTIGENTSTABELLER".
Projektrapport af: Lone Billmann, Ole R. Jensen og Anne-Line von Moos.
Vejleder: Jørgen Larsen.

115/85 "MATHEMATIKKENS UTVIKLING OP TIL RENESANSSEN".
Af: Mogens Niss.

116/85 "A PSYCHOLOGICAL MODEL FOR THE MEYER- NEDEEL HUG".
Af: Jette C. Dyre.

117/85 "KRAFT & KJÆRLIGHEDSFORMERING".
Af: Jacob Otte Pedersen.
Vejleder: Bent Sørensen.

118/85 "TILSKYDEHED OG MÆRKELIGHED TILFLÆGE PÆRKE OG FISKEN".
Af: Peder Voetmarn Christiansen.

119/86 "DET ER GANSKE VIST - EKSLIGE PÆRKE POSTULAT KUNNE IKKE SKUFFE PÆRKE I ANDERSKUMEN".
Af: Iben Maj Christiansen.
Vejleder: Mogens Niss.

120/86 "ET ANTAL STATISTISKE STANDARDMODELLER".
Af: Jørgen Larsen.

121/86 "SIMULATION I KONTINERE TID".
Af: Peder Voetmarn Christiansen.

122/86 "ON THE MECHANISM OF GLASS IONIC CONDUCTIVITY".
Af: Jette C. Dyre.

123/86 "GANGARITSSKYDDEN OG DEN STORE VREDEN".
Projektrapport af: Anton Jensen og Stig Pedersen.

124/86 "OPGAVEHÅNDLING I MATEMATIK".

125/86 "NYE, G - systemet - en effektiv fotometrisk spektral-
klasifikation af P-, A- og F-stjener".
Projektrapport af: Birger Lundgren.

126/86 "OM UTVIKILKEN AN EN SPECIELE RELATIVITETSTORI".
Projektrapport af: Lise Odgaard og Linda Zbildung Jensen.
Vejledere: Karin Beyer og Stig Andur Pedersen.

127/86 "GALOIS' BIDRAG TIL UTVIKLKEN AF DEN ABSTRAKT ALGEBRA".
Projektrapport af: Pernille Sørensen, Heine Larsen og Lars Frandsen.
Vejleder: Mogens Niss.

128/86 "ÆKREBY" - om ikke-standard analyse.
Projektrapport af: Niels Jorgensen og Mikael Klintorp.
Vejleder: Jette C. Dyre.

129/86 "PHYSICS IN SOCIETY".
Lecture Notes 1983 (1986)
Af: Bent Sørensen.

130/86 "STUDIES IN WIND POWER".
Af: Bent Sørensen.

131/86 "FYSIK OG SAMFUND" - Et integreret fysik/historie-
projekt om naturkulturens historiske udvikling.
Projektrapport af: Jakob Heckscher, Søren Brønd, Andy Wierød.
Vejledere: Jens Høyrup, Jørgen Vogelius, Jens Højgaard Jensen.

132/86 "FYSIK OG DANNELEGELSE".
Projektrapport af: Søren Brønd, Andy Wierød.
Vejledere: Karin Beyer, Jørgen Vogelius.

133/86 "CHERNOBYL ACCIDENT: ASSESSING THE DATA.
ENERGY SERIES NO. 15.
AF: Bent Sørensen.

134/87 "THE D.C. AND THE A.C. ELECTRICAL TRANSPORT IN AAsSeRe SYSTEM".
Authors: M.B.Ri-Den, N.B.Olsen, Ib Høst Pedersen, Petr Vlackor

135/87 "INTUITIONISTISK MATEMATIKKENS METODER OG ENSKELDES-
TEORITISKE FORudsæTNINGER".
MAGNETISKESPEKUL: Claus Larsen.
Vejledere: Anton Jensen og Stig Andur Pedersen.

136/87 "MYSTISK OG NATURLIG FILOSOFI: En skitse af kristendommens
forløber og andet møde med græsk filosofi".
Projektrapport af: Frank Colding Ludvigsen.
Vejleder: Historie: Ib Thiersen.
Fysik: Jens Højgaard Jensen.

