UNIFIED FORMALISM FOR EXCESS CURRENT NOISE IN RANDOM WALK MODELS

Af: Jeppe Dyre

TEKSTER fra

IMFUFA ROSKILDE UNIVERSITETSCENTER
INSTITUT FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES FKJKTIONER I UNDERSVENING, FORSKNING OG ANVENDELSE
ABSTRACT

Excess current noise in random walk models with a frequency independent conductivity is studied from a general point of view. By introducing a "dynamical" diffusion constant, it is shown that the current autocorrelation function in an external field probes the equilibrium dynamical diffusion constant autocorrelation function. From this a number of results, previously shown for particular models, are derived. Also, it is shown that the external field current autocorrelation function is proportional to the equilibrium autocorrelation function for the absolute value of the current. Thus, the excess noise spectrum probes the equilibrium speed autocorrelation function. In the treatment advanced here, the study of excess current noise in random walk models reduces to a study of the stochastic point process constituted by the particle jump times. This point process contains all information about the noise. As an illustration of the general theory, the CTRW model is briefly reviewed and a simple derivation of the excess noise in the model is given. Finally, the role of fermistatistics in models for 1/f noise is discussed. It is argued that number fluctuation models, i.e. models with long trapping times, are incompatible with fermistatistics. On the other hand, it is shown there is a peculiar "single particle" 1/f noise which is due to fermistatistics but has nothing to do with the observed 1/f current noise.
1. INTRODUCTION

Electrical 1/f noise has been a major puzzle in solid state physics for many years and is still far from understood [1-11]. This noise is found at low frequencies in apparently any conducting solid in an external electric field. 1/f noise is always observed together with white noise, the origin of which is well understood, and therefore 1/f noise is often referred to as excess noise. One may speak of excess current noise in a constant voltage circuit or excess voltage noise in a constant current circuit. The spectra of the two are always identical and only excess current noise will be discussed here.

Experimentally, the spectrum of excess current noise is given by

$$S_{exc_J}(\omega) = k \frac{\langle J^2 \rangle_E}{V} \omega^{-\alpha}$$

(1)

where $\langle J^2 \rangle_E$ is the average current in the electric field E, V is the volume of the sample, k is a constant, and the exponent α is close to one. The case $\alpha=1$ has given name to the subject: 1/f noise, where f is the frequency. The fact that the noise is proportional to $\langle J^2 \rangle_E$ suggests it is the resistance that fluctuates and consequently one often speaks about 1/f resistance fluctuations. If really the resistance fluctuates, however, there should be 1/f fluctuations in the magnitude of the Nyquist noise in zero external field. This was shown actually to be the case by Voss and Clarke in 1976 [12]. Their work was a major breakthrough because it showed 1/f noise is an equilibrium phenomenon and is not created by the rather strong electric fields usually applied when measuring 1/f excess noise. The Voss
and Clarke experiment raised the obvious question: How can noise fluctuate, being itself due to fluctuations? It was soon shown that fluctuations in the magnitude of the Nyquist noise is due to non-trivial fourth order correlations in the equilibrium current or voltage fluctuations [13,14], implying these fluctuations are non-gaussian.

During the eighties there has been considerable interest in random walk models for 1/f noise. These models are probably the simplest one can think of as a means of getting a better understanding of the purely statistical properties of the noise. In particular, the appearance of non-gaussian equilibrium current fluctuations can be studied in detail. In sec. 2 of the present paper we study general features of the current noise in random walk models. The treatment is centred around the concept of a "dynamical" diffusion constant. In sec. 3 the continuous time random walk (CTRW) model for 1/f noise is briefly reviewed as an illustration of the general theory. Finally, section 4 contains a discussion where the role of fermistatistics for the application of random walk models is emphasized. It is argued that any model for 1/f noise based on long trapping times, including the CTRW model in its multiple trapping realisation, is incompatible with fermistatistics and is therefore unrealistic.
2. EXCESS CURRENT NOISE IN RANDOM WALK MODELS

To simplify the discussion we consider just one particle which performs a random walk in one dimension on a lattice with lattice constant \(a \). No assumption is made about the underlying dynamics which does not have to be markovian. It is assumed the direction of any single jump is random; via the fluctuation-dissipation theorem this ensures a frequency-independent conductivity. If the particle jumps at times \(\tau_i \) we assign to it a "dynamical" diffusion constant, \(D(t) \), defined by

\[
D(t) = \frac{a^2}{2} \sum_i \delta(t-\tau_i).
\]

(2)

\(D(t) \) is characterised by

\[
\langle v(t) v(t') \rangle_{re} = 2 D(t) \delta(t-t')
\]

where \(v \) is the velocity, or

\[
D(t) = \int_0^\infty \langle v(t) v(t+\tau) \rangle_{re} d\tau.
\]

(4)

Here, \(\langle \rangle_{re} \) denotes a "restricted ensemble average" by which is meant an average over the trajectories of all particles with the same \(D(t) \), i.e. with the same jump times. The time average of \(D(t) \) is the ordinary diffusion constant \(D \):

\[
D = \langle D(t) \rangle = \lim_{T_0 \to \infty} \frac{1}{T_0} \int_0^{T_0} D(t) dt.
\]

(5)

The relevance of \(D(t) \) to the excess current noise becomes clear when the current in an external electric field is evaluated. In
a weak field it is slightly more probable for the particle to
jump to one side than to the other. To lowest order in E the
total jump probability does not change, however, and the particle
still jumps at times τ_i. The restricted ensemble average
current is thus proportional to the equilibrium $D(t)$:

$$\langle J(t) \rangle_{E,\text{re}} = \frac{q^2 E}{k T} D(t) \quad (6)$$

where q is the particle charge, and k and T have their
usual meaning. The constant of proportionality follows from
requiring the time average of eq. (6) to obey the Nernst-Einstein
relation. The measured current noise is the cosine transform of
the current autocorrelation function. Since the currents at
different times within the restricted ensemble are uncorrelated,
one has

$$\langle J(t) J(0) \rangle_{E,\text{re}} = \langle J(t) \rangle_{E,\text{re}} \langle J(0) \rangle_{E,\text{re}}$$

$$= \left(\frac{q^2 E}{k T} \right)^2 D(t) D(0) \quad (t>0) \quad (7)$$

When averaged over the whole ensemble of possible jump times this
leads to

$$\langle J(t) J(0) \rangle_E = \left(\frac{q^2 E}{k T} \right)^2 \langle D(t) D(0) \rangle \quad (t>0) \quad (8)$$

where $\langle \rangle$ on the right hand side denotes an equilibrium average.
To obtain the total current autocorrelation function one should
add to this expression a white noise term proportional to $\delta(t)$.
This term is not of interest here. According to eq. (8) the
excess noise measures the spectrum of dynamical diffusion
constant fluctuations in equilibrium.

The autocorrelation function \(\langle D(t)D(0) \rangle \) has a simple physical interpretation. From eq. (2) it follows immediately that

\[
\langle D(t)D(0) \rangle = \frac{D a^2}{2} p(t|0) \quad (t>0)
\]

(9)

where \(p(t|0) \) denotes the probability density for a jump at time \(t \) given the particle jumped at \(t=0 \). Except for a numerical constant, low frequency excess noise is thus the cosine transform of \(p(t|0) \) [15]. 1/f noise implies long time correlations in this probability. The particle or the medium in which it jumps somehow has a long term memory. For an ordinary random walk, on the other hand, \(p(t|0) \) is constant and there is no excess noise.

