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WEAK UCP AND PERTURBED MONOPOLE EQUATIONS

B. BOOSS-BAVNBEK, M. MARCOLLI!, AND B.L. WANG*

ABSTRACT. We give a simple proof of weak Unique Continuation Property for per-
turbed Dirac operators, using the Carleman inequality. We apply the result to a class
of perturbations of the Seiberg—Witten monopole equations that arise in Floer theory.

1. INTRODUCTION

We outline the content and motivation of the paper. The first part of the pa-
per presents a proof of weak Unique Continuation Property for perturbed Dirac op-
erators, based on classical methods revolving around the Carleman inequality. In
the second part we give an application to the Morse-Smale-Witten complex for the
Chern-Simons—Dirac functional, whose homology defines a gauge—theoretic invariant
of 3-manifolds. '

1.1. UCP and Dirac operators. A linear or non-linear operator D, acting on func-
tions or sections of a bundle over a compact or non-compact manifold M has the weak
Unique Continuation Property (UCP) if any solution u of the equation Du = 0 has the
following property: if u vanishes on a non—empty open subset 2 of M, it vanishes on
the whole connected component of M containing Q.

There is also a notion of strong UCP, where, instead of assuming that a solution
u vanishes on an open subset, one assumes only that u vanishes ‘of high order’ at a
point. The concepts of weak and strong UCP extend a fundamental property of analytic
functions to some elliptic equations other than the Cauchy—-Riemann equation, see also
§2.2 below. :

Up to now, (almost) all work on UCP goes back to two seminal papers [6], [7] by
Torsten Carleman, establishing a Carleman—type inequality (cf. our inequalities (2.3)
and (4.1) below). In this approach, the difference between weak and strong UCP and
the possible presence of more delicate non-linear perturbations are related to different
choices of the weight function in the inequality, and to whether L?-estimates suffice or
LP— and L9-estimates are required.

tPartially supported by Humboldt Foundation Sofja Kovalevskaja Award.
tSupported by Australian Research Council.
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There are different notions of operators of Dirac type. We shall not discuss the
original hyperbolic Dirac operator (in the Minkowski metric), but restrict ourselves to
the elliptic case related to Riemannian metrics. '

Recall that, if (M, g) is a compact smooth Riemannian manifold (w1th or without
boundary) with dim M = m, we denote by €l(M) = {€l(T M, gz)}zem the bundle of
Clifford algebras of the tangent spaces. For E — M a smooth complex vector bundle of
Clifford modules, the Clifford multiplication is a bundle map ¢ : €/(M) — Hom(E, E)
which yields a representation ¢ : €(T'M,,g,) = Homc(E;, E;) in each fiber. We
may assume that the bundle E is equipped with a Hermitian metric which makes the
Clifford multiplication skew—symmetric

(1.1) (c(v)s, s') = —(s,c(v)s') for v € TM, and s € E;.
Any choice of a smooth connection '
V:C®(M;E)— C®°(M;T*M ® E)

defines an operator of Dirac type ® := coV under the Riemannian identification of
the bundles TM and T*M. In local coordinates we have D := 3 ", c(e;) Ve, for any

orthonormal base {ej,...,e,} of TM,. Actually, we may choose a local frame in such
a way that
Ve, = i + zero order terms
6:1,‘]'

for all 1 < 7 < m. So, locally, we have

(1.2) D= E:c(eJ _8_ + zero order terms .
j=1

It follows at once that the principal symbol o, (D)(z, £) is given by Clifford multiplica-
tion with £, so that any operator © of Dirac type is elliptic with symmetric principal
symbol. Actually, if the connection V is compatible with Clifford multiplication (i.e.
V¢ = 0), then the operator ® itself becomes symmetric. We shall, however, ad-
mit non-compatible metrics. Moreover, the Dirac Laplacian D? has principal symbol
02(D?)(z, &) given by the Riemannian metric ||£||%. So, it is scalar real (i.e. a real
multiple of the identity) and elliptic.

1.2. Motivation. Our main motivation for investigating weak UCP for perturbed
Dirac equations is an application to gauge theory of 3—-manifolds. We outline briefly
the context in which the question arises.

Seiberg—Witten Floer homology is an invariant of 3—manifolds defined as the ho-
mology of a Morse-Smale-Witten complex for the Chern-Simons-Dirac functional,
defined on an infinite dimensional space of U(1)—connections and spinor sections. A
detailed construction of Seiberg-Witten Floer homology along with an analysis of its
main properties is given in [14].
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Several interesting analytical problem are connected to the construction of this in-
variant. One source of technical difficulties is finding a suitable perturbation theory
for the functional, in order to have the Morse (or Morse-Bott) condition for the crit-
ical points, and transversality of the spaces of flow lines. There are different ways of
treating this problem.

One possible approach is the one followed in [14]. First one realizes that it is fairly
easy to achieve transversality for the set of critical points of the Chern-Simons-Dirac
functional (moduli space of gauge classes of 3-dimensional Seiberg-Witten monopoles),
while it is more difficult to achieve transversality for moduli spaces of flow lines. This
observation leads to the idea of perturbing the functional just enough to achieve trans-
versality at critical points, and then introducing a class of perturbation of the 4-
dimensional Seiberg—Witten monopole equations, which does not come from a pertur-
bation of the functional. The perturbations constructed this way have to satisfy a
certain list of properties [14, §2.3], ensuring that the resulting moduli spaces of flow
~lines have the desired transversality properties, so that the boundary operator in the
Morse-Smale-Witten complex can be defined by a counting of flow lines.

In this approach, all the perturbations can be chosen so that, in the Seiberg-Witten
monopole equations, only the curvature equation is perturbed, while leaving the Dirac
equation unchanged. A class of perturbations with these properties was introduced by
Frgyshov in [10]. '

Though this approach is effective in providing a working definition of Floer homology
and in the proof of topological invariance (in the equivariant case) [14], it is very
unnatural to use different perturbations for critical points and flow lines which do not
come from a perturbation of the functional. Moreover, with the perturbation defined
by Frgyshov, it is hard to have good control of the effect on the equations when the
underlying 3-manifold is modified, for instance by stretching a long cylinder, as in
problems related to cutting and pasting (surgery formulae). In the interest of deriving
formulae of this sort, it is better to investigate other possible perturbation theories,
which arise directly as perturbations of the Chern—-Simons-Dirac functional. A class
of such perturbation was proposed by Kronheimer in [11]. Since these affect both
the curvature and the Dirac equation, and are both non-local and non-linear, the
question arises of how much delicate properties of the Dirac operator, such as the
Unique Continuation Property, may be affected by the presence of perturbation. In
particular, since the weak UCP plays a role in all the transversality arguments, this
seems an important technical point that needs to be understood.

This is the main point in our paper. We apply our elementary proof of weak UCP for
perturbed Dirac operators to a class of perturbations for Seiberg-Witten Floer theory
that combines the perturbations introduced in [5] and [11].
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Finally, it should be mentioned that a version of Seiberg-Witten Floer theory that
avoids the use of perturbations and deals directly with the resulting excess intersection
was developed recently by Manolescu [13].

Acknowledgment. We thank Hubert Kalf for his generous help and many extremely
useful comments and suggestions.

2. WEAK UCP FOR PERTURBED DIRAC OPERATORS

Clearly, not any arbitrary perturbation by a Oth order term preserves the Unigue
Continuation Property (UCP) as one can see by standard cases from first order ordinary
differential equations, such as @ — 2+/]u| = 0, or 4 — 3u?3 = 0. With a little more
work, it is possible to produce examples with non—uniqueness of smooth solutions.

In the affirmative, weak UCP can be proved in the following case.

Theorem 2.1. The weak UCP (i.e. UCP from open subsets) for solutions of a possibly
tensored Dirac equation I, u = 0 on a smooth (not necessarily compact) manifold M
is preserved under perturbation with a non-linear and/or global term of Oth order of
the form P(u) which can be estimated in the following way:

o |B(u)(z)| < P(u,z)|u(z)| with a real valued non—negative locally bounded func-
tion P(u,-) on M.

2.1. Guide to the Literature. We review briefly three ways to prove Theorem 2.1.

2.1.1. We can replace the Dirac operator by its square, the Dirac Laplacian. It has
diagonal and real principal symbol. So we can apply the legendary parallel papers
[1] and [8] by Aronszajn and Cordes. Of course, in principle, a perturbation of a
differential operator of first order by a Oth order term is essentially more delicate than
a perturbation of a second order operator by Oth order. Fortunately, the two mentioned
papers admit non-linear perturbations of first order of precisely that type which our Oth
order perturbation of the Dirac operator will yield by squaring the perturbed operator.
_ Strictly speaking, Aronszajn and Cordes derived their results only for scalar equa-
tions and not for systems, but they mentioned that the proofs are similar for systems.
Moreover, it should be mentioned that these methods are extremely hard because the
goal of the two famous papers was the strong UCP (from a point). However, for
the applications in Seiberg—~Witten—Floer theory, weak UCP suffices. Finally, from
a geometric point of view it seems inappropriate to destroy the beautiful geometric
first—order structure of the Dirac operator by squaring.

