Ødsle koldkrigere
&
Videnskabens lyse ideer

- to eksempler til belysning af
forskerens arbejdsbetingelser-

TEKSTER fra

En projektrapport af:
Niels Ole Dam og Kurt Jensen
Vejleder: Bent Sørensen

IMFUFA

ROSKILDE UNIVERSITETS CENTER
INSTITUT FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES
FUNKTIONER I UNDERSVING, FORSKNING OG ANVENDELSER
Sammenfatning:

Denne projektrapport tager udgangspunkt i to forskellige forskningsprojekter. Det ene betegnes VHSIC (Very High Speed Integrated Circuits) og satser på at videreudvikle mikroelektronik, m.h.t. formindskelsesgrad og hurtighed. Det er militært bestilt og militært styret, men lagt ud til private elektronikfirmaer. Det andet projekt, OB, (Optisk Bistabilitet) foregår på det skotske Heriot-Watt universitet, med støtte fra bl.a. forskningsråd og EF. Det koncentrerer sig om udviklingen af en optisk computer, dvs. udviklingen af logiske grundenheder, der kan arbejde med lysintensiteter.

Projektrapporten forsøger at beskrive forskernes selvopfattelse, deres muligheder for at publizere, økonomiske forhold og deres arbejdsorganisation.

Det er håbet, at de to projekter udfra denne beskrivelse viser sig som typiske eksempler til brug i den fortsatte debat om samspillet mellem teknologi (VHSIC) og naturvidenskab (OB).
0. FORORD.

Denne tekst er en breddemodul projektrapport. Det vil sige, at den, ifølge modulkravet, skal indeholde: "Projektarbejde vedrørende fysikken og dens pædagogiske og samfundsmandlige sammenhænge."

Rapporten er blevet til på to semestre (1 år) fra 1984-85. I starten bestod gruppen af seks personer, to der allerede var i gang med overbygningen, og fire som kom direkte fra NAT-BAS. Resultaterne af dette forsøg på at holde sammen på en stor blandet gruppe (á la NAT-BAS) var rystende. Efter to måneder blev gruppen delt i to gange tre personer, og siden hen forsøgte en fra hver af disse grupper fra fysikstudiet. Slutresultatet var pudsigt nok, at de to, der allerede læste overbygning, endte i samme gruppe. Det samme galdt os to af de fire fra NAT-BAS....

Mange af vores problemer drejede sig om, at vi ikke vidste, hvad et breddemodul projekt var. Af én eller anden årsag var der ingen reelle breddemodul rapporter på biblioteket, og kun en eller to af IMFUFA-teksterne var første modul. I praksis var der ingen hjælp at hente her.

Denne tekst er altså på godt og ondt et forsøg på en breddemodul rapport. I skrivende stund (7 15 om morgenen) tror vi nogenlunde på, at projektet kan stå alene. Af samme grund vover vi, at lade det trykke som IMFUFA-tekst. Men også for at bryde den tradition, der siger, at førstegren modul rapporter kun kopieres i det nødvendige antal, til censor, vejledere og gruppemedlemmer. Nye studerende kan lære af de fejl vi (forhåbentlig ikke) har gjort...

Med en særlig tak til Jensen & Gade...

Niels Ole Dam

&

Kurt Jensen.

HUS 16.2, Gr. 2.

RUC, Foråret -85, år 1 efter NAT-BAS.
INDHOLDSFORTEGNELSE.

0. FORORD

INDHOLDSFORTEGNELSE

1. INDLEDNING:
 1.1. PROBLEMFORMULERING... 1.
 1.2. PRÆSENTATION AF DE TO FORSKNINGSPROJEKTER............... 4.
 1.3. DEFINITIONER:.. 5.
 1.3.1. Forskningstyper.. 5.
 1.3.2. Logik.. 8.
 1.3.3. Hurtighed.. 13.

2. DET FAGLIGE BAG PROJEKTERNE:
 2.1. DET FAGLIGE BAG VHSIC-PROJEKTET.......................... 15.
 2.1.1. Fra opfindelsen af transistorene til
 starten af VHSIC..................................... 15.
 2.1.2. VHSIC - en videreførsel............................... 16.
 2.1.3. Transistortyperne...................................... 18.
 PN-overgang
 Den bipolare transistor
 Mos-transistoren
 2.1.4. Transistorens hurtighed................................ 25.
 RC-led
 Mos-transistorens hurtighed
 De bipolare transistorers hurtighed
 2.1.5. Teknologier - TTL, ECL og CMOS...................... 32.
 De bipolare
 De unipolare - CMOS
 Produktion
 2.1.6. Grundlæggende problemer ved teknologierne.. 39.
 2.1.7. Løsninger.. 44.
 2.1.8. Litteraturliste.. 49.

2.2. DET FAGLIGE BAG OB-PROJEKTET............................... 50.
 2.2.1. Historisk rids... 50.
 2.2.2. Beskrivelse af hvordan OB fungerer................. 52.
 Ikke-lineære effekter
 Fabry-Perot-interferometeret
 2.2.3. Problemer/begrænsende effekter ved OB.......... 56.
 Materialets reaktionstid
 Den ikke-lineære effekts størrelse
 Renheden af det optiske materiale
 Selvfocusering - spredning
 "Avalanche breakdown"
2.2.4. Anvendelsesområder ... 59.
2.2.5. Hvad forskes der i ? .. 63.
2.2.6. Litteraturliste ... 67.
2.3 DELKONKLUSION .. 69.

3. SOCIOLOGISK BESKRIVELSE AF PROJEKTERNE: 71.
 3.1. SOCIOLOGISK BESKRIVELSE AF ET VHSIC-FIRMA: 71.
 3.1.1. VHSIC-projektets opbygning 71.
 3.1.2. Halvlederfirmaerne .. 74.
 3.1.3. Hvad får VHSIC-firmaerne ud af det ? 76.
 3.1.4. Et VHSIC-firma - IBM 77.
 3.1.5. Forskerniveau - igen 80.
 3.1.6. Opsummering ... 83.
 3.1.7. Litteraturliste .. 85.
 3.2. SOCIOLOGISK BESKRIVELSE AF ÖB-PROJEKTET: 86.
 3.2.1. Om Heriot-Watt-universitetet 86.
 3.2.2. ÖB-projektet ... 87.
 3.2.3. Opsummering ... 91.
 3.2.4. Litteraturliste .. 92.

4. KONKLUSION: ... 93.

5. BILAG: ... 97.
 Bilag 1: Virksomhedsprofiler 98.
 Bilag 2: VHSIC-chips .. 103.
1. **INDLEDNING:**

1.1. Problemformulering.

Det er altså to vidt forskellige projekter men med mange paralleller, hvis man ser dem udfra en teknologisk synsvinkel. Og det er bla. hvad vi gør. Men dette med bare at sammenligne to tekniske projekter er for os ikke nok. Vi har under hele tilblivelsen af denne tekst haft et ønske om "at komme ned på forskerniveau". Altså at se på hvordan forskerens muligheder i en bred forstand afhænger af, hvilken type forskning hun er knyttet til. For det må jo være sådan, at en forskers ansættelsesvilkår må influere på hendes opfattelse af sig selv og af forskningens funktion? Sådanne overvejelser er næsten umulige at gøre generelt (det har vi bla. prøvet, fiasko...), de skal gøres på udfra konkrete eksempler, hvis man vil komme helskindet igennem. Ellers er chancerne for at ende med at ekselere, i absolut perifere detaljer, for stor. Det er derfor også derfor nødvendigt at nøjes med at se på ét af firmaerne i det militære projekt, IBM.

På det mere generelle niveau er en af dette projekts drivkrafter håbet om, at de to forskningsprojekter er repræsentative for h.h. universitetsforskning og firmaforskning. Hvis de er det, kan de nemlig bruges som eksempler på, hvordan universiteter og virksomheder spiller sammen. Universiteterne som bærere af den naturvidenskabelige tradition, virksomhederne som bærere af den rent anvendelsesorienterede forskning. Et sted imellem disse to yderligheder må brohovederne for de to forskningsgrupper mødes i et dunkelt og uigennemtrængeligt vekselspil. Universitetet med den mere anvendelsesorienterede grund-
forskning, virksomheden med den stærkt grundvidenskabeligt ba-
serede, men anvendelsesorienterede forskning. Dette spændende
område belyses bedst v.h.a. konkrete eksempler, deraf håbet om
at vore to projekter passer ind. Vores problemformulering bli-
ver dermed, med eksemplerne hentet fra de nævnte projekter:

Hvis der er forskel på, hvordan der forskes på Heriot-
Watt universitetet og i halvlederfirmaet IBM, og hvis
målsætningen er forskellig, hvordan påvirker dette så
forskerens status? Ved status forstå vi, hvilken fri-
hedsgrad forskeren har økonomisk og m.h.t. publice-
ringsmuligheder, samt hvilken selvfølgelig icke han har.
Desuden har samarbejdet interesse.

Det er nok nødvendigt med nogle kommentarer til problemformu-
leringen. Grunden til, at vi ikke tager det for givet, at der
forskes forskelligt de to steder, er, at begge projekter er
technologiudviklende. D.v.s. at de grundlæggende bygger på at
udnytte kendte fænomener, så godt som muligt til tekniske for-
mål. Hvis der er forskel på de to projekters måde at forske på,
så skyldes det snarere, at de befinder sig på forskellige ud-
viklings trin; det ene prøver at stable en helt ny teknologi
på benene, det andet fortsætter en eksisterende teknologiudvik-
lings. Tilsvarende kan vi heller ikke være sikre på, at der ikke
er forskel på de to projekters overordnede målsætninger; selv
om det er teknologier til brug indenfor det samme område, be-
høver de ikke at blive brugt til de samme ting; det optiske
projekt vil (hvis det lykkes) mest satse på parallelprocessing,
og ikke umiddelbart på områder, hvor elektronikken er stærk.
Dette forklare de to hvis'er i problemformuleringen.

M.h.t. hvordan vi opfatter "forskerens status", så bygger det
meget på vores inddeling af forskningstyper i "grundforskning",
"anvendtgrundforskning" og "anvendtforskning", og på vores brug
af begreberne "naturvidenskabsmand" og "teknolog" (se afsnit
1.3.1.). Vi mener at de fire egenskaber meget godt dækker for-
skerens sociologiske rolle (forstået som rollen i forhold til
andre). Og forskerens sociologiske rolle har altid interesse,
spezielt når det drejer sig om den forskning, der ligger bag de
glatte, anonyme informationsteknologier.

Vi forsøger at besvare problemformuleringen på følgende måde: Først ser vi på de to projekter, fagligt/teknisk; hvad går de udfra, hvordan forskes der. Dette skal så munde ud i en påvisning af, at forskningstyperne og målsætningen er forskellig i de to projekter. Det er også meningen, at denne delkonklusion skal belyse sammenhængen mellem de to projekter.

Alt det ovenstående er mere generelt baseret på oplysninger om de to projekter. Det er så meningen, at vi i det efterfølgende skal nærme os forsker niveau, ved at beskrive de to projekter konkret, udfra personer og ved at udvælge et firma (VHSIC). Igen er der to kapitler, der hver beskriver et af projekterne mere sociologisk. Til slut kommer så en endelig konklusion, der på baggrund af delkonklusionen og de to sociologiske kapitler skal besvare problemformuleringen.

Netop fordi denne tekst er så opdelt, er det på sin plads med en nærmere læsevejledning. Før de to tekniske kapitler kommer tre definerende afsnit. Her forsøger vi en gang for alle at præcisere nogle begreber, som vi i resten af projektet bruger ret indforstået. Af samme grund er disse afsnit temmelig vigtige. Derimod kan nogle af de tekniske afsnit om nødvendigt springes over. Dette gælder specielt det tekniske (mikroelektroniske) om VHSIC. Ellers er resten af projektet fortløbende og skal læses i sammenhæng. Dog står bilagene for sig.
1.2. Præsentation af de to forskningsprojekter.

1.3. Definitioner

I de kommende 3 afsnit vil vi definere de begreber, som ellers ret indforstået bruges i resten af projektet. Det er dels nogle overvejelser over forskellige forskingstyper og dels nogle mere tekniske konstateringer. Disse afsnit er dermed også udtryk for nogle af de mere generelle samtaler vi har haft i gruppen, men som ikke direkte er kommet med i projektet. F.eks. har vi diskuteret en del om sammenhængen mellem teknologi og videnskab.

1.3.1. Forskningstyper

Specielt ved spørgsmålet om hvordan man kategoriserer forskning og forskere, har vi haft store problemer. Generelle diskussioner har her en tendens til at flyde, blive diffuse og til sidst forsvinde totalt i mangel på fælles begreber og udgangspunkt. De efterfølgende, meget unuancerede overvejelser er dermed nok kun brugbare netop ved vore konkrete eksempler. Man på den anden side, en unuanceret opfattelse er bedre end ingen opfattelse, specielt på et så omfattende område som "forskning". Vi indleder med nogle tanker om forskerens rolle som enten "naturvidenskabsmand" eller "teknolog", og derefter kommer en præcisering af de tre forskingstyper, vi især arbejder med. Men husk: Definitionerne er temmelig eksempelbundne og er taget med for mere ærligt at vise læseren, hvordan vi opfatter forskningen istedet for det skulle fremgå implicit (af frygt for at opfattelserne er for primitive). Det efterfølgende skal altså nok også ses som et udtryk for hvilke forudsætninger (fordomme) vi starter med.

Ideelt set vil "naturvidenskabsmanden" forsøge at finde så alment gældende sandheder, om naturen som muligt. Han vil forsøge at finde de mest grundlæggende forklaringer på de fænomener som iagtages. Sproget, som bruges, vil ofte være abstrakt, matematiser. Hvis han eksempelvis beskæftiger sig med optiske ikke-lineære effekter i krystaller, er hensigten at undersøge
hvorvidt de grundlæggende teorier kan forklare de fænomener, han observerer. Eller omvendt evt. at finde de effekter, som teorierne forudsiger. Her er det typisk kvantemekanikken, som vurderes. Formålet er at undersøge om teorien (her kvantemekanikken) hænger sammen med fænomenerne.

Teknologens mål er derimod er finde ud af, hvordan fænomenerne uddytes bedst muligt til tekniske formål. Ønsket er at fremstille redskaber, ikke at forklare. Hans viden vil ofte være udtrykt i et fænomenerorienteret sprog, idet det netop er fænomenerne han uddyter. F.eks. vil han snarere tale om "avalanche breakdown", end om sammenbrud i krystalllets gitterstruktur som følge af den ioniserende effekt fra højenergieléktroner. Hans metode er dels videnskabelig og dels kvalificeret søge/fejle(trial/error). Hvis han møder et nyt fænomen, vil hans første tanke være at uddybe det til noget teknisk (og dermed forklaredet til en vis grad) og ikke at forklare hvordan det opstår. Hvis han ved fremstillingen af en integreret kreds støder på en effekt, der får kredsen til at brænde sammen, vil han kun søge ned i problemet i den grad, det er nødvendigt for at undgå det.

Disse to "personer" er naturligvis ekstremer. I praksis vil forskeren befinde sig et sted mellem yderpunkterne. F.eks. kan man komme ud for en forsker der, skønt naturvidenskabeligt minded, alligevel forsker i et anvendelsesorienteret område. Dette er faktisk det mest almindelige (bl.a. på Heriot-Watt), idet langt størstedelen af de mennesker, der kalder/opfatter sig som grundforskere, har denne indgångsvinkel (jvnf. f.eks. indholdsfortegnelsen i "physical abstract"). Dette skyldes dels, at de er nødt til at legitimere deres forskning udadtil for at få midler og dels at forskeren selv har ambitioner i denne retning (hvor disse ambitioner kommer fra skal være usagt).

De nævnte betragtningser (og de to eksempler) medfører, at vi arbejder med følgende begreber:

"Grundforskning". Herved forstår vi en forskning, som overhovedet ikke er udført med en teknisk anvendelse for øje. Alt-så den historiske higen efter sandheden, at beskrive naturen så præcist som muligt. En erkendelsesorienteret forskning, helt
individorienteret. Denne forskning bringer altid noget nyt til
videnskabens stade (her spec. fysikken). Netop fordi forsk-
ningsstypen er så idealiseret, er den ikke så udbredt.

"Anvendt grundforskning". Herved forstår vi forskning,
som er udført med samme øjemed (som ovenfor), men hvor forsker-
en af en eller anden grund bevidst lader forskningen pege frem
mod det tekniskt anvendelsesorienterede. Denne grund kan så være
enten et forsøg på at legitimere sig udadtil f.eks. overfor
bevilgende institutioner, eller også kan det udspringe af en
mere bevidst teknologisk holdning. I universitetsregi vil vi
skønsmæssigt mene, at det er den første mekanisme, der er den
mest udbredte. Forskeren har altså samme målsætning som oven-
for, men hans muligheder for at få støtte til forskningen,
er styret af hvor anvendelsesorienteret den er lagt an. Denne
forskning er meget udbredt og netop, derfor er der store chan-
cer for at støde på fænomener, som kræver en "revision" af
teorierne og derved fører nyt til "fysikkens nuværende stade".

"Anvendt forskning". Herved forstår vi forskning, som har
et helt klart, teknisk mål, og hvor der evt. er krav til den
tid, det tager at nå dette. Forskningen bringer sjældent nyt
til "fysikkens nuværende stade", fordi der kun i den grad
det er nødvendigt, for at nå et teknisk mål teoretiseres over
problemerne.
1.3.2. Logik.

I en computer bruges ikke betegnelserne sandt/falskt, men istedet 0 og 1. Dette svarer iøvrigt til de to cifre i det binære talssystem (to-talssystemet). Tilsvarende bliver der i computere brugt nogle "operatorer", som kan virke på udsagn af typen 0 eller 1. De vigtigste operatorer er "OG", "ELLER" og "IKKE".

Et udsagn, der selv består af to udsagn knyttet sammen med et "OG"-operator er f.eks.: "Solens skinner og jeg er 12 år". Dette udsagn har forskellige mulige udfald. Disse kan repræsenteres ved en såkaldt sandhedstabel:

<table>
<thead>
<tr>
<th>"OG"</th>
<th>A (Solen Skinner)</th>
<th>B (Jeg er 12 år)</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. mulighed</td>
<td>FALSKT</td>
<td>FALSKT</td>
<td>FALSKT</td>
</tr>
<tr>
<td>2. mulighed</td>
<td>FALSKT</td>
<td>SANDT</td>
<td>FALSKT</td>
</tr>
<tr>
<td>3. mulighed</td>
<td>SANDT</td>
<td>FALSKT</td>
<td>FALSKT</td>
</tr>
<tr>
<td>4. mulighed</td>
<td>SANDT</td>
<td>SANDT</td>
<td>SANDT</td>
</tr>
</tbody>
</table>

En "OG" funktion er altså en funktion, som kun er "sand", hvis begge udsagn er "sande". Det bemærkes, at vi har knyttet betegnelserne A og B til de to "indgange" og C til "udgangen". Skrevet generelt med 0'er og 1'ere istedet for sandt/falsk, ser skemaet sådan ud, og er stadig en sandhedstabel.
"OG" er en logisk funktion, og der er derfor knyttet et logisk symbol til den!

![Diagram for "OG" function]

Sandhedstabellen og symbolet er to betegelser for det samme. Tilsvarende er en "ELLER" funktion, en funktion af typen "enten er det ene eller det andet sandt". Sandhedstabellen og det tilhørende logiske symbol ses herunder:

![Diagram for "ELLER" function]

"IKKE"-funktionen, er en "modsat" funktion. Den har kun een indgang og een udgang, som altid er modsat af indgangen. Sandhedstabel og logisk kredsløbssymbol:
De ommængte funktioner er de grundlæggende i al binær logik. Ud fra forskellige sammenstillinger af disse kan alle logiske kredsløb dannes. Til de mere simple afledede hører "IKKE-ØG" (NAND) og "IKKE-ELLER" (NOR):

"IKKE-ØG"

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C'</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

"IKKE-ELLER"

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C'</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

De ommængte funktioner kaldes under eet for PORTE, f.eks. en "ØG"-PORT. Dette svarer til det engelske "gate" og "AND-gate". For alle disse gælder, at udgangen altid er entydigt udtryk for hvad, der er på indgangene, der er tale om simultan-
logik. Til computer-formål er det dog også nødvendigt med logiske elementer, der kan "huske". Her er det, at man bruger sekventiel logik, hvis udgang både afhænger af indgangens øjeblikkelige tilstand, og af hvilken tilstand de havde før. Til den sidste gruppe, som vi ikke vil komme nærmere ind på, hører f.eks. de såkaldte "flip-flops". Disse er lige så vigtige til computer-formål, som de almindelige porte er det. Sekventiellogik dannes iøvrigt ved sammenstilling af porte (udgangen kobles tilbage til indgangen).

Binær logik udføres altså af abstrakte symboler, der er uafhængig af fysiske systemer. Når man så i praksis skal have en maskine til at udføre de logiske funktioner, taler man om at "implementere" logikken f.eks. i et mikroelektronisk kredsløb, bestående af transistorer. 0 og 1 bliver så repræsenteret ved "spænding" eller "ingen spænding" (evt. "strøm" eller "ikke strøm"). Et elektronisk apperat (digital) f.eks. en computer, der indholder logik, vil således kunne ses, som bestående af flere niveauer:

Den mikroelektroniske teknologi

\[
\begin{array}{l}
\text{APPARAT} \\
\text{SYSTEM feks. computer} \\
\end{array}
\]

\[
\begin{array}{c}
\text{LOGISKE FUNKTIONSENHEDER} \\
\text{f.eks. flipflops} \\
\end{array}
\]

\[
\begin{array}{c}
\text{standard-kredse MSI} \\
\end{array}
\]

\[
\begin{array}{c}
\text{PORTE} \\
\text{TRANSISTORER} \\
\end{array}
\]

standard-kredse, SSI
Altså et apparat er (eller består af) et system(er), som består af logiskefunktionsenheder, som igen består af porte, som består af transistorer. SSI, MSI og LSI står for h.h. small-medium-large scale integration, altså et udtryk for den integrerede kreds' "miniaturisering"/kompleksitet. Af samme grund er det altid meget svært at vælge (og forklare!), hvilken ingangsvinkel man har til den elektroniske teknologi.

Men dette er kun een måde at implementere et logisksystem på. Et hvilket som helst andet fysisk system kan bruges, hvis det har nogle passende "switch"-egenskaber. F.eks. kan pneumatiske systemer bruges! Og det andet projekt vi ser på (optisk bistabilitet) satser på at udnytte den optiske transistor, "transfasoren" (se senere), som grundelement f.eks. i en optisk computer. Her gælder altså samme niveaudeling, det nederste niveau er blot udskiftet med "transfasor". I et sådan optisk logisk system repræsenteres "0" og "1" ved "lille lysintensitet" og "stør lysintensitet".

Ved beskrivelsen af de to projekter (OB og VHSIC) har vi det nederste niveau som indgangsvinkel, netop fordi det er her de fysiske begrænsninger, for de to teknologier, findes. Teoretisk set er logiske systemer jo ideelle, og kan dermed fungere vilkårligt hurtigt. At sammenligne to forskellige logik-teknologier, hvad jo indirekte er, hvad vi gør, vil i højgrad være at undersøge, hvordan disse afviger fra det ideelle. En stor del af de fysiske begrænsninger vil ligge i den tid, det tager at udføre de logiske funktioner, altså hurtigheden. Måske skulle vi tage en kort, generel definition af hurtighed i et (ikke ideelt) logisk system.
1.3.3. Hurtighed

Først vil vi lige slå fast, at hastigheden af f.eks. en elektronisk switch (kontakt), en elek. gate og en transistor, defineres på samme måde, idet de alle arbejder med logiske signaler. Da der desuden gælder, at optiske logikkredsløb arbejder ud fra samme princip (en intensitetsændring & en spændingsændring), bliver hastighedsdef. for optikken de samme som for elektronikken.