Generalising the above results to more than one particle is straightforward. Assuming the particles are independent and non-interacting, one just lets \(\{t_i\} \) denote the collection of jump times for all the particles. In generalising to \(d \) dimensions the factor 2 in eqs. (2) etc should be replaced by \(2d \). Equations like (6) and (8) apply unchanged where \(J \) is now, of course, the component of the current in the direction of the field. No new features appear and in the rest of the paper only the one-dimensional case will be considered. The important thing, which is independent of the dimension and number of particles, is that all information about the noise lies in the statistical properties of the collections of jump times \(t_i \). In statistics a stochastic collection of times is referred to as a "point process". The study of point processes is a mature branch of the theory of stochastic processes [15-18]. Point processes have been applied in the study of photoelectron statistics, cosmic ray
showers, kinetic theory, population growth, telephone traffic, etc. An important class of point processes is the class of so-called doubly stochastic Poisson processes. An example is the jump times T_i for a particle performing a random walk where the jump probability at time t, $\gamma(t)$, is itself a stochastic process. Here one may define a second kind of time dependant diffusion constant, $\tilde{D}(t)$, by

$$\tilde{D}(t) = \frac{a^2}{2} \gamma(t).$$

(10)

While $\tilde{D}(t)$ is of course different from $D(t)$, their statistical properties are identical: For the average over a particular realisation of $\gamma(t)$ it is easy to see that

$$\langle D(t_1)\cdots D(t_n) \rangle = D(t_1)\cdots D(t_n) \tilde{D}(t_1)\cdots \tilde{D}(t_n).$$

Averaging this expression over all possible $\gamma(t)$'s leads to

$$\langle D(t_1)\cdots D(t_n) \rangle = \langle \tilde{D}(t_1)\cdots \tilde{D}(t_n) \rangle.$$

(11)

Thus, our definition of $D(t)$ in eq.(2) is consistent in the case where the ordinary diffusion constant really does fluctuate in time via a time dependent jump probability.

We now turn to the problem of expressing the current autocorrelation function in an external field in terms of equilibrium current fluctuations. Focusing attention on diffusion constant fluctuations according to eq.(8), we note that the integrated dynamical diffusion constant counts the number of jumps, N, in time t:

$$N = \frac{2}{a^2} \int_0^t D(t')dt'.$$

(12)
For the variance of N one has

$$
\langle (\Delta N)^2 \rangle_t = \frac{4}{a^4} \left[\int_0^t \int_0^t \langle D(t')D(t'') \rangle dt' dt'' - \left(\int_0^t \langle D(t') \rangle dt' \right)^2 \right]
$$

$$
= \frac{8}{a^4} \int_0^t (t-\tau) C_D(\tau) d\tau
$$

(13)

where $C_D(\tau)$ is the autocorrelation function for the dynamical diffusion constant,

$$
C_D(\tau) = \langle D(\tau)D(0) \rangle - D^2.
$$

(14)

Equation (13) leads to

$$
C_D(\tau) = \frac{a^4}{8} \frac{d^2}{d\tau^2} \langle (\Delta N)^2 \rangle_t.
$$

(15)

The next step is to relate the right hand side to averages of the displacement in time t, $\Delta X(t)$. The quantity $\langle e^{i k \Delta X(t)} \rangle$ is an average of a product of independent factors $e^{\pm i k a}$ and thus

$$
\langle e^{i k \Delta X(t)} \rangle = \langle \cos^N(ka) \rangle_t.
$$

(16)

From this equation averages of all powers of $\Delta X(t)$ can be found.

For the first two non-zero averages one finds

$$
\langle (\Delta X)^2(t) \rangle = -\frac{d^2}{d k^2} \left. \langle \cos^N(ka) \rangle_t \right|_{k=0} = a^2 \langle N \rangle_t
$$

$$
\langle (\Delta X)^4(t) \rangle = \frac{d^4}{d k^4} \left. \langle \cos^N(ka) \rangle_t \right|_{k=0} = a^4 \left(3 \langle N^2 \rangle_t - 2 \langle N \rangle_t^2 \right).
$$

(17)
In particular, the fourth order cumulant of $\Delta X(t)$,
\[\langle \Delta X^{(4)}(t) \rangle \equiv \langle (\Delta X)^2(t) \rangle - 3 \langle (\Delta X)^2(t) \rangle^2, \]
is given by
\[\langle \Delta X^{(4)}(t) \rangle = a^4 \left(3 \langle (\Delta N)^2 \rangle_t - 2 \langle N \rangle_t \right). \tag{18} \]

Since $\langle N \rangle_t$ is always proportional to t, eq. (18) in conjunction with eq. (15) implies [19–22]
\[C_D(t) = \frac{1}{24} \frac{d^2}{dt^2} \langle \Delta X^{(4)}(t) \rangle. \tag{19} \]

Equation (19) was first derived by Kuzovlev and Bochkov as a consequence of
\[\langle e^{ik\Delta X(t)} \rangle = \langle e^{-k^2 \int_0^t D(t) dt} \rangle \tag{20} \]
derived for "slowly fluctuating" $D(t)$ [20]. Their definition of $D(t)$ is not obvious, but eq. (20) is not valid for any reasonable definition of $D(t)$ as long as $a \neq 0$, since it does not apply even in the case of an ordinary random walk with a constant $D(t)$: For $D(t) = D$ eq. (20) reduces to \(\ln \langle e^{ik\Delta X(t)} \rangle = -k^2 D t \) which implies $\langle \Delta X^{(4)}(t) \rangle = 0$. In reality $\langle \Delta X^{(4)}(t) \rangle \propto t$ in this case since cumulants are additive and $\Delta X(t)$ is a sum of independent increments. Instead, eq. (20) must be replaced by
\[\langle e^{ik\Delta X(t)} \rangle = \langle e^{\frac{2 \ln(\cos(\omega t))}{a^2} \int_0^t D(t) dt} \rangle \tag{21} \]
which just combines eqs. (12) and (15). For $a \to 0$ eq. (21) reduces to eq. (20). This limit, however, is only permissible in certain models. From eq. (21) it is possible to derive eq. (19) directly by expanding the logarithm of the equation to fourth
order in k, but we found it more instructive and also useful
below to arrive at eq. (19) via averages of N and its
fluctuations.

Defining as usual the fourth order cumulant of the velocity by

$$\langle V(t_1), V(t_2), V(t_3), V(t_4) \rangle \equiv \langle V(t_1) V(t_2) V(t_3) V(t_4) \rangle - \langle V(t_1) \rangle \langle V(t_2) \rangle \langle V(t_3) \rangle \langle V(t_4) \rangle$$

$$- \langle V(t_1) \rangle \langle V(t_3) \rangle \langle V(t_2) \rangle \langle V(t_4) \rangle$$

$$- \langle V(t_1) \rangle \langle V(t_4) \rangle \langle V(t_2) \rangle \langle V(t_3) \rangle$$

(22)
equation (19) can be rewritten as

$$C_D(t) = \int_0^t d\tau' \int_0^{\tau'} d\tau'' \langle V(t), V(\tau'), V(\tau''), V(0) \rangle.$$ (23)
The right hand side is the Burnett coefficient [21, 22]. Equation
(23) was derived by Kuzovlev and Bochkov [20] from eq. (20), and
also by Nieuwenhuizen and Ernst from a different point of view
[22]. The latter authors define a "fluctuating diffusion
coefficient", $D(t, \tau)$, by

$$D(t, \tau) = \frac{1}{2} \frac{\partial}{\partial \tau} \left[(x(t) - x(\tau))^2 \right].$$ (24)

They then proceed to show for the markovian random walk model
under study that $C_D \equiv \langle D(t, \tau) D(t', \tau') \rangle - D^2$ is actually a function
of $t-t'$ only which obeys eq. (23).

Combining eqs. (8), (14) and (23) we finally arrive at

$$\langle J(t) J(\theta) \rangle_E = \langle J \rangle_E^2 + \left(\frac{E}{kT} \right)^2 \int_0^t d\tau' \int_0^{\tau'} d\tau'' \langle J(t), J(\tau'), J(\tau''), J(\theta) \rangle.$$ (25)

Since cumulants are additive, this equation implies the excess
current noise is proportional to $\langle J \rangle_E^2 / V$ as in experiments
(eq. (1)). Actually, this follows also directly from eq. (8). It
was first shown for a random walk model by Tunailey [23]. Equations like eq. (25) has been derived by a number of authors [13,14,20,21,22,24], thereby greatly clarifying and simplifying the subject by reducing the current noise in an external field to equilibrium current fluctuations. We note here that it is actually possible to express \(\langle J(t)J(0) \rangle \) in terms of equilibrium two point correlation functions. Since

\[
|J(t)| = q \alpha \sum_i \delta(t-t_i) = \frac{2q}{\alpha} D(t),
\]

equation (8) can be rewritten as

\[
\langle J(t)J(0) \rangle = \left(\frac{q \alpha E}{2kT} \right)^2 \langle |J(t)| |J(0)| \rangle \quad (t>0)
\]

where the right hand side is, as usual, an equilibrium average.

This result is simpler than eq. (25) and, perhaps, more aesthetically pleasing. But it is less general than eq. (25) since it explicitly involves the lattice constant and thus depends on the existence of a lattice.

For the generation of 1/f noise one needs long time correlations in the fluctuations of \(D(t) \). Actually, noise that varies approximately as 1/f is obtained only if \(C_0(t) \) is almost constant, typically varying as \(\log(t) \) to some power. One may imagine two different ways of generating 1/f noise. The one case is that of "genuine" mobility fluctuations, i.e. when the random walk is a doubly stochastic Poisson point process with 1/f noise in the \(\tilde{D}(t) \) fluctuations of eq. (10). The other case is when long time correlations in \(D(t) \) arise because of occasional long trapping times of the particles. Here one must assume the existence of a broad spectrum of trapping times exceeding the
longest experimental times. This may be regarded as the case of number fluctuations since a charge carrier trapped for the whole period of observation for all practical purposes is non-existent.

We close this section by showing that only 1/f noise with strong fluctuations in the number of jumps is observable. By strong noise is here meant noise obeying

$$\langle (\Delta N)^2 \rangle_t \gg \langle N \rangle_t$$

(28)
on the relevant time scale. This is the criterion for \(N \) fluctuations much larger than for an ordinary random walk where there is equality in eq. (28) on account of the Poisson statistics. Both the mobility and the trapping mechanism may satisfy eq. (28) which rules out only the case of very weak mobility fluctuations. To show eq. (28) we calculate first the white noise in equilibrium. From \(\mathcal{J} = \text{q} \alpha \sum_i \delta(t - t_i) \) we get immediately

$$S_{\text{white}\mathcal{J}}(\omega) = 2q^2 \alpha^2 \frac{\langle N^2 \rangle_t}{t}, \quad t = \omega^{-1},$$

(29)
where the number of jumps per unit time, \(\langle N_t \rangle / t \), is of course independent of \(t \). In a weak external field there is a slight increase in the white noise which, however, is insignificant for the present calculation. Since \(C_\psi(t) \) varies only very slowly one has \(S_\psi(\omega) \ll 4\xi C_\psi(t) \) and eq. (13) implies \(C_\psi(t) \approx \frac{a^4}{t} \frac{\langle (\Delta N)^2 \rangle_t}{t} \) where \(t = \omega^{-1} \). Combining these results we get for the excess current noise

$$S_{\text{exc}\mathcal{J}}(\omega) \approx q^2 \alpha^2 \left(\frac{qae}{kT} \right)^2 \frac{\langle (\Delta N)^2 \rangle_t}{t}, \quad t = \omega^{-1}$$

(30)
In linear response theory \(qaE/kT \ll 1 \) and the criterion for
measurable excess noise reduces to eq. (28). This condition is independent of the size of the system since both sides of eq. (28) are additive.
3. EXAMPLE: EXCESS NOISE IN THE CONTINUOUS TIME RANDOM WALK MODEL

One way or the other 1/f noise arises from long time correlations in the diffusion constant fluctuations. This may occur for instance via occasional very long trapping times for the change carriers. The simplest example of this is the continuous time random walk (CTRW) model of Montroll and Weiss [25]. Here the jump probability at any time is a function only of the time elapsed since the preceding jump. The CTRW model was first applied to the 1/f noise problem by Tunalety [23] and later by Nelkin and co-workers [24, 26]. The central quantity in this model is the waiting time distribution function, \(\varphi(t) \), which is the probability density for jumps the time \(t \) after the latest jump. In the language of stochastic point processes, the sequence of waiting times is a so-called renewal process [16, 27].

In this section we calculate the excess noise from \(\varphi(t) \). This was first done by Tunalety [23] but is repeated here as an illustration of the general theory of sec. 2 and also because the below derivation is simpler than that of Tunalety.

If the particle jumps at \(t=0 \) we let \(\varphi_n(t) \) denote the probability density for the \(n \)’th jump hereafter occurring at time \(t \). Obviously one has

\[
\varphi_{n+1}(t) = \int_0^t \varphi_n(t-t') \varphi(t') dt'
\]
(31)

For the function \(f(t) \) defined by

\[
f(t) = \sum_{n=1}^{\infty} \varphi_n(t)
\]
(32)
equation (31) implies
\[
\int_t^t - \psi(t) = \int_0^t f(t-t) \psi(t) \, dt
\]
(33)

Taking the Laplace transform of this equation one gets
\[
\mathcal{F}(s) - \mathcal{F}(s) = \mathcal{F}(s) \mathcal{F}(s)
\]
, or
\[
\mathcal{F}(s) = \frac{\mathcal{F}(s)}{1 - \mathcal{F}(s)}
\]
(34)

The quantity \(p(t|o) \) occurring in eq. (9) is just \(f(t) \) and thus
\[
S_{\text{exc}}(\omega) = \frac{S_{\text{exc},p\omega}}{D^2} = \frac{a^2}{2D} \int_0^\infty f(t) \cos(\omega t) \, dt
\]
\[
= \frac{2a^2}{D} \text{Re} \, \mathcal{F}(i\omega) = \frac{2a^2}{D} \left[\text{Re} \, \frac{1}{1 - \mathcal{F}(i\omega)} - 1 \right]
\]
(35)

This is Tunauley's result for the excess noise [23]. It is convenient to write \(\psi(t) \) as a sum of exponential decays,
\[
\psi(t) = \langle \chi e^{-xt} \rangle
\]
, where the average is over a distribution of jump rates [24, 26]. From this \(\mathcal{F}(s) = \langle \frac{s}{s+5} \rangle \) and \(D = \frac{a^2}{2} \langle \chi^2 \rangle \) which substituted into eq. (35) yields
\[
S_{\text{exc}}(\omega) = \frac{2a^2}{D} \left[\text{Re} \, \frac{1}{i\omega \langle \frac{s}{s+5} \rangle} - 1 \right] = \frac{2a^2}{D \omega} \left[\text{Im} \, \left(\frac{1}{\chi+i\omega} \right)^{-1} - \omega \right]
\]
(36)

i.e.
\[
S_{\text{exc}}(\omega) = \frac{4\langle \chi^2 \rangle}{\omega} \left[\text{Im} \, \left(\frac{1}{\chi+i\omega} \right)^{-1} - \omega \right]
\]
(37)

A simple example yielding 1/f noise is the case of all \(\chi^2 \)s equally likely:

14
\[p(x) = \frac{1}{x_0}, \quad x_{\text{min}} < x < x_0 \]

(38)

where \(x_{\text{min}} < x_0 \) is assumed. One may think of \(x_0 \) as a phonon frequency and \(x_{\text{min}} \) as corresponding to long waiting times, e.g. one day or one year. For the whole range of intermediate frequencies \(\langle (x_0 \omega) \rangle \approx \frac{x_0}{\nu} \ln(x_0/\omega) \) and

\[s_{\text{exc}}(\omega) \equiv \frac{4}{\omega} \ln \lambda \Im \frac{1}{\ln(x_0/\omega)} \approx \frac{2\pi \ln \lambda}{\ln^2(x_0/\omega)} \frac{1}{\omega} \]

(39)

where \(\lambda = x_0/x_{\text{min}} \). We thus find \(s_{\text{exc}}(\omega) \propto \omega^{-\alpha} \) where

\[\alpha = 1 - \frac{2}{\ln(x_0/\omega)} \]

(40)

At ordinary laboratory frequencies one has \(\alpha \approx 0.9 \). This model may be termed the "standard model of 1/f noise" since it is probably the simplest exactly soluble random walk model giving 1/f excess noise. Of course 1/f noise is built into the model via eq. (38). This is equivalent to a waiting time distribution function \(\Phi(t) \propto t^{-2} \) [28] above \(x_{\text{min}} \), which implies a logarithmically divergent average waiting time. The excess noise of the standard model is identical in functional form to the expression derived by Kuzovlev and Bockkov for a scale-invariant random walk [10, 20]. Their derivation is based on eq. (20) which has been criticised above. It is not quite transparent, also the factor \(\ln \lambda \) in eq. (39) is absent in their calculation of the excess noise.
Random walk models provide a simple framework for understanding the fluctuation-dissipation theorem. It is therefore an obvious idea also to use these models for getting a better understanding of low frequency resistance fluctuations. Various random walk models have been studied with this purpose [19-24, 26, 28-30]. In this paper a general framework for discussing excess noise in random walk models has been proposed. Following previous work, in sec. 2 we focused on the concept of a fluctuating diffusion constant, the 'dynamical' diffusion constant $D(t)$. While the exact definition of $D(t)$ hitherto has not been clear, we here use a definition of $D(t)$ which is simpler than previous definitions. For all practical purposes, however, it is identical to these since the expressions for $\langle D(t)D(0) \rangle$ in eqs. (19) and (23) are identical to those given by Kuzovlev and Bochkov [19, 20], and Machta, Nelkin, Nieuwenhuizen and Ernst [21, 22]. The relevance of $D(t)$ to excess current noise is shown by eq. (8) according to which the current fluctuations in an external field directly probes the equilibrium $\langle D(t)D(0) \rangle$. An important general property of random walk models is the fact that the noise is proportional to D_E^2 and inversely proportional to the volume or any other extensive property like the number of charge carriers. This follows immediately from eq. (8) since $D(t)$ and autocorrelation functions are additive.

As an example of an application of the general formalism, note that eq. (16) is valid also in a time-dependant external field. From this it is straightforward to show that in a sinusodial field one finds the so-called V_A noise [31-33] which is directly proportional to the magnitude of the 1/f noise in a
constant field. A weakness of the formalism of sec. 2 should be mentioned, namely that it apparently does not easily allow for an exact calculation of the white noise in an external field. Though insignificant in the linear regime, there is an interesting small increase in the white noise when the field is turned on [22,23].

The dynamical diffusion constant is proportional to the absolute value of the current. This leads to a simple expression for the current fluctuations in an external field in terms of equilibrium fluctuations (eq. (27)), a result which can be rewritten in terms of autocorrelation functions as

$$\langle \langle J(t) - \langle J \rangle E \rangle \langle J(0) - \langle J \rangle E \rangle \rangle_E = \left(\frac{q\alpha E}{2kT} \right)^2 \langle \langle J(t) - \langle J \rangle \rangle \langle J(0) - \langle J \rangle \rangle \rangle \rangle_{\text{eq}}$$

(41)

Analogous to the frequency-dependent conductivity which probes the equilibrium \textit{velocity} autocorrelation function, the excess noise spectrum thus probes the equilibrium \textit{speed} autocorrelation function. But it should be remembered that a frequency independent conductivity must be assumed to derive eq. (41), and also that the random walk takes place on a lattice. Equation (41) cannot be expected to apply generally. For this to be the case, one should be able to define a characteristic length to play the role of the lattice constant \(a \) in eq. (41). The only possibility for this seems to be to let \(a \) be the length for which \(qaE \lesssim kT \) at fields marking the onset of non-linearities. Since, however, non-linearities involve new physics which is in general uncorrelated to linear response phenomena, there is little hope this approach can be generally valid. Thus, eq. (41) must be limited to lattice models.

The unified formalism for excess current noise in random walk
models developed above provides a convenient starting point for a discussion of general properties of 1/f noise. In particular, the point process approach makes it possible to throw some light on the old controversy as to whether 1/f noise is due to mobility or to number fluctuations [6, 9]. We end this paper by giving a general argument to the effect that fermi-statistics rules out the number fluctuation mechanism. Mobility fluctuations correspond to noise in the effective charge carrier Hamiltonian, whereas number fluctuations due to occasional deep trapping is noise generated by the Hamiltonian itself. In the language of point processes, the standard example of mobility fluctuations is the case when the jump times \(T_i \) constitute a doubly stochastic Poisson process, while the standard example of trapping noise is the case when \(T_i \) is a renewal process, i.e. when we have a continuous time random walk. This case is non-markovian and therefore in a sense unphysical, admittedly, but the CTRW model is equivalent to a markovian multistate trapping model where the noise then is indeed generated by the Hamiltonian [26].

In sec. 3 the excess noise in the CTRW model was calculated. A simple example termed the standard model was worked out in detail. This model is one out of the class of CTRW models discussed by Nelkin and Harrison [26]. In the multistate trapping realisation of the CTRW, the standard model corresponds to a density of energies, \(\varepsilon \), given by

\[
p(\varepsilon) \propto \exp\left(\frac{\varepsilon}{kT}\right).
\]

(42)

Though this implies only very few deep trapping states, in the course of time all energies are equally likely occupied because of the Boltzmann factor to be multiplied to eq. (42) to get the
probability. Thus, the standard model is just another example of the old idea of $1/f$ noise arising when all activation energies are equally likely. At the same time the standard model satisfies the requirement for $1/f$ noise given by Nieuwenhuizen and Ernst, namely an exponential density of states \cite{22,28}.

A temperature-dependent density of states as in eq. (42) arises in a system of fermions. Here a single particle feels, in a mean-field approximation, a density of available states below the fermi energy, $\rho_{\text{eff}}(\epsilon)$, which is given by

$$
\rho_{\text{eff}}(\epsilon) \approx n(\epsilon) e^{-\frac{\epsilon - \epsilon_F}{kT}} \quad (\epsilon < \epsilon_F)
$$

(43)

where $n(\epsilon)$ is the ordinary density of states. For a constant $n(\epsilon)$ eq. (42) is obtained. Equation (43) implies $1/f$ noise in the motion of the single particles, a point we will return to below. While interesting on its own, this has nothing to do with the observed $1/f$ resistance fluctuations, however. This is because the mean-field approximation does not apply due to strong interparticle correlations: Below the fermi level the particle number fluctuations (in one energy level) are exponentially small, $\langle (\Delta n)^2 \rangle \approx \langle n \rangle \langle \Delta n - \langle n \rangle \rangle \ll (\langle n \rangle)^2$ \cite{34}, while for independent particles one would have $\langle (\Delta n)^2 \rangle \approx (\langle n \rangle)^2$ (because of the Poisson statistics), i.e. much larger fluctuations.

We now extend the above and argue that fermi-statistics actually kills any $1/f$ noise model based on the trapping mechanism. Basically, one may imagine two different ways of producing long trapping times. The first case involves hopping between localised states of similar energy separated by various long tunnelling distances or large energy barriers. In this case, inevitably, there is a strong frequency-dependence of the
conductivity and models of this kind cannot explain the usual case of 1/f fluctuations in a frequency-independent conductivity. (Note that McWhorter's model based on tunnelling to surface states [9] is not ruled out by this argument which is only concerned with bulk and isotropic 1/f noise.) The second way of having long trapping times is that of trapping into deep energies. This only works for independent particles with the peculiar density of states of eq.(42). For fermions, the density of states above the fermienergy is not temperature-dependent, and below the fermi-level, where eq.(43) does apply in a mean-field sense, the particles are not independent as discussed already.

To summarise the effect of fermi-statistics, it has been argued that for fermisystems 1/f resistance fluctuations cannot be due to occasional deep trapping of the charge carriers. The number fluctuation mechanism thus can be ruled out on general grounds, and e.g. the CTRW model in the multiple trapping realisation is not realistic. Thus, assuming the noise is markovian, the noise must be caused by mobility fluctuations. The central problem, which till today remains largely unsolved, is to identify the origin of the mobility fluctuations.

While fermi-statistics rules out number fluctuations, it implies on the other hand a peculiar kind of "single particle" 1/f noise: The motion of a single localised fermion exhibits 1/f noise as a consequence of eq.(43). In principle this is observable, since, for a system of fermions described by a master equation (an implicit assumption in the argument), there are no quantum coherence effects and, in effect, the particles are classical and distinguishable. Similarly, atoms or ions diffusing in a disordered medium with a distribution of available potential minima also exhibit single particle 1/f noise, since
they behave as fermions because of their strong repulsion. This should be observable by monitoring the motion of tracer atoms or ions in time.

Except for the above arguments ruling out number fluctuations, the cause of 1/f noise has not been discussed in the present paper. We feel there is no simple and generally valid mechanism explaining 1/f noise. Rather, 1/f noise may arise from a number of different mechanisms which probably, one way or the other, involve lattice defects overcoming or tunnelling through barriers. Following this line of thought, 1/f noise and its dependence on temperature, etc, provides important information about the solid under study. Note that while $S_{\text{exc}}(\omega)$ probes only $(D(t)D(0))$, there is an enormous amount of information hidden in the higher order correlation of $D(t)$. This is illustrated by the fact that the total amount of information in the noise is contained in a function of two variables

$$\mathcal{P}(u,t) = \langle e^{uN} \rangle_t$$

(44)

while $S_{\text{exc}}(\omega)$ is only a function of one variable. The fact that there is more to the noise than just the spectrum has been emphasized already 10 years ago by Voss in a discussion of linearity of the 1/f noise mechanism [35]. The higher order correlations of $J(t)$ and thereby $D(t)$ are accessible today by digital techniques and their determination should provide a means of distinguishing between various models for 1/f noise. Other promising lines of research is the measurement of 1/f noise anisotropy [11], and the problems of stationarity of the noise and the dependence of the noise on the annealing state (in any system with long relaxation times the possibility of "glass transitions" should not be forgotten). 1/f noise is still mainly an experimental field and it seems a
lot of work remains to be done here before reliable theories can be arrived at.
ACKNOWLEDGEMENT: The present work was supported by the Danish Natural Science Research Council.
REFERENCES

1. H. Bittel, Ergebnisse der Exakten Naturwissenschaften 31 (1959) 84.

18. B. Saleh, "Photoelectron Statistics" (Springer Verlag,
1/78 ”TANKER OM EN PRAKTSIG” - et matematikprojekt.
Projektrapport af: Anne Jensen, Lena Lindenh-
skov, Marianne Kesselhavn og Nicolai Lomholt.
Vejleder: Anders Madsen

2/78 ”OPTIMERING” - Menneskets forægde beher-
skelsesmuligheder af natur og samfund.
Projektrapport af: Tom J. Andersen, Tommy R.
Andersen, Gert Krenøe og Peter H. Lassen
Vejleder: Bernhelm Boss.

3/78 ”OPGAVESAMLING”, breddekursus i fysik. Afs.
Lasse Rasmussen, Aage Bonde Krammer
og Jens Højgaard Jensen.

4/78 ”TRE ESSAYS” - om matematikundervisning,
matematiklærerruddannelsen og videnskabs-
grundlægningen.
Afs. Mogens Niss
Nr. 4 er p.t. udgået.

5/78 ”BIBLIOTHEFISK VEJLEDNING til studiet af
DEN MODERNE FYSIKS HISTORIE”.
Afs. Helge Kragh.
N. 5 er p.t. udgået.

6/78 ”NOGLE ARTIKLER OG DEBATINDLÆG om - lærer-
uddannelsen og undervisning i fysik, og - de
naturvidenskabelige faggs situation efter
studeretopstudiet”.
Afs. Karin Beyer, Jens Højgaard Jensen og
Bent C. Jørgensen.

7/78 ”MATHEMATIKKENS FORHOLD TIL СамFUNDSØKONOMIEN”. Afs. B.V. Gnedenko.
Nr. 7 er udgået.

8/78 ”DYNAMIK OG DIAGRAMMER”. Introduktion til
energy-bond-graph formalismen.
Afs. Peder Voetmann Christiansen.

9/78 ”OM PRAKSI’ INDFLYDELSE PÅ MATHEMATIKKENS UD -
VITLING”. Motiver til Kepler’s: ”Nova Stere-
ometria Dolorum Vinarium”.
Projektrapport af: Lasse Rasmussen.
Vejleder: Anders Madsen.

10/79 ”TERMODYNAMIK I GYMNASIET”.
Projektrapport af: Jan Christensen og Jeanne
Mortensen.
Vejledere: Karin Beyer og Peder Voetmann
Christiansen.

12/79 ”LINÆRE DIFFERENTIALLIGNINGER OG DIFFEREN-
TIALLIGNINGSYSTEMER”. Afs. Mogens Bruun Heefelt.
Nr. 12 er udgået.

13/79 ”CAVENDISH’S FORSØG I GYMNASIET”.
Projektrapport af: Gert Kreinøe.
Vejleder: Albert Chr. Paulsen.

14/79 ”BOOKS ABOUT MATHEMATICS: History, Philosophy,
Nr. 14 er p.t. udgået.

15/79 ”STRUKTURÆL STABILITET OG KATASTROFER i systemer
i og udenfor termodynamisk ligevej”. Specialrapport af: Leif S. Striegl.
Vejleder: Peder Voetmann Christiansen.

16/79 ”STATISTIK I KRÆFTFORSKNINGEN”.
Vejleder: Jørgen Larsen.

17/79 ”AF SÆRGE OG AT SVARE i fysikundervisningen”. Afs.
Albert Christian Paulsen.

18/79 ”MATHEMATICS AND THE REAL WORLD”, Proceed-
ings of an International Workshop, Ros-
kilde University Centre, Denmark, 1978.
Preprint.
Afs: Bernhelm Booss og Mogens Niss (eds.)

19/79 ”GEOMETRI, SKOLE OG VIRKELENGED”.
Projektrapport af: Tom J. Andersen, Tommy R.
Andersen og Per H.H. Larsen.
Vejleder: Mogens Niss.

20/79 ”STATISTISKE MODELLER TIL BESTEMMELSE AF SIGKE
DOER FOR CARTINOGENE STOPPER”.
Vejleder: Jørgen Larsen.

21/79 ”KONTROL I GYMNASIET-FORMÅL OG KONSERVENGER”.
Projektrapport af: Crilles Bacher, Per S. Jensen,
Frede Jensen og Torben Nysted.

22/79 ”SEMIMETAL OG SYSTEMEØNSKABER (I)”.
Report lineær respons og støj i fysikken.
Afs. Peder Voetmann Christiansen.

23/79 ”ON THE HISTORY OF EARLY WAVE MECHANICS - with
special emphasis on the role of reality”.
Afs. Helge Kragh.

24/80 ”MATHEMATIKFORSKELGER HOS 2.GCL”.
ab 1. En analyse. 2. Intervismateriale.
Projektrapport af: Jan Christensen og Knud
Lindhardt Rasmussen.
Vejleder: Mogens Niss.

25/80 ”EKSAMENSOPGIVER”, Dydsemodule/fysik 1974-79.

26/80 ”OM MATEMATISKE MODELLER”.
En projektport og to artikler.
Afs. Jens Højgaard Jensen m.fl.

27/80 ”METHODOLOGY AND PHILOSOPHY AF SCIENCE IN PAUL
DIMAC’S PHYSICS”.
Afs. Helge Kragh.

28/80 ”DILLBERT, EXPLANATION - at forklare til en ny
modell bygget på vækens vissoelastiske egens-
kafter”.
Projektrapport af: Gert Kreinøe.
Vejleder: Niels Boye Olsen.

29/80 ”ODIN - undervisningsmateriale til et kursus i
differentialligningssystemer”.
Projektrapport af: Tommy R. Andersen, Per H.H.
Larsen og Peter H. Lassen.
Vejleder: Mogens Bruun Heefelt.

30/80 ”FUSIONENERGIEN — — ATOMFÆLLETS ENDESTAD-
ION”. Afs: Oluf Danielsen.
Nr. 30 er udgået.

31/80 ”VIDENSKABSTORVIGE PROBLEMER VED UNDERVISNING -
systemer baseret på MENGELÆG”.
Projektrapport af: Troels Lange og Jørgen Kar-
rebak.
Vejledere: Niels Boye Olsen og Peder Voet-
mann Christiansen.

32/80 ”POLYMERE STOPPERS VISCOELASTISKE EGENSKABER —
BELYST VED HJÆLP AF MEKANISKE UNDERVISNINGER —
DER MÆNGELÆGSKALINER”.
Projektrapport af: Crilles Bacher og Preben
Jensen.
Vejledere: Niels Boye Olsen og Peder Voet-
mann Christiansen.

33/80 ”KONSTITUTIVE AF FAG INGEN FOR TEKNISK — NATO-
VIDENSKABLIGE UNDERVISNINGER. I-II”.
Afs. Arne Jacobsen.

34/80 ”ENVIRONMENTAL IMPACT OF WIND ENERGY UTILI-
ZATION”.
ENERGY SERIES NO. 1.
Afs. Bent Sørensen
Nr. 34 er udgået.
38/81 "TIL EN HISTORIEBÆK OM NATURREKENDELSE, TEKNologi OG SAMFUND".
Vejledere: Stig Andur Pedersen, Helge Kragh og Ib Thiersen.
Nr. 38 er p.t. udgivet.

39/81 "TIL KRETTERI AF VÆSTGÆNKEN".
Af: Jens Højgaard Jensen.

40/81 "TELEKOMUNIKATION I DANMARK - oplæg til en teknologivurdering".
Vejleder: Per Nørregaard.

41/81 "PLANNING AND POLICY CONSIDERATIONS RELATED TO THE INTRODUCTION OF RENEWABLE ENERGY SOURCES INTO ENERGY SUPPLY SYSTEMS".
ENGERY SERIES NO. 3.
Af: Bent Sørensen.

42/81 "VIDENSKAB TIL SAMFUND - En introduktion til materialistiske videnskabelige faktaelleren".
Af: Helge Kragh og Stig Andur Pedersen.

43/81 1. "COMPARATIVE RISK ASSESSMENT OF TOTAL ENERGY SYSTEMS".
2. "ADVANTAGES AND DISADVANTAGES OF DECENTRALIZATION".
ENGERY SERIES NO. 4.
Af: Bent Sørensen.

44/81 "HISTORISKE UNDERSØGELSER AF DE EXPERIMENTELLE FOR- UDLAGTERINGER FØR VINTERFORDS ATOMMODEL".
Projekt rapport af: Niels Thors Nielsen.
Vejleder: Bent C. Jørgensen.

45/82 Er aldrig udecmet.

46/82 "DESMERNISK UNDERVISNING OG FYSISK EKSPENDIS-
11111ILLUSTRERET VED TO EXEMPEL".
Projekt rapport af: Orben Olsen, Lasse Rasmussen og Niels Dreyer Sørensen.
Vejleder: Bent C. Jørgensen.

47/82 "BASEPASS OG DET VÆST OFFICIALID-ENKLIGE HEJLED".
ENGERY SERIES NO. 5.
Af: Bent Sørensen.

48/82 "EN UNDERSØGELSE AF MATEMATIKUNDERVISNINGEN PÅ ADVANCE-
KURSUS TIL KRÆVERVNS 'BÆKUM'.
Projekt rapport af: Lis Ellertsen, Jørgen Kærbaek, Troels Lange, Preben Nørregaard, Lissi Pedersen, Laust Riehøj, Lill Røn og Iacq Sholiki.
Vejleder: Mogens Niss.

49/82 "ANALYSE AF MULTISETTJELLERELLIVERE".
Projekt rapport af: Preben Nørregaard.
Vejledere: Jørgen Larsen og Rasmus Ole Rasmussen.

50/82 "HERSLEV - MILLIONER FOR VEDANNENDE ENERGI I EN LANDBÆK".
ENGERY SERIES NO. 6.
Rapport af: Bent Christensen, Bent Hove Jensen, Dennis B. Heloir, Bjarne Laursen, Bjarne Lillehorup og Jacob Maas Pedersen.
Vejleder: Bent Sørensen.

51/82 "HVID KAN DE ØLTER FOR AT AFNÆLGE PIGENS BLOKERING OVER FOR MATEMATIK ?".
Projekt rapport af: Lis Ellertsen, Lissi Pedersen, Lill Røn og Susanne Sønder.

52/82 "DESPERSION OF SPLITTING ELLIPTIC SYMBOLS".
Af: Bernhelm Booss og Krzysztof Wojciechowski.

53/82 "THE CONSTITUTION OF SUBJECTS IN ENGINEERING EDUCATION".
Af: Arne Jacobsen og Stig Andur Pedersen.

54/82 "FUTURE RESEARCH" - A Philosophical Analysis of Its Subject-Matter and Methods.

55/82 "MATEMATISKE MODELLER" - Litteratur på Roskilde Universitetsbibliotek.
En biografi.
Af: Else Højrup.
Vedr. tekst nr. 55/82 se også tekst nr. 62/83.

56/82 "EN - TO - MANGE" -
En undersøgelse af matematiske skolelærere.
Projekt rapport af: Troels Lange.
Vejleder: Anders Madsen.

57/83 "ASPECT EXPERIMENTERE" -
Skjulte variable i kvantemekanikken?
Projekt rapport af: Tom Jørgen Andersen.
Vejleder: Peter Voetmann Christiansen.
Nr. 57 er udgivet.

58/83 "MATEMATISKE VANDRINGER" - Modelbetragtninger over spredning af dyr mellem småbiotoper i ørgrøden.
Projekt rapport af: Per Hammershøy Jensen og Lone Vang Rasmussen.
Vejleder: Jørgen Larsen.

59/83 "THE METHODOLOGY OF ENERGY PLANNING".
ENGERY SERIES NO. 7.
Af: Bent Sørensen.

60/83 "MATEMATISK MODERSPRÆSIS" - et eksempel.
Projekt rapport af: Erik G. O. Gade, Jørgen Kar-
rebæk og Preben Nørregaard.
Vejleder: Anders Madsen.

61/83 "FYSIKS IDEOLOGISKE Funktion, SOM ET ExEMPEL PÁ EN NATUVISKAB - HISTORISK SET".
Projekt rapport af: Annette Frech Nielsen.
Vejledere: Jens Højrup, Jens Højgaard Jensen og Jørgen Vogelius.

62/83 "MATEMATISKE MODELLER" - Litteratur på Roskilde Universitetsbibliotek.
En biografi 2. rev. udgave.
Af: Else Højrup.

63/83 "CREATING ENERGY FUTURE: A SHORT GUIDE TO ENER-
GY PLANNING".
ENGERY SERIES No. 8.
Af: David Crossley og Bent Sørensen.

64/83 "VON MATEMATIK UND KRIEG".
Af: Bernhelm Booss og Hans Høyrup.

65/83 "AÆVENDT MATEMATIK - TEORI ELLER PRÆKIS".
Projekt rapport af: Per Hedegaard Andersen, Kir-
Vejledere: Bernhelm Booss og Klaus Grünbaum.

66/83 "MATEMATISKE MODELLER FOR PERIODISK SELECTION I FÆLLES omgivelser".
Projekt rapport af: Hanne Løbek Andersen, Ole Richard Jensen og Klavs Pradahl.
Vejledere: Jørgen Larsen og Anders Hede Madsen.

67/83 "ELPERØDTE METODER - EN NY METODE TIL LINÆR PROGRAMMERING".
Projekt rapport af: one Billmann og Lars Boye.
Vejleder: Mogens Brun Hessefelt.

68/83 "STOKASTISKE MODELLER I POPULATIONSEMTEK" -
til kritikken af teorierlade modeller.
Vejleder: Jørgen Larsen.
69/83 "LEMFORDELINGER I FYSIK":
- en text i 1.4 med kommentarer.
Af: Albert C. Paulsen.

70/83 "MEDLEMSKAB I STÆRKEFORSKINGEN".
Vejleder: Klaus Grünbaum.

71/83 "PIGER OG FYSIK":
- et problem og en udfordring for skolen?
Af: Karin Beyer, Susanne Blaagaard, Birthe Olsen, Jette Reich og Mette Vedselby.

72/83 "VENSKAB I FYSIK":
- to metaphoriske essays, om og af C.S. Peirce.
Af: Peder Voestmann Christiansen.

73/83 "EJN ENERGIANALYSE AF LÆNDERNE":
- en energianalyse af traditionelt.
ENERGY SERIES No. 5
Specialeopgave i fysik af: Bent Hove Jensen.
Vejleder: Bent Sørensen.

74/84 "MINDREKIRKE I FYSIK":
- en videnskabelig fortolkning og nyttet af at lære fysik.
Projektrapport af: Bodil Haldor og Linda Gøltz.
Vejleder: Jens Højgaard Jensen.

75/84 "MÆNGENÆRVIDENSKABEN I FYSIKKEN":
- en kæde af spørgsmål.
Projektrapport af: Martine Blom, Klaus Frisby og Bjørn Højlund.
Vejleder: Mogensen.

76/84 "KOBENHAVN I DANMARK?":
ENERGY SERIES No. 5
Af: Niels Boye Olsen.

77/84 "POLITISKE INDEKSER: KS FOR ATTOR?"
Oplægningslegning af de statiske modeller.
Projektrapport af: Svend Øve Hornum, Keld Nielsen.
Vejleder: Jørgen Larsen.

78/84 "KOBENHAVN KOBENHAVN?":
Vejleder: Niels Boye Olsen.

79/84 "MÆNGENÆRVIDENSKABEN I FYSIKKEN":
Projektrapport af: Henrik Overgaard, Mikael Wienerberg, Niels Højgaard Jensen.
Vejleder: Berthelsen.

80/84 "KURSUSMATERIALET I FYSIKKEN B":
Af: Mogensen.

81/84 "KURSUSMATERIALET I FYSIKKEN A":
Projektrapport af: Jørgen Wind Petersen og Jan Christensen.
Vejleder: Niels Boye Olsen.

82/84 "MÆNGENÆRVIDENSKABEN I FYSIKKEN":
Vejleder: Niels Boye Olsen.

83/84 "ON THE QUANTIFICATION OF SECURITY":
PEACE RESEARCH SERIES No. 1
Af: Bent Sørensen.

84/84 "KORREKTUR AF FYSIKKEN I FYSIKKEN":
Af: Jens Højgaard Jensen, Mogensen.

85/84 "CENTRUM TABLOR I MATHEMATIKKEN":
Projektrapport af: Arne Højgaard, Arne Øvergaard, Else Marie Pedersen.
Vejleder: Stig Andur Pedersen.

86/84 "SECURITY IMPLICATIONS OF ALTERNATIVE DEFENSE OPTIONS FOR WESTERN EUROPE":
PEACE RESEARCH SERIES No. 8
Af: Bent Sørensen.

87/84 "A SIMPLE MODEL OF AC HOOPING CONDUCTIVITY IN DISORDERED SOLIDS":
Af: Jeppe C. Dyre.

88/84 "RISKE, FALL AND RESURRECTION OF INFINITEMTIALS":
Af: Detlef Laugwitz.

89/84 "ENERGY OPTIMIZATION":
Af: Bjørn Lilletholm.

90/84 "ENERGY I FYSIKKEN":
Af: Albert C. Paulsen.

91/85 "KVENSTEDER I GYMNASIET":
1. Lerndevelopment
Projektrapport af: Børge Lundgren, Henning Sten Hansen.
Vejleder: Torsten Mayer.

92/85 "KVENSTEDER I GYMNASIET":
2. Materialer
Projektrapport af: Børge Lundgren, Henning Sten Hansen.
Vejleder: Torsten Mayer.

93/85 "THE SEMIOTICS OF QUANTUM - NON - LOCALITY":
Af: Peder Voestmann Christiansen.

94/85 "TRENGIGHEDS BOURGAKI - generen, matematikeren og andre".
Projektrapport af: Niels Højgaard Jensen.
Vejleder: Mogensen.

95/85 "AN ALTERNATIVE DEFENSE PLAN FOR WESTERN EUROPE":
PEACE RESEARCH SERIES No. 13
Af: Bent Sørensen.

96/85 "ASPECTS VED KRAVENDERSKAP":
Af: Bjarne Lillevold.

97/85 "ON THE PHYSICS OF AC HOOPING CONDUCTIVITY":
Af: Jeppe C. Dyre.

98/85 "ALGEBRALE KØRER I INFORMATIONSDEREN":
Af: Bent Sørensen.

99/85 "DER E RANGET FRA Q TIL K":
Projektrapport af: Niels Højgaard Jensen.
Vejleder: Stig Andur Pedersen.

100/85 "TALSTYDENS OPLYVING":
Af: Mogensen.

101/85 "EXTENDED MOMENTUM THEORY FOR WINDMILLS IN PERCUSSION FORM":
Af: Gennesh Senagapa.

102/85 "OPSTILLING OG ANALYSE AF MATHEMATISKE MODELLER, BELYST VED STUDIER OVER ENERGIFORENLEGGELSE OG -OMSTYRING":
Projektrapport af: Lis Ellertsen, Kirsten Hveltoft, Lill Røn.
Vejleder: Klaus Grünbaum.
103/Ø8 "TVÆRE VÆGTETRENE OG VISSELEGS EFFEKTIVE MIDI IDEER".
Projektrapport af: Niels Ole Dam og Kurt Jensen.
Vejleder: Bent Sørensen.

104/Ø8 "ANDROGENMÆNGKEN OG LOLENLEGNKEN".
Af: Jens Jæger.

105/Ø8 "THE FREQUENCY DEPENDENCE OF THE SPECIFIC HEAT OF THE
CLASS REACTIONS".
Af: Toge Crysensens.

106/Ø8 "QUANTUM THEORY OF EXTENDED PARTICLES".
Af: Bent Sørensen.

107/Ø8 "EN MYK GUR INGEN EPIDEMI".
- flodblyndhed som eksempel på matematisk modellering af et epidemiologisk problem.
Projektrapport af: Per Håknes Andersen, Lars Boye,
Carsten Hjort Jensen, Else Marie Pedersen og Erling Møller Pedersen.
Vejleder: Jesper Larsen.

108/Ø8 "APPLICATIONS AND MODELING IN THE MATHEMATICS CUR
RICULUM" - state and trends -
Af: Mogens Niss.

109/Ø8 "OX I STUDSMESTEN" - Cox's regressionsmodel anvendt på
studenteroplysninger fra RUC.
Projektrapport af: Mikael Vennberg Johansen, Poul Kat
lar og Torben J. Andreasen.
Vejleder: Jørgen Larsen.

110/Ø8 "PLANNING FOR SECURITY".
Af: Bent Sørensen.

111/Ø8 JØRGEN BENDT PÅ FLADE KORT".
Projektrapport af: Birgit Andreasen, Beatrix Quinones og
Jimmy Staal.
Vejleder: Mogens Niss.

112/Ø8 "VISSELEGENSØGLELE OF DANSK TETEROLOGISK INNOVATION
FREM TIL 1950 - BEVIS TIL ESEMPLER".
Projektrapport af: Per Odgaard Godke, Hans Hesal,
Frank C. Ludvigsen, Annette Bost Nielsen og Elin
Physant.
Vejleder: Claus Bryld og Bent C. Jørgensen.

113/Ø8 "DESIUSSION OF SPLITTING ELLIPTIC SYMBOL 11".
Af: Bernhelm Booss og Krzysztof Wojciechowski.

114/Ø8 "ANVENDELSE AF GRAFISKE METODER TIL ANALYSE
AF KONGESTrabEKnELLER".
Projektrapport af: Lone Billemaa, Ole R. Jensen
og Anne-Lise von Boos.
Vejleder: Jørgen Larsen.

115/Ø8 "MATEMATIKENS UDKLING AF TIL RENNAANCES".
Af: Mogens Niss.

116/Ø8 "A PHENOMENOLOGICAL MODEL FOR THE MEYER
- NEHELDEL RULE".
Af: Jeppe C. Dyre.

117/Ø8 "KRAFT & FUENVARMEOPTERING"
Af: Jacob Mich Pedersen.
Vejleder: Bent Sørensen.

118/Ø8 "TILFAELDIGHEDEN OG MÆNGDEGENHEDEN IFLIGE
PERCE og PISKERN".
Af: Peder Voetmann Christiansen

119/Ø8 "DET ER GRÆSKE VIST - EURIDICE FEMTE POSTULAT
KUNNE NOG SKÅRE HØRE I ANDREHAND".
Af: Iben Nai Christiansen.
Vejleder: Mogens Niss.

120/Ø8 "ET ANTLAL STATISTISKE STANDARDMOELLER".
Af: Jørgen Larsen

121/Ø8 "SIMULATION I KONTINUITET TID".
Af: Peder Voetmann Christiansen.

122/Ø8 "ON THE MECHANISM OF CLASS IONIC CONDUCTIVITY".
Af: Jeppe C. Dyre.

123/Ø8 "GAMMELFYSIKKEN OG EN STORE VERDEN".
Fysiklærerforeningen, DRUP, RUC.

124/Ø8 "OOGVESEMLING I MATEMATIK".

125/Ø8 "TÆVEGISER - systemet - en effektiv fotografisk spektrals
klassifikation af B-A- og F-stjener".
Projektrapport af: Birger Lundgren.

126/Ø8 "OM UDVILLINGEN AF EN SPEIELLE RELATIVITEITSKOR".
Projektrapport af: Lise Odpgaard og Linda Skotak Jensen
Vejledere: Karin Beyer og Stig Andur Pedersen.

127/Ø8 "GALOIS' BIDRAG TIL UDVILLINGEN AF DEN ABSTRAKTE
ALGEBRA".
Projektrapport af: Pernille Sand, Heine Larsen og
Lars Frandsen.
Vejleder: Mogens Niss.

128/Ø8 "SNÅRBY" - on ikke-standard analyse.
Projektrapport af: Niels Jørgensen og Mikael Klintorp.
Vejleder: Jeppe Dyre.

129/Ø8 "PHYSICS IN SOCIETY"
Lecture Notes 1983 (1986)
Af: Bent Sørensen.

130/Ø8 "Studies in Wind Power"
Af: Bent Sørensen.

131/Ø8 "FYSIK OG SAMFUND" - Et integreret fysik/historie
projekt om naturanskuelsens historiske udvikling og
dens samfundsæstetiske betingethed.
Projektrapport af: Jakob Heckscher, Søren Brød, Andy
Wierø.
Vejledere: Jens Høyrup, Jørgen Vogelius,
Jens Højgaard Jensen.

132/Ø8 "FYSIK OG DANNELE"
Projektrapport af: Søren Brød, Andy Wierø.
Vejledere: Karin Beyer, Jørgen Vogelius.

133/Ø8 "CHERNOBYL ACCIDENT: ASSESSING THE DATA.
ENERGY SERIES NO. 15.
Af: Bent Sørensen.

134/Ø8 "THE D.C. AND THE A.C. ELECTRICAL TRANSPORT IN AssEte SYSTEM"
Authors: M.B.EL-Den, N.B.Olsen, Ib Høst Pedersen,
Petr Visuor

135/Ø8 "INTUITIONISTISK MATEMATIKS METODER OG ERENDELSESS
TEORETISKE FORUDSÆTNINGER"
MATEMATISPECIAL: Claus Larsen
Vejledere: Anton Jensen og Stig Andur Pedersen

136/Ø8 "Mystisk og naturlig filosofi: En skitse af kristendommens
første og andet møde med græsk filosofi"
Projektrapport af Frank Colding Ludvigsen
Vejledere: Historie: Ib Thiersen
Fysik: Jens Højgaard Jensen

137/Ø8 "HOPMODeller FOR Elektrisk LEDNING I UORDNEDE
Faste SToffer" - Resume af licentiatsafhandling
Af: Jeppe Dyre
Vejledere: Niels Boye Olsen og
Peder Voetmann Christiansen.
138/87 "JOSEPHSON EFFECT AND CIRCLE MAP."
By: Peder Voetmann Christiansen

139/87 "Machbarkeit nichtbeherrschbarer Technik durch Fortschritte in der Erkennbarkeit der Natur"
Af: Bernhelm Boose-Bavnbek
Martin Bohle-Carbonell

140/87 "ON THE TOPOLOGY OF SPACES OF HOLOMORPHIC MAPS"
By: Jens Gravesen

141/87 "RADIOMETERS UDVIKLING AF BLODGRASAPPARATUR - ET TUKNOLOGIHISTORISK PROJEKT"
Projektrapport af Finn C. Physant
Vejleder: Ib Thiersen

142/87 "The Calderón Projector for Operators With Splitting Elliptic Symbols"
by: Bernhelm Boose-Bavnbek og Krzysztof P. Wojciechowski

143/87 "Kursusmateriale til Matematik på NAT-BAS"
af: Mogens Brun Heefelt

144/87 "Context and Non-Locality - A Peircean Approach"
Paper presented at the Symposium on the Foundations of Modern Physics The Copenhagen Interpretation 60 Years after the Cono Lecture, Joensuu, Finland, 6 - 8 August 1987.
By: Peder Voetmann Christiansen

145/87 "AIMS AND SCOPE OF APPLICATIONS AND MODELLING IN MATHEMATICS CURRICULA"
Manuscript of a plenary lecture delivered at ICMTA 3, Kassel, FRG 8.-11.9.1987
By: Mogens Niss

146/87 "BESTEMMELSE AF BUKKRESISTIVITETEN I SILICIUM" - en ny frekvensbaseret målemetode.
Fysikspeciale af Jan Vedde
Vejleder: Niels Bøye Olsen & Petr Viščor

147/87 "Rapport om BIS på NAT-BAS"
redigert af: Mogens Brun Heefelt

148/87 "Naturvidenskabsundervisning med Samfundstænkning" af: Peter Colding-Jørgensen DLH
Albert Chr. Paulsen

149/87 "In-Situ Measurements of the density of amorphous germanium prepared in ultra high vacuum"
by: Petr Viščor

150/87 "Structure and the Existence of the first sharp diffraction peak in amorphous germanium prepared in UHV and measured in-situ"
by: Petr Viščor

151/87 "DYNAMISK PROGRAMMERING"
Matematikprojekt af: Birgit Andrazen, Keld Nielsen og Jimmy Staal
Vejleder: Mogens Niss