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The Philadelphia-negative myeloproliferative neoplasms (MPNs)
are a group of hematopoietic stem-cell disorders, including es-
sential thrombocythemia (ET), polycythemia vera (PV) and pri-
mary myelofibrosis (PMF). The excessive production in myeloid,
erythroid or megakaryocytic cell lines characterizes the three
classical MPNs. Furthermore, inflammation is thought to be a
driver of MPNs and becomes a reason for developing other can-
cers in MPN patients. However, MPN patients may become alive
for several years with a high risk of thrombosis, cardiovascu-
lar complications and chronic inflammatory diseases. Although
many pathogenetic working mechanisms of MPNs are discovered,
many of the therapeutic tools are still unexplored.

In this thesis, a series of mechanism-based mathematical mod-
els contribute to building further knowledge about the pathogen-
esis of MPNs. Inspired by the bio-medical literature, we address
various research questions related to MPNs. In addition to the
pathogenesis of MPNs, we propose a novel mathematical model
describing the coupled mechanisms of thrombopoiesis and ery-
thropoiesis.
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Abstract

The Philadelphia-negative myeloproliferative neoplasms (MPN5s) are a group of hematopoi-
etic stem-cell disorders, including essential thrombocythemia (ET), polycythemia vera
(PV) and primary myelofibrosis (PMF). The excessive production in myeloid, erythroid

or megakaryocytic cell lines characterizes the three classical MPNs. Furthermore, in-
flammation is thought to be a driver of MPNs and becomes a reason for developing other
cancers in MPN patients. However, MPN patients may become alive for several years
with a high risk of thrombosis, cardiovascular complications and chronic inflammatory
diseases. Although many pathogenetic working mechanisms of MPNs are discovered,
many of the therapeutic tools are still unexplored.

In this thesis, a series of mechanism-based mathematical models contribute to build-
ing further knowledge about the pathogenesis of MPNs. Inspired by the bio-medical
literature, we address various research questions related to MPNs. In addition to the
pathogenesis of MPNs, we propose a novel mathematical model describing the coupled
mechanisms of thrombopoiesis and erythropoiesis.

The first mechanism-based Cancitis model describes the coupling between chronic
inflammation and the development of MPNs. We perform a thorough mathematical
investigation of the model and find the crucial parameters for the progression of the
disease. Thereby we identify that the inflammatory stimuli and a few grouped parame-
ters involved in the hematopoietic stem cell (HSC) dynamics are mainly responsible for
governing the behavior of the model. Based on the Cancitis model, we further develop
a range of mathematical models in the presented work.

A second model is a novel mathematical model proposed for PV dynamics. We
zoom in on the excessive production of red blood cells and erythropoietin (EPO) feed-
backs on healthy and malignant cells. A mathematical analysis of the model highlights
HSC fitness and suggests that HSC dynamics govern disease progression. The model is
capable of reproducing clinically observed dynamics before and during treatment.

A third novel mathematical model is proposed for ET dynamics where the exces-
sive production of platelets is addressed. In addition, thrombopoietin (TPO) feedbacks
mediates healthy and malignant cell lineage. The overall analysis reflects that targeted

HSC therapy can control disease progression.

il



Finally, we develop a mathematical model combining the dynamics of erythro-
cytes and platelets. In contrast to previous models, this model does not contain ma-
lignant cells. It is known that erythrocytes and platelets share the same precursor
megakaryocyte-erythroid progenitor (MEP). The purpose of the model is the investi-
gation of the coupled mechanisms between erythrocytes and platelets. The model is
validated and calibrated for various clinical experiments such as phlebotomy, body’s

reaction to EPO and TPO regimens.
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CHAPTER 1

Introduction

Mathematical modelling is a fast-growing research tool for exploring complex biolog-
ical mechanisms. The potentials of mathematical models in medical research are sig-
nificant to simulate medical outcomes. In vivo, clinical trials may be substituted with
in vitro or in silico experiments combined with a mathematical model, hypothesized
various physiological interventions for patients. The study of hematology using mathe-
matical models has been continued for the past half-century leading to quality progress
of forecasting optimal treatments. Moreover, mathematical oncology has gained much
importance in recent years. Stepping forward, this thesis is devoted to mathematical
modelling of hematological processes and focused on the development of blood can-
cer particularly, myeloproliferative neoplasms (MPNs). This thesis contains a series of
mathematical models primarily concerned with hematopoiesis processes and the patho-
physiology of blood disorders. The work may serve to the research in the pathogenesis,

diagnosis and prognosis of MPN patients.

1.1 Biological Background

Hematopoiesis

Hematopoietic stem cells (HSCs) are multipotent cells that produce all blood cells
required by the human body. Once an HSC differentiates, it undergoes a series of
differentiation to become a mature cell. Such a process occurs in the bone marrow
niche and is called hematopoiesis. In healthy individuals, approximately 10'? blood
cells are produced every day in order to maintain the steady state levels of the pe-
ripheral blood. HSCs are capable of regenerating themselves, termed as self-renewal,
meaning one HSC divides into two HSCs. In addition, one HSC may produce two
daughters/progenitor cells, and it may differentiate into one HSC and one daughter

cell. Hematopoietic stem cell niche is a particular environment where necessary signals



from the body carry out cells’ differentiation. These differentiated cells are subdivided
into myeloid and lymphoid groups of cells. The myeloid cells include red blood cells
(erythrocytes), white blood cells (leukocytes), and platelets (thrombocytes), whereas
T-cells, Natural killing cells and B-cells are included in the lymphoid group of cells.
Specific associated growth hormone factors to different cell lineages are responsible for
determining a cell type’s fate when it differentiates from a stem cell. They stimulate
growth, cell reproduction, and cell regeneration. For example, in some cases, such as
bone marrow failure, the liver and spleen perform the hematopoietic function to increase

these organs’ size. Such a condition is called extramedullary hematopoiesis [70; 99].

Erythropoiesis

The process of production of red blood cells (erythrocytes) from a stem cell is called
erythropoiesis. In the process of erythrocyte maturation, a cell undergoes several stages
in the bone marrow. This stepwise differentiation includes a common myeloid progen-
itor, unipotent stem cell, proerythroblast, erythroblast, polychromatophilic, orthochro-
matic, and reticulocytes. A reticulocyte is an immature red blood cell that is finally
released into the blood and becomes erythrocyte after a day. The average life span of
the erythrocyte is about 120 days.

The hormone growth factor erythropoietin (EPO) is mainly responsible for stim-
ulating early erythroid progenitor cells. The kidneys secrete EPO in response to low
oxygen levels in the blood. Such a process usually occurs within the red bone mar-
row. In some diseases, this process can occur by the spleen or liver and is called ex-
tramedullary erythropoiesis. The erythropoietin regulates the erythropoiesis through a
feedback loop; thus, the production and destruction of red blood cells are maintained in
healthy states. Hence, low erythrocytes number leads to an elevated level of EPO. This
growth hormone factor requires JAK2, a non-receptor tyrosine kinase for signal trans-
duction. JAK? is implicated in signaling by members of the type II cytokine receptor
family, e.g., interferon receptors, the single-chain receptors, e.g., EPO-R. It means that
the loss of function of the erythropoietin receptor or JAK2 may disrupt erythropoiesis
[70; 99].

Thrombopoiesis

The process of production of thrombocytes/platelets from a stem cell is called throm-
bopoiesis. It starts with the differentiation of common myeloid progenitor into the
high proliferative potential colony-forming unit megakaryocyte regulated by various
cytokines. The next differentiation series include a formation of burst forming unit,
megakaryocytic colony-forming units, megakaryoblasts, megakaryocytes, which then

shed into thousands of platelets. The expected life span of platelets is about seven days.



The glycoprotein hormone thrombopoietin (TPO) is mainly responsible for reg-
ulating megakaryopoiesis (the production of megakaryocytes) but, the formation of
platelets is known to be independent of TPO. This protein is a ligand for MPL (myelo-
proliferative leukemia). TPO is produced by the liver and is cleared by platelets. Thus,
the decreased platelet mass subsequently decreases the degradation of TPO; hence,
there is more TPO to stimulate thrombopoiesis. Therefore, it may conclude that plasma

TPO concentration is inversely proportional to the platelet [70; 99].

Granulopoiesis

The production of granulocytes is referred to as granulopoiesis. The first stage involves
the transformation of a common myeloid progenitor to a promyelocyte. This cell gives
rise to a unique myelocyte, which can be classified as an eosinophil, basophil, or neu-
trophil progenitor.

The glycoprotein, granulocyte colony-stimulating factor (G-CSF) is the key to driv-
ing granulocytic development. In addition, G-CSF stimulates the survival, differen-
tiation, and function of neutrophil precursors and mature neutrophils. The protein is
produced by endothelium and immune cells like macrophages [70; 99].

In table 1.1, the reference range for hematological parameters are given [99],

Table 1.1 Reference range for hematological parameters in healthy humans

Category Reference range [99]
Hematocrit 37% - 52%

Red blood cells 42-6.1 x102 /L
White blood cells 4.8-10.8 x10° /L
Platelets 150 - 400 x10° /L
EPO 6-16 IU/L

TPO 81.25 - 237.7 pg/ml

1.2 Pathogenesis of MPNs and its types

MPNs are a group of hematopoietic stem-cell disorders, including essential thrombo-
cythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF) [22; 45].
Since MPNs are a slowly developed disease, most patients remain alive with MPNs
for several years. Although there is a high risk of thrombosis [6] with cardiovascu-
lar complications and an increased risk to develop autoimmune and chronic inflamma-
tory diseases, including 40% increased risk of acute myelogenous leukemia [44; 64].
Clonal studies have been conducted in patients with ET where JAK2V617F, CALR (cal-
reticulin) and MPL (myeloproliferative leukaemia protein) mutations are identified as

clonal markers. JAK2 gene is responsible for producing blood cells. CALR gene plays



an important role in immune system function, and the MPL gene is involved in throm-
bopoietin signal transduction and megakaryocytic differentiation. The three classical
Philadelphia-negative myeloproliferative neoplasms are characterized by clonal expan-
sion of hematopoietic progenitors, independence from cytokines and overproduction of

mature erythroid and myeloid progeny.

Essential Thrombocythemia

ET is characterized by excessively produced megakaryocytes in the bone marrow re-
sulting in the excessed amount of platelets in the blood. This condition may cause
dizziness and headaches however, the worst is the increased risk of blood clots. The
mutation JAK2V617F is identified in 50% cases of ET [44; 64]. Recently, mutations
in CALR gene is found higher in patients with ET [69; 101]. Different clinical features
of ET are explored after CALR mutations during in vivo experiments. For example,
the mutant allele burden is lower in JAK2-mutated ET than in CALR-mutated ET, ET
patients with CALR display higher platelet count, lower leukocyte count, and longer sur-
vival as compared to JAK?2 patients. ET may transform to the advanced myelofibrosis
stage, associated with the allele burden in both ET types.

In addition, TPO related MPL mutations are found in 1-3% cases [14; 89] of ET.
Despite a high number of platelets, ET patients show significantly increased TPO serum
levels than normal subjects. The feedback loop between TPO and megakaryocyte/platelet
is affected, resulting in reduced consumption and subsequent increase of TPO serum
levels in ET [51; 69; 98]. However, many novel mechanisms relating to increased TPO
levels and abnormal platelet production in ET are yet to be revealed.

ET patients have an excellent chance of living an average life span with proper mon-
itoring and necessary treatment. However, for people older than 60, having a history of
thrombosis or platelet counts greater than 1500 x 10°/L are high-risk patients [12]. In
2008, the WHO (World Health Organization) classified the diagnostic criteria for ET
patients. According to WHO, a diagnosis must meet all four significant criteria or the

first three primary and minor criteria (See Table 1.2).



Major Criteria Minor Criteria

Platelet count > 450 x 109/L

Bone marrow biopsy specimen showing
proliferation mainly of the megakary-
ocytic lineage with increased number of
enlarged, mature megakaryocytes. No
significant increase of left-shift of neu-

trophil granulopoiesis or erythropoiesis

Not meeting WHO criteria for BCR-
ABL1+ CML, PV, PMEF, myelodysplastic

syndromes, or other myeloid neoplasms

Presence of JAK2V617F, CALR, or MPL

mutations
Presence of a clonal marker or absence of
evidence for reactive thrombocytosis
Table 1.2 Diagnostic criteria for ET according to WHO [10]
Polycythemia Vera

PV is characterized by the overabundance of red blood cells in the blood and elevated
hemoglobin levels and hematocrit. In PV, the bone marrow becomes hypercellular and
dominates by erythroid lineage; therefore, patients with PV are at a high risk of throm-
botic complications. A subgroup of patients also suffers from elevated white blood cells
and platelet count. The other PV characteristics include the presence of the JAK2V617F
found in 95% of patients and a low level of EPO serum in the blood. The level of
EPO serum helps in distinguishing between primary polycythemia and secondary poly-
cythemia. In patients with PV, increased erythrocytes result in suppression of EPO
levels. Although EPO therapy has been used in many diseases such as anemia, renal
failure, etc., it is not yet been initiated for treatment in PV.

In [116], median survival for PV patients is recorded as 18.9 years depending on
age and sex. Patients older than 60 years or having a previous thrombosis history are
taken at high risk. In rare cases, while progressing to PMF, polycythemia vera may lead
to other blood diseases, including acute myeloid leukemia (AML), if white blood cell

counts are greater than 11 x 10°/L. According to WHO, PV diagnosis is required to



meet all three significant criteria or the first two primary criteria and the minor criterion
(See Table 1.3).

Table 1.3 Diagnostic criteria for PV according to WHO [10]

Major Criteria Minor Criteria

Hb > 16.5g/dL in men, > 16.0g/dL in
women, or Hct > 49% in men, > 48% in
women, or increased red cell mass geater
than 25% above mean normal predicted
value

Bone marrow biopsy showing hypercellu-
larity for age with trilineage growth (pan-
myelosis), including prominent erythroid,
granulocytic, and megakaryocytic prolif-
eration

Presence of JAK2V617F mutation or
JAK?2 exon 12 mutation

Subnormal EPO serum level

Primary Myelofibrosis

Primary myelofibrosis (PMF) is a rare disease that occurs in approximately 1 in 500,000
people worldwide. PMF is characterized by bone marrow failure. The hematopoietic
compartment is replaced with collagen fibers, and the bone marrow is unable to provide
enough normal blood cells required by the human body. Approximately 90% of patients
with PMF carry JAK2, CALR or MPL mutations. These mutations are not directly linked
to PMF because the patients diagnosed with PMF have a history of ET or PV. Patients
with PMF have a high score of transformation to (AML).

PMF patients may not show any symptoms at the early stage, but later fibrosis leads
to a reduced amount of erythrocytes, leukocytes, and platelets. Due to bone marrow
failure, other organs such as the spleen or liver may begin to produce blood cells. Such
a process is called extramedullary hematopoiesis, leading to an enlarged spleen or an
enlarged liver. Primary myelofibrosis is often diagnosed in people aged 50 to 80 years.
According to WHO, diagnosis is required to meet all three significant criteria or at least

one minor criterion confirmed in two consecutive determinations (See Table 1.4).



Table 1.4 Diagnostic criteria for PMF according to WHO [10]

Major Criteria

Minor Criteria

Proliferation and atypia of megakary-
ocytes accompanied by either reticulin
and/or collagen fibrosis grades 2 or 3 on a
scale of 0 to 3

Not meeting WHO criteria for ET,
PV, BCR-ABL1+ CML, myelodysplastic

syndromes, or other myeloid neoplasm

Presence of JAK2, CALR or MPL muta-
tion or in the absence of these mutations,
presence of another clonal marker or ab-

sence of reactive myelofibrosis

Anemia not attributed to a comorbid con-

dition
Leukocytosis > 11 x 10%/L
Palpable splenomegaly

LDH increased to above upper normal

limit of institutional reference range

Leukoerythroblastosis

Inflammation, an instigator of MPNs

Inflammation is triggered by inflammatory cytokines secreted from immune cells. In-

flammation is a protective reaction in response to an injury, repairing damaged tissue

during wound healing. The acute inflammatory response is an instantaneous response

to injury. However, dysregulation of this process may result in chronic inflammation,

as exemplified by MPNs. Generally, patients’ chronic inflammatory state ends up in

the overproduction of inflammatory cytokines by both the neoplastic clones and im-

mune cells. Chronic inflammation is also a risk factor for developing atherosclerosis

and thrombosis in patients with chronic inflammatory diseases. Similar mechanisms

are operative in all types of MPNs destabilizing hematopoietic homeostasis [48]. The




JAK2V617F mutation leads to an alteration in the signaling of hematopoietic cells im-
portant in inflammation with evidence of elevated platelets and leukocytes, alteration
in inflammatory cytokine levels, and reactivity to these cytokines [53; 92; 93]. In the
association between inflammation and C-reactive protein (CRP), the elevated CRP level
is observed in patients with ET and PV [13].

In brief, MPNs are associated with a chronic inflammatory state denoted as the
“”human inflammation model” with “inflamed bone marrow,” ’inflamed stem cell niche,”
and “inflamed circulation” [45]. Inflammation is partly responsible for the pathogenesis

of MPNs. Therefore, it represents an important therapeutic target.

Treatment Strategies

Treatment for blood cancer depends on several factors. In clinics, the patient’s over-
all health and type of blood cancer are determined to initiate the therapies. Similarly,
the treatment of MPNs depends on the presence of symptoms. In general, the treat-
ment aims to correct the abnormal blood counts after recognizing the type of MPNs.
Chemotherapy is one of the standard forms of treatment for MPNs. It uses drugs to kill
malignant blood cells in the body. It may be taken in a pill form or may be administered
as IV (intravenous). In contrast to chemotherapy, radiation therapy uses high-energy
X-rays to kill malignant cells. It may also be used to prepare for a stem cell transplant.
A stem cell transplant is a procedure to replace the diseased bone marrow with healthy
bone marrow where a patient may receive stem cells from healthy donors. Besides,
several clinical experiences explore that stem cells are a proven candidate for therapies.
Many drugs like interferon-alpha (IFN) arrest the progression of the disease targeting
stem cells.

Specific treatments are applied depending on the type of MPNs. Phlebotomy is
a first-line therapy specifically for patients with PV. It is useful to remove excess red
blood cells from the body. For patients suffering from blood clotting, chemotherapy is
used instead of phlebotomy utilizing the drug hydroxyurea. It limits the bone marrow’s
ability to produce blood cells in the body. Low-dose aspirin is an alternative medicine
for PV patients unless contraindicated by significant bleeding [35; 109].

Moreover, platelet apheresis is often preferred for patients with ET, where platelets
are removed from the blood using a particular machine [17]. Immune therapy works by
using treatments that boost the immune system to recognize and attack malignant cells.
IFN is thought to be one of the treatments that can be taken as immune therapy and
reduce blood cell production. Furthermore, targeted therapies are used in the treatment
of some cases of MPNs. They can block or regress the production of malignant cells
by focusing on particular characteristics unique to MPN cells. One type of targeted
therapy that may be used to treat MPNss is ruxolitinib, a drug that targets, for instance,
the JAK2V617F and other associated mutations [88]. It is often observed that PMF



patients have anemia that can be treated with blood transfusions. In addition, there are
a variety of ways to treat anemia, for example, the hormone erythropoietin [52].

Finally, the concept of chronic inflammation as a severe driver of disease progres-
sion in MPNs opens the avenue for clinical trials. Since IFN is expected to normalize
the bone marrow and ruxolitinib activates the anti-inflammatory cytokines. Therefore,
combining IFN and ruxolitinib therapies within MPNs is among the foremost promising
new treatment strategies for patients with MPNs [16; 44; 45; 46; 47].

1.3 Short Review of Existing Mathe-
matical Models of Hematopoietic

System and Hematological Diseases

This section presents a review of the existing mathematical models regarding hematopoiesis
and hematology. Since the blood and bone marrow sampling is easily accessible, the
hematopoietic system and its diseases have been studied extensively, and different types

of mathematical models have been developed. Many strategies are elaborated to get the
appropriate answers to some problems, such as regulating red blood cells, the impact of
cycle disorders on various pathologies such as anemia or leukemia, or optimal therapeu-

tic strategies about blood diseases. In the following, we overview a few mathematical
models of the hematopoietic system and their applications.

Compartmental models are popular to describe the time evolution of the different
hematopoietic cell types. In this type of model, each cell type is identified with one com-
partment, and its dynamics are described by one ordinary differential equation (ODE).
In [73], a two-compartment model investigated quiescent and mitotic stem cells with
constant delay in aplastic anemia and periodic hematopoiesis. With a more compli-
cated version, this model has been studied in [4] and [94]. The model given in [73]
has been extended to account for the dynamics of stem cells, erythrocytes, platelets
and leukocytes in [26; 95]. The extended model has been used to investigate oscilla-
tion for parameter ranges observed in periodic chronic myeloid leukemia, cyclical neu-
tropenia and thrombocytopenia. Also, there are few mathematical models describing
erythropoiesis, thrombopoiesis, or granulopoiesis independently. Many authors have
formulated mathematical models describing the regulation and formation of red blood
cells and their related regulated mechanisms, specifically EPO. Some of these models
are based on hematological diseases [9; 11; 15; 27; 39; 87], and the others investi-
gate the mechanisms in healthy human beings such as blood donation, erythropoiesis

stimulating agents, etc. [38; 118]. In [67], a mathematical model of thrombopoiesis



is presented to understand the origin of cyclic thrombocytopenia, whereas in [107],
an age-structured model with both normal and pathological platelet production is de-
veloped. Both models involve the hormone growth factor, TPO, for the regulation of
platelets.

Furthermore, compartment models have been used as a tool to study the dynamics
of cancer cell populations. In [81], an ODE model described the dynamics of chronic
myeloid leukemia. The model from [81] is extended in [68] including the differentia-
tion of progenitor cells into stem cells and in [61] describing T-cell dynamics to study
the impact of immune response on CML treatment using delay differential equations.
Mathematical models have been proposed describing the control networks for regu-
lating the stem cell lineage [58; 59; 127]. The mathematical model presented in [66]
shows that therapy targeting stem cell pool may eliminate tumor stem cells. In [110],
a mathematical model of cancer stem cell dynamics is proposed, and the different sce-
narios of cancer initiation and possible treatment strategies have been discussed. The
mathematical model given in [112] is useful for investigating the impact of cytokine de-
pendence and independence of acute myeloid leukemic cells supported by patient data.
A few modeling studies of myeloid malignancies were investigated in [43; 129] with

MPNss as a particular example.

Cancitis Model

The Cancitis model is given special attention in this review since it becomes the founda-
tion of this thesis. It was proposed in [7] (See Appendix A for details), where Andersen
et al. aimed at building a mathematical model incorporating chronic inflammation as
the trigger and driver of MPNs. The model consisted of a system of nonlinear ordinary
differential equations describing the proliferation from stem cells to mature cells and
healthy stem cells’ mutations to become malignant stem cells. The model coupled the
cell dynamics with an inflammatory response by introducing inflammatory feedback
into the system. The model was used to describe interactions between macrophages,
inflammatory and anti-inflammatory cytokines. The authors hypothesized that chronic
inflammation is not triggered when the immune system is functioning properly. Hence,
the model supported the concept of the “human inflammation model” [45] for MPNs
development. Furthermore, the reduced Cancitis model consisting of two-dimensional
equations was discussed in [86] (See Appendix B for details), including the effect of T-
cells explicitly. The authors introduced a reproduction ratio of stem cells and concluded
that the body might manage the initial stage of blood cancer when the self-renewal rate
of malignant cells is not high. However, it fails to handle it if inflammation occurs.
Subsequently, a detailed mathematical analysis of the Cancitis model [7] is per-

formed in [102], where Sajid et al. explore the interesting results showing the intricate
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coupling between inflammation and MPNs. The classification of steady states is ex-
plicitly done in terms of inflammatory stimuli. Sajid et al. introduced a reproduction
ratio similar in [86] and, besides, a ratio of inhibition of the hematopoietic relative to
malignant stem cells is found. Moreover, it is demonstrated that by increasing inflam-
matory stimuli, a healthy state is transformed into a malignant state and reduces disease
load for a co-existing steady state. The model provides an overview of the possible dy-
namics that may inform clinical practice, such as using inflammatory inhibitors during
treatment.

Another reduction of the Cancitis model is presented in [8], where a two-dimensional
model represents the JAK2V617F allele burden and white blood cell count as variables.
The model suggests the treatment initiation at the early phase of the disease. The ratio of
self-renewal of the hematopoietic and malignant stem cells is indicated as an important
diagnostic marker. A further reduction to a one-dimensional model depends upon the
allele burden suggested that exogenous inflammation develops blood cancer when ma-
lignant stem cells regenerate more than hematopoietic stem cells. Apart from a system
of non-linear ODEs, the authors of [7] presented a data-driven analysis for the allele
burden dynamics and argued early intervention strategy with interferon-« treatment.
The empirical modeling approach to describe the behavior of the data was considered
[90] (See Appendix C for details).

1.4 Overview of Thesis

The questions that form the basis of this thesis result from combining information from
many publications. Besides Chapter |1 and Chapter 5 each of the chapters constitutes a
stand-alone scientific contribution. In this section, we present a brief summary of our
results. Note, to avoid unnecessary repetition, the description of parameters is not given
in this section. We refer the reader to see the definition of parameters in their related
chapters. In each mathematical model, HSC denotes the hematopoietic stem cells and
MSC denotes the malignant stem cells.

Chapter 1 contains introductory and concluding remarks.

Chapter 2 consists of the published research [102]. In Chapter 2, we analyse Canci-
tis model [7] mathematically and numerically. MPNs are commonly known as inflam-
matory diseases, and it is believed that chronic inflammation triggers MPNs progres-
sion. Also, a number of evidences indicate that hematopoietic stem cell is the MPN-
initiating cell and MPN is found to derive by the outgrowth of a single stem cell. Based

on these perceptions, the first two research question addressed in Chapter 2 are,
e When is it suitable to give anti-inflammatory agents in clinical practice?

e What are the key features of the stem cells, contributed in the progression of
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MPNs?

The Cancitis model includes one lineage of healthy cells and one lineage of malig-
nant cells. We retain the possibility that a stem cell may self renew, die, or differentiate
into a mature cell. A mature cell does not differentiate but dies. Moreover, the debris
of dead cells is common for both lineages, and the model is coupled with the inflam-
matory system. The model incorporates a possible mode of interaction between healthy
and malignant cells such as niche feedback inhibiting factors. Thus, the Cancitis model
consists of six ordinary non-linear differential equations, the number of HSC (z), the
number of MSC (), the number of healthy mature cells (HMC-z), the number of ma-
lignant mature cells (MMC-y,), the debris of dead cells (a) and the immune response
i.e. the inflammatory level (s).

We conduct a mathematical investigation of the Cancitis model and establish the
criteria for existence of physiological steady states. These steady states include a trivial
steady state, a healthy steady state without malignancy, a full-blown diseased steady
state and a co-existence steady state where both healthy and malignant cells exist. We
explore the coupling between MPN progression and increased inflammation. Further-
more, a stability analysis enables us to have a range of parameters for which the treat-
ment becomes successful and hematopoietic state becomes stable. The model has been
investigated for various choices of parameter values. In figure 1.4.1 (Figure 2 in [102]),
clusters of five important parameters are considered to investigate the number of steady
states and their stability, C = ;Lz, R = E}L’—j = 3—2 and [ where,

dyo + ag dyo + a
=20 and a,= LY

Ty Ty

. (1.4.1)
We may interpret that R denotes the fitness of stem cells. R represents if malignant
stem cells have better fitness than hematopoietic stem cells, the situation becomes
worse. C interprets the inhibition of hematopoietic relative to malignant cells. Gen-
erally, in blood cancer, c,, < c,, is assumed since malignant cells are insensitive to
environmental effects. The parameter [ represents the external inflammatory effects
and is assumed to depend on external factors such as smoking.

In Fig. 1.4.1, we can observe that for R > 1, the hematopoietic and co-existing
steady states are either unstable or do not exist (See Fig. 1.4.1a-1.4.1b). However,
for R < 1, several possibilities of obtaining the unique stable hematopoietic or co-
existing steady states emerge in a specific parameter regime. The bi-stability of the
hematopoietic and malignant steady states is also illustrated for a range of parameter
values. Moreover, Fig. 1.4.1a and Fig. 1.4.1b illustrate that for R > 1, reducing in-
flammatory stimuli may worsen the situation since it vanishes the hematopoietic steady
state. In contrast, when hematopoietic stem cells have better fitness than malignant

stem cells, i.e., R < 1, increasing inflammation does not have adverse effects (See Fig.
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Fig. 1.4.1 Admissibility and stability of the steady states depending on the parameters
I and C for different values of R. Crossing a solid curve implies a change in which
type of stable steady state exists i.e. trivial, malignant, hematopoietic or coexistence.
Crossing a dotted curves implies the same steady state is stable in both regions but the
number of steady states is changed. The stable steady states are written as subscript of
E and unstable steady states are written as superscript of .

The Cancitis model generally focused on the progression of MPNs and not on any
specific type of MPNs. Motivated by the Cancitis model, we now narrow our research
towards types of MPNs. Chapter 3 and Chapter 4 consist of [103] and [104] (submitted

for publication). In these chapters, we address PV and important factors involved in
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the progression of PV. In Chapter 3, a system dynamic approach is used to simulate the
model outcome and dynamics, whereas in Chapter 4 a complete mathematical inves-
tigation is covered. These two different styles of chapters presenting the same model
help facilitate a wide range of readers. Following, we briefly describe the results of both
chapters.