Idet der arbejdes med logiske niveauer, bliver definitionen som antydet på figuren:

![Diagram af logikkredsløb](image)

Figuren beskriver et signals vej gennem et logisk kredsløb. "Ind" viser, hvordan indgangssignalet ser ud som funktion af tiden, og "ud" hvordan det tilsvarende udgangssignal ser ud. De vigtigste parametre er:

1) t_{PLH} og t_{PHL}, den forsinkelse ("propagation delay" udbredelses-forsinkelse) der er imellem niveauskiftet på indgangen, og det tilsvarende skift på udgangen. P.S. p'et står for "propagation", LH for Lav Høj skift (HL for Høj Lav).

2) t_{rise} og t_{fall}, den tid det tager kredsløbet at skifte niveau.
AD 2) I praksis måler man (for elektronik) t_{rise}, som den tid det tager at skifte fra 10% af signalet til 90% (og t_{fall} fra 90% til 10%). Dette gøres fordi de asymptotiske dele af kurven oftest skyldes den belastningsudgangen er udsat for.

AD 1) Tilsvarende måles t_{PLH} og t_{PHL} ikke i praksis, som den tid det tager fra indgangssignalet til logisk "1", til udgangssignalet er det. Her siger man som oftest: "Fra ingangssignalet er 50% til udgangssignalet er 50%." (henyettes i det følgende). Dette skyldes formodentlig, at kanerne er linære (næsten) i området mellem logisk "0" og "1". Desuden er indgangssignalets stige/falde-tid oftest i praksis af samme størrelsesorden, som udgangssignalets.

OG HVAD KAN VI SÅ LÆRE AF DET ???????

Det ovenstående er en beskrivelse af de komponenter, som bestemmer et kredsløbs hastighed (maksimale arbejdsløse).

Et udtryk for kredsløbs hastighed er, hvor korte indgangsimpulser det kan nå at reagere på. For at være sikre på at "ud"-signalet skal nå at skifte fra lav til høj, skal varigheden af indgangssignalet mindst være $t_{PLH} + \frac{1}{2}t_{rise}$. Hvis "ind"-signalet netop har denne størrelse, vil der derudover gå tiden $t_{PHL} + \frac{1}{2}t_{fall}$, før kredsløbet kan "modtage" en ny impuls (dødtid).

Den kortest mulige enkeltimpuls bliver altså ca. $t_{PLH} + \frac{1}{2}t_{rise}$. Hvis vi kigger på en hel serie af impulser, med frekvensen f, gælder der derimod (følger af det netop nævnte):

$$f_{maks} \lesssim \frac{1}{t_{PLH} + \frac{1}{2}t_{rise} + t_{PHL} + \frac{1}{2}t_{fall}}$$

EKSEMPEL:

CMOS GATE $t_{PLH} \approx 100 \text{ ns}; t_{PHL} \approx 120 \text{ ns}

$t_{rise} \approx t_{fall} \approx 30 \text{ ns.} \quad (\text{ved } 5 \text{V})$

$f_{maks} \lesssim 1/250 \text{ ns} = 4 \text{ MHz} \quad (1 \text{ Hz} = 1 \text{ svingning pr. s})$

Kilde (9)

RESUMÉ:

HURTIGHED ER ALTSÅ DELS, 1) LILLE FORSINKELSE & dels
2) KORT NIVEAU-SKIFTETID.
2. DET FAGLIGE BAG PRJOKTERNE.

2.1. DET FAGLIGE BAG VHSIC-PROJEKTET.

2.1.1. Fra opfindelsen af transistoren til VHSIC's start

Transistoren blev opfundet i 1947-48; dvs. dette år stemte forsøgsresultaterne for første gang overens med det teoretiske. Grundforskningen indenfor det faststoffysiske område havde gennem 30'erne og 40'erne taget større og større omfang (kilde: (1)), bl.a. som følge af det øgede kendskab til atomernes struktur og egenskaber. Overlejret i grundforskningen var naturligvis også håbet om konkrete, tekniske anvendelser af faststoffysikken. Dels var der et ønske om at fremstille pålidelige ensrettere (bl.a. til radio og radar brug), dette lykkedes omkring 2. verdenskrigss start. Og dels var der en drøm om at finde en faststoffysisk penge til radiorøret, hvis begrænsninger man allerede dengang var opmærksom på (følsomhed overfor rystelser, stor størrelse, stort effektforbrug etc.). Realiseringen af denne drøm var altså kulminationen på mange års grundvidenskabelig forskning, en forskning, som i stigende grad blev rettet ind mod anvendelsen. Kilde (2) ser faktisk transistorens historie som fire perioder: Én hvor de grundlæggende fænomen er opdagedes (ca. 1833-1876), én hvori selve grundforskningen foregik (ca. 1876-1933), én hvori transistoren udvikledes (ca. 1933-1950), og tilslut én periode hvor transistoren er blevet udbredt/anvendt (ca. 1950 til nu). Dette dækker nok meget godt transistorens udviklingen, idet f.eks. Brattain (en af transistorens opfindere, kilde (3)) allerede i 1955 mente, at halvledernes egenskaber var kortlagt/forstået til en ret stor del. Den egentlige grundforskning fandt sted parallelt med/før transistorens opfindelse.

Den udvikling af transistoren, der så senere er foregået, har mere bygget på forbedringer af produktionsmetoderne end på egentlig ny grundforskning; transistoren har ikke skiftet virkemåde, den ser bare anderledes ud. På samme måde udviklingen af de integrerede kredsløb. De udspringer af udviklingen af produktionsapparatets kompleksitet, og af over gangen fra germanium til silicium. Det er derfor også lidt upræcist, når firmaerne skilter med nye teknologier af integrerede kredse; teknologien er grundlæggende den samme, men produktionsmetoderne er anderledes, evt. kan der være tale om nye logik-"familier", ala
TTL (se senere). Naturligvis er det nødvendigt med f.eks. intensiv forskning i materialeegenskaber, men denne forskning er ikke, hvad vi forstår ved grundforskning (se evt. vore definitioner af forskningstyper).

På samme måde gælder for VHSIC-projektet, at det ikke kan indeholde (ret meget) grundforskning, da der bare ønskes endnu en forbedring af en allerede eksisterende teknologi. Det er anvendelsesorienteret forskning, der sigter mod tekniske anvendelser; alle de fysiske begreber ligger fast, er allerede defineret. Ligeledes kendes alle de parametre, der skal arbejdes med, for at nå målet, det er bare at få det gjort. Jamen, hvad betyder VHSIC forresten? Hvad går projektet overhovedet ud på?

2.1.2. VHSIC - en videreførsel

Det amerikanske militær startede i 1977 et projekt, til forbedring af mikroelektronikken, dvs. integrerede kredse så som computere, hukommelser, og anden logik. Projektet udsprang direkte af Pentagons (det amerikanske forsvarsministerium) ønske om, at bygge våbenarsenalet op omkring en kerne af højteknologi; bl.a. kræver de nu så kendte Cruisemissiler en meget kompakt og hurtig navigationscomputer. Ifølge David Dickson (kilde (4)) var programmets hovedmål oprindelig "at udforske avancerede computer- og data-bearbejdningsarkitekturen, samt nye indgangsvinkler til computer-hjulpen (CAD) af mikroelektroniske kredsløb". Interessen drejede sig mere konkret også om forskning i materialer, og "i de fysiske processer, der er nødvendige til fremstilling af ultra-små kredsløbselementer" (ultrasmå, eng. "submicron").

mod industrispionage fra hinandens side. De ville nok også egne sig til klassificeret militærforskning.

Da firmaerne var kaldt ind på arenaen, blev målsætningen med VHSIC-projektet mere konkret defineret. Firmaernes opgave blev dermed, at lave brugbare kredsløb, med en transistorstørrelse ("feature size", f.eks. AW&ST 30. juli 84) på under 1 μm, f.eks. 0.5 μm. At gøre en integreret kreds (bestående af transistorer) hurtigere, hænger, som vi senere skal se, nært sammen med, at gøre kredses transistorer fysisk mindre. I betragtning af, at det kommercielt almindelige (1983, f.eks. RCA's QMOS (5)) er 3 μm, er der et meget stort spring til de 0.5 μm. At nå de 3 μm tog mange år, da vejen, som vi ligeledes senere skal se, er brolagt med småforbedringer, $. Målet med VHSIC er øvrigt ikke kun at udvikle disse "submicron" kredse. Det er også meget vigtigt, at denne udvikling er fortløbende (ikke stopper selv om de 0.5 μm nås), og at USA hele tiden har et forspring. Dette er en "våbenkapløbseffekt". Den betyder, at forskningen bliver uhyre målrettet; der er ikke tid til f.eks., at forske nærmere i et for VHSIC irrelevant, men af andre grunde spændende område. Målet skal nås, og helst i fugleflugt!

Men for at forstå, hvordan forskningen i VHSIC foregår, er vi nødt til at se på hvad mikroelektronik er!

2.1.3. Transistortyperne

Betegnelsene uni-og bi-polar henviser til, hvorvidt strømtransporten i transistoren foretages kun af den ene, eller af begge ladningsbærende, elektroner eller huller (d.v.s. frie elektroner, løsrevet fra valensbåndet, eller "mangel" på en elektron i valensbåndet.). Hvis en elektron (på grund af den termiske effekt) løsrives fra valensbåndet, dannes altså et elektron-hul-par (én fri elektron og ét "ufyldt" hul.).

PN-overgang

Før vi går over til at beskrive de forskellige transistorer, er det nødvendigt at kende til teorien bag dem. Denne teori beskrives bedst med PN-overgangen som eksempel.

En PN-overgang (eng.: junction) optræder når N-dopet og P-dopet halvledermateriale (silicium) "mødes". N-dopet betyder at ladningstransporten hovedsagelig foretages af elektroner: Der er flere frie elektroner, end frie huller. P-dopet betyder, at det er hullerne som er majoritetsbærende: Der er flere frie huller end elektroner. Dette vil ikke sige, at der kun er en ladningsbærer, men at majoritetsbæreren er langt i overtal. Minoritetsbæreren er stadig tilstede, men kun i ringe grad.

Når to sådanne krystaller nu "sættes sammen", vil det endelig indholde mange frie elektroner (N-typen), mens det andet vil indeholde mange huller (P-typen). Denne situation er ustabil, idet elektroner vil difundere fra N til P og huller fra P til N (osmore). P-delen vil dermed blive mere negativ end N-delen, og omvendt. Efter at en ligevægt mellem det derved fremkommende elektriske felt og den modsat rettede ladningsbevægelse har indstillet sig, vil situationen se således ud:

\[\text{LEDNINGSEVNE} \; I \; (A/m^2) \]

\[\text{P-TYPE:} \; \sigma = e (\mu_P P + \mu_N N) \approx e \mu_P P \]

\[\text{N-TYPE:} \; \sigma \approx e \mu_N N \]

\[\text{Hvor:} \mu_P \text{ er ladningsmobiliteten for Huller} \]
\[\mu_N \text{ for Elektroner} \]
\[N \text{ og } P \text{ er ladningsmængden} \]
Hvis nu PN-overgangen påtrykkes en ydre spænding, vil potentialeforskellen mellem N og P enten øges eller mindskes:

Det område hvor potential skifter vil udgøre en næsten uigennemtrængelig 'barriere', for begge typer majoritetsbærere; positive huller kan ikke "kravle op ad bakke" fra P til N, negative kan ikke "falde ned" fra N til P.

I det første tilfælde (A) vil den "barriere", som elektronerne skal overvinde blive endnu større; der vil ikke gå nogen strøm fra + til −. Idet andet (B) bliver den meget mindre. Sandsynligheden for at elektronerne kan overvinde barrieren bliver meget større: Der går en strøm fra + til −. Det er altså potentialeforskellen, som bevirker diodeeffekten. Sandsynligheden for at ladningsbærere fororer barrieren er øvrigt givet ved $e^{-eV/kT}$, hvor V er potentialeforskellen mellem N og P krystallerne.

Af det nævnte utryk fremgår desuden, at der altid vil være nogle elektroner (huller), som vil overvinde barrieren. Denne ladningstransport afhænger bl.a. temperaturen. Det er denne strøm af elektroner og huller som rekombinerer⁸, der bevirker, at der også i spærreretningen går en meget lille strøm, kaldet I_{minor}:

§ REKOMBINERE vil sige at en elektron (fri) og et ledigt hul mødes, således at elektronen bindes, og hullet ikke længere er ledigt.
I grænseområdet mellem P og N-delen vil dør altså findes utroligt få frie ladningsbærere, der er faktisk tale om en slags isolering mellem de to krystaltyper. Tykkelsen af dette lag afhænger af potentialeforskellen:

STOR FORSKEL

![Diagram med stor forskel]

LILLE FORSKEL

![Diagram med lille forskel]

SKÅRET UD I PAP: 1) En diode leder i PN-retningen og spærre i NP-retningen. 2) De eneste frie ladningsbærere som findes i grænseområdet, er dem som stammer fra spontan (termisk) dannelse af elektron-hul-par i denne zone.

I praksis kan man iøjvigt bruge denne afhængighed af potentialeforskellen til en art spændingsstyret kondensator (en varicap-diode): Jo højere spænding, des mindre kapacitet. Det er denne effekt, som har størst betydning, når man kigger på årsagerne til transistorernes parasitkapaciteter. En anden vigtig egenskab er, at dioden ikke leder rigtigt godt før potentialeforskellen er helt overvundet. Potentialeforskellen for en siliciumbiodiode er ca. 0.7 V. En ledende diode vil altså have et spændingsfald over sig på ca. 0.7 V.

Enhver diode er i øvrigt formelt bipolar, idet strømtransporten foretages af både elektroner og huller, alt efter om vi ser på P eller N området.

Den bipolare transistor

Hvis vi istedet for at kigge på en enkelt PN-overgang kigger på to, får vi f.eks. en NPN-transistor. Potentialediagrammet ser, uden påtrykt ydre spænding, således ud:
Hvis vi nu forestiller os, at BASE-EMITTER-dioden er forspændt i lederetningen (V_{BE}), mens COLLECTOR-BASE-dioden er forspændt i spærretetningen (V_{CB}), vil potentialdiagrammet se ud som følger:

Umiddelbart skulle man tro, at dette betød, at der ville gå en strøm fra BASE til EMITTER udelukkende. Men i praksis vil størsteparten af de elektroner, som emitteren "udsender" (emitterer), og som accelereres af det elektriske felt fra B til E, have nok kinetisk energi til at kunne passere tværs igennem P-området og op i Collectoren! Denne effekt tilskyndes også af, at P-området (BASEN) er meget tyndt og dermed let at passere.

Der gælder tilsvarende ting for PNP-transistoren, idet alle potentialer nu bare er vendt.

Konklusion: Betegnelsen bipolar er altså lidt af en tilsnigelse, idet I_C hovedsagligt transporterer af elektroner (NPN-transistor) eller huller (PNP). Betegnelsen er snarere indført for at adskille denne transistortype fra FET'erne. Men en vis form for bipolaritet er der dog, idet det jo er en lille hullstrøm fra BASEN, som styrer den store strøm fra COLLECTOR til EMITTER.
Mos-transistoren

Den unipolare transistor (FET, Field Effect Transistor) kan grundlæggende fremstilles i to typer: Junktion-FET'en (J-FET) og MOSFET'en (Metal Oxide Semiconductor FET). De fungerer dog ud fra samme princip. For begge typer gælder at ledningsevnen afhænger af den elektriske feltstyrke, som indgangen påtrykkes. (for den bipolare transistor gjaldt, at ledningsevnen afhæng af styrestrømmens størrelse). Hvis vi først ser på J-FET'en, så kan virkemåden illustreres sådan:

Eller tegnet ind i et koordinatsystem, med spændingen mellem GATE og SOURCE ud af absciaseaksen, og den tilsvarende strøm fra DRAIN til SOURCE udaf ordinataksen, (V_{GS}, I_D): (Husk at strømmen jo er prop. med ledningsevnen!)

Eksempel:

![Diagram](image-url)
I ord har vi (groft set) en stang af N-dopet halvledermateriale, med en elektrode i hver ende, DRAIN og SOURCE. Men i denne stang er inddopet en ring af P-materiale. Dette område kaldes GATE og er styreterminalen. Mellem de to elektroder, D og S, er der altså en "kanal" af N-materiale, heraf navnet.

Hvis V_{GS} (spændingen mellem GATE og SOURCE) er nul, vil ledningsevnen mellem D og S være stor, idet et N-dopet kryстал jo leder godt.

Hvis V_{GS} er negativ, er PN-strækningen forspændt i spærreretningen. Derfor vil der være et isolationsområde, hvis tykkelse afhænger af V_{GS}; jo mere negativ V_{GS} er, jo mere vil isolationslaget fylde, indtil kanalen lukker helt. Ledningsevnen afhængighed ikke linær; jo mere negativ gaten er des større er afhængigheden. Det ses iøjenvigt at der kun vil gå en meget lille strøm i GATEN, en rekombinationsstrøm som kun (næsten) er temperaturafhængig. Strømmen er af størrelsensordnen ca. 1 - 10 pA.

Den sidste mulighed er at gaten er mere positiv end SOURCEN. Her vil PN-overgangen forspændes i lederetningen; d.v.s. rekombinationslaget mindskes indtil diodestrækningen til sidst begynder at lede. FET'en kan altså kun anvendes indtil $V_{GS} \geq 0.7$ V for siliciums vedkommende.

Hurtighed: Af ovenstående kan ses, at FET'en hurtighed hovedsagligt afhænger af, hvor hurtigt rekombinationsbarrieren kan opbygges. En PN-overgang forspændt i spærreretningen opfører sig jo som en lille kondensator. Gatens størrelse vil altså have stor indflydelse på den maksimale hastighed. Denne effekt vil nok have større indflydelse end f.eks. majoritetsbærernes mobilitet?
MOSFET:

MOSFET'en adskiller sig fra J-FET'en ved, at gaten er helt isoleret fra kanalen v.h.a. et tyndt lag af F.eks. SiO₂. Her er det altså direkte feltets styrke, som styrer ledningsevnen: En N-KANAL MOS-FET dannes ved at placere to N-dopede områder i et P-dopet krystal (substrat). Ovenover og isoleret fra det område, som er imellem de to N-"øer", placeres så gateelektroden, se fig. 1.

![Diagram](image)

(SUBSTRATET ER NORMALT FOR-BUNDET TIL SOURCE SOM VIST PÅ TEGNINGEN)

Fig 1

Her er virkemåden, at en positiv spænding mellem GATE og SOURCE (substrat) vil give et elektrisk felt mellem GATE og substrat; d.v.s. at de få frie elektroner, der er i P-substratet "samles" oppe under gaten. Der dannes en N-kanal:

![Diagram](image)

...transistoren begynder at lede. Sammenhængen mellem V_{GS} og I_D (strømmen fra DRAIN til SOURCE) bliver analogt til J-FET'en:
Det bemærkes, at kurven er lig J-FET'ens, dog forskudt ud af abscisseaksen. For MOSFET'en afhænger strømmen gennem GATEN kun af tabskoefficienterne for isolatoren (SiO₂).

Det er øvrigt en vigtig detalje, at det P-dopede substrat er lagt til den mest negative spænding (her 0 V). Thi så vil de PN-dioder, som opstår ved substrat-DRAIN og substrat-SOURCE, altid være forspændt i spærretretningen. Transistoren er dermed faktisk helt isoleret fra substratet.

I det ovenstående er den lidt forældede J-FET kun taget med af forståelseshensyn. I det følgende vil der således kun blive arbejdet med NPN op MOS-FET'ere!

2.1.4. Transistorernes hurtighed

En læser, der er mindre interesseret i de tekniske detaljer, kan evt. springe det efterfølgende, grundlæggende afsnit over, og læse videre fra afsnit 2.1.7., "Løsninger". Her vil der blive omtalt på hvilke måder, et firma kan nå VHSIC-målet.
En praktisk måde at undersøge, hvad en transistors hurtighed afhænger af, er at se på RC-led.

Et RC-led består af en modstand, R, og en kondensator, C, se fig. 2. Hvis kondensatoren er afladet, og der så pludselig sættes en spænding, U_0, over systemet, vil der gå et stykke tid, t, inden spændingen, U, over kondensatoren, når U_0. Teoretisk set vil U aldrig nå U_0, idet opladningen vil gå langsommere og langsommere, jo mindre spændingsfald, der er over modstanden. Men i praksis kan vi se bort fra dette faktum, da kravet til logisk "1" ved alm. elektroniske formål er, at U er mindst 50 - 70% af U_0.

Spændingen over C som funktion af tiden vil være givet ved $U = U_0(1 - \exp(-\frac{1}{RC}t))$. Af praktiske grunde defineres så tidskonstanten for et RC-led, som den tid der går inden U er 63% af U_0. Denne definition er ikke helt vilkårligt valgt, idet den er tilpasset så tiden, T, bliver lig $R\cdot C$, se fig. 2.

TIDSKONSTANT FOR RC-LED:

$T = RC$, da der så gælder:

$U = U_0(1 - \exp(-\frac{1}{RC})) = U_0(1 - \exp(-1)) \approx 0.63 U_0 \approx 63\%$ af U_0.

Tidskonstanten er et godt udtryk for hvor stor en forsinkelse der er, fra signalet, U_0, påtrykkes og til det "når" ud på U. Tidskonstanten gælder også ved afladning fra $U = U_0$ til U er ca. 100-63= 37% af U_0. Jo mindre modstandene og kapaciteterne er, desto hurtigere er vores system, jo mindre bliver tidskonstanten, $R\cdot C$.

Mos-transistorens hurtighed

Men hvad her RC-led med transistorer at gøre? Jo, hvis vi ser på en (N-Kanal) MOSFET transistor som kontakt, så vil den ikke lede når $V_{GS} \approx 0$, og lede når $V_{GS} = \epsilon$. Det er altså potentialeforskellen V_{GS} der bestemmer om transistoren skal lede eller ej.
Men, som det ses på fig. 3, kan det være at GATEN "lapper" en smule ind over det dopede (og dermed ledende) DRAIN-område. Og to ledere adskilt af en isolator... det er en kondensator, og da den er ønsket er det en parasitkondensator. Der findes en tilsvarende kondensator fra GATE til SOURCE. Foruden disse to ønskede, er der en meget stor kondensator mellem GATE og substrat. Det er den som fremkalder kanal-effekten. (Der er iovrigt en meget lille kondensator mellem DRAIN og SOURCE. Da disse områder ligger langt fra hinanden ses normalt bort fra denne.)

![Diagram](image-url)

Fig. 3

Det er C_{Gsub} som har størst betydning for hurtigheden (det er den største!), men da substratet oftest er forbundet til SOURCE er C_{GS} og C_{Gsub} i praksis parallelforbundet. GATENs kapacitet bliver derved endnu større.

Og hvad så? Kan det ikke være ligegyldigt at GATEN udgør en kondensator? Nej, for transistoren styres jo af en potentialforskell, og hvis denne er alt for lang tid om at "bygge op", så bliver transistoren "langsom" (forsinket, se evt. hurtighedsdefinitionen).

Og hvad så? Hvis nu modstanden, R, bare er lille nok, så behøver tidskonstanten, $T=R\cdot C$, ikke at få nogen betydning. Jamen, det er den ikke! Her er vi så nødt til at se på hvad der styrer GATE-elektroden, altså på hvordan flere transistorer kobles sammen.

Hvis det er CMOS (NMOS, se senere) teknologi, vil der altid være (mindst) to transistorer om at drive f.eks. en tredie transistors GATE-elektrode; der skal både være en til at oplade GATE-kondensatoren med, og en til at aflade den med, se fig. 4. Thi når en MOSFET leder opfører SOURCE-DRAIN sig som en lille,
og når den spærres, som en (uendelig) stor modstand! Den "styrede" transistor vil altså altid "se" enten, en lille modstand hvis anden ende er lagt til +, eller en lille modstand lagt til 0V (den ene eller den anden transistor leder). Hvis indgangssignalet, "IND", er LAV (0V), så vil der være et felt over P-kanaltransistorens GATE og denne vil lede; potentialet, U, vil være HØJ (+). Tilsvarende vil IND=HØJ medføre U=LAV. De to transistorer danner faktisk en logisk INVERTER. NÅ, men det var et sidespring... Det ovennævnte er forsøgt vist på fig. 4 a)- c), dels som "integrerer kreds" og dels som symboler (hjemmelavede til lejligheden).

a) INTEGRERET KREDS:

b) ... Eller med symboler:

c) ... eller som det, det svarer til:

Af figurenes ses øvrigt også at CMOS næsten intet strømforbrug har; der går kun strøm (af betydning) i skifteøjeblikket, dels ved op-/af-ladning af CGATE og dels i det korte øjeblik, hvor begge transistorer leder lidt (afhængig af IND's flanke-skarphed).

En CMOS-inverters effektforbrug, P, har altså tre komponenter: Én fra den næsten uendelige modstand af en spærret MOS-transistor (P₀ ≈ 10·10⁻⁹ W). Så er der én fra den førormtalte lille strøm som går, når begge transistorer leder lidt, altså i skifteøjeblikket (proportional med skiftefrekvensen: f·E₀, hvor E₀ er middeleffekten af den nævnte strøm.). Det sidste bidrag kommer fra den belastning, som udgangen "ser"; i normale tilfælde er dette en kondensator, C (f.eks. en anden transistors GATE-kondensator). Energien i en sådan er givet ved: E=½CV², hvor
V er spændingen over kondensatoren (forsyningsspændingen). Effekten (dE/dt) ved en frekvens, f, kan så bestemmes. Thi når kondensatoren i én periode, T, både når at blive op-og af-ladet, overføres alt i alt energien 2E. Der gælder derfor:

\[P = \frac{1}{2} CV^2 \cdot 2f = fCV^2 \]

Det samlede udtryk for en CMOS-inverter bliver så:

\[P = fCV^2 + fE_0 + P_0 \]

... hvor f er skiftefrekvensen, \(P_0 \) er det statiske effektforbrug (ved f=0 Hz), og hvor \(E_0 \) er effektforbruget af selve inverteren ved niveauafskift. C er den kapacitet som udgangen belastes med og V er forsyningsspændingen.

For en standard CMOS kreds (f.eks. en kreds indeholdende fire NAND-gates, 4011) er størrelsesordenerne: \(P_0 \) ca. lig 2.5 nW og \(E_0 \) ca. lig 2000 nW/MHz, eller højst ca. 70 mW, ved 25 MHz (C=15 pF).

Det er altså hovedsagligt belastningskapaciteten der bestemmer effektforbruget. Det er dermed dobbelt-godt, at lave MOS-FET's med små GATE-kapaciteter: Dels bliver kredsløbet hurtigere og dels bliver det endnu mindre effektforbrugende!

MOS-transistorens modstand (ledende) afhænger af kanalens størrelse og ladningsbærernes mobilitet og dopningsgrader:

N-KANAL:

\[R_N = L / (b \cdot d \cdot k \cdot \mu \cdot N) \]

P-KANAL:

\[R_P = L / (b \cdot d \cdot k \cdot \mu_p \cdot P) \]

... hvor L er kanalens længde og b∗d er tværsnitsarealet. \(\mu \) er ladningsmobiliteten for elektroner, \(\mu_p \) do. for huller og N samt P er dopningsgraderne for h.h. elektroner og huller. k er en tilpasningskonstant.

I praksis ligger modstanden (fra: "Standard CMOS gates.", MOTTOLA 1975) i størrelsesordenen et par hundrede ohm. Da der ydermere ligger i CMOS-standarden (vedtaget i samarbejde med CMOS producenter), at GATE-terminalens kapacitet ikke må overstige 10 pF, kan tidskonstanterne udregnes:

(Modstands værdien er "Worst case", og, som det ses, afhængig af forsyningsspændingen.)

<table>
<thead>
<tr>
<th>U</th>
<th>R</th>
<th>C</th>
<th>T</th>
<th>(f_{\text{max}} = \frac{1}{2 \cdot T})</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 V</td>
<td>3.3 k</td>
<td>10pF</td>
<td>33 ns</td>
<td>15 MHz</td>
</tr>
<tr>
<td>10 V</td>
<td>1.1 k</td>
<td>10pF</td>
<td>11 ns</td>
<td>45 MHz</td>
</tr>
<tr>
<td>15 V</td>
<td>1 k</td>
<td>10pF</td>
<td>10 ns</td>
<td>50 MHz</td>
</tr>
</tbody>
</table>
De ovennævnte værdier er taget fra PHILIPS' databog: "LOC莫斯 HEF4000B, 1980."

I praksis er både R og C noget mindre, og transistorerne vil være hurtigere end det angivne. Men disse beregninger gælder kun hvis ét transistorpar driver én GATE-terminal! Normalt belastes de af måske 7-10 GATE-elektroder (evt. mange flere), så for standardtyper garanteres faktisk ikke for mere end højst ca. 20 MHz, ved 15 V, altså maksimal forsyningsspænding. Det er parasitkapaciteterne der regerer MOSFET-teknologien!

De bipolare transistorers hurtighed

Også en bipolar transistor indeholder parasitkapaciteter. De er tegnet ind på figuren, fig. 5. Vi ser med det samme bort fra C_{CE}, da den oftest er meget mindre (< 5pF) end kapaciteten, i det kredsløb der belaster COLLECTOREN. Derimod er C_{BE} meget mere interessant, idet den afhænger af hvilken spænding, der er over BASE-EMITTER strækningen (PN). Hvis spændingen er større end ca. 0.7 V (for Silicium), kan vi se helt bort fra C_{BE}, jvf. rekombinationslagets tykkelse for en PN-diode. Men hvis V_{BE} er under 0.7 V (f.eks. 0.5 V) er kapaciteten betragtelig. Hvis vi ser på en "typisk" kobling, fig. 6, vil en del af forsinkelsen skyldes, at "C_{BE} skal lades op til ca. 0.7 V, før BASIS-EMITTER-dioden får strøm". Ved en arbejdsspænding på 5 V er 0.7 V jo trods alt 14% af U_0.

1. TYPISKE KOBLING:

![Typisk kobling](image)

fig. 5

Men det er nok C_{CB} der er værst! I den opstilling, som ses på fig. 7, (en spændingsforstærker) vil modstandene R_1 og R_2 bestemme forstærkningen, $\beta = R_1 / R_2$. Når nu en lille spændingsændring tilføres BASEN (via. kondensatoren som blot spærres for jævnstrøm), vil der optræde en β gange større (og modsat, inverteret) spændingsændring på COLLECTOREN. Og dette betyder fak-
2. TYPISKE KOBLING, MILLER EFFEKTE:

![Circuit Diagram](attachment:image.png)

tisk, at C_{CB} vil optræde som en kondensator af størrelsesordenen $(1+\beta) \cdot C_{CB}$, den vil blive mangedoblet (β er typisk 100)

Som et praktisk eksempel kan nævnes, at transistoren 2N4400 har garanterede maksimums værdier: $C_{CB} = 6.5 \ \mu F$ og $C_{BE} = 30 \ \mu F$ (den sidste ved $V_{BE} = 0.5 \ \text{V}$). Hvis forstærkningen i kredsløbet så er 100 gange, vil C_{CB} se ud som 650 μF, en enorm værdi! Den nævnte effekt, MILLER-EFFEKTEN, kan udkompenseres, men det vil kræve en fordobling af transistorantallet (her fra en til to), og en stabil referencespænding. Af samme grund kompenseres som oftest ikke i integrerede kredsløb.

Men selv uden MILLER-EFFEKTEN er den nævnte transistor langsom. Hvis vi ved at $C_{BE}=30\mu F$ og antager at den styres via en modstand $R=1000 \ \text{Ohm}$ så kan tidskonstanten udregnes. Det bemærkes, at U ikke skal helt op til 63% af 5V, men kun til 0.7 V lig 14%:

$$U = U_0 \cdot (1 - \exp(-\frac{1}{R \cdot C} t)) \Leftrightarrow \exp(-\frac{1}{R \cdot C} t) = 1 - 0.14 = 0.86$$

$$\frac{1}{R \cdot C} t = \ln(0.86) \approx -0.15 \Leftrightarrow T = R \cdot C \cdot 0.15 = 415 \ \text{ns}$$

eller som frekvens: $f_{\text{max}} = \frac{1}{2 \cdot T} = 111 \ \text{MHz}$

Dette stemmer nogenlunde med den af fabrikken opgivne grænsefrekvens: 200 MHz. Transistorenes hurtighed kan altså estimeres, hvis man kender parasitkapaciteterne og kan "sjusse" sig til signalimpedansens størrelse (modstanden).

N.B. De fleste af de forudgående konklusioner er gjort ud fra lavfrequente op-og af-ladningsbetragtninger. Dette er gjort for at vise, at denne metode er rimelig til at skærne kredsløbshurstighed ud fra. Alternativet havde været, at foretage regulære impedansbetragtninger, kigge på "holdetider" i PN-overgange etc.
2.1.5. Teknologierne - TTL, ECL og CMOS

Vi skal nu til at se på forskellige måder, at udforme logiske kredsløb. For en transistor er ikke altid lige hurtig meget afhænger af koblingen. De tre grundlæggende logik-familier, som pt. anvendes i det militære VHSIC-projekt er: TTL, ECL og CMOS (NMOS). TTL og ECL er bipolare mens CMOS er unipolar.

De bipolare

De bipolare er kendtegnet ved, at der i integrerede kredse (IC'ere) anvendes både transistorer, dioder og modstande. Hvor- dan de forskellige elementer kan være udført, er vist herunder på fig. 8.

![Diagram](image)

En af de vigtige pointer er, at hvert element er gemt i en N-brønd i et fælles P-substrat. På denne måde isoleres de fra hinanden, idet "substrat dioden" altid vil være forspændt i spærreretningen (substrat lægges til den mest negative spænding, her 0 V).

Ved fremstillingen af modstande, benytter man simpelthen, at modstands værdien af Silicium afhænger af den fysiske størrelse og af dopningsgraden. Hermed kan modstands værdier fremstilles
temmelig præcist. (Dog afhænger modstanden også en del af f.eks. temperaturen.) Og mens vi er ved dopningsgraden skal nævnes, at N^+ blot betyder "ekstra kraftig N-dopning" (bedre leder), tilsvarende med P^+.

For transistoren gælder, at den lange strimmel N^+ skal give COLLECTOR-EMITTER-strømmen en mere "lavohmig" vej at løbe. De små N^+ områder under metalelektroderne sørger for bedre kontakt mellem disse og krystallet.

En Schottky-TTL-transistor ligner meget en ECL transistor (alm. transistor). Den eneste forskel er, at der er placeret en såkaldt Schottky-diode over BASE-COLLECTOR strækningen. Da en sådan diode har et lavere spændingsfald end en PN-diode (0.5 V mod 0.7 V), hjælper den med til at få afladet CCB hurtigere, der ophobes ikke ladning imellem BASE og COLLECTOR. En Schottkydiode opstår f.eks. når et metal, Pt₅Si₂, møder N-dopet Silicium, se fig. 9. Desuden adskiller TTL-familien sig fra ECL ved, at benytte transistorer med flere EMITTERE (større P BASE med flere N^+ EMITTER-zoner i sig).

![Schottky-diode and Schottky-transistor](image)

Den virkelig store forskel mellem TTL (Transistor-Transistor-Logik) og ECL (Emitter-koblet-Logik) ligger i det kredsløbstekniske. Et simpelt TTL- og et simpelt ECL-kredsløb vises på fig. 10 a) & b). TTL-eksemplet viser en AND-gate, ECL’en en OR-gate (dvs. OG-port og en ELLER-port). Indgangene 1 - 3 styres i begge tilfælde af lignende gates (porte). Man skal altså fore-
stille sig, at der til hver indgang i indgangsdelen er koblet en anden gate's udgangsdel. Figuren viser på den måde både hvad der driver logiksignalet, og hvad der modtager det.

SIMPEL TTL, OG-port:

SIMPEL ECL, ELLER-port:

TTL-kredsen vil, når den skifter niveau, benytte sig af ændringen i potentielle på indgangen; når indgangsspændingen er lav nok, vil indgangstransistoren lede etc.. Kredsløbet vil være ret følsomt overfor, hvor hurtigt spændingen "bygger op", og dermed ret afhængig af parasitkapacitetersens størrelse. Også modstanden, R, i udgangsdelen vil betyde meget for opladningen af C_{BE}. R er iøvrigt temmelig lille, f.eks. 1 kOhm, hvilket betyder øget hurtigheid. Men dette medfører også større strømforbrug, specielt når udgangssignalet er LAV (0 V). I sidstnævnte tilfælde vil udgangstransistoren lede, og der går en stor strøm igennem modstanden, R (typisk 5 mA).

For ECL gælder derimod, at kredsløbet bruger en næsten konstant (stor) strøm. Strømforbruget hidrører hovedsagelig fra den strøm som (alle indgange LAVE) løber gennem R_1, T_1 og R. Skiftet i niveau foregår så ved, at en eller flere indgangstransistorer "stjæler" denne konstante strøm fra T_1. Af samme grund kaldes ECL også for CML, Current Mode Logic ("strøm-tilstandslogik"). Opladningen af C_{BE} foretages, som vist på fig.11, direkte via en ledende transistor. Men modstanden i en ledende, bipolar transistor er af størrelsesordnem få Ohm, og faktoren R·C bliver derfor lille. ECL er dermed nok den hurtigste (Silicium) logikfamilie.
Hvis vi bruger R·C faktoren, som udtryk for hurtigheden, får vi nedenstående skema. De typiske værdier som bruges for C_{BE} er skønnet:

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>C</th>
<th>$T=R·C$</th>
<th>$f_{max} = \frac{1}{2·T}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTL</td>
<td>1 k</td>
<td>10 pF</td>
<td>10 ns</td>
<td>50 MHz</td>
</tr>
<tr>
<td>beregnet ECL</td>
<td>5</td>
<td>10 pF</td>
<td>50 ps</td>
<td>100000 MHz</td>
</tr>
<tr>
<td>praksis ECL</td>
<td>-</td>
<td>-</td>
<td>500 ps</td>
<td>1000 MHz</td>
</tr>
</tbody>
</table>

Værdien for TTL stemmer meget godt med det fabriksgaranterede (25 - 65 MHz, alt efter type). Derimod er ECL'en sat lidt for højt, idet den i praksis ikke går højere op end ca. 1000 MHz. Tidskonstanten, R·C, må stadig konkluderes at være en god indikator for hurtigheden.

De unipolare - CMOS

Et par definitioner. Som bekendt findes der grundlæggende to typer MOSFET-transistorer, N-kanal og P-kanal. Hvis et integre- ret kredsløb udelukkende indeholder P-kanal transistorer, kal- des teknologien for P-MOS. Tilsvarende med N-kanal transistorer

Af de nævnte er N-MOS nok den teknologi, hvormed de mindste transistorer kan fremstilles, typisk i forbindelse med meget regulære og ensartede kredse, f.eks. hukommelseskredse. CMOS har derimod det laveste strømforbrug. Dette skyldes at N-MOS benytter sig af faste modstande, se f.eks. inverteren på fig. 12.

![Diagram](image)

Fig. 12

Ved N-MOS vil der gå en (ret) stor strøm (under 1 mA) når "UD" er LAV (0 V). Ved CMOS vil der ingen (kun få pA) strøm gå når skiftet er foretaget.

P-MOS benyttes næsten ikke mere, da P-kanal transistorer er "født" langsommere end N-kanal do. (de forskellige mobiliteter for elektroner og huller). Desuden kan P-MOS ikke give nogle egenskaber, som N-MOS ikke allerede har.

N-MOS teknologien er kendetegnet ved, at substratet (P-dopet, grundlaget i chippen) er fælles for alle transistorer; der er ikke behov for diverse, isolerende brønde (se senere) til at optage plads. Derfor kan N-MOS kredsløb laves meget små, ved VHSIC op til 400000 transistorer på ca. 50mm² (en hukommelseskreds fra Texas Instruments).
Ved CMOS er man derimod nødt til, at gemme den ene transistortype (den hvis polaritet er modsat substratets) i "brønde" med en anden dopning end substratet. Efter hvad vi har erfaret benyttes oftest N-dopet substrat og P-dopede brønde. Det er altså N-kanal transistorerne, som ligger i brøndene (benyttes bl.a. af SGS-ATES, Motorola og Fujitsu). Eller som det hedder på amerikansk: "N-sub P-well complementary metal oxide semiconductor technology". Brøndene fungerer på samme måde, som isoleringsområderne, nævnt ved de bipolare teknologier; med N-substratet lagt til +, vil P-brøndene altid være mere negative (end substratet). Dermed har vi en diode forspændt i spærreretningen, isoleringen er fuldendt.

Som vist på fig. 13, benyttes der ved CMOS de såkaldte "kanal-stoppere" (amr. "channel stops"), nemlig de små, ekstra områder, som befinder sig mellem transistorerne. Set oppe fra danner kanal-stoppe en ring om hver sin transistor. De skal sikre, at der ikke kommer forstyrrelser fra den ene transistors kanal til den andens. P-brønden og kanal-stoppene er tilsammen skyld i, at CMOS ikke kan integreres ligeså-megnet som N-MOS.

Produktion

Som afslutning på denne svada om de forskellige halvlederteknologier, er det på sin plads at beskrive (kort & groft) den praktiske fremstilling.

Man starter med noget naturligt urent Silicium. Dette renses utallige gange, dels kemisk og dels ved opvarmning. På denne

Ved de teknologier vi interesserer os for, kan vi nu gå videre på to måder. ENDETEN dannes (dyrkes) yderligere et tyndt lag af Silicium, som vil bygge videre på substratets krystalstruktur. ELLER også fortsættes med fremstillingen af kredsløbet, direkte ned i substratet. Idet første tilfælde vil opbygges en såkaldt "epitaksi". Ved dannelsen kan være ledet forurensningselementer til, epitaksien kan være dopet (meget præcist). Det er så ned i denne epitaksi, at kredsløbet "bygges". Epitaksi bruges mest ved bipolare teknologier, hvor hvert element skal isoleres fra det fælles substrat.

Man kan nu bearbejde lokalområder i krystallet. Ved lokale dopninger vil det sige, at der lægges en maske henover krystallets overflade. Denne maske danner et mønster og er uigennemtrængelig for forurensningsatomer. Ved at lede gasformige forurensningsstoffer henover krystallet, dannes et aftryk af maskens mønster; der hvor masken ikke dækkede diffunderede (osmose) atomer ind i krystallet. I krystallet er nu dannet små, dopede ører. Da diffusion er et statistisk fænomen, der nede afhænger af bl.a. temperaturen og koncentrationen, kan dopningsgraden også her bestemmes præcis. Dog aftager dopningsgraden med afstanden fra overfladen, hvilket giver en lidt upræcis PN-overgang (f. eks.)

Ved hjælp af masker, kan man også bygge nye stoflag på overfladen af krystallet. Dette gøres ved istedet, at lede en gas
af "bærer"-molekyler ind. Disse vil så ved kontakt med krystal-
let, fraspalte "det de bærer på", f.eks. Si. Tilsvarende dannes
de tynde lag af SiO₂ ved lokal iltning af overfladen.
Og selve maskerne, ja, det er et helt kapitel for sig: Om de
er i fysisk kontakt med Siliciuvmkiven (pålagt et tyndt fotoføl-
somt lag), eller om de "svæver" et stykke over den. Eller om der
benyttes elektronstråler til belysning, fordi bølgelængden for
ultraviolett lys er for stor. Eller hvordan det tynde, fotoføl-
somme resistlag (fotoresist=fotofølsomlak) fremkaldes og ættes.
Hovedprincipippet er blot, at der dannes et fotografisk aftryk af
en original, i et tyndt lag på krystalllets overflade. Og dette
lag kan så bruges som skabelon ved f.eks. dopninger.

OPSUMMERING: ECL er hurtig, men bruger meget strøm (stort ef-
fektforbrug). TTL er knapt så hurtig og bruger knapt så meget
strøm. Typiske forsyningsspændinger er 5V ± 10%. CMOS er lidt
langsommere igen, men bruger tilgengæld (statisk) næsten ingen
strøm. Selv ved høje frekvencer er CMOS en faktor 200 - 300
mindre effektforbrugende end ECL. N-MOS og CMOS kan gøres meget
mindre end nogen bipolar teknologi. Specielt N-MOS kan integre-
res i meget stor skala. Men hvad er det der sætter grænserne
for integreringsgrad?

2.1.6. Grundlæggende problemer ved teknologierne

Teoretisk set er grænserne for hvor små transistorerne kan gø-
res langt fra nået; f.eks. kan der med røntgenstråling (bølge-
længden ca. 0.4 nm) teoretisk reproduceres steger med tykke
er ned til nogle få nm, og selv ved det der idag hedder små tran-
sistorer gælder de statistiske fænomener stadig (antallet af at-
tomer er stadig enormt). Men i praksis vil ændringen af én para-
meter f.eks. størrelsen medføre en måske katastrofal ændring
i andre, så som effektforbrug, hastighed, materialegenskaber og
følsomhed. Både for bipolare og unipolare teknologier gælder en
stor sammenhæng mellem:

1) Størrelse og hurtighed.
2) Størrelse og effektforbrug.
3) Størrelse og materialegenskaber.
For unipolare teknologier findes desuden specielt en sammenhæng mellem:

4) Størrelse og følsomhed overfor f.eks. α-stråling.

For bipolare desuden specielt sammenhæng mellem:

5) Effektforbrug og hastighed.

Vi tager dem fra en ende af:

Ad 1). Både for bipolare og unipolare teknologier gælder generelt, at jo mindre kredsløbets transistorer er, des hurtigere er det! Hvis man gør hurtighed op i tidskonstanter (R·C), så følger dette forhold umiddelbart; thi når transistorernes fysiske størrelse bliver mindre, ændres også målene på parasitkondensatorerne. Og for en kondensator gælder jo: C=εS/a, hvor ε er dielektricitetskonstanten, S (overflade-)arealet, og a afstanden mellem pladerne. Selv i tilfælde hvor både a og S formindskes, vil S/a som oftest blive mindre. S afhænger jo i 2. potens af formindskningen, a højst i 1.

Også transistorens gennemgangsmodstand, R, vil ændres med formindskningen; Hvis vi tager en stump stof, med tværsnitsarealet S og længden L, vil dette stof have en modstand R. Indet ε er stoffets ledningsevne (en stofkonstant, bl.a. afhængig af dopningsgraden) gælder:

\[R = \frac{L}{\sigma \cdot S} = \frac{(Længde)}{(Bredde)(Dybde)} \]

Her er S en anden end ved kondensatorerne, idet den her "går i dybden". S er lig Bredden gange Dybden. Ved formindskelsen (integrationen) drejer det sig om, at få Bredden og Længden til at blive mindre, Dybden er mere underordnet. Den mindskes dog nok også, men ikke i samme takt (der skal være nogle vandrette PN-overgange). Ligesom i det ovenstående antages, at Dybden højest aftager i 1. potens med formindskningen. Der vil dermed gælde: dR=1/ d(Dybde). Dette er uheldigt, thi transistorernes modstand vil stige (langsomm) ved formindskningen!

Men tilsammen vil R·C blive (ikke lineært) mindre med formindskningen, idet C jo næsten afhænger i 2. potens af størrelsesændringen og R højst i 1. potens. Hurtighedens afhængighed af reduktionen i transistorens overflademål er altså positiv, men ikke nødvendigvis lineær; meget afhænger af hvordan transistorens udstrækning i dybden berørers. Vi mener, som antydet, at der
er belæg for, at dybden, χ, ikke mindskes i samme grad som overflademålene (Y eller Z), når disse scales med en faktor k, dvs. når $S=YZ$ mindskes med k^2. Thi dybden af en dopning er ikke (kun) afhængig af områdets overflade, men også af hvor stor en fremmedatomkoncentration der ønskes. Dybden afhænger altså snarere af hvor lang tid diffusionen tager og af temperaturen (ved ionimplantering af hvor stor energi ionerne har).

Der vil altså være en positiv sammenhæng mellem en transistors størrelse og dens hurtighed. Også på kredsløbsniveau vil der være en positiv sammenhæng, da forbindelsesledningernes længde af kortes; signalerne får kortere vej at løbe. Men hvorfor integrerer man så ikke på livet løs og udnytter elektronstråle/røntgen litografien fuldt ud? Her skal vi så se på de andre, negative sammenhænge.

Ad 2). Størrelse og effektforbrug. For alle teknologier til fremstilling af integrede kredse gælder, at effektforbruget afhænger af antallet af aktive enheder (transistorer) på chippen. Jo flere transistorer og dermed jo flere logiske porte, desto større bliver effektforbruget. Men effektforbruget er en af de kritiske størrelser, for jo større effektforbrug (effekttab), des varmere vil den blive. Og jo varmere en chip er desto dårligere egenskaber har den (minoritetsstrømmen er stærkt temperaturafhængig), og jo større chancer er der for, at kredsløbet fejler (en PN-overgang ødelægges, en tilledeknækker etc.). Generelt gælder faktisk, at en chip ikke kan arbejde ved en temperatur over ca. 150 °C. I en chip med en given størrelse (f.eks. 4 x 4 mm²) kan der altså kun afsættes en given effekt (dE/dt). Som hovedregel kan der ikke afsættes mere end f.eks. 1W, afhængigt af indkapslingen og evtt. køling. Denne værdi ligger ret fast og sætter dermed en grænse for hvormange transistorer, der kan benyttes på en chip.

Men hvad nu hvis det lykkedes, at mindske effektforbruget pr. logisk port (AND, OR etc.) i samme grad, som der kom nye porte til, ville vores lykke så ikke være gjort? Nej, for så ville der være endnu en negativ sammenhæng!

Ad 3). Størrelse og materialeegenskaber. Hvis en transistor gøres mindre, gøres også dens PN-overgange mindre (gælder også MOSFET's). Vi er nødt til at se på PN-overgangens (-diodens)
egenskaber.

I lederetningen betyder det bare, at det område, som skal bære strømmen, bliver mindre. Dermed bliver den effekt som maksimalt kan afsættes mindre; dioden kan kun tåle en mindre strøm. Dette er som regel ikke kritisk (kun ved transistorer som "forbinder kredsløbet til omverdenen").

I spærre retningen er vi nødt til at se på den spændingsforskell, som dioden skal kunne modstå; for selvom transistoren bliver mindre skal den kunne fungere ved samme forsyningsspænding. Hvis en diode er forspændt i spærre retningen, vil der mellem N og P laget være et elektrisk felt E=U/r, hvor U er spændingen og r afstanden. Jo større dette felt er, desto større er chancen for, at et spontant opstået elektron/hulpar skal få energi nok, til at ionisere et Si atom. Ved en sådan ioniseringsring vil der typisk opstå flere elektron/hul-par, som så kan ionisere etc.... Resultatet vil, ved en kritisk spænding Uk, være, at PN-overgangen ødelægges og bliver ledende. Den kritiske spænding afhænger stærkt af diodens fysiske størrelse (negativt). Specielt BASE-COLLECTOR-dioden i en TTL-transistor vil være udsat, idet netop denne strækning normalt er forspændt i spærre-retningen, se fig. 19. For almindelige TTL-transistorer gælder, at Uk=7 V, og forsyningsspændingen er faktisk hele 5V....

![Diagram](fig.19)

For CMOS transistorer er dette PN-problem ikke det største. Her er det derimod den spænding, som isolationen under GATEN (SiO₂) kan modstå, som bekymrer. Denne isolation er umiddelbart stærk nok til, at kunne modstå de spændinger, som kredsløbet bliver udsat for ved normalt brug; forsyningsspændingen for CMOS er MAX. ca. 18 V, og isolationen kan typisk modstå 100 V. Nej, problemet er her, hvordan kredsene skal omgås ved f.eks. montering på printplader; almindelige statiske spændinger (fra en gåtur på et gulvtæppe, nylontøj etc.) er nok til at ødelægge GATE-isolationen! Et menneske, som har gået på et tæppe, udgør typisk
en kondensator på 300 pF opladet til 10000 V. Og dette i parallel med GATE-kapaciteten på ca. 10 pF, giver en potentielforskels langt over den kritiske spænding: Kredsen ødelægges med en gnist!

På samme måde kan formindskningen kredsløbsmæssigt set betyde, at forbindelsesledningerne bliver for små til den strøm de skal bære; de brænder over.

Disse nævnte fænomener betyder, at man ikke kan gøre kredsenes vilkårligt små og samtidig forvente, at de kan fungere ved almindelige betingelser (de samme som for ikke-formindskede kredse).

Dette var så de tre mest grundlæggende problemstillinger ved yderligere formindskelse/hurtiggørelse af integrerede kredse. De gælder både for bipolare og unipolare teknologier.

Ad 5). Effekt og hurtighed. Specielt for bipolare teknologier gælder generelt, at kredsløbet bliver hurtigere, jo mere effektforbrug det har. Som eksempel kan nævnes, at ECL er en faktor 20 hurtigere end TTL og bruger ca. 2 - 3 gange mere energi. Grunden til denne "håndregel" er svær at anskueliggøre, men det kan nævnes, at en transistor er specielt langsom, når den skal skifte fra "ingen-strøm" til "meget-strøm" (mættet tilstand); Jo større en tomgangsstrøm der går des hurtigere er kredsløbet.
2.1.7. Løsninger

Nu er vi så endelig nået frem, til afsnittets pointe! Hvad er det der forskes i ved udviklingen af VHSIC'erne? Hvordan nås den øgede formindskning/hurtighed? Her er der for os følgende indgangsvinkler:

FORSKNING I: 1) En helt ny teknologi.
2) Et nyt materiale.
3) Større chiparealer.
4) Bedre køling.
5) Diverse småforbedringer.

' Vi vil i det følgende betragte hvert af punkterne, og forsøge at vurdere, om det er sandsynligt, at firmaerne satser specielt på dette punkt.

En helt ny teknologi. En mulighed for at gøre integrerede kredse hurtigere, er at opfinde en ny type grundelement, en ny transistortype. Dette er forsøgt (ikke i VHSIC) af IBM med de såkaldte Josephson-kontakter, som kun fungerer nær det absolute nulpunkt. Denne type forskning er meget kostbar, og fører, som i IBMs tilfælde, ikke nødvendigvis til brugbare resultater. Dertil er den også for langsigtet til at kunne tilfredsstille Pentagon's krav om en presset teknologiudvikling. Nogle af firmaerne forsker måske i forvejen herindenfor, men der vil næppe være nogle, der specielt satser her i forbindelse med VHSIC. Denne indgangsvinkel er altså ikke sandsynlig. Heller ikke "ny teknologi", forstået som en ny produktions metode (å la polykrystalinsk silicium GATE elektrode, istedet for metalelektrode), vil være sandsynlig i forbindelse med VHSIC. Praktiske fordele/ulemper ved nye metoder viser sig jo også først, når produktionen er i gang.

Et nyt materiale. En anden mulighed er at vælge et halvlader materiale med bedre egenskaber. F.eks. har galiumarsenid, GaAs, en væsentlig større ladningsmobilitet end silicium. Dette er farbar vej for de fleste større halvlader firmaer og de betræder den allerede, der produceres allerede (simple) standardkredsløb med GaAs. Men hvad angår VHSIC er det mere tvivlsomt om firmaerne har opprioriteret GaAs. Thi med nye materialer kan man ikke bare overføre erfaringerne fra silicium. Smeltepunktet kan være
højere, fremstillingsprocessen sværere og dopningerne umulige med almindelige forureningsatomer. Så selvom anvendelsen af GaAs (eller andre stoffer) i teorien skulle give forbedrede egenskaber, er chancerne store for at en læreproces å la siliciums skal gennemføres; en hel serie af forbedringer kan føre til resultat, ikke bare erfaringshop fra Si. Af samme grund er det usandsynligt at forskningen i GaAs skulle være opprioriteret i forbindelse med VHSIC, chancerne for, indenfor en overskuelig år-række, at fremstille højintegrerede kredse er for små. Denne indgangsvinkel vil nok være for langsigtet, Pentagon kræver umiddelbare resultater.

Bedre køling. Hvor god kølingen af en chip er, afhænger af hvor mange grænseflader (mellem forskellige stoffer) der er, og hvor god termisk kontakt disse giver; én overgang er f.eks. fra chipkrystallets underside til indkapslingen (huset), en anden fra huset til omgivelserne, f.eks. via køleplade. Der er mange muligheder for at forbedre kølingen af chips, som eksempel kan bruges følgende figurer. Fig.5a) viser den traditionelle montage, med mange overgange. Fig.5b) en metode som er udviklet af IBM. (kilde 8)
TRADITIONEL KØLING:

- C Her er tre grænseflader:
 A) Fra krystal til hus,
 B) fra hus til køleplade,
 C) fra køleplade til omgivelser.

IBM'S METODE:

- B Her i praksis to grænseflader:
 A) Krystal til stempel/metal,
 B) metal til vand.

Der ligger i øvrigt også et problem i, at varmeudviklingen sker på oversiden og kølingen på undersiden. Også derfor bør substratet være N-dopet, idet varme ledes bedre, når der er frie elektroner tilstede! Ren Si leder varme dårligt, da dets atomer er ordnet i krystalgittere. Som anskuet er der mulighed for at vinde en lidt bedre køling (med hvad deraf følger af fordele), ved en ændret montageform, eller en ændret indkapslingsmetode. Men det bliver ofte på bekostning af service venlighed/let montage og pålidelighed (ved IBM metoden monteres f.eks. 10 x 10^2 = 100 chips under samme køleelement, der bliver 100 gange større chance for fejl). Men en ekstra forskning i nye indkapslingsmetoder, nyt materiale etc. er altså sandsynlig i forbindelse med VHSIC-projektet. F.eks. ved vi (AW&ST), at nogle af firmaerne arbejder med en printplade af et specielt keramisk materiale, som er varme-ledende. Denne keramikplade er så igen kølet på den modsatte side!

Diverse små forbedringer. Disse små forbedringer kan deles ind i tre grupper: Forbedringer på transistorniveau, på portniveau og i fremstillingsproceduren/metoden.

På transistor niveau kan der ændres lidt på transistorens geometri, å la GATEN gøres cirkelrund og tynd (C_{GATE} \rightarrow 0) eller BASEN gøres lidt tyndere. Eller man kan ændre lidt på på dopningsens størrelse, dopningsgrad, antal og diffusionstrykke. Eller prøve at reducere diverse randeffekter v.h.a. flere kanalstopper el.lign.. En sidste mulighed er at ændre på materialevælg
til forbindelsesledninger, elektroder, isolation etc. Alle disse ting må være præget af "trial/error" (prøve/fejle) forskning, idet problemet sjældent er teoretisk at forstå isolerede fænomener, men snarere at kunne overskue hvordan evt. ændringer vil påvirke andre fænomener.

På portniveau er det især porttætheden og lederbanernes længde, som der kan eksperimenteres med. Tilsvarende kan der arbejdes med chiparkitekturen; hvor skal indgangsdelen placeres i forhold til udgangsdelen etc. Eller simpelthen: Hyrdan udnyttes chiparealet bedst muligt udfra effektbetrægtninger, isolationsafstande, tilledningernes længde etc. Dette arbejde har nok også før været baseret på "trial/error", men vil i større grad bygge på computersimulationer. Her er et oplagt område for VHSIC-projekterne. Det sættes iøvrigt i relief af at IBM/Texasinstruments og Pentagon er igang med fase 0 af et "automatisk maskegereringsprogram" til VHSIC; det skal bla. komme til at kunne generere de bedst mulige masker direkte udfra oplysningerne om, hvilket logisk system der ønskes.

Der er iøvrigt endnu en synsvinkel på små-forbedringerernes nemlig systemniveauet. Her forskes traditionelt intensivt af de store firmaer, specielt mere generelle kredse og i mindre serielt opbyggede kredse. Det første hjælper bla. til at billig-gøre produktionen eller øge udbyttet (mere ensartede kredsløb reproduceres bedre). Det andet til at øge hurtigheden (4 ens, parallelle kredsløb arbejder 4 gange så hurtigt som et). Ved generelle kredse forstås, IC'ere hvis funktion ikke er fastlagt på forhånd; de programmeres ind senere hen. De to vigtigste grupper er "gate-arrays" (porte hvis ind/udgange er koblet i en matrix, hvis kontaktpunkter så kan brændes over, hvorved den logiske funktion fastlægges), og indbygning af ROM i en CPU (permanent hukommelse, som styrer CPU'ens arbejdsgang). Tilsvarende forstås ved parallelle kredsløb, ensartede kredse, som deles om signalerne.
Der forskes meget i disse systemtyper ved VHSIC. Forskningen ligger ret tæt opad traditionel datalogi.

Det er specielt indenfor denne gruppe af småforbedringer, at resultaterne ved VHSIC skal findes. Forskningen er mere empirisk bestemt, end egentlig erkendelsesorienteret/fysisk!
2.1.8. Litteraturliste

(2) "Technologie und Innovation in der industriellen produktion", af Lothar Scholz, Verlag Otto Schwartz & co, 1974. (Tysk)

(4) "The new politics of science", af David Dickson, Pantheon, spec. siderne 124-127 & 146-151. (Amerikansk)

(7) "Solid state physical electronics", af Alder van der Ziel.

(9) "The semiconductor data library: McMOS integrated circuits, series A.", Tecnical Information center, Motorola inc., 1975. (Amerikansk)

(10) "Microelectronics", temanummer af Scientific America, september 1977. (Amerikansk)

(13) "Philips 4000B-series, CMOS", Philips, 1980.

(14) "Miniaturisering af mikroelektronik", af Jensen & Harder, IMFUFA-tekst Nr. 74, RUC, 1984. (Dansk)
2.2. DET FAGLIGE BAG OB-PROJEKTET

Vi vil i dette afsnit beskæftige os med forskningen indenfor optisk signalbehandling, som er en af de alternative tekniker til elektronikken.

2.2.1. Historisk rids

Ideen med, at man skulle kunne bygge optiske enheder, som kan behandle signaler, går tilbage til Abraham Szőke og hans kolleger ved MIT+), som foreslog en optisk bistabil enhed (OB) konstrueret ved at placere et materiale med ikke lineær absorption i en optisk resonator (Fabry-Perot Interferometeret, som gennemgås senere, er et eksempel på en optisk resonator). Men der var flere ting, der talte imod, at denne idé til en optisk bistabil enhed skulle vinde indpas. Forskere fra IBM fandt følgende tre grunde til at droppe OB. For det første ville minimumsstørrelsen af et optisk "switch"element være

+ Massachusetts Institute of Technology
\(\lambda / n \)^3, hvor \(\lambda \) er bølgelængden af det indsendte lys og \(n \) det refraktive index. (Glass 1984). For det andet er fotonenenergien, \(h \nu \), meget større end den termiske energi \(kT \), hvilket kan gi­ve ødelæggende temperaturstigninger, hvis det anvendte materi­ale absorberer. For det tredie var de ikke-lineære effekter, man havde opdaget på det tidspunkt, meget små. Disse tre proble­mer indikerer store "switch"elementer med tilhørende store skiftetider og stor varmeafsesnåning (Glass 1984).

Disse grundlæggende problemer har ikke ændret sig, men den generelle udvikling indenfor signalbehandling har givet optisk signalbehandling nye muligheder. For det første er der udviklet lasers, som kan levere pulser hurtigere end nogen elektronisk kilde kan. For det andet er der opdaget nye stof­fer, som har større ikke-lineær effekt, hvorved de færom­talte svagheder mht. hurtighed og størrelse mindskes. For det tredie er der udviklet og sket en øget anvendelse indenfor fiberoptik og integreret optik, altså områder specielt vel­egnet til optisk signalbehandling. For det fjerde er man snart ved at have nået de grænser for hurtighed, der ligger i seri­el elektronisk behandling. Ved seri­el behandling for­stås, at signalerne behandles et af gangen efter hinanden. I den forbindelse taler man om Van Neumann flaskehalsen. En Van Neumann flaskehals er det sted i signalbehandlingsystem­et, hvor der kun behandles et signal af gangen. Det betyder at signaler, der kommer til flaskehalsen, har må vente med behandling. (Jvf. CPU'en i en hjemmecomputer)

2.2.2. Beskrivelse af, hvordan OB fungerer

Men hvordan fungerer et sådant optisk system, og hvad er det for nogle ikke-lineære effekter, som der tales om.

Ikke-lineære effekter

Den traditionelle optik bygger på forskellige idealiserede forhold. For at en linse f.eks. skal have et fast brændpunkt, uafhængigt af ydre faktorer som bølgelængde, intensitet etc., antager man, at det materiale, som linsen er lavet af, har et konstant refraktivt index, uafhængigt af disse faktorer.

Men det viser sig, at i nogle materialer afhænger det refraktive index af disse ydre faktorer. Til optiske elementer har især det refraktive index's afhængighed af intensiteten interesse. Som en førsteordens tilnærmelse kan vi antage at

\[n = n_1 + n_2 I \]

Tilsvarende effekter kan ses mht. absorptionskoefficienten \(\alpha \). Disse effekter skyldes forskellige mikroskopiske påvirkninger af materialet ved ændring - her af intensiteten. Det refraktive index har været genstand for størst opmærksomhed mht. at udvikle optisk signalbehandling. Derfor vil vi fremover beskæftige os med ikke-lineære effekter ved det refraktive index.

Fabry-Perot-interferometeret

Vi betragter to parallelle stråler med forskellig intensitet men samme bølgelængde, og i fase, inden de rammer en plate af et ikke-lineært materiale \(n = n_1 + n_2 I \). Da de to stråler har forskellig intensitet, vil de også udbrede sig med forskellig hastighed, da det refraktive index jo netop er et udtryk for udbredelseshastigheden i materialet \((i\ forhold\ til\ vacuum)\.

Det betyder at den optiske vejlængde vil blive forskellig for de to stråler og de vil derfor være ude af fase på den anden side af pladen.

Der findes forskellige metoder til at udnytte denne faseændring til en "switch"funktion. En af de mest anvendte er Fabry-Perot interferometeret, som her vil blive beskrevet. Det består af to spejle, som er placeret parallelt overfor hinanden. Men spejlene er ikke bare almindelige spejle. De er kendetegnet ved, at en vis konstant del af strålen, som rettes mod dem, reflekteres og restentransmitteres. Det betyder, at der mellem
spejlene vil være forskellige "generationer" af stråler. 1. "generation" er lige blevet transmiseret igennem det første spejl, 2. "generation" er lige blevet reflektet af det andet spejl, 3. "generation" er lige blevet reflektet af det første spejl igen etc. Den optiske vejlængde mellem de to spejle kan antage bestemte værdier, hvor disse forskellige generationer af stråler vil give konstruktiv eller destruktiv interferens. Hvis vi forestiller os mellemrummet mellem de to spejle fyldt ud med et materiale med et refraktivt index ,n, og afstanden mellem de to spejle, d, så gælder der følgende:

Når \(n \cdot d = N \lambda \) (hvor \(N \) er et positivt helt tal), er der konstruktiv interferens mellem de to spejle, og transmissionen er maksimal. Når \(n \cdot d = (N-\frac{1}{2}) \lambda \), vil der derimod være destruktiv interferens, og transmissionen er minimal. Dette udtrykkes i følgende ligning, som gælder for et F.-P. interferometer:

\[
T = \frac{A}{1 + F \sin\left(\frac{2 \pi d}{\lambda} n + \delta\right)}
\]

hvor \(A, F \) og \(\delta \) er konstanter.

Der gælder samtidig, at \(T = \frac{I_{\text{output}}}{I_{\text{input}}} \) og at \(I_{\text{output}} = B \cdot I_{\text{inside}} \), hvor \(B \) er en konstant, relateret til spejlenes reflektion, og \(I_{\text{output}} \), \(I_{\text{input}} \) og \(I_{\text{inside}} \) er intensiteter af henholdsvis den transmiserede stråle, den indkomne stråle og den stråle, som er mellem de to spejle. Derfor må der også gælde at \(T = B \cdot \frac{I_{\text{inside}}}{I_{\text{input}}} \). Hvis vi nu forestiller os, at det materiale, vi har placeret mellem spejlene, har et refraktivt
index, som varierer med intensiteten på en sådan måde, at vi
can tillade os at benytte den første ordens tilnærmelse \(n = n_1 + n_2 I_{\text{inside}} \), får vi:

\[
T = \frac{A}{1 + F \sin^2 \left(\frac{2\pi d}{\lambda}(n_1 + n_2 I_{\text{inside}}) + \delta \right)}
\]

En grafisk fremstilling af denne ligne ser således ud:

De rette linjer på tegningen svarer til to værdier af \(I_{\text{input}} \)
(LOW og HIGH) jvf. \(t = B(I_{\text{inside}}/I_{\text{input}}) \). Vi ser, at ved
\(I_{\text{input}} = \text{LOW} \) er der kun en "tilstand" som F.-P. interferometeret
kan befinde sig i, nemlig (A). Eller sagt på en anden måde:
Hvis vi ved at \(I_{\text{input}} = \text{LOW} \) ved vi også at \(T \) og \(I_{\text{inside}} \) kan
antage en bestemt værdi. Hvis vi ændrer \(I_{\text{input}} \) til HIGH,
er der derimod hele tre "tilstande", nemlig B, C og D med hver
sit sæt af værdier for \(T \) og \(I_{\text{inside}} \).

Ændres parameteren ud af x-aksen fra \(I_{\text{inside}} \) til \(I_{\text{input}} \), får
vi vredet kurven, således at de skrå linier, som før gik gennem (O,0) nu bliver lodrette. Det ses nu tydeligt, at for forskellige
værdier af \(I_{\text{input}} \), vil der kunne være forskellige
værdier af \(T \) tilladt.
Skifter vi nu T ud med I_output, som parameteren ud af y-aksen, får vi en karakteristik af enheden, som svarer til de egentlige observerbare størrelser, og som også er mere anvendelig i forbindelse med OB. Hvis vi har en lav I_input, vil I_output også være lav, svarende til (A) på kurven. Øger vi I_input, vil vi nærme os resonans, men stadig således, at hvis vi fastholder I_input, vil systemet ikke søge mod resonans pga. det ændrede refraktive index. Når vi når til (E), vil systemet derimod "selv" søge mod resonans og I_output vil stige hurtigt til (F). (Når vi befinder os i resonans og øger I_input, vil I_output i øvrigt stige svagt, indtil der opnås en tilsvarende effekt med destruktiv interferens). Hvis vi nu lader I_input falde igen fra interferens' tilstanden, vil I_output ikke komme pludselig ud af interferens ved (F). Dette skyldes, at når der er interferens inde i F.-P. interferometeret, skal systemet skubbes en vis del "ud af" interferens, før der opstår en selvforstærkende effekt, væk fra konstruktiv interferens. En sådan kurve, hvor "udturen" ikke er lig "hjemturen" kaldes en hysteresiskurve. Området mellem G,H og E,F kan altså have en af to værdier (C er ustabil), D og B, for samme I_input, alt efter om man kommer fra "højt" eller "lavt" I_input. Dette område kaldes det bistabile område. Man kan justere på størrelsens ved at ændre på afstanden mellem de to spejle og andre parametre.

Enheder med store bistabile områder egner sig til hukommelsesenheder, da de kan "huske", om der tidligere har været "høj" eller "lav". Dette kræver naturligvis, at man holder I_input midt i det bistabile område. Enheder med et meget smalt (næsten ikke eksisterende) bistabilt område kan anvendes, som
transistoren anvendes i elektronikken (forstærker). Hvis man holder en konstant stråle (med en intensitet, som ligger lige under det område hvor kurven bliver stejl) og retter en stråle med lav intensitet mod samme sted på F.-P. interferometeret, vil man på I output se en voldsom ændring (signalet er blevet forstærket). Det er jo netop sådan en transistor fungerer (jvf afsnittet om transistorens virkemåde).

2.2.3. Problemer/begrænsende effekter ved OB

I det følgende vil vi gennemgå forskellige problemer og/eller effekter, som sætter en grænse for hvor hurtigt og hvor lidt effektforbrugende, man kan lave optiske enheder.

Materialets reaktionstid

Den tid det tager at skifte fra høj til lav, eller omvendt, med en optisk transistor (transfason) er bestemt af to tider. Materialets reaktionstid (t_m) er den tid, det tager det optiske materiale, mellem de to spejle, at ændre sit refraktive index efter I inside. Feedbacktiden (t_f) er den tid, det tager for F.-P. interferometeret at reagere på ændringen i I input. For F.-P. interferometeret vil en god tilnærmelse til t_f være $\frac{2nd/c}{1-R}$ hvor n er det refraktive index, d er afstanden mellem de to spejle, c er lyset hastighed og R er spejlenes reflektion.

For at opnå det før omtalte faseshift, som fører til et skift i I output, er det nødvendigt at $t_f \gg t_m$. Hvis det modsatte var tilfældet, kunne man få effekter hvor systemet stod og svingede mellem den høje og lave tilstand. Dette skyldes, at hvis vi har ændret I input, vil vi lynhurtigt se feltet inde i F.-P. interferometeret stige, fordi t_f er lille. Langsomt vil materialet så begynde at ændre sit refraktive index, som lynhurtigt vil medføre en ændring i feltet i F.-P. interferometeret. Dette ændrede felt kan materialet så igen begynde at reagere på etc. Effekten er realtivt kompliceret, og vi vil derfor ikke beskrive den nærmere. Se evt Miller 1982.

t_m sætter en grænse for størrelsen af F.-P. interferometeret og skiftehastigheden, fordi jo mindre t_m er, jo mindre kan t_f tillades at være, og det vil sige jo mindre $\frac{2nd}{1-R}$ Hastig-
heden, fordi det altid vil være t_f, som vil blive tilpasset t_m; og systemet kan ikke være hurtigere end den største af de to tider t_f og t_m.

Den ikke-lineære effekts størrelse

Størrelsen af den ikke-lineære effekts størrelse- dvs i vores første ordens tilnærmelse, n_2 - har en afgørende indflydelse på størrelse og effektforsøg. For at opnå et faseskift på π kræves der at:

$$n_2 \cdot \Delta I \cdot d = \pi$$

Det betyder, at man ønsker optiske materialer med højt n_2 for at kunne minimere $\Delta I \cdot d$, dvs. minimere den intensitet, man arbejder ved og minimere størrelsen af F.-P. interferometeret.

Renheden af det optiske materiale

Hvis det materiale ikke er homøg, vil det påvirke enhedens signal/støj-forhold, idet det refraktive index vil ænde sig "anderledes", hvis det støder på sådanne inhomogeniteter. En sådan "anderledeshed" i det refraktive index vil skabe en "anderledes" faseændring, som vil betyde en "anderledes" ændring i I_{output}. Disse "anderledesheder" kaldes støj, fordi det er afvigelser fra den flotte kurve, som er tegnet på side 55. Støjen kan således betyde, at der skiftes før der skulle ifølge karakteristikken eller forskellige toppe på kurven.

Selvfocusing - spredning

En anden effekt, som sætter grænser for, hvor optimalt man vil kunne konstruere en optisk transfasor, er den effekt, der hedder selvfocusing. Et strålebundt har ikke en lige stor intensitet over hele den flade, den gennemstråler. Intensiteten vil aftage i yderkanten af strålebundtet. Når det refraktive index varierer med intensiteten, betyder det at materialet kanvirke som en linse, fordi det refraktive index varierer for forskellige dele af strålebundtet. Hvis n_2 er positiv betyder det at udbredelseshastigheden falder ved øget intensitet, altså vil strålebundtet samles fordi intensiteten er mindst i randen af strålebundtet. Denne focusingseffekt skal overvindes af spredningen af lysstrålen i krystallet. Hvis focusingseffekten overvinder defocusingseffekten vil det be-
tyde, at materialet vil brænde sammen, da næsten al energien vil samles i et punkt som ved et brændeglas. Den kritiske effekt, P_{kr}, opnås når

$$P_{kr} \sim \frac{\lambda^2}{100 n_2}$$

(Glass 1984)

Da P_{kr} vil blive mindre jo større n_2 er, og da det gælder om at finde materialer med store værdier af n_2, bruges ofte materialer med negatív n_2. Materialer med positivt n_2 vil være til "guided optical waves" (eks. lysledere). Disse sprednings og focuseringseffekter sætter en anden binding på systemet. Nemlig $L = \frac{\pi n D^2}{2 \lambda}$, hvilket skyldes at strålens indgangsareaal, D, helst skal være lig dens udgangsareaal, til f.eks. parallelprocessing. L er i øvrigt et udtryk for afstanden mellem de to spejle.

FOCUSERINGSEFFEKTERN
KONTRA SPREDNING VIST
VED ET STRÅLEBUNDT
FORSKELIGE DIAMISTER, D,
GENNEM ET KRISTAL
(Glass 1984)

"Avalanche breakdown"

2.2.4. Anvendelsesområder

Men hvad kan alt dette om transfasorer bruges til. Det er klart, at et umiddelbart anvendelsesområde er i en computer. Hvis forskerne på området skal overbevise andre om OB's muligheder er det nødvendigt at vise, at OB kan det samme og helst mere end elektronikken kan. Her er computeren en central anvendelsesmulighed, fordi det er elektronikkens "højborg".

Vi har allerede talt om, at transfasoren er modstykket til den elektroniske transistor. Men en af fordelene ved en transfasor er, at den alene kan udgøre en logisk gate (AND, OR; etc.) i modsætning til en gate i et elektronisk kredsløb, som må opbygges af flere transistorer. Hvis man vil anvende en transfasor som en logisk AND-gate, retter man de to input-stråler mod det samme punkt på materialet. Intensiteten af de to stråler I_a og I_b er ikke stor nok til hver for sig at skifte transfasoren. Men tilsammen opnår de en intensitet, som kan få den til at skifte. Denne konstruktion vil betyde, at kun når begge inputsignaler er "høje" vil udgangen være "høj", altså en logisk AND-gatefunktion.

![Diagram](image)

På tilsvarende måde kan man konstruerer en logisk OR-gate. Her er det nok at et af inputsignalerne er "høje" for at få udgangssignalet til at være "højt".
En NOT-gate kan ikke konstrueres ud fra samme princip. Her må man anvende den reflekterede stråle (vi forstår ikke hvordan men se Abraham mfl. 1983) Af figuren ses det, at et "lavt" inputsignal a giver et "højt outputsignal", mens et "højt" inputsignal b giver et "lavt" outputsignal. NOT, AND og OR-gates er grundlæggende funktioner, som en computer bygger på. Ud fra disse tre logiske funktioner kan man behandle logiske signaler, som det gøres i en computer i dag.

Den type hukommelse, som kræver en konstant tilførsel af energi i form af lys eller strøm (den glemmer hvis man slukker for strømmen eller lyset) har man også konstrueret. Som tidligere omtalt kan hysteresiskurverne anvendes som hukommelsesenheder. Hvis man har en lysstråle med konstant intensitet I_a stående på en enhed med hysteresisegenskaber, hvor I_a når ind i det bistabile område, kan udgangssignalet enten være "højt" eller "lavt". Hvis det er "højt" må det være, fordi I_b tidligere har været "høj". Hvis det er "lavt", er det fordi I_b tidligere har været "lav". En sådan type hukommelse vil man være
nød til at nulstille ved at slukke for I_a, fordi hvis I_b bare en gang har været "høj", viludgangssignalet altid være "højt". Hukommelser, som kan fungere uden konstant belastning, er der endnu ikke fundet principper for (os bekendt). Dette kan selv-følgelig være en ulempe, hvis man ønsker en optisk computer, som skal kunne tage konkurrencen op med den elektroniske computer.

![Diagram](image)

En klar fordel ved det optiske er, at det er væsentligt nemmere at parallelbehandle signalerne ved optisk signalbehandling. Selv hvis behandlingen af det enkelte signal ved parallelbehandling er langsommere end ved serielbehandling, kan den parallelle behandling være hurtigere, idet der behandles flere signaler af gangen. Hvis mange signaler skal parallelbehandles elektronisk vil det give problemer, fordi hvert signal skal transporteres i en "ledning" for sig mellem de forskellige enheder i computeren. Det optiske system vil have den fordel i denne sammenhæng, at de ikke behøver en ledning eller et medium at udbrede sig i, og det vil lette det konstruktionstekniske noget.

Af samme grund er der folk, som forestiller sig, at man kan benytte OB til billedskærme, fordi det netop er et problem at lave elektronisk, idet der skal fores en leder til ethvert opløsningspunkt på skærmen. I en optisk computerskærm ville der kun skulle en lysstråle til hvert punkt. En anden anvendelse i den forbindelse er billedanalyse. Et billede kan
samles med linse og sendes ind i en optisk computer, som ved parallelbehandling kan analysere billedet. Dette er væsentligt nemmere end ved elektronisk billedanalyse, idet de optiske signaler ikke først skal konverteres til elektriske signaler, og desuden vil behandlingen tage kortere tid, fordi den er parallel.

En transistor forstærker indgangssignalet med en vis faktor. Det betyder, at de ideelle kantede signaler ikke kan opnås (se B på figuren ovenfor).
2.2.5. Hvad forskes der i?

Når vi skal samle op på, hvad der forskes i ved OB, vil vi sætte det op i en slags hierarki, gående fra det mest grundlæggende videnskabelige til den mere anvendelseorienterede forskning. Et sådan hierarki kunne se således ud:

1. Teoretisk forståelse af de ikke lineære egenskaber i forskellige materialer.
2. Udvalgelse af de rette optiske materialer til forskellige formål.
3. Opdagelse af forskellige tekniske måder at udnytte de optiske, ikke-lineære effekter på.

4. Forske i hvordan man laver forskellige tekniske småforbedringer.
5. Forske i hvordan OB tilpasses en egentlig produktion.
6. Overveje hvor der er et behov for OB.

ad 1. Denne forskning består i at forstå, hvad det er for nogle mikroskopiske ændringer, der sker i det optiske materiale ved forskellige ikke-lineære effekter. Der findes en del mikroskopiske fænomener (elektroner som andre energitoj etc.), som kan forårsage ikke-lineære egenskaber i stoffer.

Ca. 80 % af de offentliggjorte artikler hører under denne kategori (S.D. Smith 1984). Det skyldes for det første, at forskningen indenfor området er ny og derfor ikke fuldt har givet forståelsen af disse fænomener. For det andet viser det, at de folk, som forsker indenfor området, har deres udgangspunkt i videnskaben, selvom de på noget længere sigt sætter sig teknologiske mål. For det tredje er udviklingen af OB ikke forceret og bundet til forskellige produktionsmetoder og materialer, som indenfor forfiningen af mikroelektronikken (VHSIC), og det står derfor en mere frit, hvilke materialer og metoder man vil anvende og forstå.

En grov opdeling af forskningen inden for dette område, vil være at dele folk op i udelukkende teoretiske folk (Kaplan, Lugati mfl.) og mere eksperimentelt funderede folk (Heriot-Watt, Bell Laboratorierne mfl.), hvilket er typisk
for denne fænomensorienteret forskning. Men forskningen på det-
te område vil stadig være grundforskning. Der er kun tale om
forskellige arbejdsmetoder.

ad 2. Denne del af forskningen består i – på baggrund af en
forståelse af hvilke ikke-lineære effekter, der er "gode"
til de "relevant" anvendelsesområder – at finde material-
er, som har de rigtige egenskaber (lav absorption, store
ikke-lineære effekter mm.)

ad 3. Som sagt findes der forskellige måder at anvende/ud-
nytte de ikke-lineære effekter på. F.-P. interferometeret er
en af dem. Men der findes andre (ringcavity, holograf, self-
focusering etc.)

De tre første punkter i hierarkiet er meget sammenfiltrede
og har stor indflydelse på hinanden. Man vil eksempelvis un-
dersøge grænserne for optimering af forskellige teknikker
og materialer især ved hjælp af pkt. 1. Og de ikke-lineære ef-
fekter, som synes interessante under pkt. 3, vil være dem, som
der ofres kræfter på under pkt. 1. Omvendt vil den teoretiske
forståelse af de ikke-lineære effekter føre til en mere system-
matisk søgning efter de rette materialer. Det er indenfor de
første 3 punkter, at de folk, som arbejder med OB, befinder
sig. Opdelingen, som blev gjort under pkt. 1, mellem eksperi-
mentielt funderede og teoretisk funderede forskere holder ved
alle tre punkter, idet teoretikerne næsten udelukkende arbej-
der indenfor pkt. 1 og de fleste eksperimentielle arbejder
med alle tre kasser.

ad 4. Da der ligger langt større muligheder for forbedring-
er indenfor pkt. 1-3, er dette felt endnu ikke aktuelt. Eller
sagt på en anden måde: Vi er slet ikke langt nok i den teknolo-
logiske udvikling af den optiske computer mv., til at der
can blive tale om småforbedringer.

ad 5. Tilsvarende med den egentlige produktionstilpasning.
Der er endnu ikke grund til for alvor at overveje disse ting,
fordi problemerne er langt mere fundamentale og selvfølgelig,
fordi der ikke er økonomi i at anvende OB endnu. Hvis de fun-
damentale problemer løses vil man formentlig senere se viden-
skabelige arbejder, om hvordan f.eks. forskellige krystaller
kan dyrkes på den mest hensigtsmæssige måde.

ad 6. I modsætning til pkt. 4 og 5 bliver der gjort visse
overvejelser i denne retning, selvom det ikke er egentlige
behosanalyser mv. Disse overvejelser udspringer mest af at
sammenligne optimeringsgrænser, indenfor OB, med andre teknolo-
giør - hovedsagligt elektronik. Dog er der også forskellige
overvejelser om hvorvidt den tekniske udvikling, især inden
for lyslederteknikken, vil skabe behov for OB.

Heriot-Watt's forskning:
Arbejdet på Heriot Watt Universitetet er i høj grad eks-
perimentielt funderet. De artikler vi har fundet frem falder
i tre kategorier:

1. Offentliggørelse af nyheder fra dem selv. Her
er det hovedsagligt det eksperimentielle ar-
bejde som udgører nyheden. Når teori er anvendt/
udviklet er det oftest med den hensigt at beregne
grænser for de optiske enheder med.

2. Oversigts artikler. Nogle artikler udgivet af S.D.
Smith forsøger at gøre status over hvad der er
sket indenfor feltet indtil nu.

3. Populariserede artikler. De har udgivet en ar-
tikel i Scientific America, som må siges at være
en popular fremstilling.

De arbejder udelukrende med "narrow gap" halvledere (InSb,
ZnSe, InGaAxp og GaAs) som det ikke-lineære materiale, og de
var de første, der anvendte InSb. Krystallerne er almindelig-
vis coatede så de fungerer som et F.-P. interferometer. Deres
arbejde består bl.a.ud fra andres teori at forklare de ikke-
lineære effekter og derfra igen opstille modeller, som kan
beregne grænser for hurtighed, effektforbrug størrelse mv.

Den tekniske målsætning synes at være at kunne bygge en com-
puter; ihvert fald har de konstrueret en optisk AND-gate og
en optisk hukommelsesenhed. Desuden er deres efterfølgende
snak i artiklerne om anvendelsesmulighederne - på baggrund
af deres beregninger af grænserne for hurtighed etc. - begræn-
set til computer anvendelser.
Hvis vi således skal placere dem i hierakiet må de siges at udfylde alle rubriker med undtagelse af 4 og 5. Men at de dernæst hører til de eksperimentielt arbejdende og at de i høj grad er anvendelsesorienterede.
2.2.6. Litteraturliste

(4) "Non linear optical effects in semiconductors due to coherence of probe and high-intensity elektromagnetic radia

(5) "Optical bistable devices, the basic comparrants of all-opt
tical systems" af H.M. Gibbs et al., Optical Engineering vol. 19 no. 4 s. 463-68, Juni/August 1980.

(6) "Band-gab resonant Nonlinear Refraction in III-V Semicon

(8) "Dynamic non-linear optical processes in semiconductors",
af A. Miller et al., Advance in Physics vol. 30 no. 6 s. 697-800, 1981.

(9) "Bistable optical devices, physics and operating character
istics", af D.A.B. Miller, Laser Focus s. 79-84, April 1982.

(10) "Realization of an In Sb bistable devices as an optical
AND-gate and its use to measure carrier recombination

2.3. DELKONKLUSION

Vi vil her opsummere hovedtrækkene i forskningen indenfor Vhsic og OB-projektet ud fra et fagligt perspektiv.

Vi mener, at Vhsic-projektets forskning er et klart eksempel på anvendt forskning; udgangspunktet er at forbedre en eksisterende teknologi (silicium-chippen). I afsnittet om Vhsic's forskning konkluderede vi således, at fordi der skulle leveres resultatet('"feature-sizes" fra 3 mikrometer til under 0,5 mikrometer) indenfor meget kort tid, ville der ikke være muligheder for at ændre fundamentalt på teknologien. Konsekvensen, af det formål, som Vhsic'projektet har (at forcere teknologiudviklingen, indenfor chip området, i retning af hurtigere og mindre chip), er, at der hovedsagligt forsøges i små ændringer; så som forbedre kølesystemerne, ændre strukturen på chippen, små ekstra dopningsområder etc.). Forskningen kører altså stramt og resultatfikseret.

OB-projektet ser vi nærmere som et eksempel på anvendt grundforskning; udgangspunktet er at finde anvendelser for en bestemt faglig viden. I Heriot-Watt-projektet er den faglige viden, som ønskes anvendt, optiske egenskaber i halvledere. At 80% af artiklerne om OB er teoretiske (S.D. Smith 1984) taler klart herfor. OB-projektet er et typisk eksempel på, at et lille grundforskningsområde vokser sig stort efter, at der har vist sig nogle tekniske anvendelser. Således er mængden af artikler om emnet stærkt voksende.

muligheden for at lede i alle retninger, fordi der endnu ikke er indgangsvinkler som er mere relevante end andre.

Sammenhængen mellem de to projekter er, set som konkurrerende teknologier, klar. Vhsic', der er en traditionel satsen på den sikre, mest fremherskende teknologi, vil endnu i årtier være den dominerende. Bl.a. fordi at en konkurrent som OB ikke som det første vil blive anvendt på de områder hvor elektronikken er stærkest (traditionel sekventielle computere ol.). Den vil i starten mere blive brugt ved parallelbehandling af den enorme mængder information, som der er i et billede, altså specielt ved billedbearbejdning. OB vil altså satse på de punkter, hvor den traditionelle elektronik har sine svagheder (kilde: S.D.Smith fra en konference ved NBI maj 85). Billedbearbejdning er et af hovedemnerne i forbindelse med forskning i kunstig intelligens.
3. **SOCIOLIGISK BESKRIVELSE AF PROJEKTERNE:**

3.1. **SOCIOLIGISK BESKRIVELSE AF ET VHSIC-FIRMA:**

I dette kapitel skal vi se på VHSIC-projektets opbygning i faser. Derefter kommer en gennemgang af organiseringsmetoden, og de deltagende firmaer nævnes. Så går vi over til at undersøge, hvilke motiver firmaerne kan have for at deltage. Dette indledes med nogle generelle oplysninger om halvlederbrancen. Men da vores mål er at se på, hvordan forskningsstrukturen påvirker forskeren, bliver vi dernæst nødt til at vælge en enkelt firma ud. Oplysninger om dette firma kombineret med typiske brancetræk bliver tilslut stykket sammen til et billede af forskerens status. Men først detaljerne om VHSIC.

3.1.1. VHSIC-projektets opbygning

Et af de vigtigste aspekter af VHSIC er nok, at Pentagon, af denne vej, forsøger at "geare" den amerikanske elektronikindustri til militære formål igen. Industrien er nemlig i stadig højere grad blevet baseret på civile produkter, fra lommeregner til komfurer og Computere. I 1960 blev næsten halvdelen af alle halvledere afsat til militæret, mens andelen nu snarere er under ti procent (1). Industrien er bl.a. nu ikke nødvendigvis interesse ret i så komplekse kredse som muligt, men mere i så generelt anvendelige kredse som muligt. Dette er ikke i militærets favør, det har brug for kredse, som er specifikt udviklet - og derfor optimeret - til militære formål, og helst så avancerede som de kan laves. Militæret og firmaerne har altså forskellige interesser.

VHSIC-forskningen foregår ikke i militærets egne laboratorier. Hvad angår halvlederelektronik, har det faktisk altid bestilt bestemte komponenter hos industrien. Dette skyldes naturligvis, at halvlederområdet totalt er præget af frontforskning, hvad angår produktionsmetoder etc.. Den nødvendige viden, til at fremstille endnu bedre chips er enorm; nej, det er lettere at "gå ud i byen"
og købe det bedste af det bedste. Og hvis en af producenterne "falder af på den", m.h.t. teknisk ydeevne i forhold til andre firmaer, kan man bare vælge en ny producent. Det er meget sikre at købe sig til eksisterende produktionsapparater, og det der-til hørende forskningspotentielle. Af samme grund blev VHSIC-projektet lagt ud til elektronikvirksomhederne. Der er iøvrigt militær kontrol med hvilke VHSIC-chips/oplysninger, der slipper ud af USA. Dog er "eksporten" af VHSIC-chips, der ikke direkte er designet til militær anvendelse, stadig underlagt handelsminist-riets kontrol. Der er endnu ikke lavet ikke-militær-udviklede VHSIC'ere!

For at være sikker på fast styring med, om resultaterne nu og så kommer hurtigt nok, blev projektet delt op i faser, hver med et konkret mål og tilhørende kontrakter om udviklings- og lever-nings-opgaver.

Den første fase var fase 0. Den strakte sig ca. fra 1979-81. Her blev målene med VHSIC i almindelighed, og med fase 1 i særdeleshed, fastlagt. Ni udvalgte firmaer/firmateams deltog.

Efter denne fastlægning, blev fase 1 startet. Målet var, dels anvendelige IC'er med en elementstørrelse på 1,25 μm, for unipolare teknologier, dels et gate-Hertz-produkt (se indledningen til kapitel 2.1.1.) på 5×10^{11}, for bipolare teknologier. 6 af de førnævnte 9 blev udvalgt, og skrev kontrakt med Pentagon. Disse kontrakter omhandler konkrete chip-opgaver og har et maksimalt udgiftsloft. De seks bestod af 3 firmaer og 3 teams af firmaer:

Enkeltfirmaer: 1) Texas Instruments. (M)
2) Honeywell. (M)
3) IBM. (M)

Teams:
4) Leder: Hughes (M). Fairchild, RCA (M).
5) Leder: TRW (M). Motorola (M), Sperry.
6) Leder: Westinghouse (M). National Semicon-ductors, Harris, Control Data (M).

Det lille (M) efter nogle af firmaerne betyder, at firmaet er multinationalt ifølge "The world dictionary on multinational enterprices", 1979-80; dvs. at det er blandt de 10000 største multinationale virksomheder. Alle har hovedkvarterer i USA. Så vidt det har været muligt, er alle disse firmaer (undtagen IBM, se senere), og deres VHSIC-produkter, beskrevet i bilagene. Dette mest for fuldstændighedens skyld.

Allerede i slutningen af 1984 blev så fase 2 startet, dvs. tre
firmaer blev udvalgt og skrev kontrakter om nye chip-opgaver.
Målet var nu en elementstørrelse på 0.5 μm, for unipolare teknikker. Hvad målet er for de bipolare, er ukendt, kilden skelner ikke mellem uni- og bi-polære krav. De tre firmaer var IBM, Honeywell og TRW/Motorola/Sperry. Hvad kontrakterne omhandler, har ikke været nævnt. Der kan endnu komme flere med til fase 2.
Målene med et evt. fase 3 projekt kendes ikke.

Det er vandt at nævne, at Pentagon, ved VHASIC, til en vis grad satser på åbenhed omkring firmaernes forskning. Dog kun åbenhed i indkredsen, således at deltagende firmaer på fælles symposier kan/ skal fremlægge deres løsninger på problemer, som de alle er kommet ud for, og har svært ved at tackle. Det er nok som en følge af denne balancegang, mellem tilladelse af fabriks-hemmeligheder og tvungen teknologiudveksling, at også mindre/mere perifere (til elektronikindustrien) firmaer tør deltage. Også selvom de ikke kan forventes at have særligt store forskningsafdelinger, indenfor de berørte områder. (f.eks. Honeywell). Disse symposier virker også som en mulighed for nye firmaer til at komme ind i VHASIC-projektet. De vil her kunne få hjælp til at komme på linie med de andre, idet militæret er interesseret i så ensartet en industri som muligt (bedre forsyning). Symposieformen minder iøvrigt meget om den måde, transistorteknologien udviklede på i 50'erne. Her var de i Bell-regi.

Der har endnu kun været et eksempel på, at der er kommet nye firmaer til. Det var i kampen om fase 2 kontrakterne, hvor den amerikanske telekommunikationsgigant AT&T (American Telephone & Telegraph) gik ind i projektet, sammen med Raytheon (M) og E-systems. Det er AT&T, der er hovedorganisationen bag forskningslaboratorierne Bell Laboratories og produktionselskabet Western Electric.

Ifølge AW&ST (30 juli, 84) er hver fase delt således ind: Først en ca. 1 års periode, hvor kravene til fasen defineres/klarlagges. Denne periode kaldes "system definition". Det er også her, at kontrakterne med Pentagon forhandles. Derefter kommer den periode, hvor selve produktionsforbedringerne foretages/opfindes, og hvor chips'ene udvikles. Denne periode er delt i tre: én hvor metoderne udvikles, én hvor der laves prototyper, og én hvor den egentlige produktion startes. Vi går så over i selve anvendelsesperioden. Her er metoden udviklet, produktionen er så stor, at
produktet kan bedømmes/testes grundigt. Det er også i denne periode, at chips'ene bringes i anvendelse. Principippet er nu færdigt, og kan nu anvendes til fremstilling af andre chips end de oprindeligt militært bestilte. Parallelt med produktionsopstarten planlægges så kraven til næste fase, og holden ruller igen. Følgende figur viser faseinddelingen i detaljer.

3.1.2. Halvlederfirmaerne

ifølge en af vore hovedkilder ("Multinational electronic companies and national policies") kan den ikke-japanske halvlederproduktion (spec. IC'ere) karakteriseres, som kommende fra to grupper af firmaer: "Den stor liga" og "den lille liga". Den store består specielt af de (relativt nye) store americanske firmaer (Texas Ins., National, Motorola etc.), hvis hele eksistens skyldes halvlederne. Den lille liga består bl.a. af de store engelske/europæiske (små amr.?) firmaer, ofte tidligere rørproducenter; de lever ikke kun ved salg af halvlederprodukter. Der har, siden logikkredsenes fremkomst i begyndelsen af 60'erne, ind-
stillet sig en ligevægt: Den store liga tager sig specielt af produktion af standardkredse (så som CMOS 4000A&B, TTL 74, 74LS) etc., mens den lille liga koncentrerer sig om kundespecificerede kredse, specialkredse, osv.

Da mikroelektroniske produktionsmetoder har en tendens til at ældes hurtigt, gælder det om at tjene så meget som muligt, over så få år som muligt. Derfor opererer de fleste store firmaer efter den såkaldte "lære-kurve". Den tager både højde for forældelsen og for det faktum, at priserne på kredse er konstant faldende:

Kilde: Elektronikrevolutionen m.fl.

Af denne kurve ses, at det hverken skal gå for hurtigt eller for langsamt, med lanceringen af nye produkter (fra DTL til TTL f.eks.); hvis det går for hurtigt, snyder man sig selv for de penge, der ligger i mætningsperioden, hvis det går for langsamt, når man ikke med den ny kreds-types opvækst. Et eksempel på det første er Fairchild, som opfandt planarmetoden, men trak sig for hurtigt ud af markedet, så andre udnyttede metodens fordele.

Ovenstående illustrerer meget godt nogle af egenskaberne ved den store liga; de satser hårdt på forskning, mest i produktions-
metoder og i forbedringer af de bedste logikfamilier, TTL, CMOS og evt. ECL. Det er desuden næsten umuligt for nye firmaer at kæmpe sig ind i ligaen. Dels tager det tid at bygge en konkurrencedygtig produktion op, og firmaet vil fanges i en ond cirkel: lille produktion → høj pris → mindre produktion → højere pris. Dels kan et nyt firma, som forsøger at slå sig igennem på en ny, kommende standardkreds, blive frosset ud af de andre: De nægter at producere den nye kreds på licens! Noget af det vigtigste for kunderne er jo en god, stabil forsyning (= mange producenter).
Det er altså forbundet med enorme tab (og chancen for fiasko er stor) at rykke op i "den store liga". Og her er det så passende igen at tage fat på de firmaer, der er involveret i VHSIC!

3.1.3. Hvad får VHSIC-firmaerne ud af det?

Fordelene, set fra et militært synspunkt, har vi allerede nævnt, men hvad får firmaerne ud af VHSIC-projektet?

Alle firmaernes hovedmål er at tjene penge. Men de kan grundlæggende (sluttet ud fra bilag 1) have to forskellige udgangspunkter til halvlederproduktion; enten at tjene penge på det største marked (det civile), eller også at bakke en egen militærproduktion op. Dette betyder ikke, at et firma kun satser på en af delene, men at det satser på begge dele, i større eller mindre grad. Et stort firma, der typisk satser på det første, er Texas Instruments. Et, der satser på det andet, er Hughes.

For et firma, med overvejende civile, kommercielle interesser på mikroelektronikområdet, byder VHSIC-projektet på mindst to fordele; dels kan man få betalt en forskning, man (måske) alligevel skulle igennem på længere sigt; dels får man, ved det forcerede udviklingstempo, en mulighed for at gendrive konkurrencen fra bl.a. japanerne. Det er dog et spørgsmål, om en forceret militærforskning også automatisk giver civile forspring i produktionsmetoderne.

Et firma, som overvejende satser på at producere VHSIC primært til militært brug, gør det ikke for bare at sælge disse Chips til militæret. Dertil er den militære del af det totale halvledermarked for ringe. Fortjenesten er ikke stor nok. Et sådant firma satser snarere på at bakke en egen produktion af militært udstyr op. På den måde kan firmaet evt., blive totalleverandør på produktet, med hvad deraf følger af økonomiske fordele (monopolagtige tilstande). Desuden vil elektronikken endnu bedre kunne til-
passes våbenet og omvendt.

Der er en tredje mulig fordel ved at deltage i projektet. Det er chancen for, relativt billigt/let, at få startet en egen produktion af mikroelektronik (evt. at komme ind i ligaaen). Hoved- well er her et godt eksempel, idet det egentlig ikke har nogen tradition for mikroelektronik. Det ser nærmere VHSIC-projektet som et springbræt til et nyt område.

En anden måde, at ansøke firmaerne på, er en opdeling i grupperne "udviklere" og "leverandører". Firmaerne i den første kategori er kendtegnet ved, at de udvikler chips/systemer fra top til bund. "Leverandørerne" derimod satser mere på at blive "2. source"-leverandører, af kredse udviklet af andre; altså på licens at producere de andres kredse. Dette giver iøjvigt militæret en bedre forsyning. Inddelingen er naturligvis grov, idet flere firmaer satser på begge dele. Den passer dog på de fleste. Til udviklerne hører de tre store, samt lederne af de tre teams.

Derimod hører de øvrige firmaer til den anden gruppe.

3.1.4. Et VHSIC-firma - IBM

Men hvordan kommer vi fra dette "Pentagon-kontra-firmaerne"-niveau og ned på forskerniveau, hvilket er vort store ønske? Vi bliver nødt til at vælge et af firmaerne ud, og beskrive dets indsats i VHSIC så detaljeret som muligt. Valget faldt på IBM, dels fordi det næsten var det eneste, som det var til at få detaljerede oplysninger om, dels fordi det jo nok bør være et fase 2 firma vi kigger på. Forøvrigt er IBM's fase 1 opgave en speci- fikt militær chip, uden umiddelbare civile anvendelser.

I forbindelse med IBM har det været svært at finde materiale, der præcist omhandler forskerens status. Derfor er den mere virksomhedsindstillede, "Infotech state of the art report: IBM", brugt som hovedkilde, sammen med oplysninger fra bl.a. Elektronikrevolutionen.
Produktpolitisk er IBM meget konsekvent, det der betyder noget er computersalg af og vedligeholdelsen. Fremstillingen af delkomponenter er helt underlagt computerproduktionen; en helt ny kredsetet helt nyt lagringsprincip etc. bliver ikke automatisk anvendt med det samme. I mange tilfælde venter IBM med introduktionen, af denne nye delkomponent, indtil den er indarbejdet i et færdigt system. IBM sætter altså ikke bare en produktion i gang. Det venter derimod, og bruger tiden til at undersøge salgsmulighederne, mulighederne for tilslutning til ældre IBM-udstyr (kompatibilitet) osv.. Dette hænger naturligvis også sammen med, at IBM kun producerer delkomponenter til internt brug (kredse, motore, disk-drevs, skærme m.m.). Evt. kan IBM dog give andre lov til produktion af specielle ting, ved en licensaftale. IBM lader ikke udviklingen af kredse styre computerprodukternes timing, men omvendt. Eller som det siges i (5): "(IBM) er et markeds- og finans-baseret selskab, ikke et teknologifirma.". Kodeordet er timing.

På trods af ovenstående må IBM ligne de "rigtige" halvlederproduceneter meget. Dels benytter de sig af den samme type forskning, specielt indenfor elektronlithografi og ætsemetoder. Dels er forskningen ligeså (eller mere) intensiv, som for de andre firmaer; logikfamilierne afløser hinanden på samme måde (RTL, DTL, ECL, TTL, CMOS m.m.). Desuden har mange af de andre firmaer et vist produktionssammenfald med IBM. Jvnf. f.eks. Texas Ins. videnskabelige "supercomputer" ASC. Ifølge (1) har også IBM været plaget af forskerhugst, nøjagtigt som de andre fabrikanter.

IBM er ikke, som f.eks. Texas Instruments, enteknologisk lederfigur; det er sjældent herfra, at nye teknologier kommer. Ikke som TI, der har utallige opfindelser på bagen. Men IBM har en tendens til altid at være med, når en ny teknik er udviklet, og skal anvendes i praksis. At IBM ikke regnes for "opfinder af nye teknikker" kan undre, når det betænkes, at det hvert år bruger enorme summer på forskning (R&D, Research & Development). I 1979 var det 1.3 milliarder $ af en omsætning på 23 milliarder, eller ca. 6%! Men det bliver mere forståeligt, når man ser på, hvordan der prioriteres i IBM's forskning:

(Listen er taget fra (5) side 64-65.)

1) I/O-enheder, så som disk-lagre, laserprinter, massehu-kommelses-undersystemer.
2) Software, inklusiv operativ-system forbedringer, udvikling af nye operativsystemer og anvendelsesorienteret software.

3) Mainframes, dvs. konfigurationer fra System/32 til og med 3033'eren, samt multiprocessorversioner af den kommende 3033'er. (Volapyk, men direkte oversat.)

4) Komponenter, inklusiv logik og hukommelseskredse, samt Indkapslingen.

5) Kommunikationsudstyr, dvs. SBS, terminaler, multipleksere og dekodere.

6) Kontorprodukter.

7) Ren grundvidenskabelig forskning.

Det konkluderes endog sammesteds, at punkt 5) og 6) er på vej op! De to emner vi er interesseret i er altså blandt dem, der prioriteres lavest.

IBM koncentrerer sig altså om systemudvikling/opbakning, og først i anden række om halvlederteknologisk forskning (og i endnu mindre grad om grundvidenskab). Der er dog undtagelser, så som IBM's engagement i forsøget på at udvikle de såkaldte Josephsonkontakter, til et brugbart alternativ til transistorhjul. Dette projekt, som nu kører på 13. år, er dog siden ca. 1980 blevet nedprioriteret igen. Der var åbenbart for lang vej til en Josephson-computer. Det kan jo også være, at IBM har fået kolde fødder, efter at arbejdet med OB er startet......?!

Med hensyn til unipolare halvledere, har IBM specielt koncentreret sig om hukommelseskredse, N-MOS. Bipolær set arbejder IBM mest med logik, dvs. TTL og ECL. Men her er IBM ved at indse, at CMOS er fremtiden, idet hastigheden nu er tæt på de bipolares (excl. ECL).

Valget af teknologi til VHSIC-projektet ligger lidt ved siden af IBM's traditioner, idet der benyttes N-MOS i dets fase 1 chip. Grunden til at der benyttes N-MOS er nok, af fordelene ved den større pakketæthed, langt modvirker tabet i hastighed, ved ikke at bruge ECL; der kompenserer nemlig for den mindre arbejdsfrekvens, ved at anvende parallelbehandling. Således består chippen af 4 ens kredsløb, hver med en arbejdsfrekvens på 25 MHz, der deles om opgaven. Den reelle arbejdsfrekvens bliver dermed 4 * 25 = 100 MHz. Altså tæt på hvad man kan forvente af ECL.

Den chip, IBM har udviklet under fase 1, er en "programmerbar kompleksstalsmultiplikator/register". Den er istand til, at multiplicere to 16 bits komplekse tal på ca. 40 ns, og er en for-
bedret (1.25 μm) udgave af en chip, som IBM udviklede (udenfor VHSIC) med 2 μm N-MOS.

Denne VHSIC-chip er udviklet v.h.a. CAD/CAM (Computer hjulpen...). IBM havde således at have opbygget mere end 20 s.k. makroceller, i 1.25 μm N-MOS. En makrocelle er en funktionsenhed (f. eks.: en AND-gate, et register) bestående af utallige transistører, evt. af utallige gates. Disse enheder kan så, via den i computeren gemte maske, sammensættes til et helt kredsløb, altså til en hel VHSIC-chip. Principippet svarer meget godt til at lave stoftryk: Man har forskellige skabeloner (kartofler), som, hvis de anvendes sammen, giver hele mønsteret på stoffet. Dette makrocelleprincip medfører, at specielle chips hurtigt og let kan fremstilles (genereres) udfra kundeønsket. Ved denne metode vil "den store liga" i større grad nærme sig den lille gebe: De helt kundespecificerede kredse i små antal. Dette giver dog nok størst fordele for militæret, idet det kan få opfyldt sine krav om kredse, optimeret til militære formål.

Dog er IBM helt klar over, at masseproduktion er nøglen til lave produktions- og udviklings-omkostninger. Derfor arbejdes der også med lave mikrokodeprogrammering på VHSIC-chippene; dvs. at chippens funktion først fastlægges ude i "marken". Dette er et eksempel på en generel kreds, som kan tilpasses alle slags afgivende opgaver, og som af samme grund kan masseproduceres.

Selvom IBM's første VHSIC-kreds var rent militær (man har i-følge AW&ST ikke brug for så hurtige komplekstalsmultiplikatorer i det civile), behøver det altså ikke at betyde, at VHSIC udelukkende anvendes til militære formål (hvis det står til firmaerne). IBM's chip er anvendelig i forbindelse med forbehandling af f.eks. sonarsignaler (i ubåde) og radar.

3.1.5. Forskernivæu - igen

Men det er jo forskerne vi prøver at komme ned til, så vi prøver engang til, med endnu en indfaldsvinkel! Vort formål er, som bekendt, at klarlægge, hvilke muligheder forskerne har, dels for at tilfredsstille private ambitioner s.s. at publicere frit etc. og dels at få penge til deres projekter. Vi vil også gerne finde ud af noget om måden, de arbejder sammen på.

Fordi det har været umuligt at skaffe oplysninger om, hvordan IBM konkret styrer sin forskerstab (spec. i forb. med halvlederforskning), må vi benytte det udgangspunkt, der hedder: "IBM er
som de andre, hvad angår halvlederforskningens organisering". Dette svarer nok meget godt til virkeligheden, idet IBM jo er udsat for de samme mekanismer som f.eks. TI. Kun produktpolitikken er anderledes, når det kommer til stykket.

I transistoren unge dage klarede firmerne forskerrekrutteringen på to måder. Enten stjal de hos hinanden, eller også ansatte de direkte fra universitetet. Da området var nyt, var der ikke så store krav til de nyers halvlederviden, bare de f.eks. havde en almen fysisk viden, så transistorteorien ikke var helt fremmed. Af samme grund var der kun få "rigtige" halvledereksperter, som skiftede fra job til job. Disse forskere kendte deres værd, og havde ret frie muligheder for at forfølge et bestemt mål. Om ikke andet kunne de bare skifte firma, hvis der var mangel på økonomisk forståelse. Meget tyder på, at forskernes motivationskilde er den samme, som på universitetet: Personlig tilfredsstillelse ved at fuldføre et projekt, hvad enten det er grundvidenskabeligt (uni.) eller teknologisk (firma); det er altid godt hvis man kan gøre sin hobby til sit job.

Men efterhånden gik det op for branchefolk, at halvlederindustriens udvikling mere er teknologisk end egentlig grundvidenskabeligt baseret; Transistoren var opfundet, udviklingen bestod mest i at udnytte opfindelsen v.h.a. bedre og bedre produktionsmetoder etc.. Dette betød, at kontakten, mellem universiteter og firmaer, blev svække; antallet af universitetsuddannede faldt. Denne løsrivelse af forskningen, fra det anvendt grundvidenskabelige over i "anvendt forskning", medførte en direkte kløft mellem universitetsfolk og firmaforskere. Firmaforskeren så fcr sin del ned på universiteterne, fordi god forskning, for ham at se, var forskning med et konkret teknisk mål; universitetsforskningen minde formen om, blot at få den sidste detalje med i et ellers fuldendt billede (at måle det samme som 10 år tidligere, men med flere decimaler). Desuden anså han ikke "afhandlingsprincipippet" for at være en effektiv metode til vidensoverføring, han troede - og tror - mere på personlig kontakt, forskere imellem; man finder ikke meget hjælp i baggrundsorienterende, teoretiske artikler, når det man har brug for, er konkrete oplysninger om en bestemt produktionsteknik. Faktisk foregår megen informationsudveksling i halvlederverden, ved personlig kontakt (dels samtaler, dels ved ansættelser). Også firmaerne har indset dette, og
det er en almindelig opfattelse i branchen, at halvlederviden er fællesviden (sålænge man er amerikaner).

Den typiske firmaforsker offentliggører altså ikke (evt. nogle få tekniske artikler) meget skrifteligt, det er ikke den måde man kommunikerer på i branchen. Og når den almindelige måde at udveksle idéer på, er ved personlige kontakter, må en firmaforsker nødvendigvis føle sig som en del af en gruppe, en gruppe, som består af amerikanere, og hvis fornemste mål er konkrete, tekniske resultater. Det er i hvert fald denne type forsker, firmaerne er interesserede i. På den måde vil der i firmaregi sjældent være mulighed for at få tilfredsstillt, eventuelle, mere universtetsagtige ambitioner om en forskning, der ikke umiddelbart giver tekniske resultater. (optisk bistabilitet f.eks.).

Det samme må gøre sig gældende ved IBM & VHSIC. Her er konsekvensen af det ovennævnte taget, og der er gjort plads til den personlige udveksling, v.h.a. omfattende sessions. (Informationsudvekslingen har mest at gøre med, at finde løsninger på konkrete fremstillingsproblemer.) På denne måde opnår militæret, dels at undgå at forstyrre (støde) forskerens naturlige adfærd, og dels alligevel at kunne hemmeligholde projektets detaljer; der er styr på, hvem der deltager. Tilsvarende er der kun sjældent brug for skriftelige arbejder, og muligheden for at offentliggøre sådanne er derfor begrænset.

Som tidligere nævnt, er grundvidenskabelig forskning næsten bandlyst, som dyrt og kommersielt uvedkommende. Af samme grund er der ingen chancer for en firmaforsker for at få økonomisk støtte (af firmaet) til et sådant projekt. Hvis det derimod drejer sig om et projekt, der er "relevant" for halvlederproduktionen, så er mulighederne næsten uanede; enten får han pengene/udstyret fra firmaet, eller også kan han skifte til et mere interesseret firma, hvis et sådant findes. Han kan evt. starte et firma selv, med dette projekt som hovedaktivitet. Dette skete ofte tidligere, men er nu snarere en sjældenhed (startkapitalkravet er blevet for stort). Hvis han har tilpasset sig områdets krav (en art selvcensur), så tages der mod det meste med kyshånd. På VHSIC området (IBM) gælder der specielt, at mulighederne for VHSIC-relevant støtte er endnu bedre. For det første har firmaet sit eget forskningsbudget, for det andet kommer der et enormt supplement fra kontrakten med militæret!
Før i tiden skete teknologioverførslen ofte ved ansættelse af en ny mand. Videnen var bundet til enkeltpersoner, som så solgte sig så dyrt som muligt. Forskningen var i høj grad bygget op, dels individuelt og dels om brugen af den "fælles" viden. Det med den fælles, meget spredte viden gælder stadig, også for VHSIC. Men hvad angår personifikseringen, så er denne på retur. Dette skyldes, at det der skal udvikles bliver stadig mere omfattende, en person kan ikke rumme al den nødvendige viden. Før gjalt udviklingen blot en enkeltperson, transistoren, nu er forskningsobjektet snarere et helt system, evt. bestående af flere chips. Der kræves planlægning på alle niveauer; det drejer sig ikke kun om placeringen af de enkelte transistorer, men f. eks. også om chippens overordnede struktur/funktion (chip-arkitekturen). Dette er meget mandskabskrævende, der skal både være eksperter i de forskellige produktionsniveauer, og på mere overordnet niveau (kompatibilitet med tidligere kredse, software etc.). Dette teamwork er bl.a. nødvendigt, fordi forskningen skal være hurtig og fejlfri. Der er ikke tid til at falde i diverse, usete "grøfter". Teamwork er formen! Hvordan et sådant teamwork er organiseret, kan vi kun gætte på, og undlader derfor nærmere omtale.

Forøvrigt satser VHSIC-projektet også på, at få automatiseret planlægning/produktion af VHSIC'ere; kravene til kredsløbet kommer ind i den ene ende, og computeren sørger for, at den færdige maskine kommer ud i den anden! Et enormt ambitiøst projekt, som nok vil gøre mange "forskere" arbejdsløse. Udsigterne er dog lange, da systemet skal være meget fleksibelt; næsten alle for- søg på, at automatisere halvlederproduktionen er slået fejl, innovationsprocessen har forløbet for hurtigt, og systemet er blevet forældet, før det havde tjent sig ind.

3.1.6. Opsummering

En forsker i (et) IBM (lignende firma) vil i forbindelse med VHSIC blive kært i forholdsvis stramme tøjler; dels vil han ikke kunne få støtte til andet end absolut VHSIC-relevant arbejde, dels vil han kun have mulighed for vidensudeksling, ved de dertil indrettede (og talrige) sessions. Mulighederne for at offentliggøre mere traditionelle, universitetsagtige arbejder om VHSIC, vil være næsten ikke-eksisterende. Til gengæld vil forskeren typisk føle sig som resultatorienteret teknolog, en rolle, som
passer i firmaets interesser; der vil være en form for selvtilpasning. Dette vil også underbygges af firmaforskerens traditionelle rolle, som "del af et amerikansk vidensfællesskab", og dermed teknologisk minded og ikke grundvidenskabeligt. Om dette relativt frie "forskerfællesskab" så ikke er ved, i stigende grad, at blive kontrolleret (af store firmaer, evt. militæret), er et spørgsmål. Hvorom alting er, vil mulighederne for støtte, til et VHSIC-relevant projekt, være enorme. Forskeren er altså på én måde fri, på en anden bundet meget stramt. Der er iøvrigt ikke noget, der tyder på, at forskerens arbejdsforhold er blevet specielt meget strammere af, at VHSIC-projektet er militært. (Det er snarere, de til VHSIC projektet tilknyttede, universiteter, der er blevet ramt af forskellige forbud mod offentliggørelser og "omgang med udlandinge"!)

PS. Der er forøvrigt et tankevækkende træk ved udvælgelsen af fase 2 firmaerne. Det hører egentlig ikke til i en opsamling, men er, som så mange andre detaljer, for interesseant til at udelade: Alle tre firmaer (TRW, IBM og Honeywell) har ikke store interesser på det kommercielle halvledermarkede, de fabrikerer mest til internt brug. Dette hænger formodentlig sammen med, at det er denne type "alt-producerende" firmaer, der bedst er i stand til at opfylde militærets krav om hele systemer. Specielt hvis de i forvejen har nogle egne våbentyper at bakke op om, bliver muligheden for optimering af VHSIC'ere stor. IBM-chippen (fase 1) er specifikt beregnet som en præ-processor (første signalbehandler), til en allerede udkomlet, "militært tænkt" IBM-computer (u-både). Tilsvarende er TRW's chips beregnet til brug ved TRW's (og andres) ICNIA-system (et perverst flygenkendelsessystem), og Honeywells er tænkt anvendt (af Honeywell) bl.a. ved den fremtidige udvikling af INEWS (krigsflådens elektronisk-krig system).
3.1.7. Litteraturliste

(2) "Multinational electronic companies and national economic policies", af Edmond Sciberras, JAI-press, 1977. (Engelsk)

(3) "Multinational corporations & the control of culture", af Armand Mattelart, The Harvester press limited, 1979. (Engelsk, oversat fra fransk)

SAML:
1984: 12. marts s 215-221 , 6. februar s 14-18 ,
18. juni s 123-125 , 30. juli temanummer ,
5. november s 24 , 26. november s 74-76.

Uddrag af "The new politics of science", af David Dickson, s 124-127 & s 146-151.

3.2. SOCIOLOGISK BESKRIVELSE AF OB-PROJEKTET

3.2.1. Om Heriot-Watt-universitetet

Heriot-Watt universitetet blev startet i 1966. Tidligere havde det været kunstskole (fra 1821), og fra 1885 var det college. Det er et relativt lille universitet med 325 lærlere 3200 studerende §. Universitetet består af 4 fakulteter. Der er et fakultet - for økonomiske og sociale studier (Faculty of Economic and Social Studies), - for ingeniørvirkomhed (Faculty of Engineering), - for miljø studier (Faculty of Environmental Studies) og et for naturvidenskab (Faculty of Science). Derudover er der til universitetet knyttet to institutter; nemlig "Esmée Fairbairn Research Center" og Institut for offshore ingeniørvirkomhed (Institute of Offshore Engineering).

Det tyder på, at universitetet er meget anvendelsesorienteret; i hvert fald hvis man ser på fakulteterne og listen over professorater. Fakultet for økonomiske og sociale studier virker -udfra listen over professorater - til at være en slags Handelshøjskole (Statsøkonomi, Økonomi, Foretningsorganisation, International bankvirkomhed mv.). Fakultetet for ingeniørvirkomhed svarer vel til de mere anvendelsesorienteret institutter ved DTH. Der er således professorater i offshore-, elektronisk-, elektrisk-, computer og bygnings-ingeniørvirkomhed. Det tredie fakultet; nemlig fakultetet for miljøstudier har to professorater: et i arkitektur og et i by og landplanlægning (Architecture og Town- and Country Planning). Det er lidt svært at bedømme dette fakultet, man muligvis er der tale om en slags sektorforskning for det offent-

§ tallene er fra "World of learning" 1982-83
lige i retning af planlægning. Mht. fakultetet for naturvidenskab kan det ikke umiddelbart placeres, men det kunne tyde på, at det kunne svare til nogle af grundfagsintitutterne på DTH. Professoraterne udgøres hovedsagligt af traditionelle emne-områder som mikrobiologi, organisk biologi, kemi, fysik, matematik, matematik/statistik mm. Men der er også mere snævre eller anvendelsesorienterede emner. Således er der et professorat i brygning-og biokemi, og et i halvlederfysik. Ud over dette er der to andre professorater, nemlig et i teoretisk fysik og etsom bare benævnes fysik (formentlig mere eksperimentel fysik).

3.2.2. OB-projektet

Den gennemgående person; "hovedpersonen" og professoren" S. Desmond Smith, som formentlig er den ledende i OB projektet på Heriot-Watt universitetet, modtog sin B.Sc. grad fra Bristol Universitet i 1952, Ph.D. grad fra Reading Universitet i 1956 og D.Sc. fra Bristol Universitet i 1966. Ved Readings

§ B.Sc. er en forkortelse for "Bachelor of Science" og er den laveste tittel, man kan have ved et engelsk universitet. Det svarer til en tre-fire års studietid.

§§ Ph.D er en forkortelse for " Doctor of Philosophy", men gives nu i alle fag. Den svarer til 3 års studietid ud over B.Sc.

§§§ D.Sc. er en forkortelse for "Doctor of Science".

S.D. Smith synes at være en person, som har et fagligt område, men samtidig inde for dette område er meget anvendelsesorienteret. Hans faglige område må kaldes noget i retning af: "Optiske egenskaber ved halvledere, med særlig henblik på ikke-lineære effekter i 'narrow gap' halvledere". Mht. det anvendelsesorienterede er der jo flere eksempler ovenfor. Han var ansvarlig for forskningen i infrarødt meteorologi ved Nimbus 4 og 5 satellitterne, han har arbejdet indenfor "Royal Aircraft Establishment", han har arbejdet med at anvende/orbedre sin faglige kompetence ved laserteknologi og optisk bistabilitet, og han er formand for et firma som åbenbart laver laserteknologi.

Der også mere indirekte måder at støtte OB-projekter på. Forskellige instanser (firmaer, militæret mfl.) kan støtte udgivelsen af bøger/rapporter over en kongres. På denne måde er f.eks. militæret indblandet i OB. Desuden har de støttet en forsker ved MIT (Kaplan) og har selv folk som forsker i OB (Citan, Browden og Robl).

3.2.3. Opsummering

Det kan være, det er nødvendigt at samle op i forhold til de fire punkter, som vi ønskede at belyse ved denne gennemgang af OB-projektet. De fire punkter er:

1) Økonomiske muligheder
2) Publiceringsmuligheder
3) Forskerens selvopfattelse
4) Samarbejdsformen

Mht. økonomien konstaterede vi, at de fik midler fra den engelske stat; både midler forbundet med undervisning, og midler, som blev givet gennem det engelske forskningsråd for teknik og videnskab (1 mill. pund indtil nu). Derudover fik de fra 1985 tildelt midler fra EF i forbindelse med ESPRIT-programmet.

Deres arbejde virkede til at være bygget op på den måde, at det var professoren (S.D. Smith), som klart var den, der styrede projektet. Dernæst kunne der til ham være knyttet forskellige teknikkere og folk på vej op.

Deres mulighed for at publicere var rige at dømme efter antallet af publicerede artikler. Dette skyldes formentlig, at OB er et emne, som vurderes til at have stor "relevans", og det er derfor nemt at skaffe midler til OB og få artikler publiceret i tidskrifter.

Forskerne ved OB-projektet opfatter sig formentlig som videnskabsmænd, idet de publicerer i videnskabelige tidskrifter og det gennemgående i det de har lavet (også tidligere) er et videnskabeligt område (optiske egenskaber ved halvledere). Men samtidig er de meget anvendelsesorienteret inde for deres område/fag (OB, Laserteknologi). Skal deres forskning puttes i en "kasse" må man kalde det anvendt grundforskning.
3.2.4. Litteraturliste

Udover de kilder, som er nævnt under det tekniske afsnit, er brugt:

1) "Ny elektronik" nr. 3 1985 s. 38–41
3) "World of Learning"
4. KONKLUSION.

Vi vil i konklusionen gøre rede for de fire "status"-punkter, for de to projekter, som der blev opstillet i problemformuleringen. Vi tager dem punktvis, selv om de naturligvis hænger tæt sammen. Derefter forsøger vi at konkludere generelt, med de to projekter, som typiske eksempler på henholdsvis universitets- og virksomheds-forskning.

A) Forskerens selvopfattelse.

Ved en forskers selvopfattelse forstår vi dels, hvordan han ser sig selv, og dels, hvordan dette medfører en selvinsikt, således at han laver, hvad han (mere eller mindre direkte) føler sig forpligtet til.

I forbindelse med OB-projektet mener vi, at de opfatter sig selv som "naturvidenskabsmand" i første række. Dette ses bl.a. af måden de offentliggører på, og i hvilke tidsskrifter de gør det. At de så i praksis arbejder med et diffust anvendelsesøje, er en anden ting. Således har de både arbejdet med OB og laser- og optiske egenskaber ved halvledere. De har også muligheden for at føle sig som en del af et "videnskabeligt samfund", i og med at de frit kan publicere deres artikler, gå til kongresser, eller på anden måde konfrontere deres viden med andre fagfolk indenfor området.

Derimod opfatter VHSIC-forskerne sig formentlig som teknologer. De mener typiskt, at det væsentlige er at opnå tekniske mål. Forskere indenfor det mikroelektroniske område ser egentlig ned på universiteterne, med deres afhandlinger og videnskabelige arbejder. De ser derimod den personlige kontakt, som det væsentlige. Tilsvarende vil de, når de finder en løsning på et konkret problem, have en tendens til ikke at teoretisere over hvorfor, dette var en løsning. Nej, det var en løsning de søgte, ikke nødvendigvis "sandheden" om det løste problems karakter. Man kan også se det på en anden måde: Hvis de opfattede sig som "videnskabsmand", måtte det nødvendigvis være en meget uhelbred tilværelse at arbejde i et VHSIC-firma. Lukketheden omkring VHSIC betyder, at de ikke kan kommunikere med andre forskere om deres opdagelser. De vil være helt henvist til de nævnte sessions i firmaregi. De vil altså ikke kunne være en del af det førømtalte
"videnskabelige samfund", men højest del af en lille cirkel af teknologer, alle tilknyttet den amerikanske halvlederindustri.

B) Muligheden for at offentliggøre.

Ved "offentliggørelse forstår vi produktion af artikler, hvori forskeren fortæller andre (evt. andre forskere), hvilke ting han beskæftiger sig med, i detaljer. Formålet kan være at hævde sig selv som forsker, at skabe debat etc..

Ved OB-projektet fremgår det umiddelbart, af de utallige artikler folkene på dette område har fået publiceret, at der egentlig ikke er nogle begrænsninger. Dette skyldes, at OB er et nyt og lovende (det har anvendelsesmuligheder indbygget), der er en god chance for, at få artikler om emnet optaget i tidsskrifterne. Desuden er der ikke internt på universitetet begrænsninger af, hvad deres artikler må indeholde, eller om de overhovedet må offentliggøre artikler. Tværtimod er det ofte forbundet med øget prestige, at have en stor videnskabelig produktion.

Ved VHSIC (hos IBM) forholder det sig anderledes; der er det nemlig reelt umuligt at få noget betydelig, offentliggjort, udover på de dertil indrettede sessions, firmaerne imellem. At der ikke er mange detaljer om VHSIC i "omløb" ses bl.a. af, at selv et venligtsindet (over for militæret) blad som AW&ST næsten ingen konkrete oplysninger har; det bringer en svævende forklaring om, at målet er en elementstørrelse på 1.25μm og at teknologien f. eks. er CMOS, flere detaljer gives ganske enkelt ikke! Desuden beskriver David Dickson, hvordan der fra Pentagons side føres kontrol med, hvilke oplysninger, om VHSIC, der går ud af landet. Et sidste indicie er, at vi overhovedet ikke er stødt på nogle artikler om VHSIC i detaljer, og da slet ikke (som ved OB) på nogle, der er skrevet af forskerne selv.(Vi har ledt ret intensivt.) Forskeren er altså udsat for en omfattende censur, hvis han forsøger at offentliggøre.

C) Økonomisk frihedsgrad.

Ved økonomisk frihedsgrad forstår vi, muligheden for at få støtte til forskningen; altså i hvor høj grad økonomien sætter en grænse for, hvad der forskes i.

Ved VHSIC er muligheden for at få forskningsmidler næsten uendelig stor. Men der er det krav, at andre end forskeren skal kunne se, at projektet er umiddelbart betydningsfuldt, for udvik-
lingen af VHSIC. Altså hvis forskeren går ind på firmaets mål-
sætning, er de økonomiske resourcer, der er til rådighed, enor-
me. Forskeren vil nok i høj grad udøve en mere eller (snarere)
mindre bevidst selvcensur, å la "jeg er jo ansat af IBM til at
forbedre produkterne, altså også VHSIC". Firmaets midler vil
dels bestå af egne forskningspenge og dels af bevillinger fra
Pentagon.

Forholdene på Heriot-Watt er nok mere differentierede. Deres
midler stammer dels fra de resurser, som bevilges til universi-
tets undervisning, og som der internt disponeres forholdsvis
frit over. Disse beløb dækker typiskt lønninger til faste med-
arbejdere, og noget eksperimentelt udstyr. Disse midler er ret
begrænsede. Derudover får projektet støtte fra det engelske for-
skningsråd for teknik og videnskab. Dette råd tildeler formodent-
lig pengene efter to kriterier. Dels et "fagligt" krav, som
et projekt, for at få støtte, skal opfylde. Og dels et mere an-
vendelsesorienteret krav, til projektets tekniske anvendelighed,
på kortere eller længere sigt. Kravet til teknisk anvendelighed
er dermed ikke så snævert, som for IBM's vedkommne.

Forskellen mellem de to projekter er ikke så overvældende på dette
punkt. Der er tale om gradsforskelle, idet mekanismen grundlæg-
gende er den samme; andres (nødvendige) støtte kræver en legitimi-
mering af projektet. På Heriot-Watt er der større frihed til at
lave, hvad man vil, men det er umådelig meget sværere at få en
støtte; som den en interesseret IBM kan give.

D) Teamwork kontra individuel forskning.

Ved teamwork forstår vi, at flere forskere arbejder sammen med
et fælles mål. De skal også være stillet på nogenlunde lige fod,
f.eks. med hver deres område de er eksperter på. Faktisk kræver
teamwork et temmelig veldefineret mål, alle er nødt til at vide
hvad der forskes i. Teamwork behøver ikke kun at bestå af f.eks.
Dette kræver dog nok en stram organisering, og uddeling af kom-
petanceområder.

IBM's forskning må være præget af teamwork, da man kun på den-
ne måde kan undgå faldgruber for et nyt produkt; udviklingen
skal, godt sagt, foretages af både en "dopnings"-tekniker, en
kredsløbstekniker, en system-tekniker, en salgsminde konsulent,
en "sammenknytnings" konsulent (så produktet kan bringes i overensstemmelse med tidligere produkter) etc.. Det er her direkte det anvendelsesorienterede, præcise mål, der stiller kravet om teamwork. Det skal gå hurtigt, og det skal virke!

I modsætning hertil er forskningen på Heriot-Watt baseret på individuelle interesser for specielle emner. Altså mere dikteret af personlige læropheste og anden galskab. Dog kan der være en vis styring af emnevalget, f.eks. hvis universitetet har en faglig "profil" (et specialiseret emneområde, f.eks. optiske egenskaber i halvledere), som skal repræsenteres ud ad til.

Generelt.

Vi må generelt sige, at de to projekter er gode eksempler på det dunkle vekselspil, der er mellem de grundvidenskabeligt orienterede universiteter og de teknologiske virksomheder. Dels trækker Heriot-Watt-projektet meget over imod det teknologisk anvendelige. Dels bygger IBM's højtæknologiske forskning meget stærkt på aktuel grundforskning. De to eksempler viser altså, at teknologi og videnskab ikke er uafhængige størrelser, de påvirker hinanden og danner et uigennemskueligt sammensurium, som u-muliggør generelle analyser. Den videre vej frem er eksempler, eksempler, eksempler....
5. BILAG.

De efterfølgende to, ufuldstændige bilag var tænkt, som en ret ambitiøs beskrivelse af de deltagende VHSIC-firmaer og deres chip-opgaver. Det er egentlig mere en slavisk kortlægningsopgave, end et afsnit. Vi havde teoretisk set chancen for, at få listerne fuldstændiggjort, men valgte at lade være:

-Dels fordi en sådan kortlægning er svær at udføre under tidspres.
-Dels fordi den store arbejdssindsats, ikke på nogen måde kunne forventes at give en tilsvarende forøget mængde viden, til brug i projektet.
-Og dels fordi der specielt for bilag 2's vedkommende gjaldt, at der kun var en kilde, som tilmed var "snakkende" og upræcis (AW&ST). Chancen var for stor for, at oversætte noget vrøvl!

Når de ufuldstændige lister alligevel kom med, skyldes det bl.a., at det der blev skrevet, forelå på et tidligt tidspunkt, og dermed kom til at danne baggrund for projektets udformning og indhold (spec. vedr. VHSIC). Desuden illustrerer listerne meget godt, VHSIC-projektets kompleksitet; et frygteligt sammenrend af vidt forskellige firmaer!

Specielt interesserede bør konsultere følgende kilder:

(Detaljerede oplysninger om VHSIC's opbygning.)

"Multinational electronic companies and national economic policies", af Sciberras. (En analyse af halvledermarkedet.)

(En liste over de 10000 største multinationale selskaber.)
TEXAS INSTRUMENTS: Total net sales $3461\cdot10^6$ (79). En af verdenes største producenter af elektroniske komponenter, 44% af salget falder på komponenter af enhver art. Foruden halvleder-afdelingen findes 5 andre hovedafdelinger. Heraf er det hovedsagligt "udstyr"-afdelingen, som er beskæftiget med militærer udviklingsopgaver (for USA). Denne afdeling fremstiller og distribuerer militære og kommersielle flysystemer og elektr-optiske instrumentationssystemer; missilednings- og kom-mandovejs-systemer, samt flyinstrumentation. TI deltager altid også i andre militære opgaver end VHSIC. TI satser i høj grad på at videreudvikle "deres" teknologi, nemlig den bipolare LS (Low Schottky) transistor løjgik. 7 af de 8 chipopgaver TI i 1983 havde forpligtet sig til var udført med denne teknologi. Kun den sidste, en 72k hukommelseskreds, var udført med N-MOS (unipolært). TI satser hårdt på, at nyudviklingerne "generelle" kredse (programbare). Dette vil give de største muligheder på det kommercielle marked (stor produktion, lav pris). 55% af profitten i 1979 stammede fra salg af komponenter. TI forsvarer i "VHSIC sagens" rollen som "førende halvlederproducent med civile (kommercielle) interesser".

TI er knyttet til en kontaktmand fra HÆREN. Nøgleord for TI: Gate arrays & mikrokodeprogrammering

HONYWELL: Total net sales $4210\cdot10^6$ (79). H er en af disse store multinationale med utallige interesser. Dog produceres der mest indenfor elektronisk informationsudstyr og kontrolsystemer. Af samme grund er firmaet inddelt i to hovedgrupper, "informationssystemer" og "kontrolsystemer". Oprindelig var H ikke særligt beskæftiget med halvlederproduktion, næsten kun via datterselskabet Synertek. Men nu (83) er H via sin "solid state electronic division" igang med at forberede en egen produktion af egne VHSIC'er. (H har desuden et samarbejde med Motorola om produktion af H's kredsløb.) Traditionelt er H meget engageret i militærproduktion, men mest i mere "mekaniske" ting å la detonatorer,
kampvogns-ild-systemer, sikkerhedssystemer osv., altså som underleverandør til f eks. fly ømissiler. Hele 20% af salget i 79 stammede således fra rumfarts- og militær-produktion! Men kun 9% af fortjensten var fra dette område! Så mon ikke der også er nationalistiske motiver til H's militærproduktion? H satser mere "militært" end f eks. TI.

H benytter til fase 1 tre forskellige bipolare teknologier: Current mode logic (alias Emitter Coupled Logic, ECL), integreret Schottky logic (alias LSTTL ?) og standard Schottky logic. En af begrundelserne for at benytte tre bipolare teknologier er øvrigt (AW&ST), at dette giver den bedste immunitet overfor radioaktiv stråling!Disse kredsløb er ikke beregnet til civilt brug! Sammenfattende kan siges, at H er ny på IC området, men gammel i gårde hvad angår militære opgaver. H ser klart VHSIC projektet som et springbrædt til halvlederområdet. Om de så vil specialisere sig i militær prod., eller også vil satse kommercielt, er et spørgsmål. Honywell er beskæftiget med 3 chipopgaver.

H's kontaktsmand er fra LUFTVÅBEN/FLÅDE. NØGLEORD: Makroceller, strålingsufølsom.

- o -

IBM "studerer" foreløbig VHSIC området, og må egentlig
anses for at forsvare rollen som "førende leverandør af a-
vancerede systemer, både til kommersielt og militært brug".
Nøgleord for IBM: Makroceller og evt programmerbare kredse.
Kontaktmanden er fra FLÅDEN.

- o -

TRW: Total net sales 4560·10^6 $ (79). En stor producent af
biler/arbejdemaskiner, elektroniske komponenter (af alle ar-
ter) og systemer, samt rumfarts- og industri-udstyr. Elektro-
nik/rumfartsudstyr fremstilles kun i USA. Traditionelt har
TRW ikke været nogen storprod. (relativt) af militært ud-
styr, men har koncentreret om bl.a. NASA programmer. TRW
har dog været med i udviklingen af de militære kommunika-
tionssystemer. Er ikke "kendt" som producent af IC, snarere
diskret elektronik. TRW prøver formodentlig at få en stor
fod indenfor på området: "Udvikling og produktion af VHSIC
til militære formål (evt. NASA)."

Dette team af firmaer rapporterer til en kontaktmand fra
FLÅDEN. Nøgleord for teamet: ?.

MOTOROLA: Total net sales 2220·10^6 $ (78).

- o -

(PROFILEN ER IKKE AFSLUTTET!)

NATIONAL SEMICONDUCTORS:

HARRIS:

CONTROL DATA: Total net sales $2738 \cdot 10^6$ (78).

- o -

HUGHES: (KONTAKTMAND FRA HÆREN)

FAIRCHILD:

RCA: Total net sales $6601 \cdot 10^6$ (78).

(Signetics):

- o -
ического

AT&T:

RAYTHEON: Total net sales $3728 \cdot 10^6$ (79).

E-SYSTEMS: ?

- o -

(LISTE 1 SLUT)
Texas Instruments: TI har koncentreret sig om 8 opgaver, som alle undtagen hukommelsen er udviklet med bipolær Schottky teknologi. TI ønsker at VHSIC'erne skal ligne deres alm. kredse, og at deres logiske funktioner skal opnås v.h.a. programmering af standard VHSIC-kredse.

De fire næste kredse er alle beregnet til hurtig, parallel signalbearbejdning (matrix processing). De er alle dele af det som udgør en komputer (en fire-chips CPU).

3) Matrix "controller/sequencer" (rækkefølgebekostmer). Denne chip er beregnet til at styre hvornår og hvortil datastrømmen skal ledes. 120000 aktive elementer. Chip 3), 4) og 5) er alle lavet udfra det samme gatearray.

4) Vektor addresse generator. Denne kreds danner de vektor-addresser som data har i hukommelsen. 130000 aktive elementer.

5) "Multivejs"-omskifter. Denne chip udfører den omskiftning af datastrømmen, som chip 3) bestemmer. 30000 aktive elementer.

De fire ovennævnte kredse udgør tilsammen en meget simpel, men hurtig komputer (CPU), og kan derfor anvendes ved "real time processing". Altså et område med mange militære anvendelser (radarbilledanalyse etc.).

De tre næste kredse er mere traditionelle komputerkredse, de ligner meget alm. tilgængelige kredse:
(Liste 2 fortsat, TI)

6) En "1750A" (militær standard) databearbejdningskreds (CPU?) 190000 aktive elementer. Denne kreds er lavet af den samme processorchip som 7), men med forskellig mikrokodeprogrammering: (110K ROM).

7) En interfacekreds til 6). 190000 aktive elementer.

8) En "generel buffer"-kreds, altså også en slags interface. Er fremstillet af samme chip som 3)-5) ! 130000 aktive elementer.

TI's VHSIC produkter må siges at lægge op til at skulle erstatte allerede eksisterende generelle komputerkredse, som nok også bruges civilt. Desuden satser TI meget på "generelle" chips, som let kan programmeres til evt. specielle brugerønsker. TI er oplagt ude på både at blæse og have mel i munden; programmér de kredse som er udviklet til militæret, og vupti, har du en helt anden kreds, som (måske) er skræddersyet til en civil computer. Vi gør det for nationen, og tjener penge på det!

-o-

IBM: IBM har kun udviklet én chip, nemlig en "programmerbar komplekstals multiplikator/hukommelse". Denne er i stand til at udføre $100 \cdot 10^6$ 16 bits komplekstalsmultiplikationer pr. sekund (100 MHz). Dette kan kun lade sig gøre, fordi den er fir-delt; 4 ens multiplikatorer/hukommelser, som arbejder parallelt ("parallel pipeline"), hver med $25 \cdot 10^6$ operationer pr. sekund. Kredsen er fremstillet med unipolar N-MOS, med den obligate 1.25 mikrometer elementstørrelse. Det er værd at bemærke, at kredsen er en VHSIC udgave af en tilsvarende, som IBM udviklede med 2 mikrometer N-MOS. Chippen indeholder mere end 10000 aktive elementer.

IBM satser på makroceller, og har indtil videre ca. 24 forskellige. Men IBM erkender også, at programmerbare kredse sætter omkostningerne ned. Chippen er specielt udviklet til militært brug, nemlig som "første-behandler" af sonarsigna-
(Liste 2 fortsat, IBM)

ler (u-både), men kan også bruges i f.eks. radaranlæg.

IBM ønsker formodentlig at holde sig så selvstændig
som muligt (ligesom Texas Instruments). Dette ses klart
af at de udvikler VHSIC chips til militæret, på en sådan
måde, at de uden besvær kan bruge teknologien til et evt.
kommende kommercielt marked. Når militæret (hele USA's
befolkning) vil betale for vores teknologiudvikling, ja,
så lad dem dog!

- o -

Honeywell:

TRW's team:

Hughes' team:

Westinghouse's team:

- o -

(Liste 2 slut)
1/78 "TANKER OM EN PRAKSI“ - et matematikprojekt.
Projektrapport af Anne Jensen, Lena Lindenskov, Marianne Kesselhahn og Nicolai Lomholt.
Vejleder: Anders Madsen.

2/78 "OPTIMIERING" - Menneskets forøgede beherskelsesmuligheder af natur og samfund.
Projektrapport af Tom J. Andersen, Tommy R. Andersen, Gert Kreinæ og Peter H. Lassen.
Vejleder: Bernhelm Booss.

3/78 "OPGAVESAMLING", breddekursus i fysik.
Lasse Rasmussen, Aage Bonde Krammer, Jens Højgaard Jensen.
Nr. 3 er a jour først i marts 1984

4/78 "TRE ESSAYS" - om matematikundervisning, matematiklæreruddannelsen og videnskabsrindalismen.
Mogens Niss.

5/78 "BIBLIOGRAFISK VEJLEDNING TIL STUDIET AF DEM MODERNE FYSIKS HISTORIE“.
Helge Kragh.

6/78 "NOGLE ARTIKLER OG DEBATINDLÆG OM - læreruddannelsen og undervisning i fysik, og de naturvidenskabellige fags situation efter studenteropprøret".

7/78 "MATMATIKKENS FORHOLD TIL SAMFUNDSØKONOMIEN".
B.V. Gnedenko.

8/78 "DYNAMIK OG DIAGRAMMER", Introduktion til energy-bond-graph formalismen.
Peder Voetmann Christiansen.

9/78 "OM PRAKSI’ INDFLYDELSE PÅ MATMATIKKENS UDVJLING" - Motiver til Kepler's: "Nova Stereometria Dolorum Vinarium".
Projektrapport af Lasse Rasmussen.
Vejleder: Anders Madsen.

10/79 "TERMODYNAMIK I GYMNASIET”.
Projektrapport af Jan Christensen og Jeanne Mortensen.
Vejledere: Karin Beyer og Peder Voetmann Christiansen.

11/79 "STATISTIK: MALMSTAL" red. Jørgen Larsen

12/79 "LINEære DIFFERENTIALlIGNINGER OG DIFFERENTIALlIGNINGSSYSTEMER”.
Mogens Brun Heefelt

13/79 "CAVENISH’ S FORSØG I GYMNASIET”.
Projektrapport af Gert Kreinæ.
Vejleder: Albert Chr. Paulsen

Nr. 12 er udstillet
15/79 "STRUKTUREL STABILITET OG KATASTROFER I SYSTEMER I og udenfor termodynamisk ligevægt".
Specialeopgave af Leif S. Striegler.
Vejleder: Peder Vontmann Christiansen.

16/79 "STATISTIK I KRAFTFORSKNINGEN".
Vejleder: Jørgen Larsen.

17/79 "AT SPØRGE OG AT SVARE I fysikundervisningen".
Albert Christian Paulsen.

Bernhelm Booss & Mogens Niss (eds.).

19/79 "GEOMETRI, SKOLE OG VIRKELIGHED".
Projektrapport af Tom J. Andersen, Tommy R. Andersen og Per H.H. Larsen.
Vejleder: Mogens Niss.

20/79 "STATISTISK MODELLER TIL BESTEMMELSE AF SIKHEL DYSER FOR CARCINOGENE STOFFER".
Vejleder: Jørgen Larsen.

21/79 "KONTROL I GYMNASIET - FORMÅL OG KONSEKVENSER".
Projektrapport af Crilles Bacher, Per S. Jensen, Preben Jensen og Torben Nysteen.

22/79 "SEMIOTIK OG SYSTEMEGNSKABER (1)".
1-port lineært response og støj i fysikken.
Peder Vontman Christiansen.

23/79 "ON THE HISTORY OF EARLY WAVE MECHANICS - with special emphasis on the role of realitivity".

24/80 "MATEMATIKOPFATTELSE MD 2.6'ERE".
å+b 1. En analyse. 2. Interviwematerial.
Projektrapport af Jan Christensen og Knud Lindhardt Rasmussen.
Vejleder: Mogens Niss.

26/80 "OM MATEMATISKE MODELLER".
En projektrapport og to artikler.
Jens Højgaard Jensen m.fl.

27/80 "METHODOLOGY AND PHILOSOPHY OF SCIENCE IN PAUL DIRAC'S PHYSICS".
Helge Krath.

28/80 "DIELEKTRISK RELAXATION - et forslag til en ny model bygget på væskernes viskoelastiske egenskaber".
Projektrapport, speciale i fysik, af Gert Kreinhoe.
Vejleder: Niels Boye Olsen.
29/80 "ODIN - undervisningsmateriale til et kursus i differentialligningsmodeller".
Projektrapport af Tommy R. Andersen, Per H.H. Larsen og Peter H. Lassen.
Vejleder: Mogens Brun Heefelt

30/80 "FUSIONSENERGEN - ATOMSAMFUNDETS ENDESTATION".
Olaf Danielsen.

31/80 "VIDENSKABSTEORETISKE PROBLEMER VED UNDERSØKNINGSSYSTEMER BÅDET I FONKLÆDTE".
Projektrapport af Troels Lange og Jørgen Karrebæk.
Vejleder: Stig Andur Pedersen.

32/80 "POLYMERE STOFFERS VISCOELASTISKE EGENSKABER - BELYST VED HJÆLP AF MEKANISKE IMPEDANSMÅLINGER OG MOSSBAUER-EFFEKTUER".
Projektrapport, speciale i fysik, af Crilles Bacher og Preben Jensen.
Vejledere: Niels Boye Olsen og Peder Voetmann Christiansen.

33/80 "KONSTITUERING AF FAG INDEN FOR TEKNISK-NATURLIGER UDANNESEM. I-1".
Arne Jakobsen.

34/80 "ENVIRONMENTAL IMPACT OF WIND ENERGY UTILIZATION".
ENERGY SERIES NO.1.
Bent Sørensen.

35/80 "HISTORISKE STUDIER I DEN NYERE ATOMICUS INGEBRIGT".
Helge Krath.

36/80 "HVAERER MENINGEN MED MATEMATIKUNDEVERKESNINGEN ?".
Fire artikler.
Mogens Niss.

37/80 "RENEWABLE ENERGY AND ENERGY STORAGE".
ENERGY SERIES NO.2.
Bent Sørensen.

38/81 "TIL EN HISTORIETEORI OM NATUREN ERKENDELSE, TEKNOLOGI OG SAMFUNN".
Projektrapport af Erik Gade, Hans Hedal, Henrik Lau og Finn Physant.
Vejledere: Stig Andur Pedersen, Helge Krath og Ib Thiersen.

39/81 "TIL KRIKKENOM I VERSTOKONOMEN".
Jens Højgaard Jensen.

40/81 "TELEKOMUNIKATION I DANMARK - oplag til en teknologiogvurdering".
Projektrapport af Arne Jørgensen, Bruno Petersen og Jan Vedde.
Vejleder: Per Nørgaard.

41/81 "PLANNING AND POLICY CONSIDERATIONS RELATED TO THE INTRODUCTION OF RENEWABLE ENERGY SOURCES INTO ENERGY SUPPLY SYSTEMS".
ENERGY SERIES NO.3.
Bent Sørensen.
42/81 "VIDENSKAB – TEORI – SAMFUND – En introduktion til materialistiske videnskabsopfattelser".
 Helge Kragh og Stig Andur Pedersen.

43/81 1. "COMPARATIVE RISK ASSESSMENT OF TOTAL ENERGY SYSTEMS".
 2. "ADVANTAGES AND DISADVANTAGES OF DECENTRALIZATION".
 ENERGY SERIES NO.4.
 Bent Sørensen.

44/81 "HISTORISK UNDERSØGELSE AF DE EKSPERIMENTELLE FORUDSETELSENDE FOR RUTHERFORDS ATOMMODEL".
 Projektrapport af Niels Thor Nielsen.
 Vejleder: Bent C. Jørgensen.

45/82

46/82 "EKSEMPLARISK UNDERSØGELSE OG FYSISK ERKENDELSE – I+II ILLUSTRERET VED TO EKSEMPLER".
 Projektrapport af Torben O. Olsen, Lasse Rasmussen og Niels Dreyer Sørensen.
 Vejleder: Bent C. Jørgensen.

47/82 "BARSEBÅK OG DET VÆST OFFICIÆLT-TÆNKLIGE UELED".
 ENERGY SERIES NO.5.
 Bent Sørensen.

48/82 "EN UNDERSØGELSE AF MATEMATIKUNDERVISNINGEN PÅ ADGANGSKURSUS TIL KØbenhavns Teknikum".
 Projektrapport af Lis Ellertzen, Jørgen Karrebæk, Troels Lange, Preben Norregaard, Lissi Pedersen, Laust Rishøj, Lill Røn, Isaac Showiki.
 Vejleder: Mogens Niss.

49/82 "ANALYSE AF MULTISPEKTRALE SATELLITBILDELE".
 Projektrapport af Preben Norregaard.
 Vejledere: Jørgen Larsen & Rasmus Ole Rasmussen.

50/82 "HERLEV - MULIGHEDER FOR VEDVAREnde ENERGI I EN LANDBY". ENERGY SERIES NO.6.
 Rapport af Bent Christensen, Bent Hove Jensen, Dennis B. Møller, Bjarne Laursen, Bjarne Lilletorup og Jacob Mørch Pedersen.
 Vejleder: Bent Sørensen.

51/82 "HVAD KAN DER GURES FOR AT AFHJÆLPE PIGERS BLOKERING OVERFOR MATEMATIK?"
 Projektrapport af Lis Ellertzen, Lissi Pedersen, Lill Røn og Susanne Stender.

52/82 "DESSUSPENSION OF SPLITTING ELLIPTIC SYMBOLS"
 Bernhelm Booss & Krzysztof Wojciechowski.

53/82 "THE CONSTITUTION OF SUBJECTS IN ENGINEERING EDUCATION".
 Arne Jakobsen & Stig Andur Pedersen.

54/82 "FUTURES RESEARCH" – A Philosophical Analysis of Its Subject-Matter and Methods.
 Stig Andur Pedersen & Johannes Witt-Hansen.
55/82 "MATEMATISKE MODELLER" - Litteratur på Roskilde Universitetsbibliotek.
En bibliografi.
Else Høyrup.

56/82 "ÉN - TO - MANGE" -
En undersøgelse af matematisk økologi.
Projektrapport af Troels Lange.
Vejleder: Anders Madsen.

57/83 "ASPECT EKSPERIMENTET" -
Skjulte variable i kvantemekanikken?
Projektrapport af Tom Juul Andersen.
Vejleder: Peder Voetmann Christiansen.

58/83 "MATEMATISKE VANDRINGER" - Modelbetræktninger over spredning af dyr mellem småbiotoper i agerlandet.
Projektrapport af Per Hammershøj Jensen & Lene Vagn Rasmussen.
Vejleder: Jørgen Larsen.

59/83 "THE METHODOLOGY OF ENERGY PLANNING".
ENERGY SERIES No. 7.
Bent Sørensen.

60/83 "MATÆMATISK MODEKSPERTISE" - et eksempel.
Projektrapport af Erik O. Gade, Jørgen Kærrebek og Preben Nørregaard.
Vejleder: Anders Madsen.

61/83 "FYSIKS IDEOLOGISKE FUNKTION", som et eksempel på en naturvidenskab - historisk set.
Projektrapport af Annette Post Nielsen.
Vejledere: Jens Høyrup, Jens Højgaard Jensen og Jørgen Vogelius.

62/83 "MATEMATISKE MODELLER" - Litteratur på Roskilde Universitetsbibliotek.
En bibliografi. 2. rev. udgave
Else Høyrup.

63/83 "CREATING ENERGY FUTURES: A SHORT GUIDE TO ENERGY PLANNING".
ENERGY SERIES No. 8
David Crossley & Bent Sørensen

64/83 "VON MATHEMATIK UND KRIEG".
Bernhelm Booss og Jens Høyrup

65/83 "ANVENDT MATematik - Teori eller Praksis".
Projektrapport af Per Hedegård Andersen, Kirsten Høbekost, Carsten Holst-Jensen, Anneline von Moos, Else Marie Pedersen, Erling Møller Pedersen.
Vejledere: Bernhelm Booss & Klaus Grünbaum

66/83 "MATEMATISKE MODELLER FOR PERIODISK SELEKTION I ESCHERICHIA COLI".
Projektrapport af Hanne Lisbet Andersen, Ole Richard Jensen og Kjøvs Frisdahl.
Vejledere: Jørgen Larsen og Anders Hede Madsen
67/83 "ELIPSOIDE METODE - EN NY METODE TIL LINÆR PROGRAMMERING?"
Projektrapport fra Lone Billmann og Lars Boye
Vejleder: Mogens Brun Hvefelt

68/83 "STOKASTISKE MODELLER I POPULATIONSGENETIK" - til kritikken af teoriladede modeller.
Projektrapport fra Lise Odegård Gade, Susanne Hansen, Michael Hviid, Frank Malgård Olsen.
Vejleder: Jørgen Larsen.

69/83 "ELEVFORØDSETNINGER I FYSIK" - en test i 1.g med kommentarer
Albert Chr. Paulsen

70/83 "INDKLÆDDING- OG FORMIDLINGSPROBLEMER I MATEMATIK PÅ VOKSENUNDERVISNINGSNIVEAU"
Vejleder: Klaus Grünbaum & Anders H. Madsen

71/83 "PIGER OG FYSIK" - et problem og en udfordring for skolen?
Karin Beyer, Susanne Blegaa, Birthe Olsen, Jette Reich & Mette Vedelsby

72/83 "VERDEN IFOLGE PEIRCE" - to metafysiske essays, om og af C.S. Peirce.
Peder Voetmann Christiansen

73/83 "EN ENERGIANALYSE AF LANDBRUG" - økologisk contra traditionelt
ENERGY SERIES No. 9
Specialopgave i fysik af
Bent Hove Jensen
Vejleder: Bent Sørensen

74/84 "MINIATURISERING AF MIKROELEKTRONIK" - om videnskabelig gennemstik og nyttet af at lave fysik
Projektrapport fra Bodil Harder og Linda Skovhøj Jensen.
Vejledere: Jens Højgaard Jensen og Bent C. Jørgensen

75/84 "MATEMATIKUNDERVISNINGEN I FREMTIDENS GYMNASIUM" - Case: Lineær programmering
Projektrapport fra Morten Blomhøj, Klavs Fris-dahl, Frank Mølgaard Olsen
Vejledere: Mogens Brun Hvefelt & Jens Bjørneboe

76/84 "KERNEKRAFT I DANMARK?" - Et høringssvar indkaldt af miljøministerlet, mod kritik af miljøstyrelsens rapporter af 15. marts 1984.
ENERGY SERIES No. 10
Af Niels Boye Olsen og Bent Sørensen

77/84 "POLITISKE INDEKS - FUP ELLER FAKTA?" - Opinionsundersøgelser belyst ved statistiske modeller
Projektrapport fra Svend Age Houmann, Keld Nielsen, Susanne Stender
Vejledere: Jørgen Larsen & Jens Bjørneboe
78/84 "JEVNSTRØMSLEDNINGSEVNE OG GITTERSTRUKTUR I AMORFT GERMANIUM"
Specialrapport af Hans Hedal, Frank C. Ludvigsen og Finn C. Physant
Vejleder: Niels Boye Olsen

79/84 "MATEMATIK OG ALMENDANELSE"
Vejleder: Bernhelm Booss

80/84 "KURSUSMATERIALE TIL MATEMATIK B"
Mogens Brun Heefelt

81/84 "FREKVENSAFHÅNGIG LEDNINGSEVNE I AMORFT GERMANIUM"
Specialrapport af Jørgen Wind Petersen og Jan Christensen
Vejleder: Niels Boye Olsen

82/84 "MATEMATIK- OG FYSIKUNDERVISNINGEN I DET AUTOMATISEREDE SAMFUNDE"
Rapport fra et seminar afholdt i Hvidovre 25-27 april 1983
Red.: Jens Højgaard Jensen, Bent C. Jørgensen og Mogens Niss

83/84 "ON THE QUANTIFICATION OF SECURITY" nr. 83 er p.t. udgået
PEACE RESEARCH SERIES NO. 1
af Bent Sørensen

84/84 "NOGLE ARTIKLER OM MATEMATIK, FYSIK OG ALMENDANELSE".
Jens Højgaard Jensen, Mogens Niss m. fl.

85/84 "CENTRIFUGALREGULATORET OG MATEMATIK"
Specialrapport af Per Hedegaard Andersen, Carsten Holst Jensen, Else Marie Pedersen og Erling Møller Pedersen
Vejleder: Stig Andur Pedersen

86/84 "SECURITY IMPLICATIONS OF ALTERNATIVE DEFENSE OPTIONS FOR WESTERN EUROPE".
PEACE RESEARCH SERIES NO. 2
af Bent Sørensen

87/84 "A SIMPLE MODEL OF AC HOPPING CONDUCTIVITY IN DISORDERED SOLIDS"
af Jeppe C. Dyre

88/84 "RISE, FALL AND RESURRECTION OF INFINITESIMALS"
af Detlef Laugwitz

89/84 "FJERNVARMEOPTIMERING"
af Bjarne Lillethorup & Jacob Mørch Pedersen

90/84 "ENERGI I 1.0.-æn teori for tilrettelæggelse"
af Albert Chr. Paulsen

91/85 "KVANTETEORI FOR GYMNASIET"
1. Lærervejledning
Projektrapport af: Birger Lundgren, Henning Sten Hansen og John Johansson
Vejleder: Torsten Meyer
92/85 "KVANTETEORIE FOR GYMNASIET
2. Materiale
Projektrapport af: Birger Lundgren, Henning
Sten Hansen og John Johansson
Vejlere: Torsten Meyer

94/85 "TRENINGHEDEN BOURBaki - generalen, matematikeren
og ånden"
Projektrapport af: Morten Blomhøj, Klaas Frisdahl
og Frank M. Olsen
Vejlere: Mogens Niss

95/85 "AN ALTERNATIV DEFENSE PLAN FOR WESTERN EUROPE"
Peace research series no. 3
af Bent Sørensen

96/85 "ASPEKTER VED KRAFTVARMEFORSYNING"
av Bjarne Lillethorup
Vejlere: Bent Sørensen

97/85 "ON THE PHYSICS OF A.C. HOPPING CONDUCTIVITY"
Jeppe C. Dyre

98/85 "VALGMULTIGHEDER I INFORMATIONSALDRERN"
av Bent Sørensen

99/85 "Der er langt fra Q til R"
Projektrapport af: Niels Jørgensen og Mikael Klintorp
Vejlere: Andur Pedersen

100/85 "TALSYSTEMETS OPBYGNING"
av Mogens Niss

101/85 "EXTENDED MOMENTUM THEORY FOR WINDMILLS
IN PERTURBATIVE FORM"
av Ganeas Sengupta

102/85 "OPSTILLING OG ANALYSE AF MATEMATISKE MODELLER, BELYST VED
MODELLER OVER NYERS FODEROPTAGELSE OG - OMSÆTNING"
Projektrapport af: Lis Ellertzen, Kirsten Habekost, Lill Røn
og Susanne Stender
Vejlere: Klaus Grünbaum

103/85 "ØDSLE KOLDKRIGERE & VIDENSKABENS LYSE IDEER"
Projektrapport af: Niels Ole Dam og Kurt Jensen
Vejlere: Bent Sørensen

104/85 "ANALOGREGNEMASKINEN OG LORENZLIGNINGER"
av: Jens Jøger