2.1.2. For weak UCP, an alternative and much simpler proof was given by Weck,
[18] for any first order system of generalized Dirac type and a non-linear smooth
perturbation satisfying the condition of Theorem 2.1. He transforms to a particular
second order system and then establishes weak UCP for that system relatively easily.
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2.1.3. In the following we shall explain a third and completely direct proof method,
where all arguments are carried out on the level of the perturbed Dirac operator,
without resorting to second order operators.

First we recall some features of the direct proof of weak UCP for solutions of the
Dirac equation, given in [2] and [3]. Later on we explain the modifications necessary
to cover also the non-linear case.

2.2. The Unique Continuation Property - The Unperturbed Case. The weak
UCP is one of the basic properties of an operator of Dirac type I,. For M = MUz M; ,
it guarantees that there are no ghost solutions of ), u = 0, that is, there are no solutions
which vanish on Mj and have non-trivial support in the interior of M;. This property is
also called UCP from open subsets or across any hypersurface. For Euclidean (classical)
Dirac operators (i.e., Dirac operators on R™ with constant coefficients and without
perturbation) the property follows by squaring directly from the well-established UCP
for the classical (constant coefficients and no potential) Laplacian.

In [2, Chapter 8] a very simple proof of the weak UCP for operators of Dirac type is
given, inspired by (15, Sections 6-7, in particular the proof of inequality (7.11)] and [17,
Section I1.3]. We refer to [3] for a further slight simplification and a broader perspective.
The proof does not use advanced arguments of the Aronszajn/Cordes type regarding
the diagonal and real form of the principal symbol of the Dirac Laplacian, but only
the following product property of Dirac type operators (besides Garding’s inequality,
see Remark 4.1).

Lemma 2.2. Let ¥ be a closed hypersurface of M with orientable normal bundle. Let
t denote a normal variable with fized orientation such that a bicollar neighborhood N
of ¥ is parameterized by [—¢,+€] x X. Then any operator of Dirac type can be rewritten
in the form 3

3}
2.1) Pulw = e(dt) (5 + B+ Cr),
where B, is a self-adjoint elliptic operator on the parallel hypersurface s, and C; :
S|s, = S|s, a skew-symmetric operator of Oth order, actually a skew-symmetric bundle
homomorphism.

Remark 2.3. (a) It is worth mentioning that the product form (2.1) is invariant under
perturbation by a bundle homomorphism. More precisely: Let D be an operator on M
which can be written in the form (2.1) close to any closed hypersurface ¥, with B, and
C; as explained in the preceding Lemma. Let R be a bundle homomorphism. Then

(D + R)|y = c(dt) (% +Bi+C.) +c(d)S|
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with S|y := c(dt)*R|y. Splitting S = (S + S*) + 1(S — S*) into a symmetric and
a skew-symmetric part and adding these parts to B; and C;, respectively, yields the
wanted form of (D + R)|n. 7

(b) For operators of Dirac type, it is well known that a perturbation by a bundle
homomorphism is equivalent to modifying the underlying connection of the operator.
This gives an alternative argument for the invariance of the form (2.1) for operators of
Dirac type under perturbation by a bundle homomorphism.

(c) By the preceding arguments (a), respectively (b), establishing weak UCP for sec-
tions belonging to the kernel of a Dirac type operator respectively an operator which
can be written in the form (2.1) implies weak UCP for all eigensections. Warning:
for general linear elliptic differential operators, weak UCP for “zero-modes” does not
imply weak UCP for all eigensections. -

To prove the weak UCP, in combination with the preceding lemma, the standard
lines of the UCP literature can be radically simplified, namely with regard to the weight
functions and the integration order of estimates. In Section 2.2 we shall see that exactly
these simplifications make it very easy to generalize the weak UCP to the perturbed
case. We recall some decisive steps of the simplified proof in the unperturbed case.

We want to show that, if u € C*®(M, S) is a solution of ], u = 0, which vanishes on
a non—empty open subset {2 of M, then it vanishes on the whole connected component
of the manifold.

2.2.1. First we localize and convexify the situation and we introduce spherical coor-
dinates (see Figure 1). Without loss of generality we may assume that  is maximal,
namely the union of all open subsets where u vanishes. If the solution u does not vanish
on the whole connected component containing {2, we consider a point o € supp uNoX2.
We choose a point p inside of © such that the ball around p with radius r := dist(zo, p)
is contained in . We call the coordinate, running from p to o, the normal coordinate
and denote it by ¢. The boundary of the ball around p of radius r is a hypersphere and
will be denoted by S,. It goes through z, which has a normal coordinate ¢ = 0.

Correspondingly, we have larger hyperspheres Sp; C M for 0 <t < T with T > 0
sufficiently small. In such a way we have parameterized an annular region Np :=
{Sp,t}tcpo,r) around p of width T and inner radius r, ranging from the hypersphere
Sp,0 which is contained in Q, to the hypersphere S, which cuts deeply into supp u, if
supp u is not empty.

2.2.2. Next, we replace the solution u by a cutoff .

(2.2) v(t,y) = p(t)u(t,y)
with a smooth bump function ¢ with p(t) =1 for ¢t < 0.8T and ¢(t) =0fort > 0.97T.

Then supp v is contained in Ny. More precisely, it is contained in the annular region
No.o . Moreover, supp(],v) is contained in the annular region 0.87 <t < 09T
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FIGURE 1. Local specification for the Carleman estimate

We recall the following Lemma (cf. Lemma 5 and Lemma 6 in [3]). The weak UCP
for the unperturbed Dirac operator D, will then follow immediately from this result. -

Lemma 2.4. Let P, : C°(M, E) — C*°(M, E) be a linear elliptic differential operator
of order 1 which can be written on Nt in the product form (2.1). Let v be a spinor
section in the domain of D, such that supp(v) C Ny.

(a) Then for T sufficiently small there ezists a constant C such that the Carleman
inequality (see [6), [7] for the original form) '

23) R / / BT |y (1, y) P dy dt < C / / BT [, (1, ) dy dt
t=0 J Sp ¢ t=0 J Sp ¢ »

holds for any real R sufficiently large.
(b) Let u be a solution of Pyu = 0, with supp(pu) C No.gr, for ¢ the cutoff function
as in (2.2). If (2.3) holds for any sufficiently large R > 0, then u is equal 0 on Np/ .

Notice that, in the proof of (2.3) we do not assume v is a solution, and we do not even
assume it is smooth: the Carleman inequality is valid for any section with sufficiently
small support, whether it is the cutoff of a solution of the homogeneous equation or
not.

In the following section, we will return to some special features of the proof of
the preceding lemma and show that the lemma remains true when an admissible (i.e.
suitably bounded) perturbation is introduced.
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2.3. The Perturbed Case. We replace the equation ]), u = 0 by

(2.4) Pau =Py u+Pa(u) =0,
where P4 is an admissible perturbation, in the following sense.
Definition 2.5. A perturbation is admissible if it satisfies the following estimate:

(25) Bale] < Pw (@) forzeM
with a real-valued function P(u,-) which is locally bounded on M for each fized u.

Example 2.6. Some typical examples of perturbations satisfying the admissibility
condition of Definition 2.5 are:

e Consider a non-linear perturbation

Pa(w)ls = w(u(z)) - u(z),

where w(u(z))|senm is a (bounded) function which depends continuously on u(z),
for instance, for a fixed (bounded) spinor section a(z) we can take .

w(u(z)) = (u(z), a(z))
with (-, -) denoting the Hermitian product in the fiber of the spinor bundle over
the base point € M. This satisfies (2.5).

e Another interesting example is provided by (linear) non-local perturbations
with

w(u,z) =

/k(m, z)u(z)dz

with suitable integration domain and integrability of the kernel k. These also
satisfy (2.5).

e Clearly, an unbounded perturbation may be both non-linear and global at the
same time. This will, in fact, be the case in our main application. In all these
cases the only requirement is the estimate (2.5) with bounded w(u(-)).

We now show that (admissible) perturbed Dirac operators always satisfy the weak
Unique Continuation Property.

Theorem 2.7. Let ), be an operator of Dirac type and P4 an admissible perturba-
tion. Then any solution u of the perturbed equation (2.4) vanishes identically on any
connected component of the underlying manifold if it vanishes on a non-empty open
subset of the connected component.

Proof. Let u be a solution of the perturbed equation which vanishes on an open non-
empty set 2. We make the same construction as in the unperturbed case with a
point zo € 2 N supp(u), a point p nearby in the interior of 2, a normal coordinate ¢,
hyperspheres S,;, a small positive number T, a cut—off function ¢ with ¢(t) = 1 for
t < 0.8T and ¢(t) =0 for t > 0.9T. Then we consider the cut—off solution v = ¢ - u.
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Note that the support of v is in the interior of the hypersphere S, r but v is not a true
solution.

We argue very much like in [3, Proof of Lemma 6]. To begin with, we have

T

(26) RT2/4/ / Ju(t, )1 dy dt = /2 e/ Ju(t, y)| dy dt
S spt

/ / BT | pu(t, y)| dy dt =
Sp.t

We apply the Carleman type inequality of Lemma 2.4

2. 7) -
/ / T |pu(t, y) P dy dt < —/ / eRT=0° |, (u)(t,y) P dy .
t=0 Spe t=0 S

We assume that u is a solution of the perturbed equation I, u + B 4(u) = 0, hence

Dy (pu) = 0Py u+ c(dt)p'u = —pPa(u) + c(dt)p'u.
“Inserting in (2.7) yields

I<—/t_ /S eT=Y" (Iso( )Ba(u)(t, y)|2+|c(dt) (t)ult,v)P) dydt.

Now we exploit our assumptlon
(2.8) |PBa(u)(z)| < Py, z)|u(z)| forze M
about the perturbation with locally bounded P(u,-), say
|P(u, (t,y))] < Co := max |P(u,z)| forally € S,;, te€l0,T)

where K is a suitable compact set. We obtain at once

(1- 2% < _/t /s eBT0" | c(dt)¢ (tYult, y) [ dy dt

< 20 rrps / / | e(dt)e! (tyult, 9)|? dy dt.
R t=0 J Sp,¢

Here we use that ¢'(t) = 0 for 0 < ¢ < 0.8T so that we can estimate the exponential
and pull it in front of the integral. Returning to (2.6) yields

R 20_
[ [ s ipayae < B 2 pnarion [1 [, tet@nd Out, )P aya

which gives the result as R — oc. g
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Remark 2.8. The preceding proof consists only of a short modification of the usual
way one obtains weak UCP for the unperturbed equation from the Carleman estimate.
The point of our proof for the perturbed case is that the unmodified Carleman estimate
for the unperturbed operator suffices (Lemma 2.4a). In the Appendix to this Note we
give an alternative proof of Theorem 2.7 by modifying Lemma 2.4 and establishing a
new Carleman inequality.

2.4. Application to the linearization of Seiberg-Witten equations. As an im-
mediate application of Theorem 2.7, we show that, at any solution to the Seiberg-
Witten equations, the linearization -operator also enjoys the weak UCP. We only give
an account of such linearization in the 3-dimensional case, since the corresponding
claim in the 4-dimensional case can be established by a similar argument.

Let Y be a closed, oriented 3-manifold equipped with a Riemannian metric g and a
Spin® structure. A Spin® structure on (Y, g) is a lift of the SO(3)-frame bundle on Y’
to a Spin°(3)-bundle P. Note that Spin°(3) = U(2). The determinant homomorphism
Spin®(3) — U(1) determines a principal U(1)-bundle, whose corresponding complex
line bundle is called the determinant line bundle of the Spin® structure P.

Given a Spin® structure P, there is an associated Spin® bundle

W=P XU(2) Cz,

which is a complex vector bundle and a module over the bundle of Clifford algebras on
(Y,g). The bundle of Clifford algebras on (Y, g) can be identified with the bundle of
exterior algebras on 7Y, but with a different algebra structure: the Clifford relation.

With the Levi-Civita connection V on the cotangent bundle 7*Y', a U(1)-connection
A on the determinant bundle det(W) determines a connection V 4 on W such that, for
v and 9 sections of T*Y and W respectively, V 4 satisfies

Valc()y) = c(Vo)y + c(v) Va(¥).

Then V4 is called a Spin® connection on W. Applying the Clifford multiplication, we
can define a Dirac operator @, = coV, : I'(W) — I'(W).

The Seiberg-Witten equations on (Y, g), for a pair (A, ) consisting of a U(1) con-
nection A on the determinant line bundle of s and a spinor section ¥ of W, is given by
(12] [10] [14]:

D, =0,
(2.9) { +Fy = o(t, ),

where o (1, 1) is an R-bilinear form on sections of spinor bundle, an imaginary valued
1-form on Y given by

o) = ~S((ele, 9))e € QY iR).

i
2
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Note that-these equations are gauge invariant under the action of gauge group G =
Map(Y,U(1)): u(A,v¥) = (A — 2utdu, up) for any u € G = Map(Y,U(1)).

Let (A,%) be a smooth solution to the Seiberg-Witten equations (2.9), then the
spinor v satisfies

(2.10) [Y? < mazyey {0, ~s(y)}

where s(y) is the scalar curvature for (Y] g) [12].

The linearization of the Seiberg-Witten equations (2.9) at (A, 1), together with the
linearization of the gauge action, gives rise to the following linear elliptic system of
equations for (o, @) (a pair of an imaginary valued 1-form a and a spinor section):

d*a + 1Sy, ¢) = 0,
(2.11) *da — o(1, ¢),
Pid+3c(a)y=0. »
Then we have the following weak unique continuation result for the linearization

(2.11) of the Seiberg-Witten equations, whose proof follows from Theorem 2.7 and the
pointwise bound in 2.10.

Corollary 2.9. If (A, ) is a solution of the Seiberg- Witten equations (2.9), then as a
solution to (2.11), («, @) satisfies the weak unique continuation property.

3. PERTURBATIONS OF THE CHERN—SIMONS—DIRAC FUNCTIONAL

We consider perturbations of the Chern—Simons-Dirac functional of the form pro-
posed in [5] and [11]. The setup is as in the last paragraph: we have a closed compact
connected oriented smooth 3-manifold Y, with a fixed Spin°-structure s, and with a
choice of a Riemannian metric. We consider the configuration space A of pairs (A, ) of
a U(1)-connection and a spinor section, with the action of the gauge group G as above.
The spaces A and Lie(G) are completed in suitable Sobolev norms (see e.g. [14]). More-
over, on the non—compact 4-manifold Y x R we consider the Spin°—structure obtained
as pullback of s on Y, and the cylindrical metric. The configuration space is given
by the set of finite energy pairs (A, ¥) of a U(1)—connection and a spinor on ¥ x R,
acted upon by the corresponding gauge group. The finite energy condition consists of
the property that, after a gauge transformation that kills the dt component of A, the
resulting (A(t), ¥(t)) has time derivative in L. In this case the configuration space can
be topologized by suitable weighted Sobolev norms. Since we do not need the details
here, we refer to [14].

3.1. Case I. We consider the space of functions

(3.1) U C*®",R) x C°(R¥,R),
N>b,K>0

where b; is the first Betti number of the 3-manifold Y.
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In order to have the correct setup for transversality arguments, we need a Banach
space of parameters, hence we select as perturbation parameter space P a subspace of
(3.1) of functions (p;, p2) with finite Floer e-norm.
~ The Floer e-norm of (p1, p2) is defined as follows: choose € = (ex)ren to be a given
sequence of positive real numbers, and set

li(P1, p2)lle = D (ersup| VEp1| + exsup| VEpa)).
k>0

Following the argument of Lemma 5.1 of [9], the sequence € can be chosen such that
P is a Banach space and P N L? is dense in L?. We require that p; is invariant under
the actions of H'(Y, Z) on R™.

3.1.1. For any 3-manifold Y, endowed with a Riemannian metric g and a fixed Spin®
structure s, we choose a complete L?-basis {v;}22, of imaginary-valued 1-forms on
Y. We also choose a complete L?-basis {u;}32, for the co-closed (imaginary-valued)
1-forms on Y. Under the Hodge decomposition, we have

A7:(Y,iR) = HY(Y,iR) & Im(d*) & Im(d),
and the {4;}%2, span the space H'(Y,R) & Im(d").

3.1.2. Fix a U(1)-connection Ag on the determinant bundle det(s). To each co-closed
1-form p; we associate a function on the configuration space \A, defined as

T A) = /Y (A= Ao) A iy

For simplicity, we assume that the { /J:j}?]_'__l form a basis of H!(Y,iR), and [*u;] = 0 for
j > by. It is easy to see that the following properties are satisfied:
(1) 7; is invariant under gauge transformations for j > by;
(2) the map
(T1,-++ ,7) : A= R
is equivariant with respect to the action of gauge transformations A : Y — U(1) on A
and the action of the corresponding [\] € H'(Y, Z) & Z" on R" as a translation by

(AN U [rpa, XA U [, -+ AT AT U Py, ) D V).

3.1.3. To each imaginary-valued 1-form v;, we associate a function (; on A, defined
as the quadratic form in the spinor %,

G ¥) = fy (s, ),

where (-, -) is the Hermitian metric on the space of spinors. It is easy to see that (; is
gauge invariant and real-valued.
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3.1.4. Now we choose any function p; € C*(RV,R) and p, € C*°(R¥,R) (for N > by,
K > 0) where p; is invariant under the action of H'(Y,Z) on R C RY. We can define
a function on A/G as

pi(m, .., 7N) +92(Ch, .-, Ck)-
Let CSD be the Chern-Simons-Dirac functional

62 CSDAW =3 [ (A= A)AEs+Fa) + [ (6.0,0),

where @, is the self adjoint Dirac operator on the compact 3-manifold Y twisted with
the U(1)-connection A. We perturb this functional as

(33) CT‘S\TI/)(A, 1/)) = CSD(Aa'lﬁ) + pl(Tl’ s aTN) + p?(gla ey CK)

3.1.5. For each (p;,p2) € P, the gradient of (3.3),‘ with respect to the L?-metric on
A/G, is computed in the following lemma [5).

Lemma 3.1. Consider the perturbed functional (3.3) with
(p1,p2) € PN (C®(RY,R) x C*°(R¥,R)).
The L?-gradient of (3.3) at (A, ) is given by
*FA - 0(¢ "/)) Z] =1 37‘]
Dot — Z;( 1 ‘342 c(v)v
3.1.6. There are two types of perturbed Dirac equations that we obtain from Lemma

3.1. In fact, the critical points equations for the functional (3.3) provide perturbed
3—-dimensional Seiberg-Witten equations of the form

391

(3.4) VCSD(A, ) = {

xFy = o(v, ) + Z

Z 3132

6@
where o (1, 1) is a quadratic form in the spinor given by 3_.(c(e;)¥, )¢, in dual local
basis {e;} and {e'} of TY and T*Y. Similarly, the gradient flow equations for the

functional (3.3) correspond to perturbed 4-dimensional Seiberg-Witten equations (in
a temporal gauge) of the form

(3.5)

dA(t

0
at =—*FA(t)+0 +Z pl
(3.6)

dwt :—aA(t)¢ +Z aCJ c(v;)¥ ().
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3.1.7. We can prove the following weak unique continuation result for solutions of the
perturbed Seiberg-Witten equations (3.5) and (3.6).

Theorem 3.2. If (A,v) is a solution of (3.5), and the spinor ¢ vanishes on a non-
empty open set, then v vanishes everywhere on the compact connected S-manifold Y.
Suppose then that (A, V) is a pair of connection and spinor on the non—compact four-
dimensional manifold Y x R, with cylindrical metric and spinor bundle S = St & S~
obtained by pulling back the Spin®-structure s on Y. If (A, V) is gauge equivalent to
(A(2), ¥(t)) in a temporal gauge, satisfying (3.6), and ¥ vanishes on a non-empty open
set, then ¥ vanishes everywhere on 'Y x R.

Proof. The result follows in both cases directly from Theorem 2.7, with the non-linear
and global perturbation

(3.7) Z g*z_

so that the Dirac equation in (3.5) becomes of the form @ , ¥ =0, with
&A"p = &A Y+ Pa(y).

The Dirac equation in (3.6) can also be written as ib;ﬁl = 0, with the perturbation
term PB4 (¥) which only differs from (3.7) by a unitary operator c(dt) and

DAY =D, ¥ — Pa(¥),
with P, the Dirac operator on Y x R and P4 (¥ Z gzz
j=1
P, :T(Y xR S*) 5 T(Y x R, 57).
O

3.2. Case II. Here we consider a version of the perturbations introduced in [11], where,
in addition to the perturbations p;(7y,...,7y) and pa(Ca, ..., (k) defined as in §3.1.2
and 3.1.4, we introduce further perturbations depending on both connection and spinor,
described as follows.

3.2.1. Let G be the Green operator for the ordinary Laplacian on Y. If G, is the
identity component of the gauge group G, we can consider the subgroup H C G,

H={\=¢€',f:Y — R such that /f=0},
Y

with G/H = U(1) x H(Y,Z). