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Abstract.

In the second part of our study we continue the development

of the spectral calculus of elliptic operators which take

the form A = GA(B/Bt + Bt) near a submanifold Y of
codimension 1 with self-adjoint B, . The index of the general
linear conjugation problem ("cutting and pasting" of elliptic
operators) is determined. A thorough analysis of the geometry
of Fredholm pairs of subspaces in Hilbert space and especially
of the spaces of Cauchy data is undertaken. These methods lead
to an alternative view of regular elliptic boundary value
problems where main results (old and new ones) can be obtained

through explicit transparent calculations.
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Q. Introduction and background

In the First Fart of our'paper (17, Theorem 1.4.1] (here and

in the following the Roman I refers always to Fart I of our
study) we obtained the following abstract scheme of
;desuspension“, i.e. .reduction of index problems . for
elliptic differential operators to the calculation of the
index of an explicitly constructed elliptic operator over a

lower—-dimensional manifold:

0.1. Theorem. If {Bt}tFI is a family of elliptic self-
first order over a closed Riemannian

adjoint operators of
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manifold Y with B, = g*lBog for a suitable bundle

automorphism g, then we get
sf{B 7, , = index P, —gF_ .

Here sf denotes the spectral flow, a certain integer valued
invariant studied in 8 I.1, and P, are the spectral pro-

jections of BD such that £ -gF_ becomes an elliptic pseudo-

differential operator of 0-th order over Y.

In the present Fart II we want to relate that abstract
scheme to the concrete analysis of classical elliptic
boundary value and transmission problems. It is partly our
purpose to rewrite the "story” of elliptic boundary value
problems in the spirit of one of the fundamerntal tenents of
numerical analysis: that any work with partial differential
equations should start with the analysis of the spaces of
Cauchy data.

As with the investigation of pseudodifferential operators
twenty years ago it turns out that the index problem - how
restricted it may appear - 1is an effective pilot for the
development of new constructive methods, perhaps bYecause one
always has something to "calculate" so that any empty
building of definitions immediately can be recognized as

inefficient.

Through this paper, X will denote a compact Riemannian
manifold with smooth boundary Y or a closed Riemannian
manifold which 1is divided into two parts X, and X_ by a
smooth submanifold Y of codimension 1. As in Part 1 we
restrict ourselves to elliptic operators of first order
which take the form A = GA(y)(QIGt + Bt) near Y, where t is
the normal coordinate, vy the tangential coordinate, Bt an
elliptic self-adjoint operator over Y, and the Green form GA
a bundle isomorphism over Y.

Qur interest for that type of operators originated in
working with the Cauchy~-Riemann operator of comple:x
analysis, the signature operator of the differential

topology of 4k-dimensional manifolds, and the Dirac operator
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of particle physics. However, if one starts with a system of
arbitrary-differentiel equations, our assumption is not
really. a restriction because any original - prbblem
incorporating higher order differential operators can be
eas1ly rewritten in that form. In fact, a large class of
pseudodlfferentxal elliptic operators can be reduced to that

type, SEE'E.g. ‘L6, § 61 and below, & 4.

We build the analysis of elliptic problems upon two
fgndamental concepts, the "pasting" of elliptic operators
from the two sides of a dividing submanifold and the
prqjections onto the respective spaces ef Cauchy data. This

1éads to the following structure of the present Fart I1:

Section 1 of Fart 11 is devoted to the genekal linear

conjugation problem (“cutting and 'pasting"l of: elliptic
operators) where we get an explicit formula u(g;A).= indeu
P-—gP for the change of the index of e11iptic-operator='

under repasting with a bundle automorphism g over Y. We need
not assume .that A admits elliptic boundary ’value problems
over ¥.. So roughly speaking, Section 1 treats the case of
"simele" basting and "intriguate" spectral projections. We
consider the treatment of this case as a pilot study for
‘ell1pt1c boundary value problems, where in seme sense the
pasting is more complicated and the spectral prOJECtIDnS are
trivial because the spectral proJectxons come from symbols

which are then algebraically degenerated near Y,

Section 2 deals with spectral inequalities for operatore
with nmon—-trivial symbols in H—l(TX) obtained originally by
Vafa and Witten ([35]. Their results provide an important
example of the application of the spectral flow and show the
fQII strength of the machinery we introduced in Fart 1.

Section 3 provides the necessary scheme for understanding
the functional analysis of elliptic operators near
submanifolds of codimension 1 and for the generalisations
and relations of the transmission problem with the boundary

value praoblem. Here the concept of Fredholm pairs of
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subspaces and the analysis of the related projections play
the same fundamental role in our approach as Fredholm
operators and parametrices do in the usual approach. The
power of the concept of Fredholm paifs ‘of subspaces is
perhaps most easily seen when we look for "dual" or
"adjoint" problems. Then, it is much more elementary aﬁd
constructive to investigate projections and orthogonél
complements instead of building a whole machinery of
parametriceé. Of course, the greates£  flexibility " is
obtained if one can easily switch between the space Fred(H)
of Fredholm operators and the space Fredz(H) of Fredholm
pairs. This will be carried out in detail.

In that connection we also will show that Fredz(H) is yet

another classifying space for the functor K.

Section 4 is of independent interest and can be read without
the preceding sections. It gives an introduction to the
theory of local elliptic boundary value problems via thé
Fredholm pairs of Cauchy-data spaces and the Calderon
projectors. This approach frees us both from the
uncomfortable G&rding inequalities and from the elaborate
parametrix machinery. Most of the results ar< certainly
well-known for analysts working in that field. Our special
aim is to write down explicitly and systematically the
relations between the different concepts and notations and
to show how elementary the most fundamental theorems really
are. We close Section 4 with the construction of a boundary
value problem which 1is equivalent to a given linear

conjugation problem.

Section 4 has an Appendix which contains a new variant of
the proof of the existence of the Calderon projector. We
follow the exposition of Solomyak with some substantial
short—cuts which are possible due to the results from the

beginning of Section 4.

The results of Section 1 are extended in [39] +to the more
general case where the pasting admits a shift

(diffeomorphism) of the base. There one also can find a more
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general versidn ofl the spectral "flow (for families of
operators with two rays of minimal growth in the terminology
of {29) and [311). The results of Section 3 were obtained
aftef a further analysis of the nbtion of the spectral‘flow
in the. context of certain spaées of prdjéctionsfas tar?ied
out in [383. A slightly different version of "répasting" was
used in [371 for the construction of relative K—-homology

groups on spinc—manifolds with:boundary.

n
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1. The General Linear Conjugation Problem

lLet X be a smooth maniféld and Y éwébooth submanifold of
codimension 1 which divides X into two submanifolds Xi with
boundary Y. We consider an elliptic operator
A: CT(X3E) =+ C®(X;F)

acting between sections of smooth vector bundles E and F
over X which splits near ¥, i.e. whi;h has over a tubular
neighborhoad N of Y in X the form GA(S/St + B) where
BA:

> Cm(Y;ElY) is a self-adjoint elliptic operator of first

ElY - FIY is a fixed bundle isomorphism and B: CS(Y;EIY)

order. (By fixing a Riemannian structure on X and a
Hermitian structure on E and F we provide the means for the

necessary ‘"parallel transport" of the (co)tangent vectors

and sections over N).

1.1. Definition. Let g: EIY > EIY be a wunitary

automorphism of EIY (inducing the identity in the base space

Y, i.e. mapping Ey onto E,Z for each y £ Y) such that

_1y
(1.1 9 dg g = gdg
where Iy denotes the principal symbol of B. Then we have

where 9 := g and g := By g GA—I the corresponding auto-
morphism on FlY.
We define the glued vector bundles

E9 := EIX_ ug EIX, and F9 := FIX_ ugF FIX, .

Then the principal symbol N of A gives us a new symbol

dAg: ¥ (E9) » o (FD) by

0,0, )V 1= g2, BV , x £ X, ¥ € (T, 0%, veE) =E.
Here s&: S5X =+ X denotes the canonical projection. Note that
0,9 has the same values as g, but it operates on another

bundle.

Now we take any operator A9 with the principal symbol dgg
and investigate the value of the difference
pi(g,A) := index AY - index A.

We call this The General Linear Conjugation Problem.
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Note. In our situation we can define A9 directly by
' A : _ X \ N_

- on

a9

G, (9/3t + Bt) ) N_

A

where N_ := N n X_1 and :
' By := rt) g7l Bg+ (1-r(t)) B

with a smooth real function equal to'i near i € {0,1X.

This problem was formulated by B. Bojarski in lectures given
(after 1976) in EBielefeld, Darmstadt, and Tbilisi, cf; L9l
and C103]. 1Its name is due to the strong interconnections
between this problem and the classical ‘Riemann—Hilbert
Aproblem  which however might be more subtle frbm the
analytical point of view since it deals with conjugated
pairs of “lo;al" sclutions.on the halves and hence wiﬁh
'fSerious" singularities over Y .(cf. . [30D) whereas our
generai' linear conjugation problem deals with "truely:

global" solutions of A9 though not of A.

1.2. Examples.

(a) The Classical Riemann—-Hilbert Problenm. Let X be the

1

2—sphére X :=82 ¢ u {w}, Y := 8 , hence

Xy = {z 1 bzl 2 13 and X_ := {z | l=zl = 13 .
Let g: ¥ » € \ {O} be a C®-map. We are looking for functions

o on X\Y sucht that

(i) Je/3z = 0 an int (X)),

(ii) @@ = 0O,

(iii) 04 (z) = lim @(z,) exists for each = € Y
z .z

where z, denotes a sequence of points in int(Xy)
approaching z and ¢, belongs to LE(SI),
(iv) 0,(z) = g(z) ¢_(z) for almost all z € V.

This classical problem was posed by Hilbert (in modified
form already by Riemann) and subsequently solved in whole
generality by F. Noether, Vekua, Bojarski et al., cf.

Muschelischwili ([24]. The crucial step in all approaches to

~
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this problem is the analysis near the dividing contour Y; or
more specifically, the reduction of _the (differential)
conjugation problem in two dimensions to an (infegrb—
differential) problem over the contouf Y, which is in one
dimension. In our simblest case one has to consider the
spaces Ht of the functions on Y which can appear as limité
of functions holomorphic in the outer {(inner) region. One

gets, see also (28, § 11
k
3

= - Lk -
H, = {Ekéo a z ¥ and H_ {Ek<o a,z
and it turns out that the solutions ¢ are in one-one
correspondence with the limit functions ¢, € H_  n gH_ .
2,1
(S

Let deg g > O, then H_ BgH_ span the whole L ) and

dim H ngH_ = deg g .
Bojarski ‘s -aim was to understand the relations between the

different integer valued invariants and indices involved.

(b)Y The “Heat Equation” on the Torus. Let X be the torus T2

which is parametrized as (I%SI)/({O,I}XSI), see Fig. 1.

21T
X

Let Y = £(O,x) | x € [0,201/{0,2a33 = S! and 1let E be the
trivial complex line bundle over Tz. Let g be the
automorphism of EIY given by g(x) := el® s X £ sl. Then the
bundle E9 is defined by
E9 = I1xSlx@/~ with (1,x%,2) ~ (O,x,e 1%z),
hence
CT2;E9) = (Ff € C®(R%) | f(t+1,x) = e * f(t,x) and
flt,x+2a) = f(t,x)3.

Let us analyze the situation of Example I.1.21(d) further:
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A9 = 3/8t - id/3x + r(t) : C®(T2;ED) o C®(T%;ED),
where r(t) is again a -smoothing function equal to i near i €
{0,1 and A := 3/t - i3/9x. Obviously we have index A = 0
and; from the earlier—derived Theorem 1.1.19, '
index A9 = sf’Bt =1

where Bt t= —-i@/3Ix + r(t).
Actually we are able to make the computation by hand for the
operator A9 = 3/3t - iasax + t. We can. represent -any eect1on
of the bundle EY as a series Fltyx) = zkéz fk(t)elkY with
fk(t+1)=fk+1(t). Therefore the equation aA9%f = o giVes us
the following equations for fk '

fk'(t) + (L+t)fk
As a result we get fk(t) =C exp (- 1/'1 (k+t)

() =0, k€ Z

2). Moreaover CP

doesn’t depend on k, because of the equality fk(t+1) =
k+1(t)' Thus the solution. of A9f = O has the form

E, C explike) exp(=1/2(k+t)%) s

. ) > -
= C exp(-1/2 t%) Zk explikz ~ kKT/2)

where z = x+it. Thus the kernel of Ag-isAone—dimensional.
The. same calculation for the operator —B/St;ia/3x+t shows
that there is no solution for (AHY*¢ = 0. ' |

Now the spaces H, < L2¢sl) of e1genfunct10ns of the operator

B = i 3/3% with non- negative (negat1ve) e1genva1ues are of
course equal to
Hy := span {elk;':}k o

and it is obvious that
sf{Bt} = index F_(F) ~ gF_(B) =1
if B, := (1-t)BE + tg 'Bg and F,(B) are the spectral

projections.

{(c) The Signature Operator over Szm with Coefficients in an
Auxiliary Bundle. Recall the definition of the generaiized
signature operator Dv of a Hermitian bundle V over a closed
oriented Riemannian manifold X’of dimension 2m, cf. [13,
111.4.D) or (25, IV.91:

Dy == (dyrtd, 1, oo, o+ o7,

where'Qvt denote the *i-eigenspaces of the involution

T = ip(p-1)+m* : o - ao,f p = C
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2,P := c®w; AP T B,

P, v € c®x; W

T

dv(uﬂv) := dudv + (—l)puAVVv y u

and VY, the connection of V. If V is the trivial line bundle
we are back in the situation of the standard signature

operator DX: QX+ > Qx_ and we oabtain for the principal
symbols
Vv
Let Y be a closed submanifold dividing X into X, and X_ . We
suppose that the bundle V is obtained by clut;hing the
trivial bundles over the two combonents by a map g: Y >
U(N), i.e.
v x> X me u_ x_x=eN and so D, = AY
+ g "=’ v
where

A = Dxxc” o Dx ) Ich X NDx .
If we choose a Riemannian metric on "X which is the product
metric on YXI x N, then the signature operator splits near

Y, cf. [7, p. 631,

Dy = g¢(3/3t + B)

where B0 is the boundary signature operator of Example 1.2.5

{b). Hence we have the following integers to look at:

(i) index A = Nxindex Dx = N sign{X),
(ii) index A9 = index D, ,
(iii) sf{Bt} = index F_-gF_

where {Bt}tEI is a family of self-adjoint elliptic operators

connecting BD and g_lBog and P, are the spectral projections

of Bo .
From the definition it follows
wig,A) = index A9 — index A
= index{a/3t + Bt} (operator on yxgl)
= sf{Bt} by Theogrem I.1.19
= index P_—gP_ by Theorem 1.4.1

= ISY chlE_3glt(Y) by Corollary I1.4.4
where E_ is the characteristic bundle of BQ, i.e. the range

bundle of the principal symbol of P_ .

10
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A simple exercise in K—theory shows [E_,g] = [d’B ][Yme,gJ

where the multiplication operates'in
K1ty e K1y 5 kaovy > kK iy,

hence
w(g,A) = Jgy chld'g 3 chivxeN,g1 TV .
o

Now let X be the 2m—sphere withwthe (2m-1)-sphere Y dividing
X into two discs X, . Then we havg to evaluate the-cup'

product ch[d'B 1 ch[Yme,gJ 1{Y) on the fundamental cycle
o .

(782m 13, since TS2™ ! & g2 Lg?™ 1 e get K1(T52™Y) » 2.
Let « denote a generator of this group. It is sthn'in 23,
XV.71 that ‘ '

fo'g 1 = 21 5,
.o

Since the Todd cléss is equal to the unity and [YKGN,gJ k
in H2m—1(82m—1;m) where k is the winding number of g, we get
in this example . ' ' '

wig,m = k 2m1 |

After these examples one expects that the difference

wig,A) = index A% - index A
depends only on the principal symbol of B énd on the
éutomorphism g, 1.e. only on objects living on Y. This is

the case, which is also clear from topological reasoning.

1.3. Theorem. Let A be a first order elliptic operator

acting between sections of Hermitian vector bundles E, F
over a closed Riemannian manifold X which splits into

A = GA(S/St + B)
near a dividing submanifold Y, where B is a self-adjoint
operator over Y and GA a bundle isomorphism, and:let g be a
unitary automorphism of EIY compatible with B, i.e.
satisfying the condition

-1 _
9 dL(B) 9 = dL(B)

11
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where UL(B) is the principal symbol of B. Then we have
' wig,A) = sf (B Yo -
where {Bt} is a smooth family of elliptic self-adjoint

operators over Y connecting:B0 := B and 81 1= g_lBg.

Proof. Recall the "Local Index Theorem”, cf. [(29] and (61,
index A = Ty afA) (x) dx

where «(A) is constructed from the full symbol of A. By the
explicit definition of A9 given above in the Note after

Definition 1.1 it is clear that
x(R) (x) = x(A9) (%) for x € X \ N_ ,

hence

index A9 - index A
I x(A9) (x) dx - Iy ®CA) (1) dx .

wi(g,A)

The first integral gives us the index of the aoperator
B/t — Bod: CO(slxv;E9) 5 c¥eslwy;F9)

where
E9 =1 x EIY / ~ with (1,y,e)~(0,y,g tiyre), viv, e€E,, .
The reason for that is that the full symbol of this operator
is equal to the full symbol of A9 in each point of N_
{(parametrized as IxY). So we have by Theorem 1.1.19

IN w(a?) ) dx = index (3/3t - By) = sf (B} .

The second integral does not contribute to w{(g,A) since it

is equal to index (3/2t - B) = sf (B t=B} = 0, -

1.4. Corollary. Let A, B, and g be as in Theorem 1.3 and

let Pi(B) be the spectral projections of B. Then
v(g,A) = index P_(B)—gP_(B) .

Proof. By Theorem I.4.1.
We could also express our result in the language of the

Calderon projectors P_,(A), cf. the Appendix below. Since the

differences P_{(B)-P_(A) are compact, we obtain
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1.5. Corollary. Let A and g be as in Theorem 1.3 and lét

P,(A) be the Calderon projectors belonging to A. Then
w(g,A) = index P_(A)-—gF_(A).

Now we present several applications of our final formula
given in Corollary 1.4. Our main purpose is to show how the

jht99er p(g,A) depends on the topology of Y, o, andiB.

1.6. Proposition. Let A, Y, and g be as in Theorem 1.3. If

g determines a torsion element in_K_l(Y), then w(g,A) = O.

Proof. Let g determine a torsion element'in K—l(Y). Then

thére'ekists-a natural number k such thét

g 0 civiereaan O
O g

kg == - - : k ElY - k EIY

= |

is homotopically equivalent to the identity. More precisely,
we have a path in the space of unitary automorphisms of k
'EJY"joining kg with the identity, cf. Karoubi [22, p. 72].
" Thus we are able to deform the family (kBy> into a family
{Ct} joining kB with itself without changing - the spectral
flow, hence
k sf{B > = sf{kB,> = sf{(C,? = 0
since {Ct} is contractible to the constant family. -

1.7. Froposition. Let A, Y, and g be as in Theorem 1.3. If A

admits local elliptic boundary conditions on Y, then
p(g,A) = 0 .

Proof. Since A splits near Y it admits local elliptic boun-

dary conditions on Y (in the sense of Shapiro Lopatinski,

see also Definition 4.8 below), if and only if p, , the

13




BOOSS-HOJCIECHHSKI

prinéipal symbol of the spectral projection P _(B), can be
deformed igto a p;ojectién onto a bundle over SY which is a
pull back of a bundle over Y. Since P_(B) = Id - F,.(B) the
symbol of P+(B)-gP_(B) then becomes a matrix functidn of y %
Y alone, and hence gives the trivial element of K(TY). s
Note. Let {p (y,®)3ic; +» ¥ €Y, %€ f*Yy be a continuous
family of projection symbols such that
po(y,g) = p,(y,%) and pl(y,g) = pl(y) .

Then we can not expect that g leads to an automorphism of
the bundle V := Image Py since in general p;g * ap; - Thus
we must change g continuously by a continuous family {gt} of
automorphisms of Vt := Image Py leading to a gy which

commutes with Py -

1.8. Proposition. Let A, Y, B, and g be as in Theorem 1.3

and let the principal symbol of B determine a torsion

element in K~ 1(TY). Then we have wi(g,A) = 0 .

Proof. The assumption about B means that for som. k, N the

symbol
ko (B) @ Id : " (k EIVIetN 5 %k ElY)ecN

can be deformed into a symbol v = q,-q_ where q, are

projections onto some bundles lifted from Y. Thus we get the

equalities

k sf{Bt} = sof {kB,eld}
= index kP_(B)ald - gkP_(B)eld
= ¢t-index [g_,gl = O
where t—-index : K—l(SY) + Z denotes the homomorphism given
by
[0] » fgy chigl mg  1(Y) . @
Remarks.

So far we presented all results in detail only in the case
when A splits near Y into the form

(*) A = GA(Q/at + B) , B self-adjoint

and g is a unitary automorphism of EIY. Now we will indicate

how one can weaken these assumptions.

14
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(1) Non self-adjoint B. It is easy to see that in our
calculations we ean take for ‘B any elliptic  operator of
which the principal symbol dL(B)'has no eigenvaluee en the
1mag1nary aY1s and is compatible with g, i.e.
_ 9 o (B) g BT Y- D
‘Without changing the pr1nc1pa1 .symbol. class in K—I(TX)
'Khence the index neither) we can deform such a more general
operator A into our form.,Teke the family. .
(B, := 1/2(B+B* + (1-r (£)) (B-B*) 1.

Thus we can deform A to an operator which on N IXY = 'N_uN_,

takes the form A = GA(Q/Bt + Ct} where ,
' - 1/2

o
n
ﬁ
I

Boy
= { for

By_(2t-1) /2 <t & 1.

Hence in a smaller collar heighbourhood A has the form (%),

Ct :

‘In fact, we do not need this deformation to the self-adjoint
case since one could define a spectral flow for all femilies
'pf operators of which the principal symbol has do
eigenvalues on the imaginary axis. We jgst codnt the number
of eigenvalues whose real ‘parts change the sign when t is

go1ng from O to 1.

(2) Pasting with shift. The preceding observation is
essential to the more general situation where one considers,
1n5tead of g, a diffeomorphism &: EIY - 'EIY of the total
spaces which is linear on the fibres though not inducing the
1dent1ty in the base but an arbitrary d1ffeomorph1sm @. In
£his case one can not reduce the problem to a self-adjoint
"family and the spectral calculus gets more advanced. Instead
‘of K—I(TY) one hust work with some suitable K—groups over
the mapping torus (YXI)¥. The details of this approach are

worked out in Wojciechowski [391].

3) Non—-splitting symbols. Using the rather extensive
machinery of parametrix calculus of the
Vishi k-Boutet-de-Monvel type one can get parts of the
results of this section for operators which do not

necessarily split near Y, cf. [141, [15].
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{4) Proat of the Index Theorem by Induction. After Theorem

1.3 and Corollary 1.5 it 1is completely clear that the

introduced machinery - provides. an alternative proof of the

Atiyah-Singer Index Theorem. Using induction, we cén
decompose an arbitrary elliptic operator into simpler pieces
that the decomposition coincides with a

underlying manifold;

in such a way

suitable handle decomposition of the

the changes of the indices can be followed arithmetically.

We hope to complete all necessary details soon.

(S) Relation with Boundary Value Problems. We reformulate

Theorem 1.3 and Corollary 1.4 in terms of elliptic bourdary
value problems at the end of Section 4. This provides a link

to the work of [331 and [141, (15] and explains the

architecture of our problem.
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2. Spectral Flow and Spectral Properties of Elliptic

Operators

Another set of corpllaries of 171 and Section 1 is related
io the spectral theory of elllDtIC - operators. 'In what
follows we will consider a self-adjoint elliptic operator
B: C“(x;vd > C®(x;V) of order m > 0, acting on sections of a
Hermitian vector bundle V over a closed Riemannian manifold

X'of'dimension‘d.'

“Class1ca1" spectral theory, as founded by H. Weyl (1911)
and. developed further by‘ K. Courant (1920), -B. M. Lewitan

'119J2, 1995), V. G. Avakumov1c (1996), L. HBrmander (1968)

and many  other’ adthorsv (see Shubin [31] for a recent
survey), is concerned with the eigenvalues of the Laplace
operator, of scalar operators or other half-bounded and
therefore topologically trivial operators only. We, on the
cbhfraky, assume that [ogl ¢ K™1(Tx) is 'a non-torsion
element. As explained in Section 2 of [17], this implies
thét the spectrum of B consists of infinitely many positive

énd'negative'éigenyalues._

It is well Pno&n; that it is rather d1ff1cu1t to der1ve the
aéymptotic 1nequa11t1es in the classical spectral analysxs.
1t is therefore striking that one can obtain more precise
r==u1£s, némely exact inequalities, in the'spectral analysis

of operators with non- —trivial symbol. This was first noticed

"by Vafa and Witten [35] in an attempt to find a mathematical

e1p1anmt1on for the interrelation between the states .and the

masses of (Euclidean) bosons and fermions corresponding to

the positive and negative eigenvalues of the Dirac operator
of (Euclidean 3- and 4-dimensional) Quantum Field Theory. We
want' to show that the Vafa-Witten inequalities are

ﬁroperties of all self—adjdint elliptic differential

»bperators of first order with a non-torsion stable symbol

H]
H

1/d

C (X,B) such that Ik'l £ C'r for all r where the

e1genvalues are indexed by increasing absolute value. In

bes,
~
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fact, to a certain extent we can follow Vafa and Witten's
presentation;y see also Atiyah [4]. However, we have to be
more careful in our arguments because we do not assume the
existence of a spin structure on the manifoid X. :

Wé,fresfritt'0urselves to the case of an odd-dimensional,
oriented X. The cases of an wunoriented X and “of an
eveén-dimensicnal X need special treatment along the usual

lines of index theory.

2.1. Theorem. Let X be an oriented, odd-dimensional,

closed, Riéménnian manifold and B an operatbr satisfying the
conditions mentioned above: self-adjoint, elliptic, positive
order, and topologically non;trivial. We assume that tdé] is
not a torsion element in K 1(TX), i.e. for any k € Z we have
k[uh] * 0. Then there exists a constant C = C(X,E) depending
only on X (and of course on the choice of the Riemannian
structure) and B such that in any interval of the lehgth c

there is an eigenvalue of B.

Proof. Since X is odd-dimensional we can find a natural

number N and a continuous map g: X - UN) such that
<chtx=eN,g1,Ix3> = 1 where [xxtV,g1 ¢ K1), ch: 7100 =+
HO99(x;0) were defined in I.1.7 and [X1 £ H,(X) is the
fundamental class of the orientation of X. An explicit
construction of such a mapping g could be derived from
Example 1.2 (c) by proceeding as follows: First recall that
on any odd-dimensional sphere S there exists 9g: S = U{N)
with <chfSx€N,9g1,081% =1 . We can assume that gq = Id

D
g4

outside of some disc DV in S. Then we proceed as in Fig.

X

18
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We choose a disc Dt in X with appropriate 9g: DY - U and
take as g the'extehsion‘ af'gS over 'the-wholeiof X'by the
identity. Now we consider the operator B, := NB = B@Id, .
Its " principal symbol commutes with ' the automorphlsm h =
1a(V)8g - of ‘the bundle V@(Xxxt"), hence B, := h “lp_h has the
ééme spectfum as 'Bo énd we 6btain‘é spectral flow for any
family {Bt} "of self-adijoint e;liptic operators which joins
Bo with Bl . As explained in Section 1.1 and Example 1.2 (c)
above, the spectral flow is 1ndependant of the choxce of the
Cghhectzng family (in fact, " we could take Jjust the 11near
'fémiIQ) and can be expressed topolog1ca11y by»

o Csf(B,3 = % chibl chrixxtV,g1 T(x) C[TX1,

‘where 1(X) isf thé ded :class of X, [TX1 the fundamental
éiass bf the cahonicéi (symplect1c) orlentat1on of TX, aﬁd
the >"boundary" Chefn:;character ch: K 1(X) - Hodd(x ;D). as
defined in I.1.7. From the constructxon of the family 1t is
clear that sf{B 3 o® 0.

-On _the other hand we see that B B is a pseudodifferential
Operator of order zero, hence 1t is onndeq in'LE(X;VﬂcN)‘
'Let t » J (t)'be‘é ‘parametrization of the eigenvalues of
the family {Bt}. Then it is well known (see Lemma I.1.3),
that '

lj (') - J (1) H81~EDM =: C(X,B) for all r.

I

Mor eover we have r(1) jr+£(0) where (¢ = 'éf{Bt}, hence
‘ljr(Dé'— et £ C(X,B) for all r . Since & *.0 , this
proves that in any interval of length C there is an
eigenvalue of BQ. However, the eigenvalues of Bo = NB are
the eigenvalues of B, Jjust. with'_N—times multiplicity.

'Therefore in any interval of the 1length € 'we have an

eigenvalue of B. -
. Remark. This is the most general and most simple

.information about the spectrum of elliptic operators of our
type (i.e. those with a non-vanishing stable symbol class)
on odd-dimensional manifolds. One hardly gets more
information without further assumptions, mostly _because
81—80 is in general a self-adjoint pseudodifferential
operator of order zero where infinitely many 1lower order

terms in the symbol may be décisive for the spectral

19
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analysis. If we deal with differential operators, we can be

more precise.

Before going further along these lines, we want to give the

following (crude) estimate:

2.2. Corollary. Under the assumptions of the preceding

Theorem; there exists a constant C such that
tA,l = Cn for all n < N
where the eigenvalues of B are indexed by 1increasing

absolute value: lkll = Ikzl £ cae = Ihnl L ..

Froof. The estimate follows immediately from the preceding

proofw of Theorem 2.1 where it was shown that we have (& =
sf{Bt} eigenvalues of Bo and 4£/N eigenvalues of B in any

interval of length C. .

Now we prove the more precise inequality in the differential

case.

rJ

.3. Theorem. Let B: C®(X;V) » C%(X;V) be a self-adjoint

elliptic differential operator of first order over a closed
oriented Riemannian manifold X acting on sections of a
Hermitian vector bundle V. If d = dim X is odd and if the
stable symbol class of B is non-vanishing, then there exists
a constant C such that

P N < Cn

n
for all eigenvalues of B indexed by increasing absolute

1/d

value.

Froof. We need to repeat and sharpen the arguments of the
proof of Theorem 2.1. The plan of the proof consists of the
following steps:

(i) We show that there exists a family g, X = UNY , r 2 Z

such that

chixxe™,g_1 = r? chixeaN,g, 7,

where g, = g has "degree” 1 as in the proof above.

(ii) If {B(r),} denctes the family tth ) 7B h(r) + (1-t) B3
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where h(r) = Id(V)ﬁgr is an ‘éutomorphiéms of the bundle

vax (Xx=eN)y | then we will obtain - '

' | SFCB(1),> =t & = 0O and
SF{B(r) > = rd sf(B(1), > for all r € Z.

Here B again denotes ‘the operator NR = B@IdN.

(iii) we show the inequalities’
,nB(r)l'— B(r)on £ r uB(l)1 —,B(x)o” = rC(Xx,B) = rCf

In fact, these three properties are all we have to show. As
a result we obtain that in any interval of length rC there
.are'at least rd£ eigenvalues of Bof This means that in this
1ntesva1 we have r9e/N eigenvalués of B. ‘Therefore the
absolqte value  .of the rdI/N -th e1genva1ue is less than vrC,
ive. 4 ' '

PA.d,y/N! < rC .

This gives us the desired inequality for n = rd and hence
f@r”all n. ' o o '

Now we prove the assertions (i)-(iii).

: WE start by lookxng at the eatens:on NE of the operator B to

sect1ons of V@(X\CN From ‘the construct1on of such an
extension (see Example 1.2 (c)wand (25, Chapter IV1) we get
the following expression  for NB in local coordinates
(Hyyengng) o
" NB(v@s) = (B@dIdQN)(V@Eifiei)
- 3t
= (Bv)8s + zi,k (b J)@(—— )ei
B

= (Bv)®s + Ek (bkv)ﬂ(as/ka),
where {ei} is a local basis for XX¢N such that dei = 0 for
all i (here the differential d is considered as a flat
conneqtion on XK¢N), s = Ei fiei locally where the fi are
smooth functions and B = L by yyaueny) /3% +

(/1,..,yd). Let us remark here that different choices of
connections d1 = d + A for XAGN lead to different operators.
Now, if we take any map g:X -» U(N) then we get in the chosen
coordinates for the operator B, = (1d,8g) ' (B@IdgN) (Id,Bg)
Bi(v@s) = {(Idvﬂg)—l(BGId¢N)(Idvﬂg)}(v@s)

=Bv@®s + L b,ve®293s/3%, + L bv~e (g_1 3g/ax, s)
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(B @, Id)(v8s) + <{E,_ (b,v) @ (g ' 3g/d3x, )3,

Bo(vﬂs) + {...3

(i.e. By = B 8y IdgN and By = B 8y, -1y, IdgN).

Therefore the norm of the Ojth order operator 81 - By is
bounded by a constant which depends only on the supremum of
the norm of all matrices bk y 1.e. on the supremum of fhé
norm of the principal symbol of B considered as a bundle

isomorphism, and on the supremam of the matrices g—lag/ﬁxyri

The only thing left is choosing g. We are going to show that
there exists a family of mappings g,: X = U(N) such that
chix=eMN,g 3 = r9 and such that

ng, ! ag./ax 0 = k ng, 7! Sg /e .

First we construct such a family on the d-dimensional torus
T9 with the standard (flat) metric. Let (Qys--10q) be the
standard angular coordinates 6n'Td, 0O £ 9; £ 2m and ; + 2

= @y. Let  yq: Td -+ SU(N) be a map of degree one chosen so

that yl(wl,..,wd) = Id if any of the coordinates @9 is equal
to O or to 2a; in particular
¥y (;pl"'?.kﬂ',..,(pd""zk!r) = ¥ (q;l,. . ,gpd)

Now let &, : 79 5 7d be given by the formula

ar(@l,..,wd) = (r‘wl,..,r'(pd)
Thus «,. is a map of degree r9. Now we define

Yp T ¥ 7 %
s0
chiTdxeN, ¢ 30191 = 9,

Moreover; the norm of the map Vr—l syr/awi is precisely
r times the norm of 71_1 ayl/awi since the derivatives of 9,
are exactly r times the derivatives of ¥y in absolute value.
Thus the assertion is true for TY.

We assume now that X is an arbitrary d-dimensional manifold.

In such a manifold we embed the cube Id =1 %X 0. X I and we
define T, x € 19
gr(x) HE S for
1d € x \ 19,
9, s the desired map. -
22
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.We refer the reader to the papers [35] and [41 for the
treatment. of the special case Qf the Dirac operator with
coefficients in an auxiliary vector  bundle on a spin-
manifold: In tﬁat.case the related fémi193of operators has é
spéctrallflbwﬁjust equal- to 1. There one aléd finds a

generalisation to the even—dimensional case.
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3. Fredholm Pairs of Subspaces

In this Section we introduce one more concept which is use-

ful in our consideration:

3.1. Definition. Let us assume that H is a complex sepa-

rable Hilbert space. We define the épace of Fredholm pairs

of.subspace§ of H:through . - -

‘ Fred?(H) 1= {(HI,HZ) I Hy, Hy are closed infinite-dimen-
“"sional subspaces of H with HlnH2 and H/H1_+H2
of finite dimension’

and we.def;né f ' »

index (HI’HZ) = dim HlnH2 - dim H/H'1+H2 .

We notice that the orthogonal compleﬁent (HI,HZ)* =
(Hil,Hz*) of a Fredholm ‘pair (Hl,Hz)'“is again a Fredholm
pair.  with ‘ L o

o index (Hy,Hy)* = = index (H,,Hy),
since Hl*nH,* = (HlmHé)*. ' g

o<

This notion was introduced by Kato (23, IV.4.11 in an

attempt to extend the stability properties of Fredholm

.operétors' from the case of bounded operators to the case of

closéd unbolunded: ones. See also the recent book by Cordes

L1911,

There are many examples of Fredholm pairs. In one sense, the
rest of this paper is devoted to - illuminating the
fundamental role of Fredholm pairs”in our direct approach to
elliptic transmission and boundary value problems. Let us

start with some simple examples:

3.2 Exampies. (a) We have a natural mapping
a: Fred(H) =+ Fred? (HxH)

from the space of Ffredholn operators on H into the space cf

Fredholm pairs of subspaces of HxH given by
_ F B (Hx(G, graph F).
We get
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{Hx0) n graph F* = ker F x {0} > ker F

and

]

Hx<H (H ®x image F) 8 ({0} X coker F)

"

((H x {0}) + gréph F) 8 coker F,
hence )
index aF = 1index F .

For the adjoint operator F¥ we get

index oF* = index (H x éO}, graph F*)
= index (£03 % H, {(-F¥v,v) | v € HM
= - index aF
since ({0} = H, {(—F*v,v) I v € H}) = (H x {0}, graph F)*.

(b) Another example is provided by the trivial Fredholm pair
of complementary eigenspaces {(image P _(B),image F_(E)) where
PI(B) are the spectral projections of an elliptic self-
adjoint operator acting on sections of an Hermitian vector
bundle E on a closed Riemannian manifeld ¥ as in Fart I,
Section 2. Let g € GLS with § = P_ - F_, i.e. g is an auto-
morphism of L2E which commutes with S modulo rcmpact ope-
rators, cf. Fart I, Section 3. Then (image P_, g image F_)
is a Fredholm pair of subspaces of L2E as well and we have
index P_ - gP_ = index (image F,_, g image P_) .
To see this we recall from Lemma 1.3.4
ker P,—gF_ > {u € H_ | gu £ H.3 = H_ n gH_
and
coker P,—gP_ > {v € H_ | gv £ H_3 > {u € H_ I g "u € H.J
> {fu € H_ | uuagH > > (H 8 gH_"

where H, := image P, .

We will now describe a more important example:

J.%. Definition. Let A be an elliptic operator of first

order aver a closed manifold X divided by Y into two parts

X, and X_ as assumed in Section 1. Let A take the form

Gy (d/3t + Bt) near ¥ as assumed in the Introduction. We

define the space of Cauchy data by

Hy€(A) 2= CuylY | ouy € C¥UX3EIX,) and Auy = O on X,3.
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Note. There exist naturally defined projections F,(A) of
Q?(Y;EIY) onto the spaces H, (A) which afe’pséudodifferential
cperators of O-th order. We describe these p(ojéctionsAmore

carefully in the Appendix.

Bojarski [9] noticed the following

3.4. Lemma. Let X, Y, E and A be as assumed in Definition

Z.3Z. Then the spaces of Cauchy data H, _(A) are Fredholm pairs,

of subspaces of L2(Y;E|Y).

Proof. We consider the elliptic operator of O-th order

2 Id we get

PL.RY-P_(A). Since UL(P+(A)—P_(A))
' index P_(R) — P_(A) = O .

Actually it suffices to know that the operator F_ _(R)-F_{(A)

is elliptic, hence dim ker F,(R)-F_(A) < o . Then we obtain

dim H (A +H_(A) < o

and
dim LZ(Y3EIY) / (H (A aH_(A)) < «
since ‘ l o
ker P (A)-P_(A) = {f & C(Y3EIY) | P f = F_f3

v £f £ C(Y;EIY) | f is orthogonal to
the space H, (A +H_(A) in LZ(Y;EIY)}.a

Now we want to investigate the topological structure of the
space Fredz(H). (By the way, we could have used a deforma-
tion argument to prove the preceding Lemma by reducing it to

the situation described in Example 3.2 (b)).
Freqz(H) has a natural topology:

2.5. Definition. Let (H,,H.), (H, ,H.’') be two elements of
1 A 1 P-a

Fred<(H) and let Pi, Pi’ denote the orthogonal projections

onto Hi and Hi' respectively. Then we can introduce a metric

by the formula
9((H1,H2),(H1',H2')) = HPI-Pl'H + NPQ—PE'H-
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3.b. Lemma. A pair (H1,H2) of closed infinite—-dimensional

subspaces of H belongs to Fred“(H) if and only if the
difference PI—PZ of the orthogonal projecfions is a Fredholm
operator. In that case the operator
- . - i
(Id PI)P2 : H2 : H1
is a Fredholm operator with

index (Id~P1)P2 7= index (Hi’HZ)'

Proof. The operator F’l—P2 is self—-adjoint, so
coker PI—P2 > ker P1‘P2 = {f I (Pl—Pz)f = 03
{f € H2 i Plf = > 8 {f | Plf = sz = O}
i
(HlnHz) ] ‘H1$H2) .

Now let us consider the operator (Id-P )P, : H, = Hyt .
We have

ker (Id—Pl)FZ = {f = H2 i (Id“Pl)f = Q0 = HlﬂHz
and

- — 4 — “ L . 1
coker (Id-P )P, = {f € H{* | Pof = 03 = Hi* n Hy
(H mH_,_)l . -

]

1

3.7. Corollary. A pair (Hl'HE) of closed infinite-

dimensional subspaces is Fredholm if and only if Pl—(Id—Pz)

is a compact operator.

Froof. From Lemma 3.6 we know that (H,,H,) € Fred®(H) if
and only if (Id—Pz)P1 is a Fredholm operator. We know also
that there exists a unitary operator g such that Id—P2 =
gP,g"! and in particular H, = gH; and

(1d—P )P, = gPg P, s Hy > gH, .
Hence (H17H2) is a Fredholm pair if and only if the operator
Plg‘1P1 : H1 - H1 is Fredholm. This is the case if and only
if g is an element of the group GLS for S = F'1 . Hence
(1d-Py) - F, = gF,g" ! - P, = (gf,-F,g)g !
is a compact operator. [ ]

Now, 1let P be an orthogonal projection with infinite-dimen-

sional range and kernel. In GLp = GLp_(1g4-p) “e consider the

subgroup Up of all unitary elements of GLp . Any Fredholm
pair (H;,H;) with H, = FH is of the form (PH,(Id—ng_l)H)
26
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for some g € UP . And we obtain the trivial Fredholm pair of
complementary subspaces if and only if gF’g—1 = F or

equivalently g € GL(PH)®GL (FH*). This proves the following:

Z.8. Proposition. The set of all Fredholm pairs (Hl’HZ) with
H, = FH for F as above can be identified with the space

1
' Up 7 U(FH)BU(PHY) .

We are going to show that the space Up / UFH)BU(FHY) is
homotopically equivalent to GLP . We start with the

following

3.9. Lemma. UP is homotopically equivalent to GLP .

Froof. It 1is enough to show that Vwe have a weak homotopy
equivalence. Now, let us consider a map R:‘Sn - BLP . We
‘have a ' polar decomposition R(x) = U(x)YR(x) for all x € sn
and we know that VvR(x) is the 1limit '6f ‘the squence
{hn(x)}neN given by the formula , .
hytx) = Id ,.., hpey () = 1/2 (h, () + hn—i(x)R*(x)R(x)),..
So YR{(x) is a continuous family of positive operators from
GLp ’
from UP because » ) »
(U 1P-PU(2))VR(x) = (R(xIF-PR(x)) ~ UG (VRAXIF-FYR(x})

We see that U{(x) is a continuous family of operators

is a compact operator and thus so is Ux)P-PUC) .,

We notice that the space GLP+_0f‘stitive operatbrs from GLP
is a convex subspace, i.e. tg+(l1-t)Id ¢ GLP+ for each g £
GLP+' and t € I. So we can deform YR{(x) into the constant
family equal to the identity on 8" through a family of

positive operators from GLP. =

Now we show that the natural projection

U =+ Up / UPH)BUFH)
is a principal fibre bundle with the structural group
U (PH) BU (PHY) . It is enough to construct local sections. The

existence of such sections follows from the following

S.10.Lemma. Let F, Pl be orthogonal projections such that

P—Pi is a compact operator and uP—Plu < 1 . Then there

27
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exists u € Up such that uru ! = Py -

Froof. For the operator v = (2P1—Id)(2P-Id)+Id we have
Hv-21dil = 11(2P ~Id) (2F-Id)-Idl| = (2P, ~Id) (2F-Id) - (2F -1d) %y

£ N2P  ~IdUN2(P-P 21 = 20F-F 1 < 2,
so v is invertible. Moreover, we have v{(2P-Id) = (2P1-Id)v;
so VP = F,v or vPFv 1 = P , hence v £ GLg .

1 1 Glp

Similarly we obtain (v lpy* = P, , hence vF = vy lpv*y
and (v*vipww*w Tl = p

From the construction of vv given in the proof of Lemma I.9

we see that vvP = PYv, hence
P, = vPvl = twvv )y B ovrvTHTL
S0 we can put u := vrv i L.

. . . * . . .
u is norm-continuous since is norm—-continuous. MOI"EDVEI",V

F) = s(F,) has the following property: If gF = Fg

u = u(PI, {
then
\ . 41 - -1
S(Plzgs(Fl) F'1 = Pl s(Pl)gs(Pl) '
i.e. starting from a projection P and a projection P1 near-—

by, both representing elements of the base UP / U(FH) BU(FHY)

we have shown that any element g in the fibre of Up over F

can be transformed through g » e‘»(Pl)gs(F'l)_1 into an element
of the fibre of UP over P1 , see Figure 2. Hence we get a
local trivialization of our bundle.
Up
s(P )gs(P 1
. 17954t
9 - 2

feeeFiiiinaancavaaareraaansnaFiaiaianoaane U 7/ U (PH) 8U (PHY)
F Py

3.11. Proposition. The homogeneous space UP / U(FH) BU (PH™Y)

28
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has the homotopy type of the space of Fredholm operators on

H.

Proof. We have just shown that Up - Up / UFH)IBU(FHY) is
a principal fibre bundle with ébntractible fibre. So, the

=

assertion follows from Lemma 3.9 and Theorem I.3.5. =

The situation for the space Fredz(H) is also clear. Let
Proi® (H) denote the sphce of all orthogonal projeétions with
infinife4dimensional rénge and kernel. It is a contractible
space by Kuiper's Theorem [ s 1.61: This can easily be
shown by the method described above and by uéing the fact

that Proi®(H) = U(H) / UFH)BUFHY).

Ndw lef us consider the map [B: Fredz(H) - Prqjm(H) given by
the formula'B(Hl,Hz) t= F'1 where Pl is the orthogonal
projection onto H1 . It turns out that B—I(P) can be
identified with the space UP / U(PH)BU(PH*), so we get a
fibration. In fact it is a trivial fibre bundle. A global
section is given by the formula

s{P) := (image P, image (id;P)).

Thus we have proved the following

3.12.. Theorem. The space FredE(H) is homeomorphic to the
product space Proi®(H) = Ug/UFH)BU(FH') where F is a

projection with infinite-dimensional range and kernel. Hence

Fredz(H) is a classifying space for the K—functor.

Remark. Using the structure of an infinite-dimensional Lie
group on UP we can show that Fredz(H) is a smooth manifold

diffeomorphic to Projm(H) ® UP/U(PH)BU(PH*) .
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4, Local Elliptic Boundary VYalue Problems ~ Revisited

7Essentia11y, there are no new results in this section. But
one hardly findé them in standard text books devoted to the
study of elliptic boundary value problems in the form we
present here. We try to stress the .usefulness of ;He
language of projectors onto the spaces of Cauchy data. Aé a
standard reference we use Chapter XX of the third volume of
HBrmander ‘s monograph "The Analysis of Linear Partial
Differential Operators" [21]. However, to keep the paper
readable by non-specialists, we restate the definition of
elliptic boundary value problems and we also will give at
least an explanation of the fact that any elliptic boundary
value problem has a finite index. Furthermore, we only
consider problems of first order of the type described

below:

Let X be a compact smooth manifold with smooth boundary Y
and let A C®(X3E) +  C®Wim be an elliptic
pseudodifferential operator of first arder acting on
sections of smooth complex vector bundles over X . We assume
that A satisfies the following two conditions. (We fix once
and for all é Riemannian structure on X and Hermitian

structures on E and F).

(a) In a local coordinate patch in X the complete symbol of
A takes the form I aj(x,g) . Assume then that each term in
the sum is a rational function of €. Using the formulas of
the symbolic calculus it can be shown that this caondition is
preserved under di ffeomorphisms, transposition and
composition of the operators, and passage to the parametriux
in the elliptic case, c.f. [21, Chapter XVIII1l. In
particular, the condition is satisfied when A is an elliptic
differential operator or its parametrix; and this is in fact
all we need for the construction of the following

pseudodifferential projectors.

Condition (a) gives us the regularity of the solutions of Au
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= 0 up to the boundary, see e.g. [21, Chapter XVIII]1, which
makes the definition of the space of Cauchy data below

independent of the function spaces involved.

tb) In a collar neighbourhood N = I % Y of the boundary the
operator A takes the form ‘

A = Gu(t,y) (3/3t + By) .
Here GA(t,.): EIY =+ FlY is a bundle isomorphism, t denotes
the inward normal coordinate, Bt: C®(YsEILY) - CT(Y3FIY) is
an elliptic operator acting on sections of E restricted to Y
depending smoothly on t. Without loss of generality we will

assume that G(t,y) is unitarian for all t and y.

We want to illustrate the technical .advantages of the
assumption (b) by investigating the  problem of the
continuation of a given elliptic operator A on X to an
elliptic operator A on the closed double X of X. It is a
standard proéedure to obtain the smooth doubles for X and
for the vector bundles E, F. However, there 1is no such
natural construction for elliptic “operators in generél.
Actually, there are topological obstructions which excldde
the extension of the symbol of A to an elliptic symbol over
fhe whole of X in the double vector bundles E and F. |
Take e.g. the Cauchy-Riemann operator over the Z-disc acting
on sections of the trivial line bundle. If, on tﬁe éontrary,
A admits elliptic boundary conditions, 6ne could reduce the
order of & to zero and extend A onto the whole of ; by the
’identity after a homotopy near Y given by the boundary value
conditions. The following construction has the advantage of
- being explicit and applying even if A. does not admit

elliptic boundary conditions.

4.1. Lemma. Any elliptic operator A sétisfying condition

(b) extends to an elliptic operator on the closed double }

of X.

Froof. First, we deform our operator on the collar in such

a way that Bo becomes a self-adjoint operator. Such a
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deformation is standard and can always be done since d(Bt)
has no purely imaginary eigenvalues. We change A a little on

the collar N such that Bt = BD,
172 and all y € Y. Then we paste [-1,01xY onto X. We extend

BA(t,y) = GA(Q,y) for t <

E and F on this new manifold in an obvious way and we extend
A to this collar by GA(O,.)(afat + Bt), where Bt for t =
(-1,00 is given by the formula
By = 1/2 (B, + B)™ + 1/2 r(ty (B, - BJH

where r is a smooth function on [-1;0] equal to 1 near © and
equal to © near -1. So, we can assume that Bt = BO is an
elliptic self-adjoint operator for small t. A

Now we repeat the construction from (37]. We define vector -

bundles E, F over the double X of X through
E = Evu F , F = Fou , E

| 6, (Gy)
where wew identify e € E(o'y) wish Gp(0,y)e £ F(, o, in the
case of E and similarily for F. Next we chogose an
elliptic operator

Aua®: c®GE)  + C®XiP)
with principal symbol a, u al* equal to ay the principal
symbol of A, on one copy of X and equal to aI* s the
principal symbol of A*, on the other copy of X. (Since GA is
unitarian the clutching of the bundles fits with the pasting
of the symbols. In the general case one would end with much
more complicated formulas.) By smooth deformation we can

finally obtain that AvAY is equal to A on X. =

Next we turn to the notion of Cauchy data spaces and of the
Calderon projector. As noticed in Chapter 2, the space of
Cauchy data for A is the space

H(A) = {u € C(Y;EIY) | there exists v € C¥(X;E) such that

Av = 0 and viY = ul} .

4.2. Proposition. Let A satisfy the conditions (a) and

(b). Then there exists a pseudodifferential operator, the
Calderon projector belonging to A,

PAY: CP(Y;ELY) -+ CO(Y3EIY)
such that Image P(AY = H(A) and P(AYE = P(A).
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Remarks. (1) In the literature the term Calderun projector
is usually used to describe a different pseudodifferential
operator which is an approximate projection oﬁ' H(A), i.e.
P(A); - P(A) is an operator ‘with Cé—kernel, c.f. Theorem
20.1.3 in [211. V o
(2) One can find the proof of Froposition 4.2 in £181. In
the Appendix to this paper we present anotﬁer Version of the
proof . given by Solomyak in [321] somewhétlsimplified thanks
to Proposition 4.3 belo@. »

(3) In the following we denote by H(A) the closure of the

space of Cauchy data in LZ(Y;EIY) instead of the space

itself.

4.%. Proposition. Let A satisfy the conditions (a) and
(b). (Actually, we will not use (a) nor the assumption of
unitarian G). Then the orthogonal complement ‘of H(A) in

L2(Y;EIY) is the space Gp*(H(A®)).

Froof. We define two operators acting on L2(Y;EIY);

A, := A with the domain {u I Au € L2 and ulY € H(A)*}
and . ) ‘
A. := A with the domain fu | Au £ L2 and ulY € By*(H(A¥)) 3.

2
Both operators are closed, see [34, 8V.3]1..

For operators of our type the Green formula

| AU, vr ~ <u,A¥viE = (B (Wl Y) VI Y)
is wvalid for all u € C®(X;E) and v € C”(X;F). This gives us
at once that GA*(H(A*)) is contained in the orthogonal

complement of h(A), hence dom(AZ) = dom(Al). We have

ker A, = {u | Au = 0 and ulY = 0} = dom(As),
hence ker A2 = ker Ai' Next we determine
coker Al = {v | fAu,v: = O for each u € dom Al}
= {v | <u,A%v> - <ulY,By*(viY) 3 = 0, u € dom A, 3.

The last equality is valid for any u with support 1in the
interior of X, so in particular we get a*¥v = 0 in the
interior of X.

We notice

coker A, = v | A¥v = 0 and By*(vIY) € H(A)]
= {v 1l A%/ = 0 and viY = 03;
coker A2 = {v | £Au,v> = 0 for each u £ dom Az}
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= v | A*v = 0 and Gy*(vIY) £ (Ba*(H(ATH™)

= ¢v 1 A¥v = 0 and viY = 03.
We summarize: dom(Az) c dom(Al) and Alldom(Az) = A2; the
operators have finite dimensional kernels and cokernels;
coker Al = coker A2, hence Image(Al) = Image(Az); ker Al =
ker A2 c dom Az.
From these properties it follows easily that Al = A
assume on the contrary that there exists a v €
dom(Az): Then there exists also a u = dom(Az) such that Alv
= A2u. This gives Al(u—v) = 0, so (u-v) £ ker Al = dom A2 '
hence v £ dom(AZ) which gives us the contradiction. Thus we

obtain dom(Al) = dom(Az) which means that GA*(H(A*)) =
GICI R a

In the Appendix we use the preceding result in order to
prove the existence of a projection onto the space of Cauchy
data. Alternatively, we may reformulate the results in the
language of the Calderon projector. We have to remark at
this point, that we prefer to look at the Calderon projector
as an (pseudodifferential) orthogonal projection onto H(A).
We may do that without 1loss of generality due to the

following Lemma which is taken from £81.

4.4. Lemma. Let F be a projection in a separable Hilbert

space (set of L2 sections). Then
_ - * = - -
port t= FPTA(PPT + (1d-P ) (Id-F))

is an orthogonal projection onto the range of F.

1

Froof. Let us first observe that
(PP*; PP*+ (1d-P*) (I1d-F)1 = [PP*;PP*+(1d-F™) (I1d-F)1 = ©
and

pr*+(1d-FP*)(1d-P) = ©

since
S (PP* + (Id-P®) (Id-P))u,u> = P*un? + H(Id-Prun® = 0
with equality if and only if Pu = u and P*u = 0 , hence
0 = <P*u,u> = <P*Pu,u} = HPun2 = nuu2
and so u = 0.
(Forg?° = PP* (FF*+(1d-F*) (1d-P)) "1 PE* (PP¥+(1d-F%) (1d-P)) 7!
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1.

CPP*+ (1d—P*) (1d~P)) - (1d-P*) (1d-P) 3 (PP*+ (Id-F*) (1d-P) 3~
*L % * -1 I '
PP¥pp* + (1d-P*) (1d-P) 3
Sk _ * * _p¥* ey a1l
Port - (Id=F*) (1d-P)PP* (PPY+(Id-PT) (I1d-P)37" = Py

since (Id-P)P = 0.

Now we have Pport = Port y SO we have 'oﬁly to show that
Porté = Pf Let v = Pu. Then
Port (V) = pp* PP ¥+ (1d-P™ (1d-P)3 71 (PW

= Pu - (Id=P%) (Id-P) (PP*+(1d-P*) (1d-F) 371 (Pw)
= Pu - (Id-P*) (Id-P)P¢PFY+(1d-F*) (1d-F) 371 (W)

= Pu . =

So, in what follows, P(A) always denotes an orthogonal
projection onto H(A). Then Proposition:4;3‘is‘equivaleht to

the following statement:

4.5. Proposition. Under the previous conditions we obtain

Id - P(A) = Gpx P(A ) (Ga%) T

1

Note. If GA is unitarian, then we can replace (GA*)_ by

By since Gyx = (B™ = (B! .

Since.this property of the Calderon projector has not been
observed earlier in the literature, we present here some
examples. (Actually, a different formula is well known,
namely Id - FP_(A) = F_(A) for invertible A, see e.g. Seeley
[28]1. Roughly speaking, here F_(A) = F(A) and F_(A) = F(A_)

where A_is an ellihtic operator on a manifold X_ such that
X_ is a "closing" of X, i.e. XuX_ is a closed manifold and
A_ is a continuation of A. However, this result is

misleading in some sense and in general becomes wrong if A

is not more invertible).

4.6. Examples.

(a) We begin with the investigation of the simple operator
A = 3/t + B on the cylinder 1%xY where B: CN(Y;V) + C®ysw
is a self-adjoint first—order elliptic operator with

spectral decomposition {Xk’wk}kﬁz . Then any solution of Au

d
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= 0 has the form
u==ta, e thy T
=) the space of Cauchy data H(A) is a subspace of
L2 (£03xy3@BL2 ((13xY) with the base
1/v1+ve M ¢ o 5 ek @) -
over ¢ over 1
For H(A*' a suitable base is
1/ 1+e M« o 5 ek @) -
over 0O over 1 )
The }elation between H(A) and H(A*) is given by the Green
form. Since A(l,y) = —-(-3/3t - B) we get
" Bp(0,y) = 1 = Gy (0,y) and Gy(l,y) = -1 = Gy (1Y),

s0 GA*(H(A*)) is the subspace with the base
171+ ™™ o 3 €Mk o)
over © over 1

hence H(A L = (GA)*H(A*).

(b) Now we consider the Cauchy—-Riemann operator on the
2-disk D2, i.e.
3 = 1/2i (3/9% + i 3/3y) on the set {(z € € | lzl£13.
The Cauchy data space for 3 on sl js

H(3) = (E,.4 a2z" 1| Dlayl? < ol
The space of Cauchy data of its adjoint

3 = 1/2i (9/3x — 1 I/3y)

is equal to

H(3) = T | Elagi? < o,

k20 akz-k
so we get

H()AH3) = € .
We find an explanation for the non-vanishing intersection
when we pass to polar coordinates and find for 3 the form
3 = el9/2i (3/9r + ri 3/3¢).
Let us notice that the Green form eiw defines a non—-trivial
element of klsl) as it was explained e.g. in Lemma I.1.8.
This, of course gives us H(3) = e ¢ (H(3)* in accordance

with Example (a).

(c) Finally let A be a self-adjoint operator. Then the
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equalities 6,2 = -Id , B4B = -BG, hold. This is due to the
~fact that the formal adjoint to the operator A takes in a
collar neighbourhood of Y the form

A* = By "ti-a/at + ByB(BY 1.
(For simplicity we have assumed that GA is unitarian).
Mor eover, GA maps any section of EIY into an orthogonal
section with respect to the Hermitian structure of EIY
since ' '
‘ 0 = <Au,u> - <u,Au> = <GBy (ulY),ulY> .
We find that GA maps H(A) onto H(A)l, hence —GAF’(A)GA
Id-P(A).

Now we define elliptic boundary value conditions for an
operator A satisfying conditions (a) and ,(bi from the

beginning of this chapter.

4.7. Definition. Let A: CY(X;E) - CN(X;F) be an elliptic

pseudodifferential operator of first order satisfying
" conditions (a) and (b) and let R: C®(YZEIY) = CP(Y;W) be a
pseudodifferantial operator of O-th order with W a vector
bundle over Y. We say that the map _
(A,R): CZ(X3E) 3 C®(X;F) @ C®(Y3W) ,

given by the formula (A,R)u := (Au,RiY)) is an elliptic
boundary value problem if the mapping UL(R)IE+ : E, » o (W)
is an isomorphism. Here w: SY =+ Y denctes the natural
‘projection of the cotangent sphere bundle and E, denotes the
image of «*E under the symbol p, of the Calderon projector

FA).

Remarks. (1) The bundle E, was introduced already in Lemma

1.2.% in the context of self-adjoint elliptic operators on
Y. One easily sees that E_  is really identical with the
Iindicator bundle M*  and dL(F\')IE+ can be interpreted as the
initial-value map as introduced by Atiyah and Bott (51, cf.
Booss and Bleecker [13, I1.41 where the equivalence is shown
of this "regular ellipticity" with the usual definition of

ellipticity of boundary value problems in the sense of .
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Shapiro—-Lopatinski.

(2) In general, one would like to consider problems of
arbitrary order. As is shown in [21, § 20.31 (see also [34,
§ S.1)), we can reduce the order of elliptic differential
problems to 1 and this concern ourselves with the class of
problems described in Definition 4.7. '

(3) At this point it would be appropriate to inQestigate the
regularity of the solutions of elliptic problems. However,
the regularity is a very well known fact and we refer to
[21] for the proof that the kernel and cokernel of (A,R)
consist only of smooth sections; see also e.g. {181 and
especially [341.

(4) Assuming regularity we are able at once to prove that
(A,R) has a finite index. This 1is a classical result, too.
But we want to show the reader how the machinery of the
Calderon projectors works; in fact, in the proof of the
following proposition we are mainly interested in the
explicit description of the elements of the kernel and of
the cokernel of (A,R). Of course, this description depends
on the choice of the Riemannian structure on X and the

choice of the collar of Y.

4.8. Theorem. Any elliptic boundary value problem (A,R)

has a finite index.

Froof. The Calderon projector F(A) provides a natural
decomposition
ker (A,R) = {u | Au = 0 and R(ulY) = 03

~ ful Au = 0 and uiY = 0} @& ker RP(A)_
In fact, let v £ ker RP(A), i.e. v € C®(Y;ElIY) and RF(A)v =
0. Then we can write P(A)v = wlY with Aw = 0O, hence any pair
(u,v) with Au = 0, ulyY = 0 and RP(AYVY = O yvields an element
utw € ker (A,R) and vice versa. (Using the Calderon
potential operator K, ,: H(A) + C®(X3;E) one cauld make the
decomposition more explicit).
The first summand, which is in fact the space of "interior
solutions” of Au = O, 1is finite-dimensional, see also

Calderon [1831. It can be shown at once: One can paste A over
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with A* over another copy X_ and get an

AuA¥® over the closed double X of X as in

ulY = 03 _
~ fu | AG = 0 on X, and ;IX_ =

of AuA*, _hence it

(O}
the kernel is finite-
ellipficity of boundary value problems

construct a pseudodifferential operator

allows us
' T: C(yv;Ww) 5 CUUYEILY)D

) -1
(dL(R)

py) s, hence

with principal symbol UL(T) =
fulfilling the following conditions .

dL(T) dL(R) = IdIE, , dL(R) Pe dL(T) =
where p, is the principal symbol of the projection F(A).
It that RP(A): H(A) = C=(Y;W) is
6berator with parametrix P(RA)T: C®(Y;W) > H(A) , in fact

RP(AIP(AT = P(R)TRF(A) = FA) (Idyay +

Idiw ,

turns out a Fredholm
Idw + compact ,
compact)P (A) .

Hence the second summand of the decomposition of the kernel
{A,R)
Now, we have to investigate .

(A,R) Clv,r) € C®X;F)BCc®(Y;W) such that

<Au,v>+<R(ulY),r> = O for each u € C(X;E) 3.

of is also finite—dimensional.

coker
From Green’'s Formula we get

<ulyY, GA*(VIY)—R*r> ,

ElY » FIY is the bundle isomorphism which appears

<u,A*v} =
where GA :
when we write the first order differential operator A in the
form A = GA(Q/St + Bt) near Y.
The formula is true for each u with support in X\Y, so A¥v =
o, if (A,R), hence P(A*) (vlY) =

P(A*) is the Calderon projector belonging to A%,

in coker

(v,r) viY, where

We get some more information from Green‘'s formula /
Proposition 4.3, namely
' (6 *HMA*) = Hwt .
In particular, this means that

(1d-P(AVIR*r = R*r , R*r = 6,P ")z for some z.
Hence r € ker P(AYR® = coker RP(A) which is finite

dimensional. =
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From the argumentation in the preceding proof we immediately
obtain the following useful and well-known (cf. e.g. [21, p.

'258)) observation:

4.9. Corollary. Let AR'F LQ(X;E) > LZ(X;F) denote the

closed operator A with the domain

dom Ag = fu £ L2(XGE) | Au € L2(X;F) and R{ulY) = 03,
Then
index AR = index (A,R}) if and only if R is surjective.
Froof.
ker AR = {u !l Au = 0 and R{ulY) = 0} = ker {A,R).
coker (A,RY = {(v,r) £ C(X;P)BC®(Y;W) | a*v = 0 and
BatviY) = rr>.
coker Ap = {v £ CY(X;F) | <Au,v> = 0 for each u € dom A’
= tv I A% = 0 and f <ulY,B"(viY)s = 0 for each
Y u £ dom AR}
= tv | A%v = 0 and G,"(vIY) 1 ker R}
= iv 1 A% = 0 and By¥(vIY) € Im R*3. =

Now, we deform the boundary value problem (A,R) without
changing the ellipticity condition through

t » (A, RP(A) + (1-YR(Id-P(A)) , £t = I .
Then index (A,RP(A)) = index (A,R). This proves the

faoallowing

4,10. Corollary.
index (A,R) = index (A, RP(A)) = indx\YA + index RF{(A) ,

where

dim ul Au = ¢ and uiyY = QX

- dim v | A%v = 0 and viY = 02.

indx\YA

"

Remarks. (1) As we have seen, the index of any elliptic

boundary value problem (A,R) is described by three integers

indy\yA , dim ker RF(A) , and dim {r | R'r € (GA)*(H(A*)},
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and for (A,RP(A)) by _ _ ‘
. lndX\YA , dim ker RP(A) , and dim coker RP(A)v;

The fxrst two 1ntegers do not change under our deformat1on-
therefore neither does the thxrd. The reason for thzs is in
- fact both complicated and intu1t1ve1y . surprising- Aas

explained in Proposition 4.3 above. .

(2) -Cdrollary 4.10 shows that one topological invariant -
the index (A,R) of an elliptic boundary value problem - is
equal to. the sum of two indices, indy, A and index RP(A),
although neither is homotopy ‘1nvar1ant. In the case of
indxgyA this is due to-the pogs;ble non—un1queness of the
-sblution of the Cauchy problem which has local character,
éf.'A11nhac {11 for a recent survey on this topic.

The second expression, index RP(A) s 1ooks like the index of
an elliptiﬁ‘opérator; but this is a misunderstanding: Let us
consideF‘ the simplest éituation, i.e. when the symbol p_, of
?(A).,is a projection which does not depehd,on € € TY but
bnly on y itself. Then it is very‘natural_'to consider the
bbérator Rp; which in this  case |is an elliptic
pseﬁdodifferential operator over Y. In general, its index is
not édual toiindex RP(AY . In fact

R . index Rp, = index RP(A) + index P(A)p, -

It is not hard to see that P(A)p, : CT(Y;E,) - H(A) is
a Fredholm operator and that its index can take any value
under compact deformatibns of P(A) , cf Wojciechowski [401].
It turns ouftthat this index is generally not expressed as
the index of an elliptic operator,vsee the discussion at the

end of [383.

(3) If Ais self-adjoint, index (A,R) is truely equal to
index RP(A) . In this case we get a topological expression
for its value through the Atiyah-Bott index formula. This
has a nice methddological relevance: In Example 2.2 (b) we
pbtained a repfeséntation of the index of Fredholm pairs of
subspaces by fhe index of an elliptic operator over a closed
manifold. Now we obtain a topological formula for its index
through representation by a boundary value. problem:

index (H(A)*,gH(A)) = index RP(A) = index(A,R),
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if we put g := RFP(A)+h € GLP(A)—(Id—P(A)) y where
RFE(AY: H{A) = LE(Y;N} > HA) |, LE(Y;EIY) = H(A) B HA)* ,
and h: HA)'® ker RF(A) - HA)Y @ coker RF(A) aﬁy

i somorphism.

Now we would like to reprove the famous Agrancovic-0ynin

Tormula.

4.11. Theorem. Let (A,Rl) and (A,R2) be two regular

boundary value problems. Then
index(A,Rl) - index{(A;R~) = index RIP(A)T2 = index RI(RZ)*,
where T, is a right parametrix for R, constructed as in the

proof of Theorem 4.8.

Frocif. By Corollary 4.10 we have ,
index(A,Rl) - index(A,Rz) = index RIP(A) - index REP(A)
index RIP(A) + index F‘(A)T2

index RP(A)T, = index R;Ry"

since there symbols are homotopically equivalent. =

Now we want to explain the relation of the General Linear
Conjugation Problem (Section 1) with elliptic boundary value
problems. We show that we can obtain w(g,A) aé the index of
a suirtable elliptic boundary value problem. Our presentation

is highly inspired by Atiyah (3, §8 7-81].

Let us consider the operator

* ]
V) A c (X+;E) C (X+;E)
A = : =
A 0 CT X, 5F) C¥UX, 5F) .
Near the boundary it takes the form
IdE Q O —IdE B 0 IdE g
A" = 3/93t +
- ¥*
] GA Idg 0 Q -E 0 EN
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and it ié clear that H(A’)= H(A)EH(A ) < C (Y3 E)BC (Y;F).
Now. we defxne the e111pt1c .boundary wvalue problem

.

A g(u v) s= A Vo, Au « P(A) (uly) gGA P(A )(vIY))
The boundary operator takes the form :
Rir,z) = P(A)r—gGA *n* )z.
tet p, (A) be the principal symbol of the Calderon projector
P(A). Then we know that S o
(Id-p, (ANG*p (A") = Bp¥p, (A% 1 E (AT 5 E mt.
This gives the ellipticity condition by the 1somorphy of
(R). E, (A)OF (A ) =+ E. '

: because

. | .
P, (m—gsA p+(A *) = p (A -(Id-p, (A))g(Id—p, (ANIG P, (A"

and g ‘is ‘an automorphlsm of E, (A)'L .

4.12. Theorem. A
' ' U “index A g = index A% - index A .

Proof. A’ is a self—ad;oznt operator, so by Corollary 4.10
indéx A79 (= index RP,) | o

' index (P (A) g6, *P(A%)) (P (A +P (A*))
lndEX(P(A)—g(Id—F’(A))(F’(A)+GA P(a*)).

The second factor . _
PLRI+G,"P(A%): HAIBH(AY) 5 H@BHm*
is an isomorphism . as follows from Proposition 4.5. So
index A’ = index P(A)-g(Id-P(A))

g .
= index A9 - index A . =

Remark. A shorter proof follows from the preceding

Agranovic-Dynin Formula
- index A’g - index A’y = index (P(A)-g(Id-P(A)).
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Appendix. The Calderon Projector

Our results on the "twisting" of the Cauchy data spaces, see

above Proposition 4.3 and Proposition 4.5, permit a new

presentation of the Calderon praojector. From our
construction it immediately follows that the Calderon
projector is a true projection — in contrast to Hormander

who only considers an approximate projection, see [20,
Theorem 20.1.3]. Nevertheless, our construction is véry much
in the spirit of H8rmander's approach, especially 1in
focusing on the general situation of not necessarily
invertible first-order differential operators and in taking
advantage of the related possibilities of 5ymboli§ calculus.
This allows us some substantial short-cuts in the use of
"elliptic towers". The elliptic tower concept was introduced
by PBirman and Solomyak [8]1, [34]1 in order to construct the

Calderon projector and to prove its projection property.

et X be a compact Riemannian manifold with boundary Y, E, F
Hermitian vector bundles over X and A: CY(X3E) -+ C®(X;3F) a
pseudodifferential elliptic operator of first order. We make
the same assumptions as in Section 4 above, i.e.

{a) In any local coordinate patch in X the complete symbol
of A is a sum I aj(x,g) of rational functions of ¥ .

{(b) In a collar neighbourhood N =1 x Y of the boundary the
operator A takes the form A = GA(S/at + B) where B:
CN(Y;EIY) > Cm(Y;EIY) is an elliptic operator acting on Y

and 6 EiIY =+ FlY is a bundle isometry.

A:

The main purpose of this Appendix is to give a new variant

of the proof of the following theorem:

A.1 Theorem (Calderon [171). Under the preceding assumptions

there exists a pseudodifferential operator F(A): CT(Y;EIY) =
Cm(Y;E!Y) of order zero such that P(AYF(A) = P(A) and Image
PA) = H(A), where H(A) := {ulY | u « C®(X3E) and Au = 0 is
the space of Cauchy data of A.

OQur proof is built upon the following results on "elliptic
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towers” which is taken from [81.

A.2. Definition. Let E, El""En be Hermitian vector

bundles over a closed Riemannian manifold M and let Ai:

CD(M;E) - CQ(M;Ei) be pseudodifferential operators of order
;- We say that (A;,..,A ) is an
elliptit tower of pseudodifferential operators, if the

zero with principal symbols «

following condiitions are satisfied:

Ly ' * . .
i) Aihj = 0 for i * j ,

rank & = rank E ( = fiber dimension)_.
1 .

(ii) -

1 o =

i

The relation of this concept to usual elliptic theory is
given by the folldwing lemma. '

A.3. Lgmma. A system (Al"'?An) of pseudodifferential

apérators of order zero fulfilling the preceding conditian

(1) is an ellibtic tower if and only if

Ai is an elliptic operator.

The proof is trivial.

.A.4. Proposition. Any elliptic tower (Al,..,An) induces

‘the following surjective pseudodifferential projections:

Image Ai Image Ai*
- y—1lp * K A oo * =1
Pi = A; (A+K) A, Q; = A;7A; (A+K)
CT(M; E)

-n.* -1 _nl ‘¢ i
Id-A; A; (a+K) J \ Id=A" (a+K) _ (A",
=Id-Ql *=Id—Pi

ker Ai ker Ai -

Here and subsequently K denotes the orthogonal projection




BOOSS-HOJCIECHOWSKI

onto the kernel of A .

froof. Note that ker A is finite-dimensional; hence K is -

an operator with a smooth kernel. To see that a+k is
invertible we notice ker(A+E) = {0} after construction, so
also coker (a+K) = €0} , since a+K is self-adjoint. :
Now we observe that Ai*AiK = KAi*Ai = O from which we get
. * _ *
(A*h)Ai Ai = A Ai(A+h)
and as a result
A, = ApadR) (an) T = A ke E A *a,) (avky T
- * =1 _ Wl # _ \
= AiAi Ai(A+h) = Ai(A+h1 Ai Ai = Fiei .
P2 = A (av0n A arA Y = Poa (a0 1A
i i * i i Rt i’ - i
= Ai(A+K) Ai = P .
Fram Ai = PiAi it is clear that Image Ai c Image Pi , the

reverse inclusion follows from the definition of Pi . The
proaf for Qi and Image Ai* is similar. The desired results
for ker Ai and ker Ai* follow from the fact that these
spaces are orthogonally complementary to Image Ai*, Image

A..x
i

Now we are able to prove Theorem A.1 by a simple construc-
tion of a suitable elliptic tower (Al"‘) with Image A, =
H(A). We follow the scheme from (341 with the above
mentioned modifications. The censtruction and the proof are

presented as a series of lemmata.

Since the operator A¥a is strongly elliptic, i.e. gr*a) is
positive definite, the Dirichlet problem (A*A,Idlcm(Y;EiY))
behaves like an elliptic boundary value problem (in the
csense of our Definition 4.7) and we can apply all the

classical results, see e.g. [36, Chapter V1. In particular

we have
dim ker(A*A,Id)) = dim {u £ CT(X;E) | AA*Y = 0 and uly = 0O
< o,
If wiy = 0, we have <A*Au,u>E = <Au,AuZ , hence
ker(A*A,Id) = kerxA = {u € C®°(X3E) | A =0 and wlY = 03.

$
[
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Thus, we are permitted to interchange the spaces kerxA*A and

keryA in the following.

Next we recall that for every r € Cm(Y;EIY) satisfying a
certain finite number of linear conditioﬁs,' there is a

solution u of

o A*¥aAu = 0 and ulY = r,
i.e. we have a subspace W(A) = {ulY | A*¥Au = 03 in CQ(Y-EIY)
-_of finite codimension. Let P denote the orthognnal

pro;ect1on onto W(A). P, is a pseudod1fferent1al operator of
»order zero with principal symbol equal to’ the 1dent1ty. We

def1ne an Dperator rD(A)- N(A) + CT(X3E) by the condition
' *

C ' _ : u € C (X E) s A AU = 0
u #.FD(A)rv if and only if { - and
» ulY = r 4 u i kerxA

Now we put

]

. o ‘
T(A) : T (A)F‘w .

A.5. Lemma (Theorem 1 from [34]). We have the following

‘éQUalities . A
H) = Image yA*r(A*) and H(A*) = Image yAT(A),
where vA*C(A%): CT(YZEIY) > CP(Y3EIY) and wyu := ulY .

Proof. We prove the statement for H(A). Leﬁ roE W(A*) and
v 1= rw ) r. Then AR¥v = 0 and for u := A*¥v we have Au = 0,
S0 yu = ulY € H(A). This proves Image yA*T(A™) = H(A).
Now let r € H(A) and let u ¢ (ker’xﬁ)'L with yu = r be a
corresponding solution of the equation Au = 0. Then the
classical theory of the Dirichlet problem, cf. (20, Chapter
XVII’and the beginning of Chapter XX13, guarantees the
'existen;e of a solution w of the equations A¥aw = u and yw =
r. we:can choose w & (kerxﬁ)*
Wwe consider v := Aw. We have a¥v = U, hence AAYv = O and for
any f € kerxA* we get from Green's formula

Cvyf> = <AW, > = <w,A%F> — <Bpyw,yf> = 0 - 0 = 0,
so v € (kerXA*)L . Together with AA*v = 0 this means v =
T A% (yv), hence r = yu = yA*v & A T(A" ) (xv). =

1y is an

A.6. Lemma. The system (VA*T(A*) ’ GAVAF(A)(BA)
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elliptic tower.

Froof. We get condition A.Z2.i from Proposition 4.2 and
Lemma A.S5. To prove condition A.2.ii we recall that fA*P(A*)
and yAT (A) are classical pseudodiffefential operators. Their
principal symbols arermapings into suitable épaces of Cauchy
data of ordinary differential equations:

Let a be the principal symbol of A and (y,¢) € ATyY. We
consider the space

M )(A) t= {w: R =+ E_ | a(0,y;e+3/3t)w = 0 and w(t) = O

{y,€ Y

as t -» 0.
It is well known, see e.g. [12, Chapter 11.61, that this
space has coanstant dimension (over connected components of
the boundary) and that
dim M, oy (A) 4 dim My (8*) = rank E. o
Moreover it 1is clear that the principal symbol of yA T (A}
provides a surjection of the "initial data" Ey onto

M ,
(y,%

y (A) at each point (y,g) of 8Y; and the same is also
true for the principal symbol of yATU(A) and M(y g)(A*),
9

which completes the proof of A.2.ii. n

Lemma A.&4 together with Froposition A.4 ends the proof of

Thearem A.1.
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