137/87 "HOPMODELLER FOR ELEKTRISK LEĐNING I UORDNEDE
FASTE STOPPER" - Resume af licentiatsafhandling.
Af: Jette C. Dyre.
Vejledere: Niels Boje Olsen og Peder Voetmarn Christiansen.
138/87 "JOSEPHSON EFFECT AND CIRCLE MAP."
By: Peder Voetmann Christiansen

139/87 "Machbarkeit nichtbeherrschbarer Technik durch Fortschritte in der Erkennbarkeit der Natur?"
Af: Bernhelm Booss-Bavnbæk
Vejløder: Martin Bohle-Carbonell

140/87 "ON THE TOPOLOGY OF SPACES OF HOLONOMIC MAPS"
By: Jens Gravesen

141/87 "RADIOMETERS UDVIKLING AF BLÅGASAPPARATUM - ET TEKNOLOGIHISTORISK PROJEKT"
Projektrapport af Finn C. Physant
Vejløder: Ib Thiersen

142/87 "The Calderon projector for Operators with Splitting Elliptic Symbols"
by: Bernhelm Booss-Bavnbæk og Krzysztof P. Wojciechowski

143/87 "Kursusmateriale til Matematik på NAT-BAS"
af: Mogens Brun Heefelt

144/87 "Context and Non-Locality - A Peircean Approach"
By: Peder Voetmann Christiansen

145/87 "AIMS AND SCOPE OF APPLICATIONS AND MODELING IN MATHEMATICS CURRICULA"
Manuscript of a plenary lecture delivered at ICMI 3, Kassel, FRG 8.-11.9.1987
By: Mogens Niss

146/87 "BESTEMMELSE AF BULKEKSISTITIVITETEN I SILICIUM - en ny frekvensbaseret målmetode."
Pysikspeciale af Jan Vedde
Vejlødere: Niels Boye Olsen & Petr Viščor

147/87 "Rapport om BIS på NAT-BAS"
redigeret af: Mogens Brun Heefelt

148/87 "Naturovidenskaubundervisning med Samfundsperspektiv" af: Peter Golding-Jørgensen DLM Albert Chr. Poulson

149/87 "In-Situ Measurements of the density of amorphous germanium prepared in ultra high vacuum" by: Petr Viščor

150/87 "Structure and the Existence of the first sharp diffraction peak in amorphous germanium prepared in UHV and measured in-situ" by: Petr Viščor

151/87 "DYNAMISK PROGRAMMERING"
Matematikprojekt af: Birgit Andresen, Keld Nielsen og Jimmy Staal
Vejløder: Mogens Niss

152/87 "PSEUDO-DIFFERENTIAL PROJECTIONS AND THE TOPOLOGY OF CERTAIN SPACES OF ELLIPTIC BOUNDARY VALUE PROBLEMS"
by: Bernhelm Booss-Bavnbæk
Krzysztof P. Wojciechowski

153/88 "HALVLEDEDET KILOMETRER UDVIKLING MELLEM MILITÆRE OG CIVILE KREFTER" En eksempel på humanistisk teknologihistorie Historiespeciale
Af: Hans Hedal
Vejløder: Ib Thiersen

154/88 "MASTER EQUATION APPROACH TO VISCOUS LIQUIDS AND THE GLASS TRANSITION"
By: Jeppe Dyre

155/88 "A NOTE ON THE ACTION OF THE POISSON SOLUTION OPERATOR TO THE DIRICHLET PROBLEM FOR A FORMALLY SELFADORIENT DIFFERENTIAL OPERATOR"
by: Michael Pedersen

156/88 "THE RANDOM FREE ENERGY BARRIER MODEL FOR AC CONDUCTION IN DISORDERED SOLIDS"
by: Jeppe C. Dyre

157/88 "STABILIZATION OF PARTIAL DIFFERENTIAL EQUATIONS BY FINITE DIMENSIONAL BOUNDARY FEEDBACK CONTROL: A pseudo-differential approach."
by: Michael Pedersen

158/88 "UNIFIED FORMALISM FOR EXCESS CURRENT NOISE IN RANDOM WALK MODELS."
by: Jeppe Dyre

159/88 "STUDIES IN SOLAR ENERGY"
by: Bent Sørensen

160/88 "LOOP GROUPS AND INSTANTONS IN DIMENSION TWO"
by: Jens Gravesen

161/88 "PSEUDO-DIFFERENTIAL PERTURBATIONS AND STABILIZATION OF DISTRIBUTED PARAMETER SYSTEMS: Dirichlet feedback control problems" by: Michael Pedersen

162/88 "PIGER & FYSIK - OG MEGET MERE"
Af: Karin Deyer, Susanne Blegaa, Birthe Olsen, Jette Reich, Mette Vedeløv

163/88 "EN MATEMATISK MODEL TIL BESTEMMELSE AF PERMEABILITETEREN FLD BLOD-NETHINDE-BARRIÆREN"
Af: Finn Langberg, Michael Jæger, Lars Frøllem
Vejløder: Jesper Larsen

164/88 "Vurdering af matematisk teknologi Technology Assessment Technikfolgenabschatzung" Af: Bernhelm Booss-Bavnbæk, Glenn Pate ned Martin Bohle-Carbonell og Jens Højgaard Jensen

165/88 "COMPLEX STRUCTURES IN THE NASH-MOSER CATEGORY"
by: Jens Gravesen
167a/88 "BASISSTATISTIK 1. Diskrete modeller"
Af: Jørgen Larsen

167b/88 "BASISSTATISTIK 2. Kontinuerede modeller"
Af: Jørgen Larsen

168/88 "OVERFLADER AF PLANETEN MARS"
Laboratorie-simulering og MARS-analager undersøgt ved Massabumerспектroskopi.
Fysikspejlig fra:
Birger Lundgren
Vejleder: Jens Martin Knudsen
Fys.Lab./HØB

169/88 "CHARLES S. PEIRCE: MURSTEN OG MØRTEL TIL EN METAFYSIK.
" Fem artikler fra tidskriftet "The Monist" 1891-93.
Introduktion og oversættelse:
Peder Voetmann Christiansen

170/88 "OPGAVESAMLING I MATHEMATIK"
Samlette opgaver stillet i tiden 1974 - Juni 1988

171/88 "The Dirac Equation with Light-Cone Data"
af: Johnny Tom Ottesen

172/88 "FYSIK OG VIRKELIGHED"
Kvantemekanismens grundlæggende vigtigste i gymnasiet.
Fysikprojekt af:
Erik Lund og Kurt Jensen
Vejledere: Albert Chr. Paulsen og Peder Voetmann Christiansen

173/89 "NUMERISKE ALGORITHMER"
af: Mogens Brun Heefelt

174/89 "GRAFISK FREMSTILLING AF FRAKTALER OG KAOER"
af: Peder Voetmann Christiansen

175/89 "AN ELEMENTARY ANALYSIS OF THE TIME-DEPENDENT SPECTRUM OF THE NON-STATIONARY SOLUTION TO THE OPERATOR RICCATI EQUATION"
af: Michael Pedersen

176/89 "A MAXIMUM ENTROPY ANSATZ FOR NONLINEAR RESPONSE THEORY"
af: Jeppe Dyre

177/89 "HVAD SKAL ADAM STÅ MODELL TIL"
af: Morten Andersen, Ulla Engström, Thomas Gravesen, Nanna Lund, Pia Madsen, Dina Ravat, Peter Torstensen
Vejleder: Mogens Brun Heefelt

178/89 "BIOSYNTHSE AF PENICILLIN – en matematiske modell"
af: Ulla Sghave Rasmussen, Hans Ovagv Mortensen, Michael Jarden
vejleder i matematik: Jesper Larsen
biologi: Erling Lauridsen

179a/89 "LÆRERVEJLEDELING M.M. til et eksperimentelt forløb om kaso"
af: Andy Wierad, Søren Brønd og Jimmy Staal
Vejledere: Peder Voetmann Christiansen
Karin Beyer

179b/89 "ELEHÆFTE: Noter til et eksperimentelt kursus om kaso"
af: Andy Wierad, Søren Brønd og Jimmy Staal
Vejledere: Peder Voetmann Christiansen
Karin Beyer

180/89 "KAOER I FYSISK SYSTEMER eksempliceret ved torsione- og dobbeltpendul"
af: Andy Wierad, Søren Brønd og Jimmy Staal

181/89 "A ZERO-PARAMETER CONSTITUTIVE RELATION FOR PURE SHEAR VISCOELASTICITY"
by: Jeppe Dyre

182/89 "MATHEMATICAL PROBLEM SOLVING, MODELLING. APPLICATIONS AND LINKS TO OTHER SUBJECTS – State. trends and issues in mathematics instruction"
by: Werner Blum, Kænkel (FRG) og Nogens Niiss, Roskilde (Denmark)

183/89 "En metode til bestemmelse af den frekvensafhængige varmemydelse af en undersøkte væske ved glasovergangen" af: Tage Emil Christiansen

185/90 "EN MØSTEN PERIODISK HISTORIE"
Et matematiske projekt
af: Steen Grode og Thomas Jessen
Vejleder: Jacob Jacobsen

186/90 "RITUAL OG RATIONALITET I videnskabens udvikling" redigeret af Arne Jakobsen og Stig Andur Pedersen

187/90 "RSA – et kryptisk system"
af: Annemette Sofie Olsen, Lars Frøllesen og Ole Møller Nielsen
Vejledere: Michael Pedersen og Finn Munk

188/90 "FERMICONDENSATION – AN ALMOST IDEAL GLASS TRANSITION"
by: Jeppe Dyre

189/90 "DATAMATERI I MATEMATIKUNDERSØKNINGEN PÅ GYMNASIET OG HØJERE LÆREANSTALTER"
af: Finn Langberg