As mentioned above, in detail, PV is characterized by the excessive production of
red blood cells, and EPO is primarily responsible for erythropoiesis. The other char-
acteristics of PV is a high load of the JAK2V617F allele burden [44; 45; 64] and low
EPO plasma levels [23]. Moreover, thrombosis is the most prevalent complication for
patients with PV [41] and the development of second cancer is the high risk factor. Sev-
eral authors hypothesize that origin of MPN, including all its types, is the hematopoietic
stem cells. Also, we have explored the importance of stem cell parameters in Chapter
2. The development of stem cell therapies for myeloid malignancies like PV and ET is
getting attention in recent years [57; 61; 72; 83; 91; 106; 123]. Furthermore, in clinical
trials, EPO is the popular erythropoiesis-stimulating agent used in several hematologi-
cal diseases such as anemia, PMF, etc. However, EPO therapy is not yet been initiated
in PV. In our mathematical model, it is possible to evaluate the influence of both EPO
and stem cell dynamics on the progression and regression of the disease. Thus, we post
a set of questions in [103] and [104],

e How do stem cells control erythropoiesis in the development of PV?
e Which parameters are crucial for the abnormal growth of erythrocytes in PV?
e Which mechanisms are mainly responsible for the development of disease?

e How does EPO associate with the JAK2V617F allele burden?

Concerning PV, we formulate a novel mathematical PV model. Based on the con-
cept of the Cancitis model, we consider one lineage of healthy cells and one lineage of
malignant cells. We specify that the stem cells may self renew and die but differentiate
only into the erythroid lineage. A mature red blood cell does not differentiate but dies.
Moreover, we include multiple EPO feedback on healthy and malignant cells. We con-
sider that EPO inhibits the death rate and stimulates the differentiation rate of mature
cells. In addition, EPO production is taken as a Hill function of mature cells. Thus,
the PV model consists of five ordinary non-linear differential equations, the number of
HSC (), the number of erythrocytes (RBC-z,.), the number of MSC (y), the number
of malignant erythrocytes (MMC-y,.) and the concentration of EPO (F).

A thorough analytical and numerical investigation has been done for PV model.
The number of parameters is reduced from 23 to 15 due to dimensional analysis, and
the sensitivity analysis is performed to explore the relationship between the input pa-
rameters and the PV dynamics outcome. In addition, the trapping region 7Tz of the

resulting dimensionless PV model is constructed for non-negative initial conditions.
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The interesting feature of the model is that the stem cell dynamics can be indepen-
dently analyzed as a two-dimensional system. The possible steady states of the stem
cell submodel depend on four parameters. The parameter p,; describes the inhibition
of Yy on X (hematopoietic stem cell count), p,; describes the inhibition of X on Y
(malignant stem cell count), whereas p,» and p,» are the degradation rates of X, and Yj
respectively. Following proposition 1.4.1 (Proposition 1 in [104]) describes the possible
steady states of the two-dimensional stem cell submodel.

Proposition 1.4.1. Conditions allowing existence and stability of feasible steady states

of two-dimensional stem cell submodel are,

1. A trivial stem cell steady state, Dy, always exists and is stable for p,o > 1 and
Dy2 > 1.

2. A feasible hematopoietic stem cell steady state, Dy, exists and is unique if and

only if p,o < 1 with Xog = zﬁ — 1. Dy is stable for p,; > ~~! and unstable for
pyl < 7_1'

3. A feasible malignant stem cell steady state, Dy, exists and is unique if and only

if pyo < 1 with Yor = pL — 1. Dy, is stable for p,; > = and unstable for p,; < 7.

4. A feasible co-existing stem cell steady state, D¢, exists and is unique if p,o < 1
and py» < 1 and either (a) or (b) is fulfilled, where

(@) p;1 <7vandp, < ~~L. In this case D is stable.

(b) pz1 > v and py,; > ~~L. In this case D¢ is an unstable (saddle).

De is only feasible, when Dy and D exist. The coordinates of D¢ are Xoo =
St and Yoo = ol
Proof. See Chapter 4 for details.
[
Interestingly, the dynamics of the PV model and the stem cell submodel are uniform.
(See corollary 1.4.1) (Corollary 1 in [104]).
Corollary 1.4.1. The existence of the steady states of the PV model is guaranteed by

the stem cell PV submodel given in proposition (1.4.1), i.e.,
e A trivial steady state Sy = (0,0,0,0,10%) always exists.

e A feasible hematopoietic steady state Sy = ()_(OH, 0, X, 1.0, EqH) exists if and
only if a feasible Dy exists in the stem cell PV submodel.

e A feasible malignant steady state Sy, = (0, Yyr,,0,Y, 1, EqL) exists if and only if

is a feasible Dy exists in the stem cell PV submodel.

e A feasible co-existing steady state Sc = (Xoc, Yoo, Xrc, Yro, Eqc) exists if and
only if a feasible D¢ exists in the stem cell PV submodel.
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The quasi steady state approximation for EPO concentration allows reduction of the
five-dimensional PV model into a four-dimensional system (the reduced PV model)
where both models have identical steady states.

Using the reduced PV model, we have performed a few in silico experiments by
perturbing parameters involved in stem cells, mature cells, and EPO for the prognosis of
a virtual subject. In Fig. 1.4.2 (Fig.7 in [104]), we perturb stem cells inhibiting factors
pr1 and p,; for treatment. To obtain a co-existing steady state, we choose p,; = 1.3,
P2 = 0.25 py1 = 0.1 and py» = 0.4 while all other parameters are fixed at their default
values (See details in Chapter 4).

In Figures 1.4.2a-1.4.2b the solution to the reduced PV model is projected on the
(Xo,Yp) plane. In Figure 1.4.2a by simulating a drug increasing p,; and decreasing
P21, @ co-existing steady state with high malignant cell count (X, Yy) = (1.21,1.38)
switches to a co-existing steady state with low malignant cell counts (X, Y;) = (2.95,0.47).
It takes approximately two years for this simulated treatment to reduce the disease load.
Thereafter, treatment is set on pause by resetting p,; and p,; at their previous val-
ues. During almost half a year, the trajectory moves significantly back towards the
co-existing steady state with high malignant cell counts (see Figure 1.4.2b).

Thus, perturbing inhibiting factors normalizes the HSC and RBC count (See Fig-
ure 1.4.2c, Figure 1.4.2d). In order to reduce the risk of blood clots, the RBC count
is recommended to be in a normal range. Furthermore, Figure 1.4.2e shows that the
concentration of EPO is increased, whereas Figure 1.4.2f illustrates that adjusting in-
hibiting factors reduces the JAK2V617F allele burden from 53% to 16%, which is an
excellent prognosis. In conclusion, it may suggest that future PV therapy should fo-
cus on targeted, personalized treatment addressing specific alterations within the bone
marrow niche.

In the model, we implement the idea of EPO therapy. We increase the parameters
(the factor affecting the production of EPO) and observe that the EPO concentration
and the number of mature cells are decreased. In the second case, when EPO dose is
given. It increases the mature cell count while the JAK2V617F allele burden remains
unchanged. Using EPO as a prognostic tool may reduce the risk of thrombosis in PV
patients, for the short time, it may not reduce the disease load, which eventually can
trigger the chances of relapse. Validation of the proposed model is attained by compar-
ing the model simulations to clinical data, which contains the number of erythrocytes
and measurement of the JAK2V617F allele burden. However, we do not have available
EPO data of PV patients.
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Fig. 1.4.2 An example of the disease dynamics from the reduced PV model is shown. The filled grey
circle in panel (a) is obtained using py1 = 1.3, pz2 = 0.25 py1 = 0.1 and pyo = 0.4. Decreasing py1
and increasing p, in panel (a) shows that a patient is moved from a co-existing steady state (upper grey
circle) with high malignant cell count towards a co-existing steady state (lower black circle) with low
malignant cell count and normalized hematopoietic cell count at p,; = 0.1, pz2 = 0.25 p,; = 0.35
and pyo> = 0.4. In panel (b), setting back p,; and p,;, the patient moves back toward the original co-
existing steady state (upper black circle) following the stipulated black curve. Panels (c), (d), (e) and (f)
demonstrate the dynamics during treatment period (grey) and dynamics after treatment. Red, blue, green
and cyan curves show malignant cells, hematopoietic cells, the concentration of EPO, and theJAK2V617F
allele burden respectively. Note, the time scale is converted into real time.

The encouraging results obtained by the PV model further motivate us to discover

the mechanism in patients with ET. As mentioned, ET is characterized by the exces-

sive production of platelets. The precursor of platelets are megakaryocytes, and each
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megakaryocyte sheds into thousand of platelets. The production of megakaryocytes is
called megakaryopoiesis, and TPO is principally responsible for this process. Since all
types of MPNs share common features, ET is also thought to be triggered by a stem
cell disorder like PV. Thus, it will be captivating to investigate the role of stem cell

dynamics and TPO in the ET model. Chapter 5 discusses a set of questions as follows,
e What is the role of stem cell dynamics in the development of ET?
e Which parameters are crucial for the progression, relapse and cure of the disease?

e By which mechanism does TPO concentration affect the pathogenesis of ET?

Concerning ET, we formulate a novel mathematical ET model. Based on the con-
cept of the previous two models, we consider one lineage of healthy cells and one
lineage of malignant cells. However, this model does not consist of symmetrical prop-
erties for both cell lineages like the Cancitis model and PV model. We specify that stem
cells may self renew and die but differentiate only into the megakaryocytic lineage. A
megakaryocyte may die or shed into platelets. Moreover, we include multiple TPO
feedback on healthy and malignant cells. We consider that TPO inhibits the death rate
of healthy megakaryocytes and malignant platelets. Furthermore, TPO stimulates the
differentiation rate of megakaryocytes and the self-renewal rate of stem cells in both lin-
eages. TPO is either eliminated naturally or degraded by platelets. Thus, the ET model
consists of seven ordinary non-linear ODEs, the number of HSC (z(), the number of
megakaryocytes (MEG-z,,), the number of platelets (z,) the number of MSC (yy), the
number of malignant megakaryocytes (MMEG-v,,,), the number of malignant platelets
(MPLT-y,,) and the concentration of TPO (7).

We perform an analytical investigation of steady states and their stability wherever is
possible. However, a numerical investigation has been given much attention to describe
behavior of the system. We characterize the steady states and their stability. A set of bi-
furcation diagrams capture the interesting dynamics of the model. Various approaches
to numerical investigation reveal that stem cell parameters describe the possible topolo-
gies. For instance, Fig. 5.3.3 illustrates different types of stable and unstable steady

states when the death rates of stem cells d,( and d, are varied.
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Fig. 1.4.3 The stability of the steady states, i.e. trivial, malignant, hematopoietic or coexistence, de-
pending on the parameters d,o and dyo. The stable steady states are written as a subscript of D and
unstable steady states are written as a superscript of D.

The derived results by sensitivity analysis further support the importance of stem
cell parameters. We found that the self-renewal and death rates of the stem cells influ-
ence all the included variables. However, we may not ignore the significance of niche
inhibiting factors of the stem cells. We may obtain a stable or unstable co-existing
steady state by perturbing niche inhibiting parameters. The excellent fits of clinical
data during treatment are obtained by perturbing d,, and d,. For the available data be-
fore and during treatment, we identify a set of parameters for pre-treatment data-fit and
perturb d,o and d,o while fitting data of treatment period for the same subject. Apart
from data fitting, we conduct an in silico analysis of TPO in patients with ET. Our model
indicates that reducing TPO concentration may reduce the blood counts in bone mar-
row and bloodstream, but it might not reduce the disease load. In general, ET does not
shorten the life expectancy of a patient. However, patients having a history of throm-
bosis are considered to be at intermediate risk. TPO serum levels may be administered,
preventing the risk of thrombosis. The TPO mechanisms in the pathogenesis of ET are
yet to be revealed. In short, we need more clinical data containing TPO measurements
for ET patients to validate our results.

In previous chapters, we have performed a series of investigations for myeloid ma-
lignancies. The contributions further motivate us to extend our mathematical model and
study the combined dynamics of erythrocytes and platelets. However, in the first step,
we do not include malignant cells because the mathematical model setting requires cal-
ibration and validation for healthy individuals. Thus, a few set of interesting questions

arise for investigation,

e Which subsets of parameters are important for the independent mechanisms of
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erythropoiesis and thrombopoiesis?
e How do EPO and TPO affect different cell populations?
e Which parameters are sensitive for the model outcome?

e How does the study contribute to understand the clinically observed dynamics?

In Chapter 6, we propose a framework for a novel mathematical model [105] de-
scribing a coupled mechanism of erythropoiesis and thrombopoiesis to address the
questions mentioned above. The seven-dimensional mathematical model consists of
non-linear ODEs. The three ODEs describe the dynamics of HSC (z(), megakaryocyte-
erythroid progenitor (MEP-z.) and megakaryocytes (MEG-z,,,) in the bone marrow,
whereas four ODEs are considered for the erythrocytes (RBC-z,), platelets (PLT-z,),
EPO (F£) and TPO (T'). Furthermore, we incorporate multiple feedback regulated by
EPO and TPO for the production of cell populations.

We assume that HSC differentiates into MEP cells where MEP cells have potential
to give rise to both erythroid and megakaryocytic cells and megakaryocytes shed into
platelets [32]. Reviewing literature discloses various physiological processes relating
EPO and TPO with different types of cells from where we capture a few necessary
mechanisms. For instance, TPO stimulates HSC by affecting the self-renewal of HSC,
EPO stimulates RBC differentiation and inhibits their death rate. Moreover, TPO stim-
ulates RBC and PLT count and PLT stimulates the degradation of TPO while TPO
inhibits the death rate of MEG and EPO inhibits megakaryopoiesis.

Interestingly, erythropoiesis and thrombopoiesis subsystems can be independently
analyzed apart from the full model. These subsystems are useful for estimating impor-
tant subsets of the full model parameters involved in the various clinical experiments.
In addition, the subsystems are prioritized in clinical trials where the physicians are in-
terested in observing hematological parameters specific to erythroid or megakaryocyte
lineage. However, the drawback of subsystems is that they are unable to represent
the coupled mechanisms between erythropoiesis and thrombopoiesis. The simplified
structures of subsystems allow us to perform mathematical investigations and find their
steady states. These subsystems have a unique positive steady state and stability condi-
tions of these steady states are stated.

A sensitivity analysis shown in Fig. 1.4.4 (Fig. S6 in [105]) identifies the sensitive
parameters for variables involved in the model. We choose a 10% variation in the
parameter values to observe the changes in cell count and concentration of EPO and
TPO. Fig. 1.4.4a shows -10% variation, whereas Fig. 1.4.4b shows +10% variation in

parameter values.

1. HSC parameters: The self-renewal rate r,, death rate d,, and inhibiting factor
¢z involved in HSC do not affect erythrocytes and EPO. However, increasing
r, increases the other cell population (HSC, MEP, MEG) and decreases the TPO
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levels or vice versa. In contrast to r,, increasing d,q and c,, reduces the HSC,
MEP, MEG and PLT count while increases the TPO level. Notice, HSC, MEP,
MEG and PLT count is equivalently increased or decreased.

. MEP parameters: The differentiate rate a,, amplification factor A,, a fraction
of MEP b, and death rate of MEP d,.. are involved in MEP dynamics. Decreasing
A, and b, shows a little increase in HSC and MEP count however, MEG and PLT
count is reduced by 10%, whereas the TPO levels are increased or vice versa. The
change in EPO level and RBC count is not noticeable compared to b, when A, is

decreased. d,. is the least sensitive parameter involved in the MEP equation.

. Subsystem 1 (Erythropoiesis): The production of RBC is affected by ¢,,; and
0.2 and the death rate of RBC is affected by 7,1 and 7,,2. Moreover, EPO
production involves pgr and ky whereas, the degradation of EPO is denoted by
kg. The influence of parameters on HSC and MEP involved in subsystem 1 is
not notable. Decreasing ¢,,; and 7,,o decreases the RBC and PLT count while
EPO and TPO levels are increased or vice versa. Similarly, reducing 6,0 and 7,1
increases the RBC and PLT count and decreasing the EPO and TPO levels or vice
versa. Reducing pg and increasing k( and kg, increases the MEG and PLT count,

and reduces the RBC count, EPO and TPO levels or vice versa.

. Subsystem 2 (Thrombopoiesis): The production of MEG involves d,,,; and
0-m2 and the death rate of MEG is affected by 7),,,,1 and 7),,,,2. PLT are produced
with the rate b,,a,, and d,, is the death rate of PLT. The production of TPO is
represented by pr, whereas k1 and k7o show the degradation of TPO. Decreas-
ing (increasing) 0,1, a4, and k7o increases (decreases) the HSC and MEP count,
whereas decreasing (increasing) 0,2, d,, and pr decreases (increases) the HSC
and MEP count. Decreasing 0,,,; and 7),,,2, and increasing ¢,,,2 and 7),,,; de-
creases EPO levels and the number of MEG and PLT, while increases the RBC
count and TPO concentration or vice versa. Moreover, reducing b, and a,,,, and
increasing d,, increases the number of MEG and RBC and TPO levels while the
PLT count and EPO levels are reduced. Furthermore, decreasing pr and increas-
ing k7 and k7o decreases the TPO levels and the number of MEG, PLT and RBC,

whereas increasing the EPO concentration.

For accurate results, we calculate the numerical values of variables involved in the

model after perturbing the parameter values by +10% and conclude that the parameters

involved in HSC dynamics are the most sensitive for HSC and MEP count. Notice,

HSC and MEP are increased and decreased simultaneously with equal percentage. The

parameters A, and b,, vary MEG count by 8% and we may say that they are inversely

related to each other, i.e., if A, increases the number, b,, decreases the MEG count.
Analyzing the PLT count, the parameters A, and d, differ PLT count by 8% and 6%
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respectively. Considering RBC count and EPO, we notice that pg, kg and ky perturb
the variables by 5%. Note, kr and kj have the same effect, i.e., either decreases or
increases the number of RBC and EPO levels, whereas pgz has an opposite effect com-
pared to kg and k. Finally, TPO concentration is sensitive to A, and pr and we observe
a 6% variation in TPO levels when these parameters are changed. However, A, and pr
have inverse effects on TPO levels. If one induces the increase, the other decreases the
levels.

(a)

(b)

Fig. 1.4.4 Panels (a) and (b) show the effect when parameters are decreased and in-
creased by 10% respectively. For each parameter, seven columns are shown; blue, red,
mustard, purple, green, light blue and maroon correspond to the average of g, x., T,
Zp, Tr, I2 and T'. Parameters in red represent the subsystem 1 and parameters in blue
represent the subsystem 2.

Furthermore, we calibrate the model by fitting to various experimental data set. The
appropriate fitting of data is an appealing feature of the model. The model and its sub-
systems stipulate excellent results which adequately describe many critical situations
such as recovery of the blood cells after phlebotomy, body’s reaction to different ad-
ministration regimens of EPO and TPO. For the default values of parameters, we are
able to fit a few data sets for of phlebotomy. Furthermore, the subsystems are in ex-
cellent agreement with the data. These subsystems help us estimate parameters of the
full model in many situations where coupling between the two subsystems is of no in-
terest. For instance, the parameters 7,,1, pg and kg are estimated in subsystem 1, used
for data fitting in the full model in case where EPO dose stimulates the RBC count.
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Similarly, in another scenario, where TPO dose stimulates the platelet count, we use the
same parameters values from subsystem 2 for data fitting in the full model. However,
a drawback of these nested models is their inability to explain the coupled mechanisms
of full model. For example, in [50], the authors were interested in investigating PLT
count when EPO injection is given. In such situations, our full model may interpret the
outcomes of clinical trials.

Besides data fitting, we conduct several other in silico experiments for a virtual
subject. For example, the transfusion of red blood cells and platelets. These procedures
are primarily preferred for hematological diseases because such in vivo experiments are
critical for healthy individuals. Our model indicates that HSC remains unaffected after
blood transfusion and apheresis. During these treatments, the mechanism affecting HSC
are not yet well understood. Therefore, we might not interpret this effect accurately in
a physiological sense. In our model, we are able to investigate the synergy between
EPO and TPO and simulate the combined effect of EPO and TPO dose. The analysis
shows that HSC, MEP and RBC count are increased, whereas the MEG and PLT count
is first decreased, and then after a few days, the number of MEG and PLT is increased.
However, when the TPO dose is given alone, we have not seen this sudden drop in
MEG and PLT count. According to our perception, this sudden drop can be eliminated
by decreasing inhibiting effect of EPO on MEG.

In summary, the presented model has the novel feature of simulating and replicating
the coupled dynamics of erythropoiesis and thrombopoiesis. The adaptations necessary
to combine them are discussed in detail. We demonstrate how the proposed model
and its subsystems can develop clinically meaningful predictions regarding EPO and
TPO applications. The overall analysis strengthens the argument that our model is a
valid candidate in clinical settings for various experiments. As a future perspective, the
model can be extended for multiple hematological diseases where we may include the

different pathological aspects for the novel intervention strategies.

1.5 Concluding Remarks and Future

Perspectives

In this thesis, a series of mathematical models describing the physiology and pathol-
ogy of cells have been discussed with various feedback loops. We briefly explain the
similarities and differences between the models. In each proposed model, a mechanism-
based approach is employed however, only the essential mechanisms are captured. The
models consist of one HSC compartment with a common structure in all models, i.e.,
HSC may self-renew, die or differentiate into the progenitor cells. The niche feedback

inhibits HSC self-renewal and is implemented as Michaelis-Menten like expression.

23



HSC differentiates into the mature blood cells, which are distinct in the models. For
instance, in Chapter 2 (Cancitis model), the mature blood cell type is not distinguished.
In Chapter 3 and Chapter 4 (PV model), red blood cells are specific. In Chapter S5(ET
model), platelets are considered, and in the last Chapter 6, combined dynamics of red
blood cells and platelets are introduced.

The Cancitis model, PV model and ET model, except the model proposed in Chap-
ter 6, contain malignant cell lineage where malignant stem cells have a similar structure
to HSC. Another common feature is considering the progenitor cells as intermediate
steps between stem cells and mature blood cells. Unlike the ET model, the Cancitis
model and PV model have a symmetrical structure of healthy and malignant cells. The
Cancitis model entails the debris of the dead cells and immune system influenced by
inflammatory stimuli. These mechanisms are not considered in the remaining mod-
els since the remaining models focus on the inclusion of principal growth factors for
mature blood cells. The Cancitis model, PV model and ET model revolve around the
importance of stem cell dynamics. The models reveal that HSCs contribute to the initi-
ation and pathogenesis of MPNs. Therefore an efficacious treatment should act on stem
cell level. In addition, EPO and TPO therapies may refer as preventive therapies for
thrombosis. However, they cannot reduce the disease load and reverse a malignant state
to a healthy state. Its possible explanation may be the inappropriate interpretation of
JAK? allele burden. However, we need clinical data to advocate our results and draw
any conclusion. Above all, each model can regenerate clinically observed dynamics
and suggest novel intervention strategies. Finally, in Chapter 6, we integrate the healthy
hematopoiesis part of the PV and ET model. Based on existing clinical information, we
decide which mechanisms are essential to include. We calibrate the model by compar-
ing different simulation settings to existing experimental results from the literature.

A motivating application of the proposed model in Chapter 6 is to observe the evo-
lution from ET to PV. However, a shortage of time does not enable us to complete the
ongoing work in this thesis. TPO related MPL mutations are found in 1-3% cases of
ET [14; 89] and increased TPO serum levels are observed in many patients with ET
[51; 69; 98]. However, many novel mechanisms relating to high TPO levels and ab-
normal platelet production in ET are still hidden and waiting for uncovering. Similarly,
EPO serum levels help in distinguishing between primary polycythemia (PV) and sec-
ondary polycythemia. In patients with PV, increased erythrocytes result in suppression
of EPO levels. Although EPO therapy has been used in many diseases, it is not yet been
initiated for treatment in PV.

In clinical practice, the treatment of MPNs aims to correct the abnormal blood
counts, and in some cases, specific treatments are applied depending on the type of
MPNs. Phlebotomy is also considered as first-line therapy for PV to remove excess red

blood cells from the body. In [2] relations between hematocrit and EPO is investigated
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in normal adults and PV patients. The EPO concentration is increased each time after
phlebotomy is performed [3; 130]. Moreover, platelet apheresis is often preferred for
patients with ET, where platelets are removed from the blood [17]. PMF patients having
anemia can be treated with blood transfusions. In addition, there are a variety of ways
to treat anemia, for example, the EPO therapy [52].

Based on estimates of parameters for a typical healthy individual, the proposed
model, in Chapter 6, is used to explore the changes in some of these parameters neces-
sary to account for the dynamics of hematological diseases as done by several authors
[26; 39; 67; 73; 95]. The model may also be extended from the healthy subjects to
patients of MPNs by coupling the model to malignant cells using a similar approach by
[7; 110]. It may help physicians initiate therapy and observe patient’s hematological pa-
rameters during treatment. However, a few particular challenges need to be addressed.
For example, valid data of MPNs patients is required, including those who develop PV
from ET over time. The underlying pathological dynamics have to be modeled, such as
the feedback mechanisms of EPO and TPO in disease progression.

Many mathematical models are developed with the specific purpose of knowledge
discovery of biological systems. Alternatively, models can be used to test hypotheses,
estimate important parameters by fitting a model to data, or determine which variables
or interactions are the most essential to a biological process. Using mathematical meth-
ods, we can interpret and uncover many mechanisms. For instance, bifurcation analysis
and sensitivity analysis are two different methods used to describe how small changes in
an input parameter can cause a qualitative change in the system’s behavior. We can also
isolate parts of the mathematical system based on fast-slow dynamics (quasi steady state
assumption) and observe an impact on the qualitative behavior of the system. Given val-
ues for which such changes occur are expected to be within a realistic range, this can
indicate the reasons for heterogeneity in patients. If the model structure and behavior
reflect the biological system and produce reliable results, it is intended to improve the
model in collaboration with professionals in the field. Mathematical models also have
the advantage that a range of in silico experiments can be performed, which are not
possible or quite expensive in medical practice, even with animal experimentation.

Apart from advantages, we can not ignore the limitations and challenges of research
in this field. The major problem is achieving enough data that has measurements over
time. Determining the parameters on limited data results in uncertain parameter-values.
In order to retain simplicity, the modelers prefer to model the biological mechanisms
by considering the minimum range of important processes, which results in leaving out
many mechanisms. However, the modelers should aim not to produce blue-sky research

but be directed towards a definite goal.
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CHAPTER 2

Mathematical analysis of the Cancitis
model and the role of inflammation in

blood cancer progression
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Abstract: Recently, a tight coupling has been observed between inflammation and blood cancer such
as the Myeloproliferative Neoplasms (MPNs). A mechanism based six-dimensional model - the Canci-
tis model - describing the progression of blood cancer coupled to the inflammatory system is analyzed.
An analytical investigation provides criteria for the existence of physiological steady states, trivial,
hematopoietic, malignant and co-existing steady states. The classification of steady states is explicitly
done in terms of the inflammatory stimuli. Several parameters are crucial in determining the attract-
ing steady state(s). In particular, increasing inflammatory stimuli may transform a healthy state into
a malignant state under certain circumstances. In contrast for the co-existing steady state, increasing
inflammatory stimuli may reduce the malignant cell burden. The model provides an overview of the
possible dynamics which may inform clinical practice such as whether to use inflammatory inhibitors
during treatment.

Keywords: cancer; inflammation; mathematical modelling; steady states; stability

1. Introduction

Myeloproliferative Neoplasms (MPNs) is a group of hematopoietic stem cell disorders, including
essential thrombocytosis (ET), polycythemia vera (PV) and primary myelofibrosis (PMF) [1,2]. The
pathogenesis of these neoplasms is yet to be fully discovered. For patients with MPNs, the mutation
JAK2V617F is found present in the most cases of ET (50%) and in 95% of the cases with PV and
PMF ultimately leading to acute myeloid leukemia (AML) [3,4]. This suggests a biological continuum
where the diseases evolve from early cancers (ET and PV) into the advanced myelofibrosis stage, with
an increasing load of JAK2V617F mutations from a low burden at ET and PV to a high load [2, 5].
MPNSs imply an increased risk for the development of other cancers [1,4].

Recent research supports that MPNss can be regarded as chronic inflammatory diseases and MPNs
has been described as a ’human inflammation model”, which leads to premature atherosclerosis, clonal
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evolution and an increased risk of second cancers. [2, 3, 6]. This is based on evidence from clinical
observations, experiments and molecular studies [3].

Several insightful theoretical studies have been published on control dynamics of biological net-
works. Mathematical models have been proposed [7-9] describing the control networks for regulation
of stem cell lineage. Mathematical modelling of cancer is useful for understanding of cancer initia-
tion, progression [10, 11], to confirm or dismiss biological/medical hypotheses, and to study effects of
single or multi modality treatments in silico. The mathematical model presented in [12] shows that
successful therapy may eliminate tumour stem cells. A five-dimensional model given in [13] includes
active and quiescent stem cells, progenitor cells, mature cells and one immune compartment describ-
ing chronic myelogenous leukemia. In [14] a mathematical model of cancer stem cell dynamics is
proposed and the different scenarios of cancer initiation and possible treatments strategies have been
discussed. The mathematical model given in [15] is useful for investigating the impact of cytokine-
dependence of acute myeloid leukemic cells. In addition, the model allows distinguishing between
cytokine-dependent and cytokine-independent acute myeloid leukemia (AML) and both scenarios are
supported by patient data.

However, only a few mathematical models of MPNs exist. Some work includes investigation of the
origin of myeloid malignancies with MPNs as a particular example [16]. In [17], a two dimensional
model of MPNSs is investigated without including the immune response dynamically. The Cancitis
model including chronic inflammation as the trigger and driver of MPNs was proposed in [5]. In
[5], T-cells are not explicitly considered whereas, in [18], the effect of these cells has been included
specifically. The analysis of a two dimensional mathematical model [18] is used to discuss in silico
effect of existing and novel treatments. The model presented here is identical to the model presented
in [5] except for the simpler functional form of the stem cells niche interaction used here and in [18].

In the present paper we conduct a thorough mathematical investigation of the Cancitis model and
explore the intricate coupling between inflammation and MPNs. We address the following questions
which have not been systematically investigated previously: Which steady states of the system are
feasible and which trajectories are attracted to the steady states? How do the number and stability of the
steady states change when varying the parameters, in particular, the exogenous inflammatory stimuli,
self-renewal and death rates of stem cells, and inhibitory strength of the stem cell niche interaction?
Which set of clustered parameters control the dynamics of the system? Does the analysis suggest
correlated parameters? The bio-medical applications of the model analysis are discussed, e.g. how the
inflammation influences the transition between healthy and diseased states. In addition, the analysis
predicts effects of ongoing and potential combination therapies.

2. The Cancitis model

The Cancitis model stated in [5] is illustrated in Figure 1, with the system of differential equations
shown in system (2.1). In this section the details of the model and the reasoning behind it is presented.

The model describes the proliferation of hematopoietic stem cells (HSC) into hematopoietic mature
cells (HMC) and likewise malignant stem cells (MSC) into malignant mature cells (MMC). Addition-
ally, the model considers the number of dead cells and the level of inflammation. The debris from the
dead cells stimulates the immune response, which in turn affects the self-renewal rate of both HSCs
and MSCs.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8268-8289.
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Figure 1. The boxes illustrate the compartments of the Cancitis model. The arrows represent
the rates of the flows between and out of these compartments. Red stipulated arrows represent
the effect of inflammation which is stimulated by exogenous inflammatory stimuli, /. Green
stipulated lines represent the bone marrow niches interaction with a ’crowding’ competition
between HSC and MSC. Stem cells (HSC and MSC) may self-renew, die or differentiate,
while mature cells die after a while (MMC, HMC). Dead cells (a) are engulfed by the immune
cells (s), that stimulate production of stem cells, increase risk of mutation and increase the
removal of dead cells (For more details, see main text).

The model consists of six ordinary differential equations one for each compartment; the number of
HSC (x¢), the number of HMC (x;), the number of MSC (y,), the number of MMC (y,), the number
of dead cells (a), and the level of inflammation (s).

The equations are of the general form,

Change in amount of a| _ [rate of production times rate of elimination times the
compartment per time [ | the producing source amount in the compartment | -

and read specifically,

Xo = ro(Pxs — @)X — FmSXo, (2.1a)
fC] = axAx)C() - dx])C], (21b)
Mathematical Biosciences and Engineering Volume 16, Issue 6, 8268—8289.
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Yo = ry((ﬁys - ay)yO + 1y S$Xo, (2.1¢)
y1 = ayAyo — dy1y1, (2.1d)
a= dx()X() + dy()y() + dxlxl + dylyl —e,as, (216)
S=ra—egs+1, (2.11)
with
g = 0 g @, = hotdy 2.2)
Ty ry

The expressions for the inhibitory niche feedback are chosen as Michaelis-Menten-like functions in
contrast to [5],

1

& = ¢x(x0,¥0) = ETr— (2.3a)
1

¢y = ¢y(x0,y0) = (2.3b)

1 + cyxxo + )0

A stem cell can proliferate in three ways; symmetric self-renewal (resulting in two new stem cells),
asymmetric self-renewal (resulting in one stem cell and one progenitor cell) and symmetric differen-
tiation (resulting in two progenitor cells). The rate of self-renewal is denoted as r, and r, for HSC
and MSC respectively. The self-renewal of stem cells is known to be inhibited by self-regulating niche
feedback [19], resulting in decreased self-renewal when the level of stem cells in the bone marrow is
high. Adopting the approach taken in [12], [20] and [21], this is implemented by Michaelis-Menten-
like functions ¢.(xo,yo) and ¢y(xo, yo), shown in Eq (2.3b). Allowing the feedback to be different for
HSC and MSC, the constants c,, and c,, capture the effects of HSC and MSC on the self-renewal of
HSC, while ¢y, and c,, capture the corresponding effects on the self-renewal of MSC. Additionally, the
inflammatory level also affects the self-renewal [22,23]. This leads a to self-renewal term per cell of
ry¢ys and rygy,s for HSC and MSC respectively. The parameter c¢;; describes the inhibitory strength of
the signalling bone marrow niche feedback from cell type j onto cell type i. It is generally assumed
that ¢y, < ¢y < ¢y < €y, since malignant cells are less sensitive to inhibitive niche feedback than
hematopoietic cells [22,24].

In [25], a multi compartmental model is proposed relying on a single external feedback mechanism.
It is shown that the equilibrium level of mature cells depends only on the self-renewal parameters
for the HSC and it is independent of the other compartments. Therefore, the progenitor cells are
considered as intermediate steps between stem cells and mature cells, and are implicitly accounted
for by multiplication factors A, and A, for HSC and MSC respectively. The rate at which the HSC
reduces in transforming to HMC is denoted by a, while the similar rate for MSC transforming to
MMC is denoted by a,. As such, the HMC and MMC accordingly increase with rates a,A, and a,A,
respectively. To account for the cell apoptosis, the four types of cells are removed with rates d,, d,,,
dy, and d,,, for the corresponding cell types.

Genetic mutations are by nature to be described as Poisson processes [26-29]. However, not all
mutations are malignant; only mutation which happens on a particular location of the DNA, i.e. at
specific amino acids causes a specific mutation, e.g. the JAK2V617F mutation. The probability for
hitting a specific location is about 1/30000. In [30] the average mutation probability is estimated to
0.0035 per year, which corresponds to a specific mutation probability of 0.0035/30000 = 1.2107’
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per year. Thus, the probability for one specific malignant mutation is about 10~ per cell per year.
Moreover, the mutation is affected by the inflammation, s [31, 32], which is explicitly stated, and
resulting in the effective mutation rate r,,s. Assuming three sequential mutations are needed to generate
a specific malignant stem cell the resulting probability becomes much higher (1073 per year per cell
if the mutations are assumed independent). This could be implemented in the otherwise deterministic
model but it would increase the computational cost, since it depends on both the probability of a single
cell mutation and the number of potential mutating cells at a given time, which itself is determined by
the preceding mutational history. To avoid such complications we initialize by having a single MSC
and none MMC, and put the mutation rate to zero. This is justified by the fact that the probability of a
single cell mutating is small compared to the self-renewal of the MSCs. Thus, the first mutation drives
the development leaving a later identical mutation insignificant to the dynamics, which is confirmed
by numerical simulations.

The number of dead cells has an up-regulatory effect on the immune response denoted r,. External
environmental factors also influence the inflammatory level. This is captured in the model by the
term /. Throughout we take I > 0, as a perfect sterile environment is an utopic idealization. This term
may vary over time due to environmental changes, but in our mathematical analysis we will consider /
as piecewise constant. The inflammation, s, is down-regulated naturally by the eliminating rate e;.

Additionally, the change in the amount of dead cells per time is given by the death rate times the
number of cells minus the clearance by the immune system. As given in [33] clearance is described by
a second order equation —e,as since the engulfed immune cells have to meet the dead cells debris to
mediate endocytosis. Thus, clearance is bilinear in both a and s representing the activity of the immune
system, eliminating the dead cells with an elimination rate e,.

Initial conditions for the Cancitis model in equations are needed for the given system of differential
equations (2.1-2.3b) . Here, we mainly focus on the model after the first mutation, i.e. with yy(0) = 1,
y1(0) = 0, r,, = 0, and the remaining variables as those in the healthy steady state (see below). All
other parameter values are assumed to be positive.

2.1. Steady states of the model

The stable steady states are attractors in the six dimensional phase space. This motivates systematic
study of the existence and location of steady states and how this is affected by perturbing parameter
values.

Motivated by the biology where the number of cells and concentrations are required to be non-
negative numbers, we will use the terminology that a steady state is admissible if and only if all the
components are non-negative, i.e. if and only if a steady state is in the non-negative octahedron.

Consider the system of Egs (2.1-2.3b). For steady state solutions, Xy = X; =yo=y; =a=5§=0,

Ky _ _ _
(a_ — (1 + ¢y + nyyo)) X9 =0, (2.4a)
X
K} _ _ |-
o (1 + ¢yxXo + cy¥0) | ¥o = 0, (2.4b)
y
a,A.x
X = =20 (2.4¢)
dxl
Mathematical Biosciences and Engineering Volume 16, Issue 6, 8268-8289.

31



8273

_ Yo (2.4d)
dy
dx())_Cl + dxlfcl + dy())_)o + drl)_)l —e,as =0, (246)
I
a=% (5 - —). (2.4f)
rS es

The values of x¢, x1, Yo, Y1, a and s at steady state are denoted as Xy, X1, Yo, 1, @ and § respectively.
The admissible steady states can be classified as,

a trivial steady state if and only if Xy = yy = 0,

a (purely) hematopoietic steady state if and only if ¥y = 0 and Xy, > O,
a (purely) malignant steady state if and only if Xy = 0 and y, > 0, or
a co-existing steady state if and only if Xy > 0 and y, > O.

The admissibility of steady states necessitates certain inequalities to be fulfilled, which leads to restric-
tion on the parameters, e.g. from Eq (2.4f), non-negativity of a requires § > ei I 1s assumed to be
positive thus ei > (. Hence

1

€s

§>—>0, (2.5)

for any admissible steady state. Note that, X; and y; are non-negative if and only if X, and y, are
non-negative, respectively. Substituting expressions of x; and y; in Eq (2.4e) gives,

€a6_l§ = ﬁx)_CO +ﬁy)_70’ (26)

where B, = a,A, + d and B, = a,A, + d,y. Thus, Eqs (2.4e-2.4f) and (2.6) result in a second order
equation in § having the general solution,

1
5. = 5 (L& T+ ZB.T +B:30). 2.7)
where { = t"‘f;‘ > 0. 5_ is negative for positive X, or y,. In case, (Xy, Vo) = (0,0), Eq (2.7) leads to

5_ = 0 contradicting 5§ > 0. Thus, s = 5_ is not biologically realizable and we therefore put § = §, in
the further analysis. Note that, for non-trivial steady states, 5§ > ei In addition, non-negativity of X
and y, implies non-negativity of xi, y;, § and a. A

Hence, the existence of admissible steady states Xy, ¥y, X1, 1, 5§ and a follows from Eqs (2.4a), (2.4b)

and (2.7).

Below we make a complete analysis of the existence of various steady states depending on how [
relates to the remaining parameters. This choice is due to the fact that the external inflammatory stimuli
I is of great interest in health care and to elucidate consequences of using inflammation inhibitors as
part of treatment.

Proposition 1. A trivial steady state E, always exists,

1
Ey = (0, 0,0,0,0, —) . (2.8)

€s
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Proof. Follow directly from Eqs (2.4e) and (2.5). |

Hematopoietic steady states may exist depending on the rest of the parameter values. As above
we chose the inflammatory stimuli / as the leading parameter and make a complete analysis of possible
hematopoietic steady states. The analysis of the existence of the hematopoietic steady states depends
crucially on the following lumped parameters,

IH ) ’esrsﬁx_ rsﬁx ’ (29)
€4Cxx €aCxxUy

r? X
{y1 = 2ea, — i 5 (2.10)
eacxxa/x
(. = esy, (2.11)
I Bx
{ny = , (2.12)
eseacxx

the last two always being positive.
Proposition 2. Two hematopoietic steady states Ey. may exist in the following cases,

o Ifa’ < % then Ey, exists if and only if I > 0.

. If% < @? < {y; then Ey, exists if and only if I > Iy.

o If (i3 < a? then Ey, exists if and only if [ > {yp.

o Ifa’ < %’ then Ey_ exists if and only if [ < {yp.

. f%’—‘* < @* < Ly then Ey_ exists if and only if Iy < I < (.

o If {3 < @ then Ey_ does not exist.
In case of existence, FEpy, = (Xom+»> X11+,0,0,agy, 5yy) is  given by Xops =
m (1— {m + N — 1P - de,aln - 1)), Sue = a(l + cuXons), Ay = %,
and Xig+ = “’"Aj# whereas Ey- = (Xow—,Xon-,0,0,ay_,55-) is given by Xoy- =
(1= tm = G - D = 4ealin=1D). 5u- = al + cufon), an- = 2= and
= — axAx)_COHf
XH- = =5 -

Proof. A hematopoietic steady state £y follows from Eqs (2.4a) and (2.7) with yo = y; = 0 as
possible positive solutions to

1 1
Ton + (i — D¥on + ——Wm — 1) = 0. (2.13)

sCaxtx sCxxtx

For the solutions to (2.13) to be real,

Cm = D* > 4wl = D). (2.14)

In case I > {y», (2.14) is always fulfilled. In case I < g, (2.14) is equivalent to

2r r r
I+ B I+ B ( B _ 4esafx) > 0. (2.15)
eacxxax eacxxax eacxxax
Mathematical Biosciences and Engineering Volume 16, Issue 6, 8268-8289.
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Solving for I we get,

121y =y, (aﬁ - %) 2.16)
with
desrgfy
eqCxr@>
Ve = . > 0. (2.17)
rsﬂ.\' + 2 esrsﬂx

From Eqgs (2.14) and (2.16) it follows that the solutions to Eq (2.13) are real for I > {g, or Iy < I <
Z:HZ 1n case Iy < {Hz.
Whenever the solutions to (2.13) are real, they are given by

1

2€,C oy

(1= Zm = N = 17 = desa & = D)), (2.18)

XoH+ :=

which depends on the sign of the following five quantities,

o = 22 (ai - @) (2.19)
, 2
In = 7 (ai - %) (2.20)
es
A = {o—dm=— (CV,ZC - ZHS), (2.21)
ay
[

At = —Iy=—"—(*- , and 2.22
H1 §H1 H a, N ,—§H3 ( x §H3) ( )
e ) 2
Ay = In—Cm=-— (CYX - §H3) <0, (2.23)

a (@, + Viu3)?

where the last one immediately implies that the criteria for real solutions of Eq (2.13) is I > Iy. If the
solutions, Xyy., are positive and real, then the formulas for the remaining variables easily follow from
Eqgs (2.4a-2.4f).

To continue we first consider Xyy, and afterwards xog_.
For a/ﬁ < {’ff , it follows from Eqs (2.19)—(2.22) that {5 < 0, {y1 < {2, Iy < 0, and {yy < Iy. Thus,
Xog+ > 0 if and only if 7 > 0.
For % <a’< % , it follows from Eqs (2.19)—(2.22) that {1 < 0, {y1 < {u2, Iy > 0, and {yy < Iy.
Thus, Xop, > 0if and only if I > Iy.
For {%3 < ai < {y3 , it follows from Eqs (2.19)—(2.22) that {1 > 0, {y1 < w2, Iy > 0, (g < Iy, and
Iy < Cyy. Thus, Xog, > 0if and only if I > Iy.
For {y; < a/i are (g1 > 0, it follows from Eqs (2.19)-(2.23) that {yy > {y2, Iy > 0, {y1 > Iy, and
Iy < {yp. Thus, Xog, > 0if and only if 1 > {pp.

Similar, Xoy_ is real if and only if I > Iy and (g < I < {ppo.
For ai < 44& , it follows from Eqs (2.19) and (2.20) that {; < 0 < {2, and Iy < 0. Thus, Xoy- > 0 if
and only if I < {p».
For ¢ < o2 < 42 it follows from Eqs (2.19), (2.20) and (2.23) that £z < 0 < {2, Iy > 0, and
Iy < {yp. Thus, Xog- > Oifand only if Iy < I < {p».
For % < a? < s , it follows from Egs (2.19)- (2.21) and (2.23) that 0 < ¢y < &mo, Iy > 0, and
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Iy < éVHz. Thus, Xog— > 0 if and Ol’lly lfIH <I< §H2.
For {3 < afc , it follows from Egs (2.20) and (2.21) that {y; > {y» and Iy > 0. Thus, Xoy- > 0 if and
only if {1 < I < {y,, which is a contradiction.

m]
The conditions for the existence of the hematopoietic steady states are summarized in Table 1.
Table 1. Summarizing necessary and sufficient criteria for admissibility of Ey. The first

column conditions how «, is related to {y3, the middle column shows the existence conditions
for Ey, and the last column shows the existence conditions for E. explicitly in terms of /.

For Only Ey, if | Both Ey, and Ey_ if
a§<% 1>l I <l
%3<01,2c<§ﬂ3 1> Iy <1<lm
(Hg, < ai 1> (HZ 0

Malignant steady states may exist depending on the range of the parameters. As above we chose
the inflammatory stimuli / as our leading parameter and make a complete analysis of possible malig-
nant steady states. The analysis of the existence of the malignant steady states depends crucially on

the following lumped parameters,
€l r'sOy
Iy = 2,/‘ by __1ih : (2.24)
€aCyy  Calyy@y

rS
ly = e, — Py , (2.25)
eacyyoz)
(i = ey, (2.26)
rf3
(s = ———, (2.27)
€5€,Cyy

the last two being positive.
Proposition 3. Two malignant steady states E;. may exist in the following cases,

° Ifafg < % then E| . exists if and only if I > 0.

o If L < a? < (5 then Ey, exists if and only if I > ;.

o If{5< aﬁ then E, exists if and only if I > ;.

o Ifa; < % then E;_ exists if and only if I < (;».

o IfL < @; < {3 then Ep_ exists if and only if I, < I < (.
o If{5< a§ then E;_ does not exist.

In case of existence, Ep, = (0,0, Vor+s Virs»Ars, Sp) IS given by Yoo, s =
1 = = - YOL+

Serena (1 — L+ NG - D? = degay ({2 — I)), Sieo = a1+ cpFo) A = T
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— A,V — — — — . . —
and Vi, = % whereas E;- = (0,0,%or_,Vor—,dr_,5;-) is given by Yo =

- (1 — {1 — A = D? = desay({n - I)), Si- = ay(1 + cyyyor-), ar- = Bl and 3y, = Wi;%~

s ’
2escyyay €451

Proof. Due to symmetry in indices x and y, the proof for the malignant case is equivalent to that for
the hematopoietic case except index H has to be substituted by L. O

The result is summarized in Table 2.

Table 2. Summarizing necessary and sufficient criteria for admissibility of E;. The first
column conditions how a, is related to {73, the middle column shows the existence conditions
for E;, and the last column shows the existence conditions for E;. explicitly formulated in

terms of /.
For Only E;, if | Both E;, and E;_ if
a§<% 1> 1<l
L < a? < >0 <1<l
{n<a 1> 4 0

The existence of a co-existing steady state

Ec = (Xoc, X1, Yoc» Yic» ac, Sc)

is far more cumbersome to deal with, since a wealth of sub-cases may arrive depending on various

inequality-relations between the parameters. To avoid many tedious but straight forward calculations

we limit ourself to the non-degenerate cases where {¢; = a,¢y —a i # 0 and {¢y = @,cyy — axCyy # 0.
From Eqgs (2.4a and 2.4b), a linear relation between X, and y, directly follows,

{e1Xoc + Le2Yoc — Lz = 0, (2.28)

where {¢3 = @, — a,. Thus, for the non-degenerate cases,

_ et (Lez
=== - 2.2
Yoc e ( ‘o xoc), (2.29)

which geometrically corresponds to a straight line through (0, Z—;) and (%,O). Hence, two generic

cases arrive, for ((), %) corresponding to positive slope, % < 0 corresponding to negative slope, %

0 . The first case defines a half line in the positive octahedron and in this case Xoc € (max{0, %}; 00)

>

and yoc € (max{0, %}; o0). The second case corresponds to either no admissible solution (if and only
if % < 0 and % < 0) or a line segment in the positive octahedron which requires that i‘é—z > 0 and

% > 0 and in that case are Xyc € (0, %) and yoc € (0, %). From Eq (2.4a) and (2.29),

Sc = mXoc + my, (230)
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with mo = a/x(cxy% + 1) and m; = a,(cpr — cxy%). Before continuing, it is emphasized that ¢, £, 3,
my, and m, all are independent of I but may be positive, negative or in case of m, and m, zero. From

Eq (2.7) it follows that a real and positive § exist for (Xoc, yoc) € Ry X R,

_ 1 _ -
Sc = Zex (1 + \/1 + %(ﬁx-XOC +,8yyOC)] (231)
4rge

where { = > (. Similarly, a negative real root exists. Substituting (2.29) into (2.31) give,

2
Se= 4 \/( ! ) 4 Sbles ﬁ( x—ﬁy§C3)XOC. (2.32)

B e, e, d4e?lc,  4e2 E

Combining Eq (2.30) and (2.32) results in,

ng—1I+nxopc= \/I2 + ny + n3Xoc, (2.33)
JoBydc:
where ny = 2e,my, ny = 2e,m;, n, = % and n3 = ¢ (,BX —ﬁy:%).

Note that Eq (2.33) has no real solution if either of f(x) =ny—1I+nxand g(x) = I” + n, + n3x are
negative. Thus, if both f(x) and g(x) are positive, Eq (2.33) is equivalent to,

n%x2 +2ni(ng—1)—n3) x + (n% —np — 2n01) =0, (2.34)

which may have up to two real positive solutions. Hence, there can be at most two coexistence steady
states. More specifically,

2 -I- 2 —D—n\" n2—ny—2nl
rop, = _ 2o 2) ny ( ni(ng 2) n3) _ Mo 2ml (2.35)
2n] 2n] n
is positive if and only if f(xocs) > 0, g(xocs) > 0, and
n? —ny — 2nol 2 -D-
MM oo Zu=Dom (2.36)
np nl
Similar,
2 2
2 -- 2 -0 - ng —ny — 2npl
rop = _ 2o 2) ny |(2ni(no 2) n3) _ My —m— 2nol (237)
2n] 2n] ny
is positive if and only if f(xpc-) > 0, g(xpc-) > 0, and
2 -1 - 2 —ny —2nyl 2 -
mto =D =ns Mol g 2D (2.38)

2n? n 2n?
Note, some possibilities of equality signs in the inequalities are left out for simplification reasons.
Equality may occur on a set of measure zero which is unlikely for a noisy biological system and
including these possibilities makes the analysis much more messy. For practical purposes one may
first calculate the two (possibly complex) roots x of Eq (2.34) and afterwards examine whether these
are real and positive, whether f(x) > 0 and g(x) > 0, and whether the corresponding y,c calculated
from Eq (2.29) is positive, thus the remaining component of E¢ will be positive too and the steady state
admissible.
Continuing analytically is possible but becomes somehow cumbersome and instead we point out
that for any choice of parameter values, there can be at most two coexistence steady states, their
existence and value depending on the admissibility of xoc, (Eq (2.35)) and xoc- (Eq (2.37)).
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3. Stability and bifurcation analysis

In this section we analytically and numerically examine the stability properties of the various ad-
missible steady states of Eq (2.1) in terms of selected parameters.

3.1. Stability properties of the trivial steady state

The Jacobian of the trivial steady states Ej is a triangular matrix and four of the six eigenvalues,
—dyi,—dy1, — ’“ —e,a,) and 2 (I - esa/y), may be positive, neg-
ative, zero. Thus by the Hartman-Grobman Theorem [34]

Lemma 1. E is asymptotically stable if I < e, min{a,, a,}, whereas it is unstable if I > e; min{a,, ay}.

At Ep. the Jacobian for the hematopoietic states can be calculated (see Supplementary) and the
resulting sixth order characteristic equation shows that Ep.,. are stable for

S < ay(1 + Cyukon). 3.1)

However, this is not the generic case, since a, < a, (and ¢, < cy,), which contradicts 55 = a,(1 +
cxXor)- Intensive numerical investigations shows that Ey. are unstable.

The stability of E; is similar to that for the hematopoietic steady state except that it is stable if

s < ax(l + ny)_)OL)a (32)

which is fulfilled in the generic case, since a, < a, (and ¢, < c,y). This follows from 5, = a,(1 +
¢yyyor)- The Jacobian may be found in supplementary.

Lastly, consider the co-existing steady state. The Jacobian at £~ may be found in supplementary.
However, it is hard to prove any result analytically and we therefore do the stability investigation
numerically the in next section.

3.1.1. Numerical Simulations and treatment scenarios

In this section, we focus on numerical results. The default values of parameters used in Figure 2 are
given in Table 3. The values are the same as given in [18].
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Table 3. Default parameter values and their lumped counterpart.

Parameter Value Unit | Parameter Value Unit
Iy 8.7-107* day™ | ry 1.3-10%  day™!
a, 1.1-107° day™ | a, 1.1-107  day’!
A, 4.7-108 - A, 4.7-108 -

d,, 2-1073 day™' | d,, 2-1073 day~!
d,, 129 day™' | d,, 129 day™!
Crx 56-107° - Cyx 52-107° -

Cxy 54-1073 - Cyy 50-107° -

e 2 day™!' | 7, 3-107 day™!
e 2-10° day™!' | 1 7 day
a, 2.31 - @, 1.54 -

By 5.17-108 - By 5.17-10% -

&0 1.2-10712 - Lt -49-107 -

ler 7.4146 - 107 - {c3 0.7646 -

no 9.76 - ni -0.51 -

n, 0.64 - n3 6.61-107*% -

§H1 8.65 - {HZ 4.62 -

{n 5.18 - 4% 3.09 -

{Hs 0.69 - {13 0.7646 -

The model has been investigated for various choices of parameter values. In Figure 2, clusters of
five important parameters, C = ==, R = ?’2 = —* and [ are considered to investigate the number of
steady states and their stability. In the default case R > 1 (Figure 2a), a trivial steady state always
exists, and for low inflammation, i.e., I < {;, it is stable otherwise it is unstable. For I > {;,, a purely
malignant steady state becomes admissible. For values of I where the trivial and the malignant steady
states are admissible, the malignant steady state is stable whereas the trivial steady state is unstable. An
unstable hematopoietic steady state becomes admissible as I becomes larger than the threshold value
{m, and increasing I further causes emergence of a stable co-existing steady state while the malignant
steady state becomes unstable. Thus, for I > {y, and C sufficiently small, four steady states appear
namely the trivial, the hematopoietic, the malignant and the co-existing steady states where the co-
existing steady state is stable and the rest are unstable. This illustrates that the co-existing steady state
depends on /, C and R. Increasing C from a small, initial value makes the co-existing steady state
vanish and the malignant steady state becomes stable whereas the trivial and the hematopoietic steady
states remain unstable.

Secondly, consider the second case where R = 1 implying that {y, = {;» (Figure 2b). Increasing /
across this value generates an unstable hematopoietic steady state and a malignant steady state simul-
taneously. For C < 1 the malignant steady state is unstable, and a stable coexistence steady state is
created as I increase past {,. For C > 1 no coexistence steady state is created, instead the malignant
steady state is stable. Hence, for R = 1, decreasing C may change the topology from a stable malignant
steady state to a stable coexistence steady state i.e. improving the prognosis from disease escape to
disease equilibrium. The stable co-existing steady state bifurcates from the trivial steady state and re-

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8268-8289.

39



8281

mains stable until C = 1. As C exceeds 1, the co-existing steady state disappears, the malignant steady
state becomes stable and the trivial and the hematopoietic steady state become unstable.

187
167
147
© 127

0.8+
0.6t

e R =0.77
|

127 i 1.2

1t ! 1!

w 087 i w 087

0.6 Ey Ej i E%* 06" Ey B

0.4/ i 0.4}
0.2t ‘ : ‘ 0.2} ‘ ‘ ‘
2 a1l¢, 6 _(, 8 2 arle, 6 8

Figure 2. Admissibility and stability of the steady states depending on the parameters / and
C for different values of R. Crossing a solid curve implies a change in which type of stable
steady state exists i.e. trivial, malignant, hematopoietic or coexistence. Crossing a dotted
curves implies the same steady state is stable in both regions but the number of steady states
is changed. The stable steady states are written as subscript of E and unstable steady states
are written as superscript of E.

In the remaining panels, R < 1, which implies that a stable hematopoietic steady state is created as
the first transition to appear when increasing / from low values past the threshold value {y,. Simultane-

ously, the trivial steady state becomes unstable. In Figure 2¢ where R = 0.97 the hematopoietic steady
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state remains stable for low values of C until / passes a threshold value where a stable coexistence
steady state is created leaving the hematopoietic steady state unstable.

For larger values of C there is no coexistence steady state. Instead, as I is increased, a region
of bistability appears with a stable hematopoietic steady state and a stable malignant steady state.
Increasing I further the hematopoietic steady state becomes unstable. Hence, to reduce disease load, in
the case of R < 1, and large values of C and /, it may be optimal treatment to reduce the C value prior
to reducing the inflammatory level to avoid being stuck in the bassin of attraction of the malignant
steady state.

In Figure 2d where R = 0.93, the coexistence steady state no longer appears, the region of bistability
has shrunk and a hematopoietic stable steady state is more dominant.

In Figure 2e and f, R is decreased to 0.77 and 0.5 respectively, and the bistability region is no longer
visible. For I > {y, a hematopoietic steady state is the only stable steady state. Figure 2 indicates that
reducing C and R should be targets of intervention. A reduction of / may improve prognosis as well,
for example for parameter values as in 2c.

4. Discussion and conclusion

A mechanism-based model published in [5] - the Cancitis model - describing the interaction of
the hematopoietic cells, malignant cells and inflammation is analysed here. A thorough mathematical
investigation of the model is presented in this paper which did not appear previously. We conducted an
analytical analysis of the steady states and showed that four kinds of steady states may exist i.e. trivial,
hematopoietic, malignant and co-existing steady states. We characterized the stability of each of these
steady states and identified transitions conditions in the number of steady states and in their stability.
Trivial, hematopoietic, malignant and coexistence steady states all appear for some parameter values.
The steady states are highly relevant as all trajectories appear to approach a steady state after some time
- see Figure 3. The case of bistability is visualized in the bottom right panel of Figure 3, with the basin
of attraction shown in the (x, yo)-plane using initial condition (x;,y;, a, s) = (4x 10,4 x 10!, 600, 2).
The initial conditions for x, and y, are varied in a range 1 — 10°. The malignant steady state has a large
bassin of attraction (region (1)), while region (ii) marks the bassin of attraction for the hematopoietic
steady state.

The intuitive interpretation in most bio-medical literature attributes the main cause for cancer de-
velopment to the frequency of stem cell division. Another main cause is the regulatory feedback that
allows stem cells residing in niche to further divide into blood cell required in blood stream. Our in-
vestigation is in agreement with this perception and quantifies this intuitive concept. Furthermore, it
shows that stem cell population is important to target in treatment to prevent disease progression.

In [14] and [15] a model without immune interaction is presented. The authors discuss a fraction
similar to R and show that it is important for the dynamics of the system. It has been shown [15] that
the leukemic cell load can be temporarily reduced if the growth of HSC is larger than that of leukemic
cells for cytokine-dependent AML.
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Figure 3. The first three panels illustrate that when a unique, stable steady state exists,
it is globally attracting (based on a numerical argument). U(¢#) denotes the solution of the
six-dimensional model 2.1. In the top left panel, % is plotted against time for three
different initial conditions. It corresponds to the region where Ej is stable with C = 0.8,
R =097 and I = 6. % tending to zero for large time implies that U(¢) is close to
Ey for large time. The top right panel shows the stability of E; with C = 0.2, R = 1.5 and
I = 4. The bottom left panel shows the stability of Ec with C = 0.1, R = 1.5and I = 7.
The bottom right panel corresponds to bi-stability of E4 and E; with C = 1.4, R = 0.97.
The solution to the 6D model is projected onto the xy and y, plane. Region (i) denotes the
set of initial conditions with trajectories converging to E; whereas region (ii) denotes that
trajectories converge to Ey. Black circles show four steady states, Ey, Ey, E; and E¢, where
filled circle shows stable steady states and empty circle shows unstable steady states.

It is generally assumed that ¢, < c,, since malignant cells might be less sensitive to environmental
crowding [22] and [24]. The ratio C of inhibition of the hematopoietic relative to malignant cells is
one of several important prognostic markers. For large values of /, bi-stable and mono-stable regions
depend upon C. It can be observed in Figure 2 that for small values of C, i.e., ¢,, > c,, either the
hematopoietic steady state is stable or the co-existing steady state is stable which can be interpreted
as a good prognosis. However, large values of C may lead to a worse situation, e.g. in one case, the
malignant steady state is stable or there exists bi-stability of the hematopoietic and the malignant steady
states (see Figure 2c). In addition to the ratio of inhibitive niche feedback, the ratio R is also important

to consider, since it determines how robust the hematopoietic condition may be and how disastrously a
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potential blood cancer disease will develop. Thus for R > 1 we have a more serious situation than for
R < 1 showing that if this reproduction ratio exceeds the threshold R, = 1, it is more disastrous than if
it is below Ry.

The JAK2V617F allele burden is expected to increase due to the expansion of malignant cells. The
JAK2VGOI1TF allele burden is interpreted as the ratio of malignant cells to the total number of mature
cells. The model predicted JAK2V617F allele burden is shown in Figure 4 for the region where E¢
is stable. Perturbation of a parameter may improve or impair prognosis when the coexistence point is
the stable attractor. The top panel of Figure 4, shows that decreasing C and R improve prognosis by
lowering the allele burden. Contrarily, increasing /, causes a decay in allele burden. This suggests that
inflammatory inhibitors could counteract treatments in this case. In other cases, increasing / typically
leads to a worse prognosis, considering Figure 2.

The model presented here may inform clinical practice to make group specific treatment protocols
with particular focus on the inflammatory components which may accelerate or dampen the disease
progression. Interventions should address decreasing C and R and potentially I but the latter depends
on the remaining parameter values as adverse effects may be observed.

1 T
081 0.81
.06 4 0.67
Eh S
“04r “04)
02f 0.2
0 0 |
0.5 1 2 3 4 5
1 -
0.8+
06
[ 04+
0.2
O L
4 5 6 7 8 9 10

Figure 4. Allele burden (the ratio of . to the total number of X,. and y,.) at the steady state
for the region where the co-existing steady state is stable. On the top, left and right panels
show that by increasing C and R, allele burden also increases. On the contrary, increasing /
reduces the allele burden. In the top panel R = 1.5 and I = 7, in the top right, C = 0.1 and
I =7 and in the bottom panel, R = 1.5 and C = 0.1.
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Supplementary

Stability analysis of Steady states:

At Ey. the Jacobian of the purely hematopoietic steady state becomes,

JEH =
where
— __ S _
i =Ty ((1+c,w?0H)2 QX)’
a _ I'xCxySHXOH
13 = 7 Trenion)??
a — F'xX0H
16 = Trenton)®
az) = AxAy,
axy = —d,,
— SH _
asy =Ty (1+c),XchH ay),
ay3 = ayAy,
ags = —dyl,
as; = dy,
asy = dyq,
asz = dyy,
asy = dyy,
ass = —eqSy,
ase = —eqay,
des = Ty,
Ao = —€y,

and rest of the elements of Jg, are zero.

aiji

as
0
0

asj

| 0

0 as
az 0
0 ass
0 a3
asy ds3
0 O

0O O
0O O
0 O
ayq 0
ds4  dss
0 aes

At E;, the Jacobian of the purely malignant steady state.
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as)

| 0

0O O
ann 0
0 ass
0 as
sy dsj3
0 O
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0 ass
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where
—_ K‘—L F—
an = Tx ( 1+C'xyyOL a/x)’
az = axAx,
ay = —d,, o
as; = TyCyxSLYOL

- (1+nyy0L)2 ’

= E—L —
as3 = Iy Trepso0? “y)’

ase = %
ass = ClyAy.
asy = —ay).
as; = dy.
asy = dy.
as3y = dy().
asy = dyl.
ass = —eaiL.
asq = —eaC_lL.
Ags = Iy.

dee = —€5

and rest of the elements of array are zero.

At E¢. the Jacobian of the co-existing steady state becomes,

’all 0 ans O O 6116—
aryy dx 0 0 0 0
asy 0 ass O O a36
Jr, = (S.3)
0 0 agz  dgg 0 0
dsy dspy ds3 ds4 dss dse
| 0 0 0 0 Ags  Age ]
where
_ Sc
ann =ri\rm—————m—————— — «
1 X ((1+Cxxx0C+nyy0C)2 x)’
a _ TxCxyScXoC
13 (1+cxxXoc +CxyJoc)?
a — rxXoC
16 (I+cxxXoc+cxyYoc)
a1 = a;A,,
ay = —d,i, o
a — IyCyxSCY0C
31 (1+cyeZoc+cyyJoc)?
Sc
=r|l— —
ass y ((l+cyxxoc+cyyyoc)2 a)’)’
_ ryyoc
as6 = ¢ +ny)_COC+Cy\')_’OC) ?
aq3 = (lyAy,
ays = —dyl,
as; = dy,
as; = dy,
as3 = dyo,
Mathematical Biosciences and Engineering Volume 16, Issue 6, 8268-8289.
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asy = dyy,
ass = —€4S¢,
ase = —e,dc,
des = T,

Ao = —€5

and rest of the elements of the Jg,. are zero.
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Abstract

Blood production is a tightly regulated process, and disturbances
can pose a severe risk to human health. Polycythemia vera (PV) is
an example of such a disorder characterized by excessive production
of erythrocytes and the presence of the JAK2V617F mutation. A 5D
PV model with competing healthy and malignant cells, including ery-
thropoietin (EPO), is proposed and analyzed. The production of EPO
is governed by the number of erythrocytes, while EPO influences the
proliferation and death rate of erythrocytes. Stem cell dynamics can
be independently analyzed as a two-dimensional system. A numerical
analysis shows that steady states and their stability of the 2D stem
cell PV submodel are in agreement with the PV model. Combining
the model with data of PV patients, we demonstrate the model’s
prognostic significance. It follows that an efficient treatment must
target stem cell properties such as the bone marrow microenvironment
and stem cell death rates.

1 Introduction

Blood formation known as hematopoiesis is a complex and tightly regulated
process. Different types of blood cells are produced in the bone marrow from
hematopoietic stem cells (HSCs). A hematopoietic stem cell can divide into two
HSCs, and it can produce one stem cell and one progenitor cell or produce two
progenitor cells. The progenitor cells then differentiate in a chain of steps and
produce different types of mature blood cells, mainly red blood cells, white blood
cells and platelets.

In the present work, we will focus on the red blood cells (erythrocytes) and the
growth factors that contribute to red blood cells’ production. In the bone marrow,
stem cells differentiate into various progenitor cells, and finally, reticulocytes are
released into the bloodstream, which matures into erythrocytes within about
three days. The whole process is called erythropoiesis. Figure 1 illustrates the
development of erythrocytes from stem cells. In healthy individuals, the life
span of an erythrocyte is 120 days, and then the erythrocytes are engulfed by
macrophages in the spleen (Rodak et al., 2008; Litchman et al., 2006). This
process is controlled by the growth hormone EPO. A high concentration of EPO
increases the number of BFU-Es recruited into CFU-E and ultimately leads to an
increased production rate of erythrocytes ( Adamson, 1974; Granziero et al., 2001;
liyama et al., 2006; Jelkmann, 2013; Krantz, 1991; Silva et al., 1996). The kidneys
secrete EPO into the blood with a half-life of 6 hours (Mahaffy et al., 1998).

The homeostasis of erythropoiesis requires an appropriate balance between
the rate of erythrocyte production and erythrocyte destruction. EPO is thought
to control the number of mature cells in the blood by interrupting the apoptotic
mechanism (Granziero et al., 2001; Jelkmann, 2013; Silva et al., 1996; Testa, 2004;
Weitzman et al., 2000).
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Figure 1: Different stages are involved in the development of erythrocytes
(erythropoiesis). EPO increases the differentiation from BFU-E to CFU-E,
whereas it inhibits the death rate of erythrocytes.

PV is a hematological disease and a subcategory of myeloproliferative neo-
plasms (MPNs) (Campbell and Green, 2006; Hasselbalch, 2012; Hasselbalch, 2013).
The characteristics of PV are excessive production of erythrocytes, the presence
of the JAK2V617F mutation and low EPO plasma levels in the blood (Carneskog
et al., 1998). The JAK2 gene is responsible for producing proteins that control
cell growth and production. The mutation JAK2V61T7F is a disruption of the
JAK?2 gene and occurs in 95% of patients with PV. Possible PV development is
a transformation to acute myeloid leukemia (AML) with an increasing load of
JAK2V617F mutations (Hasselbalch, 2012; Kristinsson et al., 2010; Hasselbalch,
2013). EPO also plays an important role in the progression of PV. In 2016, the
World Health Organization (WHO) declared that subnormal serum EPO levels
are considered a secondary criterion in the diagnosis of PV.

In system dynamics (SD), several models describe the behavior of the non-
linear dynamic structures present in the human body (Abdel-Hamid, 2002; Hos-
seinichimeh et al., 2015; Hsieh et al., 1990; Karanfil and Barlas, 2008; Lee et al.,
2016; Mehrjerdi, 2013). In (Rogers et al., 2018), a SD model of erythropoiesis
was developed and calibrated in renal patients with anemia by establishing a
personalized EPO dosage to stabilize hemoglobin levels. In (Senturk et al. 2020)
a biomedical model was introduced to study the effects of recombinant human
erythropoietin (rHuEPO) as a doping agent. None of the previous work has
addressed these issues, including multiple EPO feedback on healthy and malignant
cells, the importance of stem cell dynamics in controlling erythropoiesis, and the
importance of stem cell parameters for efficient treatments in PV.

In this paper, we present and investigate a PV model that considers the
competition between healthy and malignant cells and the EPO feedback on both
cell lines. In section 2, we formulate the model and explain the physiological
relevance of the parameters. In addition, we simplify the model using dimensional
analysis. In section 3 we identify the physiological steady states determined by the
stem cell dynamics. Furthermore, we perform sensitivity analysis and identify the
sensitive parameters for cancer development. Finally, in silico treatment strategies
targeting stem cell dynamics are shown. In section 4 final remarks, including
model trajectories, are given in comparison to data for PV patients treated with
interferon-a (IFN).
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2 Description of the PV (Polycythemia vera)
models

2.1 PV model

The SD PV model describes the proliferation of hematopoietic stem cells (HSC)
to erythrocytes (RBC) and malignant stem cells (MSC) carrying the JAK2V617F
mutation to malignant mature cells (MMC). In addition, the model takes into
account that EPO stimulates the production of RBCs. A stock-flow diagram for
the PV model appears in Figure 2. There are five variables (stocks) that describe
the number of HSCs (z¢), the number of RBCs (z,), the number of MSCs (yo),
the number of MMCs (y,), and the concentration of EPO (£). The PV model is
inspired by mathematical models in (Andersen et al., 2017; Ottesen et al., 2019;
Colijn and Mackey, 2005 ) and reads

dxo

= cPx — g0 — Qg s 1
dt (re¢e = deo = az)zo (1a)
dy,

CTtO = (ry®y — dyo — ay)yo, (1b)
d;tr = a; Ay (E)xg — dyr(E)ay, (1c)
dyy

dt = ayAy(E)yO - dyr(E)yh (1d)
dE

- f(xra yr) — kE. (le)

with . X

1+ CzzT0 + CaylYo 1+ CyzTo + CyyYo '

Hence, the general form of the equations is,

d(Stock)

7 = Inflow — Out flow
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Figure 2: Black arrows represent flows, blue arrows show relationship between variables
and boxes denote stock variables.

The self-renewal rate for HSC and MSC are denoted as r, and r,, re-
spectively. Since the self-renewal of stem cells is inhibited by niche feedback
(Walkley et al., 2007), the production of stem cells in the bone marrow
decreases when the amount of stem cells exceeds the normal level. We
implement this inhibition by Michaelis-Menten-like functions ¢, (zo, yo) and
by (0, Yo), which is also adopted in (Dingli and Michor, 2006; Stiehl et
al., 2015; Walenda et al., 2014). Feedback strengths ¢,, and c,, show
an inhibitory effect on the self-renewal of HSC similarly, ¢y, and ¢, cap-
ture the corresponding effects on the self-renewal of MSC. We assume
Cyy < Cyzp < Cpy < Cag, since malignant cells are less sensitive to stem cell
microenvironment as compared to hematopoietic cells (Kim et al., 2008;
Rovida et al., 2014).

HSC differentiates towards RBC with rate a, while the similar rate for
MSC differentiation towards MMC is denoted by a,. The progenitor cells
are not considered explicitly however, they are implicitly accounted for by
multiplication factors A, and A, such that the resulting production rates of
HSC and MSC become a,A, and a,A, respectively. For further details see
(Andersen et al., 2017).

Since EPO stimulates the production of mature red cells (Adamson,
1974; Granziero et al., 2001; liyama et al., 2006; Jelkmann, 2013; Krantz,
1991; Silva et al., 1996) we choose to write the EPO-dependent amplification
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factors,
AL(B) = b, (3
x - xl—f—OCxE’
E
ALE) = by (@

where J, and J, are positive constants and o, and o, are non-negative
constants.

To account for the death rates, the stem cells are removed with rates
dy, and d,,. Furthermore, EPO has been shown to inhibit erythrocytes
apoptosis (Granziero et al., 2001; Jelkmann, 2013; Silva et al., 1996; Testa,
2004; Weitzman et al., 2000). Thus, an increase in EPO leads to a decrease
in the apoptosis rate of erythrocytes. Assuming d,,(E) and d,,(E) are
decreasing functions of E, we choose

1
1
dyr(E) = ﬁyma (6)

where 7,, n,, 8, and 3, are non-negative constants.
The negative feedback function f(z,,y,) is a monotone decreasing func-
tion of z, and y, (Belair et al., 1995; Bradford et al., 1997), it is assumed to

have the form,
p

f(xrayT) - 1 + ko(mr +yr)m7

which is a Hill function in z, + y, with Hill constants p, kg and m. Hence,
an increase in the number of x, and y, decreases the production of EPO.
For simplicity, we consider m = 1 in the subsequent analysis.

The default parameter values are summarized in table 1, and an illustra-
tion of the PV model, including stem cells, RBC counts, and EPO based on
the default values is shown in Figure 3.
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Parameter  Explanation Value Unit Reference

Tz Self-renewal rate of HSC 5.1073 day~T  Dingli and Michor, 2006

Ty Self-renewal rate of MSC 1.15-1072 day~! *

ag Differentiation rate of HSC 3.58-107° day—! *

ay Differentiation rate of MSC 3.58-107% day~! *

dzq Death rate of HSC 2-1073 day~!  Andersen et al., 2017
Ottesen et al., 2019

dy, Death rate of MSC 2.1073 day~!  Andersen et al., 2017
Ottesen et al., 2019

Cax Inhibition by HSC on HSC 5.6-107° - Ottesen et al., 2019

Cyx Inhibition by HSC on MSC 5.2.107° - Ottesen et al., 2019

Cay Inhibition by MSC on HSC 5.4-107° - Ottesen et al., 2019

Cyy Inhibition by MSC on MSC 5.0-107° - Ottesen et al., 2019

p Production rate of EPO 1.56 - 104 day~! Belair et al., 1995

ko Factor affecting production of EPO 89.-10711 - *

Qg Factor affecting production of RBC 5.1073 - *

ay Factor affecting production of MMC ~ 5-1073 - Assumed

Bz Factor affecting removal of RBC 9.103 - *

By Factor affecting removal of MMC 9.1073 - Assumed

Oz Stimulation rate of RBC 3.10° - *

Oy Stimulation rate of MMC 3.1010 - Assumed

Ne Death rate of RBC 8.103 day~—!  Belair et al., 1995
Colijn and Mackey, 2005

Ny Death rate of MMC 81073 day~!  Assumed

k Degradation rate of EPO 2.8 day~! Belair et al., 1995

Table 1: Default parameter values of the PV model. *Calculated using steady state
equations.
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Figure 3: A typical PV model based on the development of stem cells, RBC counts and
EPO in case of a JAK2V617F positive myeloid neoplasm for default parameters. Red
curves are malignant cells, blue shows healthy hematopoietic cells and black denotes the
sum of the cells. Initial conditions are (g, yo, Tr, yr, £) = (2.6 - 10*,1,4.8 - 10'2,0,13.1)
at t = 0. Time is plotted on the z-axis. The left panel shows the growth of malignant
stem cell count and the middle panel shows the evolution of mature malignant cell count.
Hematopoietic stem cells are higher in number as compared to malignant cells in the early
years. However, after some years, the malignant stem cells overcome the hematopoietic
stem cells leading to the extinction of the healthy cell population. The right panel shows
that the concentration of EPO decreases over time.
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2.2 Dimensionless PV model

We non-dimensionalize and scale the model, transforming the variables and
parameters such that simplified equations are obtained. Another advantage
is that the parameters cluster together thus the resulting number of governing
parameters becomes minimal. We non-dimensionalize the equations of the
system (1) using the following scales,

Ty = j0X07y0 = QO}/ELJJT = i'T'XTvyT = g?"}/;a E = éEqvt = 1?7—

where small letters with hat are scaling constants, capital letters on the right
side are dimensionless variables and 7 is dimensionless time.

dX, 1
—-— = — pe2 | Xo, 7a
dr ¢ (1+X0+pxlyo pz) 0 (72)
dYy 1
- = — Y b
dr <y<1+py1X0+Yb py2) 05 ( )
er Eq qz2
= —Xo———X, |, 7c
dr (1 + QZlEq 0 1+ QISEq ) ( )
Y, E
v, _ <—‘1y0 — Ly& , (7d)
dT 1 + qy1E1 1 + Qy?)Eq
dE, 1 104
-4 _ = —F . 7
dr € (1 +raX, + 1Y, q) (7e)

The selection for scaling constants and the grouped parameters is given
in table (2). Note, the dimensionless PV model given in equations (7a)-(7e)
involves 15 parameters and the actual values of dimensionless parameters
are given in table 3 computed using the values in table 1.

I 1

'C%O = Cgx 330 = C’[jy

B = pag0y(10*r,cpp) ! Or = paydy (104 r,cyy) 71
& = p(10%*k)~! t=k(ry)™!

Pz1 = Cmy(cyy)_l Px2 = (dLO + ax)rz_l
DPy1 = ny(cmx)71 Dy2 = (dyO + CLy)T’yil
Ge1 = azp(10%k) 71 qy1 = ap(10%k) 1

qz2 = nxk(rw)71 qy2 = nyk(rx)il

qx3 = ﬁxp(104)_1 qy3 = ﬁyp(104)_1

Te1 = kopag0z; (104 r,c00) ™ Tea = kopaydy (10%7,¢yy)
Co=Fk Cy = kry(re)
e=ry(k*)"!

Table 2: Definition of variables and parameters of the dimensionless PV
model.
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Parameter Explanation Value
Dl Inhibition by MSC on HSC 1.08
P2 Death rate of HSC 0.40
Dyl Inhibition by HSC on MSC 0.93
Dy2 Death rate of MSC 0.17
qz1 Factor affecting production of RBC 0.002
Qz2 Death rate of RBC 4.48
4z3 Factor affecting removal of RBC 0.005
Gy1 Factor affecting production of MMC 0.002
qy2 Death rate of MMC 4.48
Qy3 Factor affecting removal of MMC 0.005
Tel Factor affecting production of EPO 53.07
Tea Factor affecting production of EPO 594
Ca Factor affecting self-renewal and death rates of HSC  2.80
Cy Factor affecting self-renewal and death rates of MSC  6.44
€ Factor affecting production and degradation of EPO  6.37 -1074

Table 3: Default dimensionless (no unit) parameter values of the dimension-
less PV model.

The stem cell dynamic in equations (7a) and (7b) is independent of the
remaining model thus, we refer it to the stem cell PV submodel.

3 Results

Below we present the numerical investigation for the dimensionless PV
model and the stem cell PV submodel, including steady states of the model,
sensitivity analysis, and an in silico approach for treatment.

3.1 Steady states analysis

In this section, we identify the unstable and stable steady states. Since a
non-negative number of cells and concentrations is of physiological interest,
the feasible steady states can be classified as follows,

e a trivial steady state always exists Sy = (0,0,0,0, E,),

e a hematopoietic steady state exists if and only if the malignant cell
count is zero, whereas the hematopoietic cell count is positive Sy =
(Xo0,0,X,,0, E,),

e a malignant steady state exists if and only if the hematopoietic cell
count is zero, whereas the malignant cell count is positive S, =
<07 Yb? 07 YI‘J Eq)7

e a co-existing steady state exists if and only if both hematopoietic and
malignant cell count is positive S = (Xo, Yo, X, Yy, Ey).
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In Figure 4, we identify the various steady states of the stem cell PV
submodel. We use MATLAB to perform simulations and numerical analysis.
The possible steady states depend on the inhibiting strengths p,; and p,;
and the death rates p,o and p,o. Figure 4a illustrates that the trivial steady
state is stable for p,o and p,o greater than 1. At this point, we observe two
scenarios. Decreasing p,o below 1, the stable hematopoietic steady state
emerges and the trivial steady state becomes unstable as illustrated in Figure
4b. This state is hematopoietic corresponds to the healthy state. Instead of
Pa2, if we decrease pys below 1, the stable malignant steady state is shown
while the trivial steady state becomes unstable as illustrated in Figure 4c.
Hence, this investigation reveals the importance of death rates p,o and pyo
to obtain stable hematopoietic and malignant steady states.

(a) (b) () (d)

°l

[FERE RN NN RN NN
[RENE RN RN N NRE NN
R RN RNl

Figure 4: The stem cell PV submodel illustrates that the trajectories for different
initial conditions ultimately approach the stable steady states. Full circles are stable
steady states and open circles are unstable steady states. Green, blue, red and magenta
correspond to trivial, hematopoietic, malignant and co-existing steady states respectively.
The trajectories are shown as black dotted lines. The panels are as follows, (a) pye = 1.1,
py2 = 1.1, (b) py2 = 0.40, pyo = 1.1, (c) pz2 = 1.1, pyo = 0.17, (d) default values (e)
Pr1 = 0.20, py1 = 0.93, (£) pr1 = 0.20, py1 = 4.0, (g) pa1 = 1.08, p,1 = 6.0.

Next, we examine the impact of parameters involved in the hematopoi-
etic and malignant stem cell niche. For the default parameter values, the
inhibitory effect on the hematopoietic stem cells by the malignant stem
cells dominates (p,1 > p,1). In this case, the malignant steady state is
stable, whereas the trivial and hematopoietic steady states are unstable
(See Figure 4d). Decreasing p,; from the default value, a co-existing steady
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state appears at p,; = 0.2 and takes over the stability of malignant steady
state (See Figure 4e). At this stage, we can re-establish the hematopoietic
steady state by perturbing parameters in favor of a healthy cell population.
For example, fix p,; = 0.2 and increase p,;, the co-existing steady state
approaches the unstable hematopoietic steady state. When a co-existing
steady state merges with the hematopoietic steady state, the hematopoietic
steady state becomes stable as illustrated in Figure 4f. The special case
of bistability obtained by increasing p,; from the default value to p,; = 6
gives both stable malignant and hematopoietic steady states whereas the
co-existing steady state is unstable. The stable co-existing steady state is
obtained when two cell populations are equally fit. This state can persist
for several years, especially in slowly developing diseases like PV without
major blood function impairment. However, the transformation to a ma-
lignant or hematopoietic steady state is possible from a stable co-existing
steady state. Therefore, the right treatment approach is essential to achieve
favorable outcomes in a co-existing state. In case of bi-stability of healthy
and malignant cells, the impact of the initial number of cells determines the
fate of cell populations. For example, some initial values converge to the
hematopoietic steady state while the others converge to the malignant steady
state. We may also observe the transient time towards the hematopoietic
and malignant states. Furthermore, the regions exhibiting bistability can
be potentially targeted during the treatment to delay or prevent disease
progression. For instance, in our model, increasing the inhibiting factor
of malignant stem cells, i.e., p,1 increases the basin of attraction for the
hematopoietic steady state. Hence, this investigation reveals the importance
of inhibiting factors for stem cells of both types concerning the successful
therapy of the disease.

We can understand the dynamics of the PV model through the stem cell
PV submodel. Figure 5 illustrates a few cases where a unique steady state is
stable. It shows that all trajectories in the dimensionless PV model approach
a steady state determined by the stem cell PV submodel for various initial
conditions. We convert the time scale to real time for the remaining figures.
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Figure 5: Panels (a), (b) and (c) illustrate a unique stable steady state is attracting.
Z(t) denotes the solution of the dimensionless PV model where time is converted to real

time. Sy, Sp and S¢ correspond to the hematopoietic, malignant and co-existing steady
[1Z(t)—SHull
[1Z(0)=SHull

for the stem cells, corresponding to Figure 4f. Since

is plotted against time for five sets of initial conditions
[1Z(t)=Sul|
[12(0)=Sull
time, Z(t) approaches Sg. Similarly panels (b) and (c¢) correspond to Figure 4d and

Figure 4e showing stability of S, and S¢ respectively.

states. In panel (a)

approaches zero for large

3.2 Sensitivity Analysis

Sensitivity analysis of the dimensionless PV model is performed to explore the
relationship between the input parameters and the PV dynamics outcome.
In clinical trials and practice, the total cell count and the JAK2V617F
allele burden are measured in blood samples from PV patients therefore,
we consider these two criteria for sensitivity analysis. For p,; = 0.2 and all
other parameters are fixed at their default values (See Table 3) leads to a
stable co-existing steady state. We choose 10% variation in the values of the
parameters and calculate the total count of erythrocytes as X, + Y, and the
JAK2VG617F allele burden as X:in at steady state. First, we consider the
parameters involved in the stem cell PV submodel. Figure 6 illustrates that
Dz1, Py1, Pz2 and pyo are sensitive parameters for the mature cell count and
the JAK2V617F allele burden. Hence, perturbing these four parameters
involved in the stem cell dynamics are important for the evolution of PV.
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Figure 6: Panels (a) and (b) show the effect when parameters are decreased (below 1)
and increased (above) by 10%, respectively. For each parameter two columns are shown;
the first (blue) shows the effect on the total number of erythrocytes, X, + Y, and the
second (maroon) shows the effect on the JAK2V61T7F allele burden

Y
P XAV

Next, we observe that the death rates of mature cells g2 and g, are also
sensitive for cell count and allele burden. Finally, r.s a factor affecting the
production of EPQO, is also a sensitive parameter to the erythrocyte count.
Concluding, this investigation shows that stem cell dynamics govern the PV
progression.

3.3 In silico treatment strategies

IFN is known to induce hematological remission in various hematological
diseases like polycythemia vera, essential thrombocytosis, etc. (Kildajian
et al., 2006; Samuelsson et al., 2006; Stauffer et al., 2013; Lindgren et al.,
2018). Despite its use in clinical practice, the mechanisms by which IFN
affects hematopoietic stem and progenitor cells in blood cancer is still under
discussion.

In (Lu et al., 2010) the authors reported the increased death rate in
hematopoietic stem and progenitor cells in vitro after IFN therapy. Similarly,
(Mullally et al., 2013) states that IFN reduces the JAK2V617F allele burden
by targeting malignant stem cells. In addition, the increased death rate
in erythroid progenitor cells is noticed after IFN treatment, resulting in
normalized red blood cell count. In contrast to previous studies, it is reported
in (King et al., 2015) that IFN arrests the disease progression by increasing
cell division and differentiation with no evidence of affecting the death rate
of the stem cells.

Several clinical experiences explore that cancer development during
different treatment phases occur in patients, e.g., complete recovery, relapse,
or entering a co-existing state where malignant and hematopoietic cells
co-exist. Since stem cell dynamics govern the entire system we focus on
the parameters involved in stem cell dynamics. First, we take the death
rate of the malignant stem cell as our treatment parameter. In Figure 7 we
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assume that a virtual patient is in a co-existing state. Simulating a drug by
increasing the death rate of malignant stem cells p,» by a factor 2, a high
malignant cell count co-existing steady state (white area) switches to a low
malignant cell count co-existing steady state (grey area). Figures 7a and
7b show that a high value of p,» normalizes the hematopoietic stem cells
count as well as the erythrocyte count, hence reducing the JAK2V617F
allele burden. In addition, the EPO level is increased as shown in Figure 7d.
Figure 7 is taken as an example of IFN therapy.

(a) (b) () (d)
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Time [Months] Time [Months| Time [Months] Time[Months]

Figure 7: An example of in silico treatment by increasing the death rate of malignant
stem cells. Blue, red, cyan and green correspond to the healthy cells, malignant cells, the
JAK2VG61T7F allele burden and EPO respectively. Panels (a), (b), (¢) and (d) demonstrate
dynamics before treatment and after treatment (grey area). A co-existing state of low
hematopoietic cells and high malignant cells (pz1 = 0.2 from Figure 4e) before treatment,
switches to co-existing state with high level of hematopoietic cells and low level of
malignant cells by increasing p,» from 0.17 to 0.34 and keep all other fixed at default
values.

The bone marrow niche regulates the proliferative capacity of stem cells
and blood cancer is associated with the bone marrow niche (Santar et al.,
2015). It is an ongoing discussion how hematopoietic and malignant stem
cells compete in the bone marrow niche. The microenvironment controls
such competition in the niches, which may be affected by therapies. In a
second scenario (considering a virtual subject being in a co-existing state),
we take the treatment parameter p,;, which captures the inhibitory effect for
malignant stem cells. Before perturbing py:, a co-existing steady state exists
with high malignant and low hematopoietic cell count. Increasing p,; by a
factor three, a co-existing steady state moves towards another co-existing
state (shown in the grey area) where the malignant cell count is lower and
the hematopoietic cell level is higher as shown in Figure 7. In addition, the
JAK2VG617F allele burden is reduced from 86 % to approximately 50 %, and
the EPO level is increased. Hence, the microenvironment for stem cells may
be a good target for therapies.
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Figure 8: An example of in silico treatment targets inhibitory effect for malignant stem
cells. Blue, red, cyan and green correspond to the healthy cells, malignant cells, the
JAK2VG617F allele burden and EPO respectively. Panels (a), (b), (¢) and (d) demonstrate
dynamics before treatment and after treatment (grey area). A co-existing state of low
hematopoietic cells and high malignant cells (pz1 = 0.2 from Figure 4e) before treatment,
switches to a co-existing state of high hematopoietic cells and low malignant cells by
increasing p,; from 0.93 to 2.79 and keep all other fixed at default values.

4 Discussion and conclusions

In this work, a PV model is proposed and analyzed that incorporates both
hematopoietic and malignant cells. In addition, the interaction of EPO with
healthy and malignant mature red blood cells is considered. A dimensional
analysis reduced the number of parameters from 23 to 15. A 2D stem cell
PV submodel facilitates the observation of model dynamics. The existence
and stability of all steady states (trivial, hematopoietic, malignant, co-
existing) in the stem cell PV submodel are visualized in Figure 4. It is
further emphasized that the dynamics of the PV model and the stem cell
PV submodel are similar. Finally, the sensitivity analysis identifies the most
effective parameters for disease progression. We conclude that it is important
to target the stem cells during treatment to prevent the development of the
disease as the main contribution of the overall analysis. This investigation
aligns with the view that the development of blood cancer is linked to stem
cell division and the regulatory feedback mechanism in the niche. Figure 7 is
an example of controlling the division of malignant stem cells by increasing
their death rate p,,. Figure 8 is an example of regulating the feedback
mechanism in the niche by increasing the inhibitory effect on malignant
stem cells py;. The comparison of both figures shows that the death rate of
malignant stem cells may be a good candidate to consider during treatment,
as a small perturbation of the parameter leads to rapid remission.

Figure 9 compares the PV model trajectories with data from PV patients
receiving IFN treatment. Figure 9a and Figure 9b are good examples of
fitting the data for total erythrocyte count to a disease and treatment
course. Figure 9c illustrates data fitting to both erythrocyte count and the
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JAK2VG617F allele burden during treatment for the same parameter set.
Comparison of simulation of the PV model with patient data shows that
the proposed model can reproduce both pre-treatment and treatment data
and is consistent with the dynamics observed in clinics.
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Figure 9: Three PV patients treated with IFN are compared with the PV model. The
data for the total number of erythrocytes (X, + Y;.) are displayed as filled circles for the
periods without treatment (before the 6th year) and as stars during treatment (after the
6th year) in the two leftmost panels. In the rightmost panel data of a third patient during
treatment is displayed. The asterisks represent the total number of erythrocytes, whereas
the boxes represent the JAK2V617F allele burden XT}::YT‘ The model predictions are
shown as full curves for the erythrocyte count and as dashed curves for the JAK2V617F
allele burden decay. The data shown in the first two panels are from (Michiels et al.,
2014). The data shown in the last panel is from the clinical trial “DALIAH” (EudraCT
number: 2011-001919-31).

In summary, the presented model has the novel feature of incorporating
both healthy and malignant cells with different feedback mechanisms de-
pending on both EPO and erythrocytes. The stem cell submodel pinpoints
the governing parameters as well as suggesting novel treatment strategies.
Furthermore, the model indicates that PV is a stem cell-driven disease. It
is supported by the idea that a small population of stem cells, sharing self-
renewal and differentiation properties, balancing homeostasis, and allowing
cancer growth was first introduced in (Makino et al., 1959) and has been
given more attention in recent years. Therefore, it stands to reason that
treatments focusing on the elimination of malignant stem cells reduce disease
load and improve outcomes for patients. A stem cell transplant, or a bone
marrow transplant, is an example of such a promising treatment for blood
cancer where the malignant cells are replaced with the healthy stem cells,
preventing a relapse. As an alternative to stem cell transplant, a few drugs
have been used that selectively target malignant stem cells and induce their
apoptosis rate (Lu et al., 2010; Mullally et al., 2013). Another medical
perspective is that malignant stem cells interact with stem cell niches and
outcompete hematopoietic stem cells. Our model simulations interpret that
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targeting the death rate and the inhibitory factor of malignant stem cells
helps in disease regression. The PV model is able to explain various existing
treatments and suggest novel intervention strategies.
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Glossary

AML Acute Myeloid Leukemia, a cancer of the myeloid blood cells.

EPO A hormone release into the blood stream by the kidney and stimulates
red blood cells.

Erythrocytes Red blood cells.

Erythropoeisis The process of making erythrocytes in the bone marrow.

HSC Hematopoietic stem cell, develop into different type of blood cells.

Hydroxyurea therapy A medication used in sickle-cell disease.

IFN Interferon «, a medication used for an auto immune disorder and for
some cancers.

JAK?2 gene The JAK2 gene is responsible for making a protein that pro-
motes production of blood cells from the hematopoietic cells.

JAK2V617F A somatic mutation in the JAK2 gene which is responsible
for overproduction of blood cells in PV.

MPNs Myeloproliferative Neoplasms, characterized by the uncontrolled
growth of blood cells.

PV Polycythemia vera, characterized by the excessive production of red
blood cells.

RBC Red blood cells.
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Abstract

Hematological diseases are pathological conditions primarily affect-
ing the blood production or blood-producing organs. Polycythemia
vera (PV) is an example of such disease characterized by clonal stem-
cell proliferation of erythrocytes and the presence of the JAK2V617F
mutation. A five-dimensional PV model incorporating healthy and
malignant cells with multiple erythropoietin (EPO) feedbacks is pro-
posed, analyzed and validated. The governing parameters are identi-
fied and their impact on the dynamic especially during treatments is
described. A complete classification of steady states and their stability
is obtained, showing that a two-dimensional stem cell PV submodel
is in one-to-one correspondence with the PV model. Finally, the
model can reproduce clinically observed dynamics reflecting existing
treatments and suggest novel intervention strategies. It follows that
an effective therapy should target stem cell properties such as the
stem cell competition in the micro-environment. The model shows
that a therapy increasing EPO is unfavorable since the total mature
cell count is increased in response to EPO dose. However, decreas-
ing the EPO concentration decreases the total cell count preventing
thrombotic complications.

Keywords: Polycythemia vera, mathematical modelling, EPO, dimensionless
model, steady states, stability, erythrocytes
1 Introduction

Hematopoiesis is the formation of blood cells required by the human body. Different
types of blood cells are derived from the hematopoietic stem cells (HSCs), located
in the bone marrow. A subset of these cells differentiates and classifies into mature
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blood cells, mainly red blood cells (erythrocytes), white blood cells (leukocytes)
and platelets.

In the present work we focus on erythrocytes. Erythrocytes are produced
from stem cells in the bone marrow. A stem cell differentiates into myeloid-
erythroid progenitor cells (MEP), and then to early progenitors stage committed
to the erythroid lineage, i.e., burst-forming unit erythroid (BFU-E) and colony-
forming unit erythroid (CFU-E). The later stages are pro-erythroblast, basophilic
erythroblast, polychromatic erythroblast, orthochromatic erythroblast, and finally,
reticulocytes. The reticulocytes mature into erythrocytes in about 1 to 3 days
[48]. This full process of producing erythrocytes is called erythropoiesis. In
healthy individuals, erythrocytes are enveloped by macrophages in the spleen
after 120 days [48, 35]. This process is controlled by the growth hormone factor
EPO. EPO is released to the bloodstream by the kidneys with a half-life of 6
hours [38]. The hormone EPO stimulates the production of new red blood cells.
Furthermore, a high EPO concentration may accelerate the differentiation of BFU-
E recruited into CFU-E; increasing the number of erythrocytes in the bloodstream
[2, 24, 28, 29, 33, 52]. In general, an appropriate balance is necessary between
the rate of cell production and destruction in maintaining normal homeostasis.
It is believed that EPO inhibits the cell death to control the number of cells
[24, 29, 52, 54, 59).

Polycythemia vera (PV), a subcategory of myeloproliferative neoplasms (MPNs),
is a clonal disorder of hematopoiesis thought to originate from hematopoietic
stem cells [11, 26, 27]. Characteristics of PV are the excessive production of
erythrocytes, presence of the driver mutation JAK2V617F and low production of
erythropoietin (EPO) [12]. Patients older than 60 years or having a history of
thrombosis are at high risk. The prospective fatal complication in PV includes
the disease transformation into myelofibrosis or acute myeloid leukemia [6, 27]
due to the JAK2V61TF allele burden which is found in 95% of patients with PV
[26, 34]. The subnormal serum EPO levels are a part of PV diagnostic criteria
declared by the World Health Organisation in 2016. Hydroxyurea (HU) is a
widely used drug against PV. In [30], the increased EPO concentration in plasma
after initiation of HU has been addressed. However, the mechanism behind the
increased plasma EPO concentration is unknown. One possibility is that HU
decreases the erythroid cells. The authors concluded that the measurement of
EPO serum should be carried out before initiation of treatment if the diagnostic
or prognostic procedures includes EPO.

In the present paper, we introduce and investigate a mathematical model
of PV that incorporates the competition between healthy and malignant cells
(characterized by the JAK2V617F mutation) and EPO feedbacks on both cell lines.
We conduct a thorough mathematical investigation and address the following
questions: Which physiological steady states does the model allow, and how
do these vary as parameter values are perturbed? Which group of parameters
controls the dynamics of the system and how? What is the role of stem cell
dynamics concerning the dynamics of the entire system? In particular, how does
the competition of stem cells impact the full system dynamics? Which parameters
can usefully be targeted in interventions?
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A few mathematical models of erythropoiesis exist in the literature. In
[47], the focus was primarily observing the dose-response relationship between
bone marrow and spleen micro-environments for erythropoiesis building on work
described in [37, 60, 61]. In [9], the model consisted of two partial differential
equations, describing the cells in the bone marrow and erythrocytes in the blood.
Belair et al. [9] described the physiological processes leading to the production
of erythrocytes. This model was modified and analyzed by different authors
and fitted to experimental data for phlebotomy [39, 40]. Mahaffy et al. [39, 40]
concluded that both models provided an insight into disease state centered around
stem cells. Further, the death rate of progenitor cells depending on EPO was
added with a moving boundary condition for erythrocytes [3]. This work captured
the dynamics involved in periodic hematological diseases. The author showed that
growth factor (EPO) and destabilization of the feedback loop from red blood cells
to EPO may be responsible for such oscillations. In [14] and [16], the mechanism
of self-renewal of progenitor cells was included in the erythropoiesis model. Both
models were used to simulate anemia and parametrized with mice data. A detailed
model was presented in [20] concerning the differentiation series from a stem cell
to an erythrocyte. The authors accounted for a mechanism triggering the active
destruction of young red blood cells called neocytolysis. The model simulated
blood donation and administration of erythropoiesis stimulating agents. The
same group of authors did parameter estimation with patients’ data through a
mathematical model of erythropoiesis [21]. The model given in [7] was based on
work [14] where the authors considered growth factor EPO dynamics, and feedback
control functions describing immature cell self-renewal and differentiation. One
of the mathematical model presented in [8] incorporated iron and evaluated the
effects of inflammation and neocytolysis. In [55], a three compartment model was
applied to blood loss dynamics in healthy subjects having a negative feedback
mechanism for erythropoiesis. Recently, the same group of authors extended the
model to optimize personalized phlebotomy schedules for patients with PV [36].

The pioneering work of erythropoiesis [9, 38, 39, 40] dynamics laid the ground
for hematological disease modelling. A few modelling studies of myeloid malig-
nancies were investigated in [25, 62]. The Cancitis model included inflammatory
factor dynamically as the driver and trigger of MPNs [6, 50]. The reduction of
the Cancitis model is given in [5, 45] where [45] included the effect of T-cells and
[5] represented the model in terms of JAK2V617F and white blood cell count. In
the next section, we present our novel mathematical PV model.

2 The PV Model

In the PV model, the hematopoietic stem cells (HSC) proliferate into healthy
erythrocytes (RBC) and malignant stem cells (MSC) proliferate into mature
malignant cells (MMC). In addition, different feedbacks between erythrocytes and
EPO are considered. The malignant cells are characterized by the JAK2V617TF
mutation. Here, we do not explicitly model the first mutational hit but consider
expanding or suppressing existing populations of malignant cells.
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The PV model consists of five ordinary non-linear differential equations, the
number of HSC (zg), the number of RBC (z,), the number of MSC (yo), the
number of MMC (y,) and the concentration of EPO (E). The conceptual model
is illustrated in Figure 1. The PV model is inspired by mathematical models given
in [6, 13] and reads

dz
7; = (Tx¢x —dzo — ax)x07 (13)
dy
an = (rydy — dyo — ay)yo, (1b)
d;; = Ay (B)xo — doy(E)y, (1c)
dyr
dt = ayAy(E)yO - dyr(E)yr, (1d)
dE
¥ ryYr) — E. 1
= )~k (1¢)
with 1 1
o and ¢, = (2)

N 1+ CzzT0 + Czy¥Y0 1+ Cyz X0 + Cyy¥Yo '

The rate of self-renewal is denoted as r, and r, for HSC and MSC respectively.
It is believed that the self-renewal is inhibited by regulatory niche feedback
[57], this inhibition is implemented here through Michaelis-Menten-like functions
¢z(x0,Y0) and ¢y (x0, yo) [17, 53, 56]. Feedback constants ¢, and ¢,y represents
the inhibitory effect on the self-renewal of HSC, while the corresponding effect on
the self-renewal of MSC is captured by ¢y, and c,,. The stem cells die with rates
dyy and dy,.

The parameter a, denotes the rate at which the HSC differentiates into RBC,
while a, represents the rate for MSC transforming to MMC. The progenitor cells
are considered stages between stem cells and mature cells and are accounted
for by amplification factors A, and A, for HSC and MSC, respectively. These
amplification factors are dependent on EPO as EPO is thought to stimulate the
production of mature red cells [2, 24, 28, 29, 33, 52],

E

E
Ay(E)=0y—— 4
WE) =8y e @

where J, and J, are positive constants and o, and «, are positive constants.

It is hypothesized that an increase in the growth factor concentration EPO
leads to a decrease in the apoptosis rate [24, 29, 52, 54, 59]. Therefore, we assume
that d,,(F) and dy,.(E) are decreasing function of E s.t img_,o0 dpr(E) = 0 and
limg_yo0 dyr (E) = 0, by choosing

1

dm(E) Zﬂxma

(5)
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1
= Uyma (6)

where 7n;, 1y, B, and 3, are non-negative constants. For E = 0, d,, = 1, and
dyr = 1y.

dyr(E)

Figure 1: The boxes illustrate the compartments of the PV model. The full arrows
represent the rates of the flows between and out of these compartments. Black stipulated
lines (labeled ¢, and ¢,, respectively) represent the interaction between bone marrow
niches and stem cells. Stem cells (HSC and MSC) may self renew (r, and ), die (dzo and
dyo) or differentiate (ag, a,), while mature cells (RBC, MMC) are produced (with rates
az Az (F) and ayAy(E) due to multiplication by the progenitor cells). Mature cells do
not differentiate but die with rates d,(E) and dy,(E). EPO stimulates the proliferation
rates and inhibits the death rates of both RBC and MMC, while the amount of mature
cells inhibits the production of EPO. Black dotted lines present the interaction of EPO
with the remaining model.

We assume a negative feedback function f(z,,y,) depending on z, and y, for
EPO production. This function is a monotone decreasing in x, and ¥, and of the
form of Hill function [9, 10],

p

f(x'ray’l“) = 1 + k'(](xr _’_yr)mv
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where p, kg and m are Hill constants. We consider m = 1 in the subsequent
analysis.

2.1 Parameter Estimation

The differential equations system (1) has 5 variables and 23 parameters, which are
assumed to be positive. Here we identify the parameter values for typical steady
state of the variables. Some of the parameter values are taken from the literature
to make a first educated guess. Some of them can be found by using steady-state
conditions, whereas the rest are assumed.

In the stable hematopoietic steady state the numbers of stem cells are ap-
proximately 10* to 10 [13, 17, 25, 41, 53] and the number of erythrocytes is
10 to 1013 [18, 48]. Moreover, the steady state value of EPO is within (6 — 16)
[U/L] [20, 39, 48]. Thus, based on literature, we choose hematopoietic steady
state values to be (Zo, 7o, Zr, Ur, E) = (2.6 - 10%,0,4.8 - 10'2,0, 13.1) for the normal
healthy individual.

Hematopoietic stem cells divide approximately once per year [1, 19]. We
take r, = 5- 1073 per day as [17]. In addition, elimination from the stem cell
compartment is approximately 0.002 cells per day, dyo = 2-1073 per day 6, 17, 45,
50]. Malignant stem cells have an advantage as compared with hematopoietic stem
cells that their self renewal rate is higher thus, ry, > r,. For simplicity we assume
dyo = dgo and ay = a, [6, 19, 45, 50] since otherwise is not known. We consider
that ry > dyo + a, thereby equation (la) in steady state gives a, = 3.58 - 107°.
Since malignant cells are less sensitive to micro-environment niche feedback as
compared to hematopoietic cells [31, 49], we assume Cyy < Cyz < Cpy < Czp. The
values are taken from [45, 50].

The life span of RBC for healthy humans is about 120 days [9, 13, 20, 38|, we
choose the removal rate from the erythrocyte compartment dependent on EPO to
be d.(E) = 1/120 per day. We choose 1, = 8 - 1073 per day such that for £ = 0,
dzr(0) = 1. Using d-(E) and E in equation (5), B, = 91073 is obtained.

In addition, equation (1c) at steady state gives, A,(E) = 3-10°. We choose
8, = 8.6 - 10% such that the model is in a steady state at ¢t = 0. With the help of
equation (3), a; = 5-1073. In contrast, parameters for malignant red blood cells
are not considered in existing literature. Therefore, we choose 1, = 1, 8y = Bz,
ay = oy for simplicity. To give the advantage to MMC, we choose amplification
factor 6, = 3 - 10! which is greater than 4.

For EPO, we need to estimate the degradation rate k£ of EPO and Hill function
parameters, p and ko. In [20, 38, 40], the half life of EPO is reported about 4 to 24
hours and in [7, 9, 20, 38, 39] the decay constant of EPO varies between 2 and 7 per

day thus, we suppose that the half-life of EPO is 6 hours, k = % ~ 2.8 day~!.
The parameter p = 1.56 - 10 is estimated in [9, 39], thereby equation (le) in
steady state gives kg = 8.9- 107!, See details in Appendix (A).

The default parameter values are summarized in table 1 and a typical PV
model outcome is shown in Figure 2.
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Parameter Value Unit Explanation

Ty 5-1073 day~!  Self-renewal rate of HSC

Ty 1.15-1072 day~' Self-renewal rate of MSC

g 3.58-107° day~! Differentiation rate of HSC

ay 3.58-107° day~! Differentiation rate of MSC

e, 2-1073 day~! Death rate of HSC

dy, 2-1073 day~' Death rate of MSC

Cow 5.6-107° - Inhibition by HSC on HSC

Cya 52-107% - Inhibition by HSC on MSC

Cay 5.4-107° - Inhibition by HSC on MSC

Cyy 50-107% - Inhibition by MSC on MSC

D 1.56-10*  day~—! Production rate of EPO

ko 89-1071 - Factor affecting production of EPO
fo 5.1073 - Factor affecting production of RBC
Qyy 5-1073 - Factor affecting production of MMC
Bz 9.1073 - Factor affecting production of MMC
By 9.1073 - Factor affecting removal of MMC
S 3-10° - Stimulation rate of RBC

dy 3-101 - Stimulation rate of MMC

N 8-1073 day~! Death rate of RBC

My 8.1073 day~! Death rate of MMC

k 2.8 day~! Degradation rate of EPO

Table 1: Default parameter values of the PV model.

Figure 2: A PV model shows the progression of disease with initial conditions,
(20, Yo, Tr, Yr, E) = (2.6 - 10*,1,4.8 - 10'2,0,13.1) at t = 0.. Red curves denote ma-
lignant cells, blue are healthy hematopoietic cells and black curves are sum of the cells.
Time is plotted on the z-axis. The left panel shows the evolution of malignant stem cells
count and the middle panel shows the evolution of mature malignant cell count. In the
early phase, HSCs are large in number than MSCs. However, after some years, when
disease evolves, MSCs become dominant leading to the destruction of HSCs. The right
panel shows the degradation of EPO over time.
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3 Dimensional Analysis

A dimensionless form of the PV model is obtained by clustered parameters and
scaling the variables of the model to facilitate the analysis. We non-dimensionalise
the equations of system (1) using the following scales,
xo = 20 X0, Yo = Yo Y0, Tr = Tr Xy, Yr = YrYr, B = éEqv t=1r

where small letters with tilde are scaling constants, capital letters are dimensionless
variables and 7 is dimensionless time. (See details in Appendix B). The new
system of equations consists of 15 parameters. The dimensionless PV model is as
follows,

dXg 1
200 - - X, 7
ar Ca <1+Xo+pm1yo pz2> 05 (7a)
dYy 1
— = _— — Yo, b
dr <y<1+py1Xo+Yo py2> ’ (7b)
dX E
p = — __X,— LXM (7¢)
T 1+ QJ:lEq 1+ Qx3Eq
dy, E,
; Ul B YA LYT, (7d)
T 1+ leEq 1+ qygEq
dE 10*
el = - E,. (Te)
dr 1+ reer + TeQY;'
Wherev € = 7]%2:7 Cz = k7<y = k%vpzl = %7p$2 = dzqr%apyl = %7171/2 ==
d/l T T T 1 1, k 1
J(;ﬂ;rayaqg‘l = fé)T[];me = n”kyq:c?) = E)Ti’qyl = ﬁ)%;QyZ = %7(@3 = %vrel =
fg’frazfz yTe2 = fgfraycéy . Default values of the dimensionless PV model are com-
zCxx zCyy

puted from the default parameter values of the PV model.

By singular perturbation theory, the equation (7e) involve small epsilon terms
€ = 6.37 - 10~* that may be taken in the limit of vanishing left hand sides and
thereby we obtain the PV reduced model. Using the values in table 1, the values
of dimensionless parameters are computed in table 2.

The stem cell dynamics given by equations (7a) and (7b) is referred to the stem
cell PV submodel, since the stem cell dynamics is independent of the remaining
system.
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Parameter Value Explanation

Pl 1.08 Inhibition by MSC on HSC

P2 0.40 Death rate of HSC

Dyl 0.93 Inhibition by HSC on MSC

Dy2 0.17 Death rate of MSC

Q1 0.002 Factor affecting production of RBC

Qa2 4.48 Death rate of RBC

qz3 0.005 Factor affecting removal of RBC

ay1 0.002 Factor affecting production of MMC

Qy2 4.48 Death rate of MMC

dy3 0.005 Factor affecting removal of MMC

Tel 53.07 Factor affecting production of EPO

T'e2 594 Factor affecting production of EPO

Ca 2.80 Factor affecting self-renewal and death rates of HSC
Cy 6.44 Factor affecting self-renewal and death rates of MSC
€ 6.37 x 107*  Factor affecting self-renewal and death rates of MSC

Table 2: Default dimensionless parameter values of the dimensionless PV
model.

3.1 Positivity and Boundedness of Solutions

Consider the dimensionless PV model (7) for non negative initial conditions. The
system (7) is Lipschitz continuous in (R4 U {0})°, since all expressions on the
right hand side have continuous partial derivatives in the domain which guarantee
local existence and uniqueness of the solution to the system (7) [42].

In the following, we demonstrate the positivity of solutions. From equation
(7a), if %ﬁm) = 0 for any 7 = 719, then Xo(7) = 0 for all 7 > 79. Similar argument
holds for Yy (7). From equation (7c), it is easily observed that djﬁ >0 for X, =0.
Similar reasoning applies for equation (7d) and (7e). Hence the flow will remain
in the non-negative octant.

A trapping region Tg exists, having the property that trajectories initially
inside T can not escape it. Let T = [0, Mx,] % [0, My,] x [0, Mx,] x [0, My, ] x
[0, ME,], where M denotes a trapping boundary for the corresponding variables.
In the following we will find such trapping boundary.

First, consider equation (7a),

dX 1
: = C:r ( px?) X07

dr 1+ Xo+paYo
1
< (g <X0 —Px2> Xo.

Thus, a trapping region bound for Xy may be defined, Mx, = 1% such that,

% < 0 for Xp > i. Similar argument can be constructed for equation (7b)
1

with upper bound My, = e
Y
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Next consider equation (7e),

4
edﬁ'l T 1+ 7’@1)1((2 +reaY, Fa
<10* - E,.
Thus,
% <0 for E; > 10" = Mg,.

Finally, consider equations (7c)

dX E
ro_ q X — qz2 X,
dr 1+ g Ey 1+ qu3E,
qz2
< Mp Mx, — ——X,.
= TR T Gus M,
Thus,
dX, Mg Mx, (1 + gz3M
<0 for X, > —4 %o + a3 M, = My,,
dr qz2
and similarly for (7d)
dy, Mg, My, (14 q,3M.
<0 for v, > e M+ 43 Mr,) = My...
T Qy2

Hence, there exists a forward invariant trapping region 7g such that the solutions
starting outside Tr are attracted into the region. Hence, the trajectories exist
globally in forward time [42].

4 Analysis of the Stem Cell PV Submodel

4.1 Existence and Stability Criteria of the Steady States

First, we make a complete analysis of the existence of various steady states and
state their stability conditions regarding the stem cell PV submodel. Afterward,
we use this information for the dimensionless PV model.

The steady states (X, Yp) for the stem cell PV submodel, Eqgs (7a) and (7b)
fulfil,

1 _
(L) %=, 8a
G <1+Xo+px1Yo p2> 0 (8a)

1 _
L) =o 8h
o ) (8b)

Since the number of cells and concentrations are required to be non-negative,
the feasible steady states can be classified w.r.t their stem cells as
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a trivial stem cell steady state, Dy, if and only if Xy = Yy = 0,

e a hematopoietic stem cell steady state, Dy, if and only if (Xo, Yp) = (Xog, 0)
with X()H > 0,

e a malignant stem cell steady state, Dy, if and only if (Xo, Yo) = (0, Yor)
with YOL >0,

e a co-existing stem cell steady state, D¢, if and only if (Xo, Yo) = (Xoc, Yoc)
with Xgo > 0 and Yo > 0.

The possible steady states depend on the stem cell parameters. The parameter
pz1 describes the inhibition of Yy on Xy, py1 describes the inhibition of X on Yj

whereas p;2 and p,o are the degradation rates of X and Yy respectively.
Do
1 1
Py2

We limit ourselves to studying p;2 # 1 and py2 # 1 and define v =

Proposition 1. Conditions allowing existence and stability of feasible steady
states are,

1. A trivial stem cell steady state, Dy, always exists and is stable for
pz2 > 1 and py2 > 1 and unstable for p,2 <1 and py < 1.

2. A feasible hematopoietic stem cell steady state, Dy, erists and is

unique if and only if pye < 1 with Xog = Ii — 1. Dy is stable for
1 1

py1 > and unstable for py1 <7
3. A feasible malignant stem cell steady state, Dy, exists and is unique
if and only if pyo < 1 with Yo, = i — 1. Dy, is stable for pz1 > v and

unstable for py1 < 7.

4. A feasible co-existing stem cell steady state, D¢, exists and is unique
if pz2 < 1 and pya < 1 and either (a) or (b) is fulfilled, where

1

(a) ps1 <7y and py1 <~~'. In this case D¢ is stable.

(b) ps1 >y and pyy > v~ In this case D¢ is unstable (a saddle).

D¢ is only feasible, when Dy and Dy, exist. The coordinates of D¢ are

v, — Xow—ps1YoL v Yor—py1Xon
Xoc = 1—pz1py1 and Yoo = 1=pzipy1

Proof. A trivial stem cell steady state D, always exists. For stability, we
compute the Jacobian of the stem cell PV submodel,

¢ (Hpiﬂfo —p 2) o GpmXo
J = %\ (1+Xo+pz1Y0)? x (1+X0+pz1Y0)? (9&)
_ CyPy1Y0 ¢ 1+py1 Xo _
(14py1 Xo+Y0)? Y <(1+py1X0+Y0)2 DPy2

The determinant of the Jacobian Jp, at Dy is,

det(Jpy) = Coy(1 — pa2)(1 — py2).

84



12

det(Jp,) is positive either if p;o < 1 and pyo < 1 or if pyo > 1 and py2 > 1, and it
is negative if either pyo > 1 or pys > 1.
The trace of the Jacobian Jp, at Dy,

tr(Jpy) = Ce(1 = pa2) + Gy (1 — py2),

is negative if pyo > 1 and py2 > 1. Hence, Dy is a stable steady state for po > 1
an py2 > 1 and unstable for p;o < 1 an p,o < 1.
A hematopoietic stem cell steady state, Dy, follows from equation (8a),

- 1
Xog=——1, (10)
Px2

Hence, Xog is unique and feasible if and only if pyo < 1. Let hy = (upz2(1l — pa2)

o (———1
and hy = M(v’l — py1). Thus, hy > 0 for pye < 1 and hy < 0 for
1+py1<$_1)

py1 > v~ while hy > 0 for p,; < y~1. Hence, the determinant of the Jacobian
Jp, at Dy is, det(Jp, ) = —hihg, is positive for p,; > ~v~1 and negative for
py1 < 771 Likewise, the trace of the Jacobian Jp,, at Dy is, tr(Jp, ) = —hi + ha
which is negative for ho < 0. Hence, Dy is stable for p,1 > ~~1 and unstable for
Py1 < 7_1~

A malignant stem cell steady state, Dy, follows from equations (8b),

1

_ 1
Yoo =— — 1. (11)
Dy2

Hence Yoz, is unique and feasible if and only if py2 < 1. Let I1 = (ypy2(1 — py2)
CaPa2 (ﬁ_1>
and [y = y>(7 — pz1). Thus, I > 0 for pyo < 1 and lp < 0 for py1 >y

while lp > 0 for p;1 < 7. Hence, the determinant of the Jacobian Jp, at Dp,
is, det(Jp, ) = —lils, is positive for p;1 > v and negative for p;; < . Likewise,
the trace of the Jacobian Jp, at Dy is, tr(Jp,) = —li + lo which is negative for
lo < 0. Hence, Dy, is stable for p,; > v and unstable for p;1 < 7.

A co-existing stem cell steady state D¢, follows from the equations (8a)
and (8b),

_ _ 1
Xoc + parYoc = — — 1, (12a)
Dx2
_ _ 1
py1 Xoc + Yoo = — — 1. (12b)
py2

The left hand side is positive for feasible Do and the right hand sides equals Dy
and Dy, respectively. Hence, feasible D and Dy, are necessary for feasible Dc¢.
In case py1py1 7# 1 there is at most one co-existing steady state i.e.,

- Xor — pa1 Yo

Xoo = (iH DPz1toL (13a)
— Px1Py1

_ Yor, — p1 X,

Yoo = W’ (13b)
— Pz1Py1
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or equivalently

1

Xoo = 22 (y-— , 14a

0 = poiom (v = pa1) (14a)
1

Yoo = 22 (v 1—pa). 14b

‘ 1- Pz1Py1 ('Y yl) ( )

1

Xoc and Yo are feasible either for po < 1, Py2 < 1 py1 < and p,1 <y or for

P2 < 1, py2 < 1, py1 > and py1 >y L

The entries of the Jacobian at D¢ by using the expressions for steady states,
1

1 _ _
T Xoo+pai Voo P2 and 1+py1 Xoc+Yoc — Py2,
Iy (Xoo, Yoo) = —CepiaXoc, (15a)
Ipe.2) (XKoo Yoo) = —GaparpiaXoc, (15b)
Ipeen)(Xoe. Yoo) = —(ypypieYoc, (15¢)
Ipe2)(Xoc, Yoo) = —GpiaYoc. (15d)

Thus, the trace of the Jacobian becomes,
tr(Jpe) = —Cap2aXoo — Gp2a Yo
7(Jpe) CePzaXoc — CypyaYoc

which is always negative, since all the parameters are positive.
The determinant of the Jacobian,

det(Jpe) = CapaalypiaXocYoc (1 — paipyr),

is positive if and only if p;1py1 < 1 and D¢ is stable, if py1py1 > 1, D¢ is a saddle
steady state.
Note that p,; < y~! and p,1 < 7 implies p;1p,1 < 1 whereas py; > v~ ! and
Pyt

pz1 > 7y implies py1py1 > 1. Note, in case py1p,1 = 1, = i and a line of

equilibria exists. However, this degenerated case will not be considered.

O

In Figure 3, all the possible topologies from Proposition (1) are displayed for
positive pg1, Py1, Pr2 and py2 except pr2 =# 1 and pys # 1.
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Figure 3: Phase plane diagrams of the stem cell PV submodel illustrate the various
cases in proposition 1. Full circles are stable steady states and open circles are unstable
steady states. Green, blue, red and black colors correspond to trivial, hematopoietic,
malignant and co-existing steady states respectively. Stable and unstable manifolds are
shown where a saddle co-existing steady state exists (panel (f)). The panels are as follows,
(a) pz2 > 1 and py2 > 1, (b) pyo < 1,py2 > 1 and py1 > 771, (¢) paa > 1,py2 < 1 and
Pz1 > 7, (d) Pz2 < ]-7py2 < 17pm1 > and Py1 < 7_1a (e) Pz2 < 1apy2 < 1>p:1;1 <7 and
Pyt > 7‘1 (f) Pz < 1, py2 < 1,pg1 >y and py1 > 77" (8) paz < 1,py2 < 1,pz1 < and
Dyr <7 .

The analysis can be extended from a local analysis to a global analysis as
done in another two-dimensional model [5] relying on the Poincaré-Bendixson
theorem. Hence, for criteria corresponding to Figure 3f, bistability appears.
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In all other panels, the unique, locally stable steady state is attracting
solutions with initial condition.

4.2 Bifurcation Analysis

In this section, we illustrate that the model trajectories tend to a stable
malignant state Dy, to a stable healthy state Dy, or to a stable co-existing
steady state D¢, as t — oo depending on inhibiting factors p,; and py
and death rates of the stem cells p,o and pys. The parameters p,i, ps2, Py1
and py» become the bifurcation parameters, where 7 serves as a threshold
between healthy and malignant states. p,; and p,; denote the inhibiting
strengths and, p,o and p,» are the death rates for the stem cells. Bifurcation
diagrams are constructed relying on Proposition (1) and topologies shown
in Figure 3.

In Figure 4, p,2 and py» are used as bifurcation parameters with fixed
values of p,; and p,;. In Figure 4(i), we let p,; > v and p,; < y~' therefore,
the co-existing steady state does not exist. An important transition line
is pgz2 = py2 separating malignant and healthy cases. In region e, the
hematopoietic steady state is stable, and the malignant steady state is
unstable, revealing the importance of death rates.

In Figure 4(ii), ps1 is decreased by 50% and fixed. This allows for a
region with topology (g) i.e. a stable co-existing steady state appears. A
similar figure may appear by increasing the value of p,;.

In another scenario shown in Figure 4(iii), p,1 is increased compared to
panel (i), where bi-stability (f) appears satisfying p,; > v and p,; >~y . In
this region, the co-existing steady state is a saddle fixed point (see Figure
3f). A similar figure emerges by decreasing py;.
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() (i) (i)

Figure 4: A bifurcation diagram for different values of p1, pz2, py1 and py2. Various
regions are denoted by letters referring to topologies in Figure 3. In panel (i), py1 and py
are fixed at default values. Figure (ii) and (iii) are similar to (i) but with decrease and
increase in p,; by 50% compared to the default value, respectively. Crossing a solid curve
implies a change in type of stable steady state. Crossing a dotted curve indicates the
identical stable steady state in both regions, but the number of steady states is changed.
The letters (a), (b), (c), (d), (e), (f) and (g) refer to the sub-figures of Figure 3.

The competitive effect of hematopoietic and malignant stem cell niche
parameters p,; and p,; are now investigated in greater detail. Particularly,
we investigate the hypothetical treatment affecting the relative stem cell
competition % by setting

Pz1 = (1 - 0')’}/, (16&)
pp= oyl (16Db)
where o € [0,1]. Hence, for small o, p,; >> p,1 and for o close to 1

Py1 >> Pal-
Equation (16) is substituted in equation (13)

Xow — (1 —o)vYor,

X 17
0c l—o(l=0) (172)
> Yor — o' Xow

Yoo = . 17b
0c 1—0(1-o0) (17D)

The co-existing steady state goes continuously from Dy for ¢ =0 to Dy

for o = 1. Hence, intervention solely addressing iii is sufficient to revert a
Y

stable Dy, situation, to D¢ being stable and finally reach a stable Dy thus,

leading to cure (See Figure 5).
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Figure 5: The left panel shows a one-parameter curve that connects the malignant
steady state to the hematopoietic steady state given by the equation (17) by changing
the value of p =L In the right panel, the corresponding bifurcation diagram is shown with

stability reglons denoted by letters referring to Figure 3 whereas the stipulated line is the
one-parameter curve given by equation (16).

5 Steady states of the Dimensionless PV Model

After a complete classification of the topologies for the stem cell PV submodel,
we return to study the dimensionless PV model. The steady states (Xo, Yo,
X, Y., E,) for Eqgs (7) fulfil,

Co ( S ! = —pr) _0 =0, (183)

1+ Xo + pa1Yo
1 _
) Vo=0, 18b
Cy<1+py1XO+}/O py2> 0 ( )
. E,(1+qsE,) -
X, = q<+—q3ﬂ)X07 (18¢c)
v _ E (1 + qy3E )
Qy2(1 + leE )
_ 10%
E,= . —.
1 + 'reer + re2Y;“

Yo, (18d)

(18e)

Corollary 1. The existence of the steady states of the PV model given in
equation (7) is guaranteed by the stem cell PV submodel given in proposition

(1), i.e.,

o A trivial steady state Sy = (0,0,0,0,10%) always exists.

o A feasible hematopoietic steady state Sy = (Xom,0, X, 1,0, Eynr)
exists if and only if a feasible Dy exists in the stem cell PV submodel.

e A feasible malignant steady state S = (0,Y;r,0,Y,r, E,r) eists
if and only if is a feasible Dy, exists in the stem cell PV submodel.
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e A feasible co-existing steady state Sc = (Xoc, Yoo, Xro, Yoc, ch)
ezists if and only if a feasible Do exists in the stem cell PV submodel.

See Appendix (C) for proof.

6 The Reduced PV Model

From the dimensionless form, it follows that e in equation (7e) of order
10~* may be considered as smaller than compared to 1. Thus, we may use
a quasi steady state approximation for the concentration of EPO. Thus,
we substitute the expression of E, into the remaining equations (7a-7d)
providing the reduced PV model,

4Xo = Cx( ! me) Xo, (19&)

dYy 1
—_— = - Yo 19b
dT Cy (1 + pleO + }/b py2) 0 ( )
dX, E .
= X, - —2 __x, (19¢)
dr I+ QxlEq I+ QxSEq
dY, E
_ Py T2y (19d)
dr 1+ qnF, 1+ gyl
with
_ 10

(20)

—
T 1t ra X, +raYs
The quasi steady state approximation shows an excellent agreement with
the PV model during disease progression as illustrated in Figure 6.

Figure 6: Comparison of the reduced PV model (stipulated curves) and the PV model
(full curves) for default parameter values. Red curves are malignant cells, blue shows
healthy hematopoietic cells, cyan denotes the sum of the cells and, the right panel shows
the concentration of EPO. All variables are converted into variables with units.

The dimensionless PV model and the reduced PV model have identical
steady states. The stability of the steady states in the reduced PV model
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(19) is analytically tractable and addressed in the following, showing a
complete agreement with the stem cell PV submodel. We consider p,o # 1

and pyo # 1.
Proposition 2. Ry = (0,0,0,0) is a stable steady state for p,o > 1 and
Dy2 > 1 pya > 1 whereas it is unstable for pyo <1 and py < 1.

Proof. The Jacobian of the trivial steady states Ry (see Appendlx D) is a
triangular matrix and two of the four eigenvalues 5 and are

’ (1+1042 (1+1o4q 1)
negative but the remaining two (,(1 — py2) and (,(1 pr) may be positive,
negative or zero. Hence, Ry is stable for p,» > 1 and p,2 > 1 and unstable
for p;o <1 and py < 1.

]

Proposition 3. When a feasible hematopoietic steady state

Ry = (Xou,0,X,5,0) exists, it is stable for p,; > v~ ' and unstable for
pyl < 771

Proof. At Ry, the Jacobian for the hematopoietic steady state can be

calculated. Three of the four eigenvalues, (;pgo(pre — 1), qygﬁ-{%
A
and [T PR T ey T ey G e where Ag:i < 0 (see Appendix D) are
-1
always negative for p,» < 1 whereas the last 22— — p,; = v~ ! — p,; may

P'1-2
be positive, negative or zero depending on Whether Py1 is less than, greater

than or equal to y~!. Hence, Ry is stable for p,; > y~! and unstable for
Py <L O
Proposition 4. When a feasible malignant steady state Ry, = (0, Yor,,0,Y,1)
exists, it is stable for p,1 > v and unstable for p,; < 7.

Proof. The Jacobian for the malignant steady state R, is a triangular

matrix. Three of the four eigenvalues, (,py2(py2 — 1), qu% and
€ s x
Aaa

(S G T ey TG Ew G Ty where Ayy < 0 (see Appendix D) are always

_1

-1

negative for p,o < 1 however the last *— — p,1 = v — p;1 may be positive,
P 2

negative or zero depending on whether p,; is less than, greater than or equal

to v. Hence, Ry is stable for p,; > v and unstable for p,; < 7. O

Proposition 5. When a feasible co-existing steady state Reo exists, it is
stable for p,1 < v and p, < v~ and unstable for p,, > v and Dy1 > 1

Proof. The Jacobian for the co-existing steady state can be calculated (See
Appendix D). Two of the four eigenvalues are always negative but the other
two may be positive, negative or zero. It is shown that Rq is stable for
D1 <7y and py; < v~ and unstable for p,; > v and Dy1 > v~ L. ]

In conclusion, the existence and stability of the steady states in the
reduced PV model is a one-to-one correspondence with those of the stem
cell PV submodel.
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7 Results

This section demonstrates various in silico treatments and the role of pa-
rameters in the prognosis of a virtual patient using the dimensionless PV
model.

In Silico Analysis of Stem Cells

The bone marrow niche influences the biological behavior of hematopoietic
stem cells via different signaling cascades and maintains normal hematopoiesis.
More efforts have been put into understanding the regulatory mechanisms
of niche, which ensures hematopoietic homeostasis by controlling the self-
renewal and differentiation of HSCs. The development of therapies targeting
the interaction of the stem cells with a niche for myeloid malignancies like
PV is getting attention in recent years [31, 46, 51, 58]. Here, we perturb stem
cells inhibiting factors p,1 and py; for treatment. To obtain a co-existing
steady state, we choose p,; = 1.3, pyo = 0.25 p,; = 0.1 and p,p = 0.4 while
all other parameters are fixed at their default values.

In Figures 7a-7b the solution of the PV model is projected on the (X, Yy)
plane. The parameters involved in the stem cell PV submodel affect the
dynamics of erythrocytes and EPO (see Figures 7c, 7d, 7e). In Figure 7a
by simulating a drug increasing p,; and decreasing p,1, a co-existing steady
state with high malignant cell count (X, Yy) = (1.21, 1.38) switches to a co-
existing steady state with low malignant cell counts (Xo, Yy) = (2.95,0.47).
It takes approximately two years for this simulated treatment to reduce the
disease load. Thereafter, treatment is set on pause by resetting p,; and p,;
at their previous values. During almost half a year, the trajectory moves
significantly back towards the co-existing steady state with high malignant
cell counts (see Figure 7b).

Thrombosis is the most prevalent complication for patients with PV [23].
Therefore, it is important to control the excessive production of erythrocytes
to reduce the risk of blood clots. It is achieved by perturbing inhibiting
factors resulting in the normalized number of hematopoietic stem cells and
erythrocytes (Figures 7c and 7d).

The other characteristics of PV is a high load of the JAK2V617F allele
burden [26, 27, 34] and low EPO plasma levels [12]. Figure 7e shows that
the concentration of EPO is increased by changing inhibiting factors in favor
of hematopoietic stem cells. In addition, Figure 7f illustrates that adjusting
inhibiting factors reduces the JAK2V617F allele burden from 53% to 16%,
which is favorable. In conclusion, it may suggest that future PV therapy
should focus on targeted treatments, which can affect the bone marrow
micro-environment.
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(a) (b)
(c) (d)
(e) ()

Figure 7: An example of the disease dynamics from the PV model is shown. The filled
grey circle in panel (a) is obtained using pz1 = 1.3, pz2 = 0.25, py1 = 0.1 and pyo = 0.4.
Decreasing p,1 and increasing p,; in panel (a) shows that a patient is moved from a
co-existing steady state (upper grey circle) with high malignant cell count towards a
co-existing steady state (lower black circle) with low malignant cell count and normalized
hematopoietic cell count at p;; = 0.1, pyo = 0.25 p,; = 0.35 and pyo = 0.4. In panel
(b), setting back pgy1 and py1 to their original values, the patient moves back toward
the original co-existing steady state (upper black circle) following the stipulated black
curve. Panels (c), (d), (e) and (f) demonstrate the dynamics during the treatment period
(grey) and dynamics after treatment. Red, blue, green and cyan curves show malignant
cells, hematopoietic cells, the concentration of EPO, and theJAK2V617F allele burden
respectively. Note, the time scale is converted into real time.
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In clinical practice, the JAK2V617F allele burden, %J:YT, is measured and
is expected to increase due to the expansion of malignant cells for untreated
PV. Many authors advocate that the potential influencing therapeutic
choices should target the bone marrow niche since the bone marrow niche
homeostasis is disrupted, which promotes the survival of malignant stem
cells [15, 44]. Figure 8 shows that perturbation of inhibiting factors, p,
and p,;, may improve or worsen prognosis by affecting the allele burden
whenever the co-existence steady state is stable. The left panel of Figure 8
shows that decreasing p,; improves prognosis by reducing the JAK2V617F
allele burden. Similarly, the right panel of Figure 8 shows that increasing
the p,; value reduces the co-existence steady state allele burden.

1 0.6
0.8
o .04
o> o>
5706 T
o o] 0.2
0.4
0.2 0
0 1 2 0 0.2 0.4 0.6
Daz1 DPy1

Figure 8: Allele burden at the steady state for a parameter regime where the co-existing
steady state is stable. The left panel shows that by increasing p;1, the allele burden also
increases, whereas the right panel shows that increasing p,; decreases the allele burden.
In the left panel, p,; = 0.1 and in the right panel p;; = 1.3 whereas p,o = 0.25 and
py2 = 0.4 in both panels.

In Silico Analysis of Erythrocytes

Several treatments aim to lower the number of erythrocytes to prevent blood
clots and other complications in patients with PV. Figure 9 shows that
increasing the g,;-value has a positive effect on the mature cell dynamics.
The JAK2VG61TF allele burden at steady state is reduced to 9% (stipulated
curves) from 53% (full curves). In general, the influence of IFN on EPO is still
poorly understood, but we may observe in Figure 9 that the concentration
of EPO is increased by increasing gq,;.

Phlebotomy is applied as first-line therapy to PV patients with a dose of
aspirin. It normalizes the erythrocyte count and decreases the thrombotic
complications. In [43], the case of a PV patient is studied where the onset
of the disease is controlled by phlebotomy alone. In our model, we perform
phlebotomy by removing 10% mature cells count as illustrated in Figure 10.
It is shown that phlebotomy increases the EPO concentration and decreases
the mature cell count for a short period. After two months, the cell count
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and EPO level return to the baseline value without altering JAK2V617F
allele burden.

Figure 9: An example of in silico treatment by decreasing the differentiation rate of
malignant mature cells. Blue, red, cyan and green represent the healthy cells, malignant
cells, the JAK2VG617F allele burden and EPO respectively. For a co-existing steady state
we set py1 = 1.3, pg2 = 0.25, py1 = 0.1, pya = 0.4. Before treatment a co-existing state
containing low hematopoietic cells and high malignant cells switches to a co-existing state
consists of high hematopoietic cells and low malignant cells by increasing g1 from 0.002
to 0.6. Note, the time scale is converted to real time.

Figure 10: An example of in silico treatment by phlebotomy. Blue, red, cyan and
green represent the healthy cells, malignant cells, the JAK2V617F allele burden and
EPO respectively. For a co-existing steady state we set py1 = 1.3, pyo = 0.25, p,; = 0.1,
py2 = 0.4. After phlebotomy at day ten, the mature cells and the EPO level returns to
the baseline value in two months. The JAK2V617F allele burden remains unchanged.
Note, the time scale is converted to real time.

In Silico Analysis of EPO

In clinical trials, EPO is the famous erythropoiesis-stimulating agent stim-
ulating erythrocytes. EPO dose is used in several hematological diseases
such as anemia, PMF, etc. However, any medication regarding EPO has not
yet been initiated in PV. We perform a few in silico trials to observe the
effect of EPO concentration on the mature cell count and the JAK2V617F
allele burden. Figure 11 illustrates that by increasing 7., decreases the EPO
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concentration and the number of total mature cells. In contrast, initiating
EPO therapy by injecting EPO dose increases the mature cell count as
illustrated in Figure 12 whereas the JAK2V617F allele burden remains
unchanged.

Figure 11: The total erythrocyte count (ch + Yrc) and EPO concentration E at the
steady state for a parameter regime where the co-existing steady state is stable (pz1 = 0.2).
The figure shows decrease in X,¢c + Y,.¢c and F by increasing res.

Figure 12: An example of in silico EPO therapy. Blue, red, cyan and green represent the
healthy cells, malignant cells, the JAK2V617F allele burden and EPO respectively. For a
co-existing steady state we set py1 = 1.3, pz2 = 0.25, py1 = 0.1, py2 = 0.4. EPO dose is
given at day one, which increases the healthy and malignant red blood cells whereas the
JAK2V61T7F remains unchanged. Note, the time scale is converted to real time.

Fitting of Data

The model trajectories compared to three data sets of individual PV patients
receiving IFN treatment are illustrated in Figure 13. Comparing simulation
results to patient data validates the proposed model and shows its capability
to reproduce data before and after treatment. We identify a set of parameters
for three subjects and report values in tables 3, 4 and 5. The remaining
parameters are fixed at their default values.
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Figure 13: The three panels correspond to patients having PV and treated with IFN are
compared to the PV model. In the left two panels, data for the total erythrocyte counts
(X, +Y,) are shown in green diamonds before six years without treatments whereas,
after six years, data for cell count are shown in dark grey stars curve during treatment.
In the rightmost panel, stars represent the total erythrocyte counts, whereas squares
denote the JAK2V617F allele burden X,,,}j:Y,, data from a patient during treatment. Model
predictions are shown as full curves for erythrocyte counts (black untreated and blue
treated) and for the JAK2VG617F allele burden (maroon). The data shown in the first two
panels is from [43]. The data shown in the last panel is from the clinical trial “DALIAH”

(EudraCT number: 2011-001919-31).

Before treatment After treatment

Parameter Value Parameter Value

Ty 9-1073 Ty 9-1073

ay 3.7-107% ay 3.7-107%
dzo 2.1073 dzo 3-1074
dyo 2-1073 dyo 7-1073

Os 2.07 - 108 Oz 2.4-10%
8y 2.19-10% 8y 5-107

Na 857-107% n, 8.57-1074
Ny 3.2.1073 Ny 3.2.1073
ko 5.22-1071 kg 5.22-107 11

Table 3: Parameter values for the left panel in Figure 13. The parameters
in red are calibrated by fitting data during treatment.
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Before treatment After treatment

Parameter Value Parameter Value

Ty 1.2-1072 1.2-1077
ay 8-107° ay 8-107°
dao 2-1073 dao 3-104
dyo 2.4-1073 dyo 7-1073

Oz 2.07 - 108 Oa 3.3-108
8y 2.19 - 10® 8y 2-10%

N 857-107% n, 8.57-1074
Ny 3.2.1073 Ny 3.2-1073
ko 5221071 kg 5.22-10711

Table 4: Parameter values for the middle Figure 13. The parameters in red
are calibrated while fitting data during treatment.

Parameter Value Parameter Value

Ty 1-1073 ay 1-1071
dxo 6-10* dyo 2-107°
ko 5.22-1071 p 3.10°

b 2.1-108 by 2-10%

N 2.6-1073 Ny 1.5-1073

Table 5: Parameter values deviated from the default for the right Figure 13.
All other values are set at their default.

8 Discussion and Conclusions

In this article, a PV model integrating both hematopoietic and malignant
cells with multiple EPO feedback is analyzed. A thorough mathematical
investigation of the model is presented. The number of parameters is reduced
from 23 to 15 as a result of dimensional analysis. Stem cell dynamics can
be investigated from a two-dimensional stem cell PV submodel, and four
kinds of steady states may exist, i.e., trivial, hematopoietic, malignant and
co-existing steady states. The existence and stability of all steady states
in the stem cell PV submodel are identified, analyzed and visualized in a
phase plane Figure 3. With a quasi steady state approximation, the PV
model consisting of a system of non-linear ordinary differential equation is
approximated by a four dimensional system, the reduced PV model. Finally,
it is demonstrated that the steady states of the stem cell PV submodel and
the steady states of the reduced PV model are in correspondence. Thus,
stem cell properties determine the qualitative outcome of the PV model.
Other authors have previously supported the crucial importance of stem
cell dynamics for the behavior of full system. In [41], a compartmental
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model is proposed and it is shown that a feasible and stable steady state is
obtained by modulating the self-renewal rate of HSC. Another important
work [13] indicates that differentiation and apoptosis rates related to the
stem cell compartment are essential parameters to simulate patient data.
The parameter changes in the stem cell and leukocyte compartments are
sufficient to destabilize the steady state.

In biomedical literature, the irregular stem cell division and the bone
marrow niche’s regulatory feedback are drivers for blood cancer development
which are incorporated in our model. According to these perceptions, our
investigation shows that the stem cell population is a good candidate for
therapy to prevent disease progression. The death rates, p,o and p, are
related to the fitness of stem cell type whereas p,; and p,; describes niche
feedback. Decreasing p,; and increasing p,; may turn a stable full blown
malignant steady state into a stable hematopoietic steady state, as illustrated
in Figure 5 and Figure 7. The similar concept is discussed in [50] where the
relation between niche feedback, stem cell fitness and inflammatory stimuli
is well explored for a good prognosis. Moreover, stem cell therapy is useful
to normalize the blood count and EPO level in the blood.

Besides stem cell therapy, many clinical experts focus on reducing the
erythrocyte count in the peripheral blood, preventing thromboembolic events.
Phlebotomy is a standard therapy implemented in PV patients for removing
an excessive amount of blood cells. Some investigations address that inter-
vention with interferon-a (IFN) increases the differentiation of progenitor
cells in the myeloid cell line [32]. We implement a similar idea where we
reduce the differentiation of mature malignant cells by increasing g,; in
Figure 9. It increases the healthy cell count and decreases the malignant cell
count in the blood, and the JAK2V617F allele burden is reduced. Before
any drug therapy, phlebotomy is initiated when the patient is diagnosed with
PV. It reduces the chances of thrombotic events for a short time. Figure
10 shows the reduction in mature cell count after phlebotomy, whereas the
EPO concentration is increased.

It is an interesting discussion whether EPO should be taken into account
as a diagnostic or prognostic tool in PV patients. We perform simulations to
investigate the effect of EPO dose on the mature cells and the JAK2V617F
allele burden (See Figure 12). Our model reveals that EPO dose might
increase the mature cell count with no effect on JAK2V617F. However,
decreasing EPO concentration decreases the total erythrocyte count and
stop the risk of thrombosis. In the case of available data of EPO for PV
patients, the proposed model can be validated, and we may acquire a better
knowledge of EPO mechanism in PV patients.
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Appendix

A Parameter Estimation

The steady state of the full model (1) has the following form, where bars
indicate steady state values

(re¢e — dao — a3)To = 0, (A.la)
az Ay (E)xg — dpr(E)Z, = 0, (A.1Db)
p —
—F— —kE= Al
1+ kot 0, (A.1c)
with o=9r=0 and
1
= T A2
¢ 1+ Coxlo ( )
_ E
() 1+ a,F (A-3)
drr E =Nz & A4
(E) =n:175F (A4)

Based on literature, we choose hematopoietic steady state values such as
(Zo, Yo, Tr, Jr, E) = (2.6 - 10%,0,4.52 - 10'2,0, 13.9).

Hematopoietic stem cells divide approximately once per year [1, 19]. We
let 7, = 51073 per day [17]. In addition, elimination from the stem cell
compartment is approximately 0.002 cells per day, d,o = 2 - 1072 per day
[17, 45, 6, 50]. ¢z = 5.6 - 107° is taken from [45, 50] based on reasoning
that hematopoietic cells are more sensitive to inhibitive niche feedback than
malignant cells. From equation (A.la),

Ay = Tm¢z - drOa

gives a, = 3.58 - 1072,

Since the life span of RBC for healthy humans is about 120 days [9, 13,
38, 20], we choose the removal rate dependent on EPO from the erythrocyte
compartment to be, d,,.(E) = 1/120 per day. We choose 1, = 8 - 1072 per
day such that for £ = 0, d,,.(0) ~ n,. Thereafter, from equation (A.4),

Bz:%(d:@?)_l)'

Thus, 8, = 9 - 1073 is obtained.
From equation (A.1b),
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gives A,(E) = 3-10°. We make a first guess for §, = 8.6 - 10%. With the
help of equation (A.3),
1 [ 6,F
ay, = = — — 1
5\ 4,(B)
providing o, = 5-1073.

In [20, 38, 40], the half life of EPO is reported to be about 4 to 24 hours
and in [7, 9, 20, 38, 39] the decay constant of EPO varies between 2 and 7
per day. Thus, we suppose that the half-life of EPO to be 6 hours as default
value, k = # ~ 2.8day~!. The parameter p = 1.56 - 10* is estimated in
[39, 9], thereby from equation (A.lc),

o ()

we obtain kg = 8.9 - 1071

B Dimensional analysis

Formulating differential equations in dimensionless form may reduce the
number of free parameters by collecting the original parameters into clusters
of parameters. All variable in system (1) are scaled by a constant having
the unit of the variable and denoted with same symbol as the variables but
with a tilde above. Thus, we non-dimensionalise the equations of system (1)
using following scales,

To = fOXO7y0 = :’J()YE),flfr = ermyr = gTK’J E = éEmt = {7—

where small letters with tilde are scaling constants, capital letters are di-
mensionless variables and 7 is dimensionless time. Hence, system (1) in
dimensionless variables reads,

% - % (1 + lefo)zz + CeyYoYo o ax) “oXo,  (B1a)
% - j% (1 + nyfo)zz + ¢yyYoYo o~ ay) oo (B.1b)
dX, t 20168, .

- i (P g aX). B
2 - yi (%gm - #;qum) | (B.1d)
% N 2 ((1 - k‘o(fr];(r +g.Y) kéEq) ' (1)
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ie.
X - 1 d, x
4Xo = 1.t — 0 ta Xo, (B.2a)
dr 1+ CppToXo + CocyyOYG Ty
. d
ﬁ = ’r’yt = ! = - i ay) YO7 (B'Qb)
dr 1 + cye®oXo + cyytoYo Ty
er ~ axdléEq - ~ m
= t————— 20Xy —t——=X,, B.2
dr 71+ eE,) *"° " "1+ péE, (B-2c)
dY;* ~ a 52éE - ~ T2
= { Y 4 5Y, — t——Y,, B.2d
dr UL+ aneE,) "0 T "1 1 BueE, (B:2d)
dE, ~ P -
— =1 —tkE,. B.2
dr e(1+ ko(@ X, 1+ 3.Y,) ‘ (B-2¢)
We may choose
1
Ty = — =~ 10%, (B.3a)
C.’L'ZE
- 1 1
Cyy
- pazo 11
A e O T B.3
* 1047, Cpp (B-3¢)
- pay52 12
, = —2= 10", B.3d
Y 10%7,cyy ( )
~ p 1
¢ = 1o 710 (B-3¢)
- k
t = —~10% (B.3f)
Tz
and the system (B.2) becomes
dX() 1 dacO + Gy
— =k — Xo, B.4a
ar <1+Xo+§:—zyo Y ) 0 (Bda)
1 d
Yo _ 1y _ _ G tay )y, (B.4b)
dr ry \ 1+ ﬁXO + Y, Ty
X E. k 1
- %M x, (B.4c)
dr 1+ 104qu Ty 14 10_4qu
dy, E k 1
_ . 2k — Y, (B.4d)
1
edqu = ; p —FE,. (B.e)
— Az payo2
’ 10~ (]' + ko <1(§1rzclmXT + 104;;0%}/;))
Sete=g~ 107, G=k~1,{ =k~ 1pn=2"R1pe= dtts
10_17py1 = Ei—z ~ 10_17py2 = dy(:ﬁ% ~ 10_17(].171 - ﬁ;f])ﬁ ~ 10_37Qz2 ==
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,«x ~1,q.3 = 104k ~ 10~ 37Qy1 = % 10_37Qy2 = % ~
1073, roy = fipE0e 2 10% 1oy = i = 10°, gives
dXo 1
0 _ Xo,
dr Ce (1 T X0+ puYo me) 0
dYy 1 v
o~ M\l +py1X0 Ty, D)o

qz2

dr 1 + q;clE 1 + QISEq
dr - 1+ leEl 1 + QySEq
dE,

(o,
dy, ( dy2
(

- L, ).
1—|—T61X +T62Y q)

XT’)7
v).

C Existence of steady states of the full model

Consider the system of Eqs (B.5). Expressions for steady state solutions are,

1 _
x S = — Pz =0,
¢ (1+Xo+p:c1Yo p2) ‘

1 _
| V=0,
Cy (1+py1Xo+Yo py2> 0

X — Eq(l + %3@;) X(),
QQ:2<1 + QxlE )
Eq(l + qzﬂ?q)}—/

Q2 (1 + g Fy)

}_/,r,:

9

P 10°
T\ 14+ raX, +roY,. )

(C.1a)
(C.1b)
(C.1c)
(C.1d)

(C.1e)

Following, we will show that the existence of feasible steady states of
the full model is guaranteed by steady states of the stem cell submodel. We

consider p,o # 1 and pys # 1.

A trivial steady state exists always i.e. Sy = (0,0,0,0,10%).

For hematopoietic steady state, Sy = (Xow,0, X,x,0, E ), substi-

tute equation (C.le) in equation (C.1c),
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Qo221 X35 + qoare1(10%qe1 + 2) X2y + (—10%re1 Xomr + qu2(1 4+ 10%¢21)) X, — 10%(10%qe3 + 1) Xom = 0.
(C.2)

Since the coefficients with the first two terms i.e. quor?, and guore; (10%q.1+
2) are always positive whereas the last term —10%(10%g,3 + 1) Xy remains
always negative for positive Xop i.e. pgo < 1. Thus, by using Descartes’ rule
of sign, there exists exactly one positive root of equation (C.2) i.e. X,z
thus, a unique F,p also exists. Hence, a feasible Sy exists if and only if Dy
exists in the stem cell submodel.

For malignant steady state, S, = (0, Y, 0,Y,., EQL), substitute equa-
tion (C.1e) in equation (C.1d),

ay2r2aYp + ay2re2(10°gy1 + 2)Y7 + (=10%reaYor + gy2(1 + 10%¢21)) Yo — 10*(10%gy3 + 1)Yor, e % :

Since the first two terms remain positive whereas the last term remains
negative for positive Yy, i.e. py2 < 1. Thus, by using Descartes’ rule of sign,
there exists exactly one positive root of equation (C.3) i.e. Y,r, thus, a
unique F,;, also exists. Hence, a feasible Sy, exists if and only if Dy, exists
in the stem cell submodel.

For co-existing steady state Sc = (Xoc, Yoo, Xrc, Yro, Eyc), substi-
tuting expressions (C.1c) and (C.1d) in (C.1e),

E4E§ + Egqu -+ EQE? - €1E; - GOES = 0. (04)

where €4 = ¢u3¢y1qy27e1 Xoc + Gu1dx2qy3Te2Yo0, B

€3 = (%1%1%2 + Te?(Qxl + Qy3>}/OC)QQc2_+ <Q9c3 + le)QyQ_TelXOC7

€= (((1— 104(]7;1)%1 + @1 )qy2 + Te2Yoc ) Qw2 + Qyare Xoc -

€ = 104%2%2(%1 + qy1 — 107%) and ¢ = qxgqy2104. For positive Xy and
Yye, coefficients €, and €5 are always positive and ¢, remains negative. The
coefficients €, is negative for

1 Te1 X, Teo Y
10* > ( 1200 | Te2 °C+qm+qy1)
qx19y1 qz2 qy2
positive for
1 Te X, Te Y;
104 < ( 120C + 210C + 01 + qyl) )
qz19y1 qz2 qy2
and zero for
1 ro X, Too Yo
104 — ( elA0C + e210C + a1 + qyl) )
qz191 G2 qy2
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The coefficient €; is negative for ¢,1 + q,1 > 104, positive for g, + g1 <
10~* and zero for q,1 + q,1 = 107,

Cases | €4 | €3 | €2 | €1 | € | Roots

1% + |+ |+ |+ |- |1posreal root

ond + I+ 7= - - | 1 pos real root

3rd + 1+ 1+ |- - | 1 pos real root

4th + 1+ 1- + - | 3 or 1 pos real roots
5tk + |+ ]-/+]0 - | 1 pos real roots

6" +[+1]0 +/- | - | 1 pos real roots

Table 6: Descartes Rule of sign

Let us analyse the 4" case, where ¢; > 0 and €, < 0.
€ = 1074 <Mﬁ + M) + 1074(@[&01 + le) - Qxl%ﬂ- SiHCG qz1 Z 07

2
qz2 qy2

¢ > 0 and g1 + g1 < 107*, we may say, ¢;1 < 107* and ¢,; < 107%, thus,
€y > (10—4 (m + m) +107*(qu1 + qy1) — 10_4qy1> or
qy2

qz2

€ > (107 % + %) +107*q,; ) which is always positive. It ex-
cludes the possibility of three positive roots. Hence, there exists a unique
positive root of E,. From equations (C.1c) and (C.1d), we obtain a unique
(X,c, Yyc). Hence, a feasible S¢ exists if and only if D¢ exists in the stem

cell submodel.

%108

0.5}

-0.5¢

b . . |
-100 -50 0 50

Figure C.1: Graph for polynomial equation (C.4) related to Case 3, for
P = 0.2 and p,; = 2 (co-existing steady state does not exist for default
values of p,1 and p,1). Roots are denoted by filled black circles.
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D Stability of the reduced model:

In this section, we evaluate the Jacobian at various steady states.
At Ry the Jacobian of a trivial steady state is

a1y 0 0 0
. 0 929 0 0
Tro = azir 0 azgz 0 (D-1)

0 42 0 Q44

where
ailr = Cz (]- - sz)a

Qg2 = Cy (1 - pr),
10%

ag1 = 1410%gm1 °
a [ x2
33 1410%g,1
_ _ 1ot
a42 - 1+104Qy1 9
_ qy2
(144 - 1+104Qy1 .

At Ry the Jacobian of the hematopoietic steady state is

a; a0 0
0 9292 0 0
az; 0 ass asn

0 49 0 g4

Jry =

where

a1 = CuPa2 (pm - 1)>

a1 = Cmpxlpr (p:rZ - 1)7
1

== (i )

(ay = _104

31 1+7e1 X, mg+10%g,1

j— 33

a33 - (1+7‘61X7‘H+104(Izl)2(1+T'61XTH+104QJ73)27
s = 101270 A34

34 7 trer X, g +107¢01) 2 (14 re1 Xy i +10%3g43)2
Ut — _104

42 1+T61X7‘H+104qy17
a _ (Iy2(1j'7"eerH)

44 — 1+T'61XTH+104‘1y1 ’

Azz = (*%27”31)_(;151 —2-10* (%2(%3 + gz1 + ﬁ))_ﬂH + X%H) TngfH) +
(—108 ((qgl + (4Qz3 + 5,?03)(111 + 2??83 + %) qngrH + quBXOH —+ 5)(1%) 7“31XTH) +
v (gw3+7o7) X
(_2 +10%7rer (gas + 1ov) ((‘Zzl + 5157) (@e1 + 107)@u2 Xrmr + W)) +

(—1012%2 (%3 + ﬁ) (‘Zzl + #)2) :
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v2q23 X,
A34 % + 5- 103 (Qx2Qm3(Qm1 + 1(1)4) 2. 104 XOH) X H+
(qw3 (T?ﬁff{ + ¢22(¢e1 + 157) ) + %) it + (Gos + 151)* Xon -

At R the Jacobian of the malignant steady state is

a1 0 0

as; azg 0

a1 0 as3
0 a2 a43 ag4

o O O

Jr, =

where

ain = Ca: L — Pz2 |,
EEY

ag1 = Cyprpyl (pr - 1)7

Qg2 = Cypy2 (pr - 1>,
104

aszy =

1+7'22Y7‘L+104£]xl ’
Qs — — —dz2(LtreaYrr)
33— 1+T62Y’V‘L+104q1‘1 ’
Uro — _10*
42 1+T62Y7‘L+104qy1 ’
un = _ 10271 Ayg
43 — (1+re2YrL+104le)2(1+""62YTL+104Qy3)2 ’
Qs — Agq
AT (e Yo +10%gy1)? (14762, +10%g,3)%
— T22‘1y2‘1y3Y:’L Te2 Te2 V2
A43 = = 108 + 5.103 (Qy2Qy3(qy1 + 104) + 2104 YOL) Yt,‘L‘f'

+ (qys <T§21003 + 4y2(qy1 + 159 ) i T§213(’)0L) Yoo + (gy3 + 155)*Yor-

Aua = (_qy27"52YrL ~2-10" (qyz(qyg + @1 + 5155 ) oL + L) rgggL) 4
(7108 ((qyl (4qys + 5157) a1 + 5kes + 5597 ) Q2 Yer + 2qy3Y0L + 2 %3) @2{%) 4
(_2 110"z (gys + 107) ((le + 5157 ) (@1 + 157 @2 YoL + w)) +
(_1012%2 (qys + 161) (@1 + #)2) .

At Rc the Jacobian of the co-existing steady state.

ay; a0 0
T = agn azx 0 0 (D.4)

az; 0 azs as
0 as as3 aus

where B -
an = G (e — paa) = —CarBa Ko,
a2 = —Cxpm(—;(ﬁfm = —Cxpmp?cz)_(oc,
A = —Cypy1W—fm = _Cypy1p§2%07
ag = Gy <W%+;1+1)2 —py2> = —CypfﬂYOCa
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azy = =
= — - 104941 ’
(1+re1ch+Te2YrC)<m+l> ¢
s — — 10%re1 Xoc + 10%s17e1 Xoc
e — 104¢ 1 X 101
(Lt Koo treaYoe)? (m-&-l) (14rer XpotreaYec)? (W
B 10%g22qe3re1 Xre — L2
P 4
N o 10%gpz e e s et
(I4re1 Xpo+reaYrc) (HTEIXTCLEQVTC +1) (+re1 Xpct+re2Yro) +1
- 10*
Qg2 = N _ 10%q,, ’
(1+r51ch+Te2Yrc)(m+l) o
a34 = — 10%rea Xoc 10%ga1res Xoc
- Y LT ¢ 8 1041 i
(I+re1Xpc+re2Yrc) (1+T‘eerC+T‘52YrC+1 (tre1 XrotrezYro) (WH)
. 104QI2¢113T62XTC
% o 10%qp3
4 (A4rea Xrc+re2Yrc) (1+7'eIXTCiT€2Y7‘C+1
Qg9 = - _ 8 10%q,p ’
(1+7"51XTC+T€2YTC) (m+l) o
43 = — 10%re; Yoo + bl o
_ . oty ~ 104
o 10%q; 3yl
(A+re1 Xpc+reaYec) (1+relxrc+reerc +1) (HraXrctretro) (1”615(’"0”62?“
B 10%gy2qy3re1 Yoo
~ 104q
2 y3
(I+re1 Xrc+re2Yrc) (m
Qg4 = — 10%re2 Yoo + —
= — 104q 1 Ve 10t ’
N 3 YUyl
(I4re1 Xro+reaYrc) (1+T51XTC+T52Y1"C+) (+rerXrotresiro) (1+T51XTC+T62YTO+1>
_ 10%gy2qysre2Yro dy2
_ 104q 2 104%3
of _ 10%ay3 O Xty L
(A+raXrctre2Yrc) (1+7-e1 X, ctreaY,c +1> (Frafetrarel |

The elements of array given above are negative except ag;.
The characteristic polynomial at Jg,, is,

()% —(a11 +ag2) A\c+aiiage —asars) ()% — (ass+asa) Ao+ as3a44 —azqaqz) = 0

The eigenvalues are,

1
Ali,Q ~ 9 <a11 +az £ \/(all — ag)? — 4(a1a22 — CL21(112>

and

1
>\3i,4 =5 (CL33 +ag £ \/(a33 — a44)? — 4(as3a44 — a34a43>

Let us investigate the type of eigenvalues. In case ajjass > asia12 and
a33a44 > G34043, all four eigenvalues are negative and R¢ is stable.

a11G22 > Q21012 <= PriPy1 < 1

and 33044 — A34G43 = AX:Q is positive
where

A; =107 (raX,c + reY,c + 1),

Ay = 5 (a1 (a2 + as + as) ¢,2) (a6 + a7),
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Ag = (T’elx C +TEQYC + 104 Qys + 1) (TelX C +7‘32}70 + 104qy1 + 1)2(T61XTC +
Te2K"C + 104Qx3 + 1) (TeerC + re2Y;C + 10 dz1 + 1)

(%1 X, c+res Yic+10* qy1+1) qy2
108 )

az = Pl Tc + ch (qy3 + 2¢.3 + 04 + 3T€1120§Tc) Tzlv

(2-10° qm3+2)(qys+f%4))
3

a)p =

as = SXTC ( < Tc + YI“C <Qy3 + Qa3 + 5. 103) Te2 + Tel,

ag = (2re2Vyo + 2 10%q3 + 2) ( 2N Vo (a5 + 1) e + 12 + 72.1104),
) _ 2 _ _
as = Yoo (% rea¥eo 4 gs+ 104) re2 (re1Xro + reaYrc +10%qes + 1),

_ 2
re1Xr Te2Yrc Yr
ag = ( 1104 = 2 <+ qdz1 + 104) qz2,

qyzrelXoc(TelX7vc+7’eerc+104qy1+l)2(Te1X7~c+7“e2377~c+104qx3+1> ( e1ch+ E2Y'C+Qy3+1o4)

a7 = 1012
Hence, R¢ is stable for pyip,1 < 1ie. py <7 and p,y <v7*
In conclusion, the stability of the steady states in the reduced model is

one-to-one correspondence with those of the stem cell submodel.
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CHAPTER 5

Mathematical model of pathological dy-
namics of thrombopoiesis with multiple
TPO feedbacks

5.1 Introduction

In this chapter, we present a mechanism-based mathematical model of essential throm-
bocythemia (ET). ET is characterized by the excessive production of platelets. There
are several arguments behind the pathophysiological dynamics of platelets in ET pa-
tients. One of them is that the thrombopoietin (TPO) serum levels are significantly
increased compared with normal subjects despite a high number of platelets. TPO is
the principal growth hormone that regulates megakaryocyte and platelet development.
It stimulates the differentiation and maturation of megakaryocytes, inhibits their death
rate, and stimulates the release of platelets via fragmentation of megakaryocytes. Re-
cent studies show that TPO receptors increase the self-renewal of hematopoietic stem
cells, especially under stress and inflammation. [32]. TPO is internalized, degraded and
removed from the peripheral blood primarily by platelets [70; 99]. The relation between
TPO and platelets is not yet been investigated in ET patients.

In case of pathological conditions, TPO is reported to have a significant effect. In
[66; 113], TPO is investigated as a stimulating agent of megakaryocytes, which ulti-
mately increases platelet production in thrombocytopenia. It may hypothesize that the
feedback loop between TPO and megakaryocytes is disturbed in patients with ET [98].
An inadequate binding of TPO to its defective receptor may increase TPO serum levels
in ET compared to a healthy individual [51; 69]. Hence, the increased TPO levels might
be the consequence of an abnormal platelet population and disease progression in ET.

Moreover, a few pieces of evidence show that TPO stimulates blast colony formation
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in samples from approximately 50% of patients with acute myeloid leukemia (AML)
[82], and enhanced proliferation of a megakaryocytic leukemic cell line [84]. It is also
investigated that TPO induces cell cycle activation and may protect AML blasts from
programmed cell death [114]. However, there are some contradiction, for instance, in
[37], the argument that TPO affects tumor cells is not supported [37].

We develop a novel mathematical model based on the following biologically moti-

vated assumption,

Assumptions:

1. Al: TPO stimulates both healthy and malignant megakaryocyte.

2. A2: TPO inhibits the death rate of healthy megakaryocytes and malignant platelets.
3. A3: TPO stimulates the self-renewal of hematopoietic and malignant stem cells.

4. A4: TPO is degraded by the platelet receptors, in addition to natural degradation.

The other included biological assumptions are already described in previous chap-
ters, for example, niche feedback etc.

Like the previous models, the ET model incorporates the competition between healthy
and malignant stem cells with multiple TPO feedback on both cell lines. In contrast to
Cancitis and ET models, this novel model consists of three cell types, i.e., stem cells,
megakaryocytes and platelets. Moreover, the model contains asymmetrical structure,
i.e., TPO affects on healthy and malignant cells through different mechanisms. We
have investigated a set of interesting questions: Which parameters govern the dynamics
of the system? How does TPO involve in the progression of ET? How does the stem cell
dynamic control the disease onset? What are the possible novel intervention strategies

for ET patients? Which parameters can be targeted for a good prognosis of disease?

5.2 ET model

In this section, we present our novel mathematical ET model. In the ET model, the
hematopoietic stem cells (HSC) proliferate into healthy megakaryocytes (MEG) and
malignant stem cells (MSC) proliferate into malignant megakaryocytes (MMEG). MEG
further differentiates into platelets (PLT), whereas MMEG differentiates into malignant
platelets (MPLT). In addition, the multiple feedback of TPO with the rest of the dynam-
ics is considered.

ET model consists of seven ordinary non-linear differential equations, the number
of HSC (z), the number of MEG (z,,,), the number of platelets (x,) the number of MSC
(Yo), the number of MMEG (y,,), the number of MPLT (y,,) and the concentration of
TPO (T'). The conceptual model is illustrated in Fig. 5.2.1. The ET model is inspired

by mathematical models given in [7; 67] and reads
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dl’o

- (r:T'¢r — dzo — az)0, (5.2.1a)
d

% = (ryTdy — dyo — ay)yo, (5.2.1b)
d
% = g AL (T)Z0 — bap@m — A (T) T, (5.2.1¢)
dYm
i ayAy(T)yo — byplYm — dymYm, (5.2.1d)
d

% = afl’bffpxm - dacpxpa (5216)
dy

d_tp = aypbyplm — dyp(T) Yy, (5.2.1f)

dT

o P~ ki T — kow, T, (5.2.1g)

The rate of self-renewal is denoted as r, and r, for HSC and MSC respectively.
It is believed that the self-renewal is inhibited by regulatory niche feedback [122], this
inhibition is implemented here through Michaelis-Menten-like functions ¢, (zo, yo) and
¢y (20, yo) [66; 111; 121]. The inhibitory effect on the self-renewal of HSC is captured
by feedback constants c,, and c,,, while the corresponding effect on the self-renewal

of MSC is captured by ¢,, and ¢,,,. Thus, we define

1 1
¢y = )
1+ ¢cyao + Cyylo

o (5.2.2)

1+ cppy + Cay¥o

Further, we assume that TPO stimulates the self-renewal of the stem cells (assumption
3). The stem cells die with rates d,, and d,,.

The parameter a, denotes the rate at which the HSC differentiates into MEG, while
a, represents the rate for MSC transforming to MMEG. The progenitor cells are consid-
ered stages between stem cells and mature cells and are accounted for by amplification
factors A, and A, for HSC and MSC, respectively. Considering assumption 1, we
take these amplification factors dependent on TPO as TPO is thought to stimulate the

production of megakaryocytes

T T

A (T) = 59“@’ Ay (T) = %W’

(5.2.3)

The parameters a,,b,, and a,,b,,, denotes the production of platelets from megakary-
ocytes. It is hypothesized that an increase in the growth factor concentration TPO leads
to a decrease in the apoptosis rate of MEG and MPLT. Therefore, according to assump-

tion 2, we assume that d,,,,(7") and d,,(7") are decreasing function of 7', by choosing

119



1 1

do(T) = 1y ———— ) (T) = 7y ————.
( ) n 11+n$2T yp( ) 77y11+77y2T

(5.2.4)

The death rate of PLT is denoted by d,,. The parameters p is the baseline production
for TPO, whereas k; denotes the natural degradation of TPO. Considering assumption

4, we take the parameter £, eliminating TPO through platelet receptors.

Fig. 5.2.1 The boxes illustrate the compartments of the ET model. Solid arrows represent the rates
of the flows between and out of these compartments.The boxes illustrate the compartments of the PV
model. The full arrows represent the rates of the flows between and out of these compartments. Black
stipulated lines (¢, and ¢, respectively) represent the interaction between bone marrow niches and stem
cells. Stem cells (HSC and MSC) may self renew (r, and 7)), die (do and d,,o) or differentiate (a,, a,),
and megakaryocytes (Z,,, Ym) are produced (with rates a, A, (T") and a, A, (T)). The megakaryocytes
may die with rates d,,, and dy,, or shed into platelets =, and v, with rate a,y,b, and a,,b,,. Platelets
die with rates d,,, and d,(T). T stimulates the proliferation rates of megakaryocytes and inhibits the
death rate of z,,. Black dotted lines present the interaction of TPO with the remaining model. TPO is
produced with rate p and degraded with rate k; in addition, x,, stimulates the degradation of TPO with
ko. TPO stimulates the self-renewal of stem cells while inhibiting d,,.

The default parameter values are summarized in table 5.1 and a typical ET model is

shown in Figure 5.2.2.
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Table 5.1 Default parameter values of the ET model.

Parameter Value Unit Explanation

Ty 8.7-107* day~! Self-renewal rate of HSC

Ty 1.3-107%  day~! Self-renewal rate of MSC

g 1.1-1075  day~! Differentiation rate of HSC

ay 1.1-107%  day~! Differentiation rate of MSC

d, 2-1073 day~!  Death rate of HSC

dy, 2-1073 day~!  Death rate of MSC

Coa 56-107° - Inhibition by HSC on HSC

Cya 52-107°% - Inhibition by HSC on MSC

Cay 54-107° - Inhibition by HSC on MSC

Cyy 5.0-107° - Inhibition by MSC on MSC

021 9-10* - Factor stimulating production of MEG
022 1-1072 - Factor affecting production of MEG
Ne1 21072 - Factor affecting removal of HMEG
Na2 9.4-1073 - Factor affecting removal of MEG

dup 1.15-1071 day~! Death rate of PLT

bap 1-1071 day~! Differentiation rate of PLT

Qzp 3103 - Number of fragmented PLT per MEG
Oy1 9-10* - Factor stimulating production of MMEG
Oy2 1-1071 - Factor affecting production of MMEG
Tyl 1-1071 - Factor affecting removal of MPLT

MNy2 9.9-107% - Factor affecting removal of MPLT
dym 51072 day~!  Death rate of MMEG

byp 5-1072 day~! Differentiation rate of MPLT

Qyp 8-10? - Number of fragmented MPLT per MMEG
P 300 day~!  Production rate of TPO

k1 0.4 day™! Degradation rate of TPO

ko 101 day~!  Degradation rate of TPO by platelets
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Fig. 5.2.2 An ET model shows the progression of the disease with initial conditions,
(Z0, Y0s Trns Yms Tps Yp, T) = (6.68 - 10°,1,1.48 - 10%,0,2.97 - 10'1,0,88.81) at ¢ = 0. Red curves
denote malignant cells, blue are healthy hematopoietic cells and black curves are the sum of the cells.
Time is plotted on the x-axis. In the above-left panel, the evolution of malignant stem cell count is
shown, whereas in the above-right panel, the development of mature malignant megakaryocyte cell count
is shown. The below-left panel shows the evolution of malignant platelet count. In the early phase,
healthy cells are large in number than malignant cells. However, after some years, when disease evolves,
malignant cells become dominant, leading to the destruction of healthy cells. The below right panel
shows the increase in TPO concentration over time.

5.3 Results

This section presents an analytical investigation of the model. Furthermore, we perform
sensitivity analysis and produce a set of bifurcation diagrams. ET model is validated
using clinical data. The section also suggests a few in silico trials showing novel inter-

vention strategies.

5.3.1 Existence of steady states

Based on physiology, we consider the number of cells and concentrations to be non-
negative. The parameters are assumed to be positive. The steady states (Zo, Yo, Zms Y

T, Yp, T) for system of Eqs 5.2.1 fulfil,
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(re¢2T — dyo — az)To =0, (5.3.1a)

(Ty(byT - dyO - ay)ZjO :Oa (531b)
_ a; A (T)
m =T =:Zo, 5.3.1
o A do(T) (3.3.1¢)
ayAy(T) _
m =70, 5.3.1d
byp+dymy0 ( )
apDzp _
T, = (5.3.1e)
do
- Qypbyp
" dy(T)
= D
I'=—"7"— 5.3.1
ky + ko, (5:3.1g)

The admissible steady states can be classified as,

e a hematopoietic steady state is defined when ¥y = ¥, = y, = 0.
e a malignant steady state is defined when 7y = z,,, = 7, = 0.

e a co-existing steady state is defined when 7o > 0, 4o > 0, z,, > 0, ¥, > O,
T, > 0,7, > 0.
Proposition 5.3.1. A trivial steady state D, always exists,

Dy = (0, 0,0,0,0,0, 3) (532)
ki

Proof. Substituting 7o = 7o = 0 in Eqs. (5.3.1a-5.3.1g), T = ,:#1 and the remaining

variables at trivial steady state are zero. ]

Proposition 5.3.2. For Ty > dz‘zﬂ%, a unique hematopoietic steady state Dy exists if

and only if % <.

Proof. From Eq. 5.3.1,

1 TITH

Tog =— | ——— —1 5.3.3

ToH o (dac() ¥ a, ) ) ( a)

_ aa:Ax(TH) _

mH = =——ToH, 5.3.3b

TmH bzp+dxm(TH) 0H ( )
x bx —

TpH :a; L, (5.3.3¢)

Tp

Ty=—>t (5.3.3d)

kl + kgl’pH

123



The admissibility of steady state necessitates the following inequality to be fulfilled,

T dx €T

Ty > o0t 02
Ty

Substitute Eq. 5.3.3d in Eq. 5.3.3c, and use the resulting expression and Eq. 5.3.3a

in Eq. 5.3.3b, we obtain a fourth order polynomial equation in Z,,,
GOHlf’an + ElHi‘an + EQHJ_Z%nH + €3H5EmH + g = 0 (534)

where

o = (k2azpbap)? Cog(az + duo) (Nz1 + bap)s

€1 = 2, Cax((3K1 + P(Na2 + 022))bap + Ma1 (P02 + 3k1)) (F2tap)? (a2 + dao) dap,

€og = Cm((3k%+2p<7}m2+5x2)k1+p2nzz5x2)bxp+(2(P5x2+%kl))nxllﬁ)(@z‘i‘dxo)bxpkwxpdip—i-
P5m1ax(bmpk2%p)2(% + dy0)dyp,

€3 = (0z2p + K1) Can((Ma2p + k1)bap + Nurkr) (ay + dzo)hdip + 2a,p((ay + dyo)kr +
pﬁxﬂz(%j;dzo - 1))§m1bxpk2axpd§pa

o = —(—(az + duo) ks + pra) (Nuop + k1) 2pdn d3,.

€0, €1 and eop are always positive whereas €3 and €4y can be positive or negative.

Using Descartes rule of sign, some of the cases are given in Table. 5.2.

Table 5.2 Descartes Rule of sign

Cases | eo | €1y | €21 | €3y | €4y | Roots

15t + |+ |+ |+ |- 1 pos real root

gnd + |+ |+ |- - 1 pos real root

3rd + |+ |+ |+ No pos real root

4th + |+ |+ |- + | 0or 2 pos real roots

Consider the 1% and 2"? cases where ¢,;; < 0 guarantees a unique positive real root.

3 3 az+deo b
€4 < 0 implies S

Consider 4'" case where €3 < 0 and €45 > 0. €35 < 0 if and only if dzorﬂ >

azp26z1bzpk2azp
Crx dzpk% ((T]zl +b2p)k1 +p((7]z2 +5z2)bzp +Nz1 512))+pbzp(sz612d1p7112p+2azazp511k2)k1 +p27]z25zlax k2azpbzp

and ¢4y > 0 1f and only if azjﬂ > k%. It extends the possibility of two positive roots.

Hence, there exists a unique positive root of z,,y if and only if ‘“’jﬂ < k%. Given a
unique positive T, We can obtain unique Tog, Tpr and Ty. O]

Proposition 5.3.3. For T}, > dy(;ﬂ, a unique malignant steady state exists if and only
Yy

¢ dyotay P
if <
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Proof. From Eq. 5.3.1,

_ 1 T'yTL )

= |—-1], 5.3.5a
YoL Cos ( dgo +a ( )
_ ayAy(Tr)
=) 5.3.5b
UmL byp—i-dymyOL ( )
_ Qypbyp

=—==0.L, (5.3.5¢)
oot dyp(TL)y g
T, =L (5.3.5d)

ky

The admissibility of steady state necessitates,

7, > oo
Ty
Substituting Eq. 5.3.5d into Eq. 5.3.5a we obtain,
L[
Jor = — (dL —~ 1) . (5.3.6)

Cyy yo + ay

Using the expression for 7o, and value of 77, in Eq. 5.3.5b and Eq. 5.3.5¢, we obtain

— paydylgOL
ml = , (5.3.7)
T iy + dyn) (1 6 )
and
_ ypb gmL
Ypr = —e= (5.3.8)
1+"7y2%
Hence, a unique malignant state exists if and only if dyor% < k%. U
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A co-existing steady state follows from Eq. 5.3.1.

_ Coy _ 1 rmTC
Toc + —LYoc =— ( - 1) ;

xrx Crx dzO + Ay
Cyz _ _ 1 TyTC
Cyy oo e Cyy (dyO +ay )
_ a:vA;r (TC) _
Tme =—————=—TqC,
by A+ dom(Te)
_ _ayAy (TC) _
Ymc = byp T dym Yoc,
_ Aypby
Tpc = ; L mC's
xp
_ Qypbyp
pr _dyp(TC) ymC’7
= p
To=——"—
¢ ki + koZpe’

Solving Eq. 5.3.9a and Eq. 5.3.9b simultaneously we obtain,

7 _ 1 c ’I“ITC 1) —¢ TyTC
0c CaxCyy — CayCyx W\ dyo + ay w dyo + ay

B 1 ( ( ryT C 1) ( roTo
- Cox - —Cyz | 7/
Yoo CaaxCyy — CayCyx dyo + ay Y\ dyo + ag

where ¢y 7 CayCya

Isolate z,c from Eq. 5.3.9g and substitute into Eq. 5.3.9¢,

dzp p
= P
e T ey <TC 1)
Using Eq. 5.3.10 and Eq. 5.3.12 in Eq. 5.3.9c,
EOCTé + 6107_—% + Egcfé + 630TC + €40 =0,

where

€00 = Ou1 Qaply koo (CayTy(ay + dyo) — CyyTa(ay + dyo))bap,

)
)

(5.3.9a)

(5.3.9b)

(5.3.9¢)

(5.3.9d)
(5.3.9¢)

(5.3.99)

(5.3.92)

(5.3.10)

(5.3.11)

(5.3.12)

(5.3.13)

€ic = — (nx25w2k1 (ay+dy0) (am +dzO) (Cxxcyy - Cmycym)dxp+6x1axpax(((ayn12+dy0nx2 -
Ty)Cay — CyyNa2(ay + dyo))az + deo(aynee + dyonee — 1y)Cay — Cyy(ay + dyo) (dzomze —

7z))k2)bap,
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€2c = (a'y + dyO) (a:c +dac0) (Ca:accyy - Ca:ycya:) (((naﬂp_ kl)dﬂ - T]Z‘le)bmp - nxlaxkl)dmp -

bxp5r1 Az ko (C:vy - ny) ) )

€3¢ = (a'y + dy()) (ax + d:v()) (Cxxcyy - Ca:ycyx) ((5:5217 + Nax2P — kl)bxp + Nx1 (5:1:217 - kl))dxp

€4C

= dypp(ay + dyo)(az + dzo)(CoxCyy — CayCya) (Ne1 + bap).

Identifying roots analytically is somehow cumbersome however, we may say that a

positive root of T leads to obtain the values of Zoc, ZTpc, Tme Yocs Yme and Ypo. In

addition, the necessary condition to obtain admissible D¢ is that positive Zoc and 3oc

exist.

5.3.2 Stability analysis

In this section, we examine the stability properties of the various steady states of ET.

The Jacobian, J, of Eq. 5.2.1 is computed. Thus, for the steady states, the eigenvalues

of the linearized system are obtained analytically and otherwise numerically. Avoid to

introduce many mathematical notations, we use a;; for all Jacobian matrices.

The Jacobian of system of Eq. 5.2.1 is

where

a;l =
a2 =
Q17 =
a1 =
Qg2 =
Qg7 =
azy =
a3z =
azr =
Q42 =
Q44 =

Qa7 =

a;p a0
az azp 0O

a1 0 ass

0 as3

0 0

%T - C_Lz - dmOa
~Wrendorergor 901
e T — ay — dy,

Ty —

1+cyzToteyyYo Yo,

Ga0z1
1+(512TT’

Nzl _
1+77z2T,

azaxL s Nz1Nz2 54
(82072 L0 T (T2 T

aydy1
1+(5sz T’

—byp —

_byp - dym’
aydy1  —
(110,212 Y00
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a0 ag

0

0
0
0 0 0 aem
0

0

o O O O

Q55

Qs

o O O o O

Q66

ay7
Qo7
37

Q47

Qg7

77 |

(5.3.14)



53 = aacpbxpa

as5 = _dwp5

a6s = Aypbyp,

aes = —7 j,;’;zf,
Qg7 = (1Z_y7;£y;)2 gm’
Q75 = —kQT,

Ay = —]{31 — k’gii‘p.

The Jacobian at Dy is,

_CLH 0 0 0
0 929 0 0

asy 0 ass 0

o O O O

Jp, = (5.3.15)

a0 ap

o O O o O

0 as3 0 ass

o O O o o O

0 0 Qg4 0 (07315
0 0 0 ars 0 Q77 |

o O O O

where
an = Hrm — Qg — dzO’

(22 = 3Ty — Gy — dyo,

a — P G021
31 k1 1+5¢2% >

— _ Nzl
a33 - bxp 1+n12% ’
_ D aydyi
42 k1 (1—"_53/21:1)’
Q44 = _byp - dyma

53 = aa:pbzpa

Q55 = _dzpa
s = Qypbyp,
— Myl
g6 = — s
1;:77@/2 =
— PR2
s = =%
Ay = —]{71.

Since Jp, is a triangular matrix thus, eigenvalues are a1, as2, ass, 44, 55, a6 and
a77. Five of the seven eigenvalues are negative but the remaining aq; and as; may be
ay+dy0

.. . . ’ . agtdso < P aytdp o p
ositive negative or zero. Hence, D is stable for 2=tds0 > P apd > L
T k1 Ty k1

The Jacobian at Dy is,
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-@11
0
a3
Jpy, =10
0
0
| 0
[ _(1+C7;Zio)2T — Qg — da:Oa
a2 = (e, g 0T
M7 = Tre5:Tos
az = % >
a3z = _bzrp - 14:172127'1’
agr = (1z§fz%)2j0 + (13_1771:;721)2 Tims
a2 = 1:1:/6;2% I
Q44 = _byp - dym’
Q53 = azpb:pp,
Q55 = _dxpa
s = Qypbyy,
Aes — _HnTy;T_’
Q75 = —kQT,
Q7 = —kl — kzi‘p.
The Jacobian at Dy, is,
_an
21
as1
Jp, = | 0
0
0
0
where
ay = HZWT — ag — dyo,
ag) = —%%T,
99 — (H_CZWT — Gy — dyg,
_ Ty v
Qg7 = m?{o,
az = %T,

a2 O
a0
0 as3
ap 0
0 as3
0 0
0 0
0 0
asx 0
0 ass
a2 O
0 ass
0 0
0 0
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0
0
0

Q44
0

Qg4

0

0
0
0

Q44

0

Qg4

0

o O O O

Q55

Q75

o O O O

Aas55

ars

o O O o O

Q66

o O O o O

Qg6

ayr

asr

Q77 |

Azt

aq7

(0774

Q77 |
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Nl

asz = —b

T ThnT
Qa2 = 1?6?21TT’
Q44 = _byp - dyma
ag7 = %ﬂo,
Qa53 = aa:pbxp’
Q55 = _d:rp,

asa = Aypbyp,
_ Myl

aee = T T
a7 = (1?;71:;%)2 Ymo
ars = —k’QT,

Ay = —kl — l’u’gi’p.

The Jacobian at D¢ is similar to J, except Zo and ¢, are replaced by Zoc and oo
respectively. Calculating eigenvalues analytically for the Jacobian Jp,,, Jp, and Jp,,
is complicated. Therefore, we will find the stability of various steady state numerically.

We perform a lot of simulations through MATLAB for all parameters to observe
the existing possible topologies. Fig. 5.3.1 illustrates the stability of steady states and
shows that trajectories with different sets of initial conditions converge to the steady
states. We vary the self-renewal rate of stem cells and the niche inhibiting factors. In
each given case, a steady state is unique. The solution of the model is projected on
(x0, o) plane.

Fig. 5.3.1a illustrates that the trivial steady state is stable at r, = 1077 and r,, =
10~7 when there is no other steady state. At this point, we increase r, resulting in the
stable hematopoietic steady state at 7, = 107> thus, the trivial steady state becomes
unstable shown in Fig. 5.3.1b. This state corresponds to a healthy state. Instead of 7, if
we increase 1, the stable malignant steady state appears at r, = 10~° while the trivial
steady state becomes unstable illustrated in Fig 5.3.1c. This state corresponds to a full
blown malignant state. Hence, this investigation reveals that the self-renewal rates
and r, may be crucial to obtain stable hematopoietic and malignant steady states.

For the default values of parameters where r, < r,, the malignant steady state is
stable, whereas the trivial and hematopoietic steady states are unstable (See Fig 5.3.1d).
Subsequently, increasing 7, and decreasing r,, the hematopoietic steady state becomes
stable and the malignant steady state becomes unstable at 7, = 107* and r, = 107°
(See Fig. 5.3.1e).

Consider the impact of inhibiting factors of stem cells when all parameters are at
their default values. Increasing c,,, a co-existing steady state appears at ¢, = 107*
and takes over the stability of malignant steady state (See Fig. 5.3.1f). Alternatively,
decreasing c,,, the special case of bistability is obtained at c,, = 3 - 107> where both
malignant and hematopoietic steady states are stable and the co-existing steady state is
unstable (See Fig. 5.3.1g).
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Hence, this investigation reveals the importance of stem cell parameters in order to

obtain various steady states.

(a) (b) (¢) (d)

(e) ®) (®

Fig. 5.3.1 The figure illustrates the trajectories for different initial conditions ultimately approach the
stable steady states of the ET model. The solution of the model is projected on (xg,yo) plane. Full
circles are stable steady states and open circles are unstable steady states. Green, blue, red and magenta
correspond to trivial, hematopoietic, malignant and co-existing steady states respectively. x-axis denotes
the number of hematopoietic stem cells whereas y-axis denotes the number of malignant stem cells. The
trajectories are shown as black dotted lines. The panels are as follows, (a) 7, = 1077, Ty = 10~7, (b)
re =107%, 7, =1077,(c) r, = 1077, r, = 1075, (d) Default values, (¢) 7, = 1- 1074, r, = 1-1075,
() cyy = 1074, (g) cze = 3 -107°. Note, in panel (g) the trajectories attract towards x for very low
values of yg.

5.3.3 Sensitivity Analysis

In this section, we perform a sensitivity analysis to explore the relationship between
the input parameters and the outcome of the model. We take c,, = 10~* while other
parameters are fixed at there default values leading to a stable co-existing steady state.
We choose a 10% variation in parameter values.

First, we focus on the parameters involved in stem cell dynamics. Fig. 5.3.2 shows
that by decreasing (increasing), 7, dyo, ¢y, and c,, decreases (increases) the number
of healthy cells (o, z.,,, x,) while increases (decreases) the concentration of TPO and
the number of malignant cells (yo, Ym, ¥p). In contrast, decreasing (increasing) 7,
dz0, Cz2 and ¢, decreases (increases) the number of malignant, whereas the number of
malignant cells and TPO concentration are increased (decreased).

Next, we observe the parameters involved in the TPO dynamics. Decreasing the
TPO natural degradation rate k; increases the number of malignant cells (Yo, Ym, ¥p)

and the concentration of TPO, whereas reducing platelet dependent TPO degradation
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rate ko increases the number of healthy cells (o, z,,, x,), however it does not affect
the TPO level. Finally, we observe that decreasing baseline production rate p decrease
all types of cell count and the concentration of TPO or vice versa. It is mentioned
that TPO parameters are less sensitive compared to stem cell parameters. In brief, this

investigation shows that stem cell dynamics play a major role in the progression of ET.
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(a)

(b)

(0

(d)

Fig. 5.3.2 Panels (a), (b), (c) and (d) show the change in HSC, MEG, PLT and TPO when parameters
are decreased and increased by 10%. Blue, red and green denote healthy cell, malignant cells and TPO
concentration respectively. The bars equal to 1 corresponds to the outcome for the default parameter
values. Top panels correspond to decreasing a parameter by 10%, panel below corresponds to increasing
a parameter by 10%.

In Table 5.3, we collect the most sensitive parameters (7, 1y, dgo, dyo) for a co-

existing steady state values where ¢,, = 10, Table 5.3 summarizes the minimum and
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maximum variation in the values of Zoc, Yocs Tmcs Ume» Tpc» Ype and Te in percentage
when parameters are perturbed by +10%. We have calculated numerical values by
perturbing all parameters. However, we found that the self-renewal rates and death

rates vary the steady state values most.

Table 5.3 The table shows the effect of the most sensitive parameters on co-existing steady state values.
The first column shows the parameters varied by ==10% affecting the values given in the second row. The
remaining percentages in the table show how much a corresponding value is varied.

Toc Yoc TmC YmcC TpC YpC To
3.55-10° 6.07-105 1.01-10% 5.56-107 2.01-10 4.96-10'0 123.98
—10% 74 —40% —28% —27% +29%
—10% dzo +35% +20% +21% —15%
—10% 7y —35% —36% —40%
—10% dy, +61% +64% +85%
+10% 7y +32% +19% +19% —14%
+10% dq —35% —15% —24% +25%
+10% 7y +53% +55% +73%
+10% dyo —32% —33% —37%

5.3.4 Numerical Analysis and Treatment Scenarios

This section discusses the treatment scenarios for different choices of parameters. For
this purpose, we generate a variety of figures to characterize the steady states and their
stability. In Fig. 5.3.3, we show the combination of parameters, which produces the
interesting dynamics of the ET model. We explain the sub-figures of Fig. 5.3.3 subse-
quently.

e Fig. 5.3.3a illustrates the stability regions where the self-renewal rates of HSC r,
and MSC r,, are varied. In the right panel of Fig. 5.3.3a, denoted by Dr, the trivial
steady state exists and is stable for small values of r, and r,,. The left panel of Fig.
5.3.3a illustrates the stability regions when 7, and r, are increased. Suppose a
virtual subject is in the stability region DZI’L, where the hematopoietic steady state
is stable and both trivial and malignant steady states are unstable. Increasing r,
changes a topology from a stable hematopoietic to a stable malignant steady state.
A virtual subject approaches the stability region Df’H, where the stable malignant
and the unstable hematopoietic and trivial steady states exist. It suggests that the

stem cell self-renewal rate is the important parameters for good prognosis.

e Fig. 5.3.3b illustrates the stability regions where a range of values of d,y and d,
is taken. Suppose a virtual subject is in the region DZI’L. At this point, increasing
the death rate d,o of HSC or decreasing the death rate d,,o of MSC moves a virtual
subject in region Df’T, corresponding to a worse situation. For larger values of
d.o, the hematopoietic steady state disappears whereas the malignant steady state

is stable and the trivial steady state is unstable, D¥. However, D represents that
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for larger values of d,, the malignant steady state vanishes and the hematopoietic
steady state becomes stable, corresponding to a recovery of the disease. For large

set of values for d, and d,, the trivial steady state exists and is stable, i.e., Dr.

e Fig. 5.3.3c illustrates the stability regions obtained by varying inhibiting fac-
tors ¢, and cy,. The parameter c,, denotes the inhibiting strength of x, for
whereas c,, denotes the inhibiting strength of x for 1. For high values of c,,
and low values of c,,, we observe the bi-stability region Dgi where both the
hematopoietic and malignant steady states are stable and the co-existing and triv-
ial steady states are unstable. However, an increase in c,, makes the hematopoi-

etic steady state unstable, whereas the co-existing steady state disappears DZ’H.

e Similarly, in Fig. 5.3.3d, for large values of c,,, where the malignant steady state
is stable, and the hematopoietic and trivial steady states are unstable, denoted by
DZ’H. In region D(T;’H’L, for large values of c,, and a range of low values of
Cay» the co-existing steady state is stable and the remaining three steady states
are unstable. Thus, the niche inhibiting factors may improve the diagnosis and

reduce the disease load.

%10
2
= D
~ 1 T
0
0 1 2
Tz x10°
(a)
1 D} Dt
0.8 Df{,T
<206
Sl DT
0.4 Df’T
0.2
0.2 04 06 08 1
d.’l,‘()
(b) (©) (d)

Fig. 5.3.3 The stability of the steady states, i.e. trivial, malignant, hematopoietic or coexistence, de-
pending on the parameters involved in the stem cell dynamic. Panels (a), (b), (c) and (d) show a range of
values for different pairs of parameters. The right panel (a) is zoomed in the left figure. The stable steady
states are written as a subscript of D and unstable steady states are written as a superscript of D. All other
parameter values are fixed at their default.
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Data Fitting

A few data sets are available from a cohort of ET patients enrolled in the clinical trial
“DALIAH”. Moreover, the data given in [79] represents an ET patient. The model
trajectories compared to the available data of patients receiving interferon-a (IFN) are
illustrated in Figure 5.3.4. In the model, we include the effect of IFN on stem cells. The
simulation results compared to patient data validate our proposed model. We report
deviated values from the default in tables 5.4 and 5.5.

In Fig. 5.3.4(a-c), we perturb the death rates of stem cells, d,o and d, for data
fitting. The values used for d,, and d,, correspond to region DE’L (Fig. 5.3.3b), where
the hematopoietic steady state is stable and the malignant steady state is unstable. In
addition, we identify a set of parameters given in Table. 5.4 for an ET patient that

describes an excellent fitting of data before and after treatment (See Fig. 5.3.4d).

(@ (b) (c) (d)

Fig. 5.3.4 The panels corresponding to ET patients treated with IFN are compared to the ET model.
Data for the total platelet count (z,, + y,) shown in green diamonds is before treatment whereas, data for
platelet count are shown in dark grey stars curve during treatment. Model predictions are shown as full
curves for platelet count (black treated and blue untreated). The data shown in panels (a), (b) and (c) are
from the clinical trial “DALIAH”. The data shown in th panel (d) is extracted from [79].

Table 5.4 Parameter values for Figure 5.3.4d. The parameters in red are perturbed while
fitting data during treatment.

Before treatment After treatment

Parameter Value Parameter Value

T 5-107% T 3-1072
Ty 72-107% 7, 7.2-1074
y 3.8-107% q, 3.8-1074
dzo 2.1073 do 8.1074
dyo 2.1073 dyo 2.1071
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Table 5.5 Parameter values for the Figure 5.3.4(a-c).

Parameter Value Parameter Value
Fi. 534a dyo 2-.1073 dyo 1-1072
Fi. 53.4b  d,o 3-1073 dyo 1-1072
Fi. 53.4c  dgo 11073 dyo 1-1072

In Silico Trials

The TPO receptor is usually used to increase the platelet count in immune thrombocy-
topenia. Importantly, TPO related MPL mutations are found in 1-3% ET cases [14; 89].
According to a few investigations, the feedback loop between TPO and megakaryocyte
is affected, resulting in a subsequent increase of TPO serum levels in ET [51; 69; 98].
Also, thrombotic complications are often found in patients with ET. In order to pre-
vent these complications, the typical drugs aim at reducing the platelet count. However,
many novel mechanisms relating to high TPO levels and abnormal platelet production
in ET are undiscovered in existing literature. Fig. 5.3.5 illustrates an in silico trial where
TPO production is half of the default value. We observe that reducing TPO concentra-
tion reduces the total number of stem cells, megakaryocytes and platelets. These results
offer to use TPO related drugs in ET patients for a short time preventing thrombotic
complications. In contrast, the JAK2V617F allele burden is increased, which is critical

for ET patients. However, we need clinical data to validate the results.
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Fig. 5.3.5 An insilico TPO analysis. For a co-existing steady state, we set ¢, = 1073. After one year,
set p = 150 (half of the default value) for treatment. The total cell count of stem cells, megakaryocytes
and platelets is denoted by full black curve in the above panel, the JAK2V617F is represented by dashed
black curve and the concentration of TPO is represented in dotted black curve (below panel). The initial
values are (Zoc, Zimc Tpcs Yoo, Ymes Yoo, Te) = (3.56 - 10°,1.01 - 108, 2.02 - 1011,6.02 - 10°,5.52 -
107,4.91 - 107, 123.57).

5.4 Conclusion

In this chapter, we propose a novel mathematical model describing the development of
ET. The mechanism-based model incorporates both healthy and malignant cells with
multiple feedback mediated by TPO. We have done an analytical investigation of the
model wherever possible. The steady states and their stability are characterized using
different stem cell parameters. Furthermore, a sensitivity analysis is performed to iden-
tify the sensitive parameters for the model’s outcome. We have explored that the stem
cell parameters are more sensitive to disease progression than the remaining parame-
ters. Furthermore, we generate various bifurcation figures and found that set of stem
cell parameters produce the most interesting dynamics of the model. Some of these
figures are included in this chapter (See Fig. 5.3.3).

Several bio-medical literature theories have been proposed, associating blood cancer
development with stem cell properties. ET is also thought to be a clonal disorder with
origin in hematopoietic stem cells. In clinical practice, blood cancer therapy such as
IFN reduces disease load by affecting the hematopoietic stem cells. The authors have
reported that IFN increases the death rate of hematopoietic stem and progenitor cells
[72]. IFN is also hypothesized to reduce the JAK2V617F allele burden by targeting

malignant stem cells [83]. Besides medical evidence, several authors have explored
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the importance of stem cells for various hematological diseases through mathematical
modelling [36; 66; 73; 95; 102; 103; 104; 110; 111]. Our results are in agreement with
the perception that stem cell is a good candidate to prevent ET progression. Moreover,
TPO therapy might be useful for reducing platelet count in the peripheral blood in order
to avoid thrombotic complications. However, it can not switch from a malignant state

to a healthy state.

139



CHAPTER 6

Mathematical modelling of erythropoiesis
and thrombopoiesis with multiple EPO
and TPO feedbacks
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Mathematical modelling of erythropoiesis and
thrombopoiesis with multiple EPO and TPO
feedbacks

Zamra Sajid, Morten Andersen and Johnny T. Ottesen

Abstract

We propose a seven-dimensional mathematical model of erythro-
poiesis and thrombopoiesis. A key feature of the model is different cell
populations incorporating several feedback loops that are mediated
by erythropoietin (EPO) and thrombopoietin (TPO). The shared
megakaryocyte-erythroid progenitor cell is an encouraging feature to
investigate the coupled mechanism between erythroid and megakary-
ocyte lineage. The study contributes to understand the impact of
various clinical investigations on these coupled dynamics. The sub-
systems of erythropoiesis and thrombopoiesis can be decoupled from
the full model. These self-supporting subsystems are useful to investi-
gate the independent mechanisms of erythrocytes and platelets. The
model and its subsystems stipulate excellent results which adequately
describe many critical situations such as recovery of the blood cells
after phlebotomy, body’s reaction to different administration regimens
of EPO and TPO. We estimate the parameters from clinical data
and identify the subset of parameters responsible for various clinical
experiments. Furthermore, the subsystems are employed to evaluate
parameters for the full model. In case where the coupling is required
between erythropoiesis and thrombopoiesis, these subsystems cannot
estimate the parameters and explain the full dynamics.

Keywords: mathematical modelling, EPO stimulating agents, TPO stimu-
lants, megakaryocyte-erythroid progenitor, erythropoiesis, thrombopoiesis

1 Introduction

Hematopoietic stem cells (HSCs) are multipotent cells that produce blood cells
required by the human body. Once an HSC differentiates, it undergoes a series
of differentiation ultimately resulting in a large number of mature cells. This a
process occurs in the bone marrow niche and is called hematopoiesis. In healthy
individuals, approximately 102 blood cells are produced every day to maintain
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the steady state levels of the peripheral blood [1]. HSCs can regenerate themselves,
often termed as self-renewal, meaning one HSC divide into two HSCs. In addition,
one HSC may produce two daughters/progenitor cells, and it may differentiate
into one HSC and one daughter cell. The hematopoietic stem cell niche is a
particular environment where signals from the body carry out the differentiation
of the required cell type. These differentiated cells are subdivided further into
different categories of cells. For example, the myeloid cells include red blood
cells (erythrocytes), white blood cells (leukocytes), and platelets (thrombocytes).
Specific associated growth factors to distinct cell lineage are responsible for
stimulating cell production and regeneration. Here, we focus on two cell types,
red blood cells and megakaryocytes. Megakaryocytes (precursor of platelets) and
erythrocytes differentiate from a shared precursor, the megakaryocyte-erythroid
progenitor [16, 82], in response to glycoprotein hormones.

The erythro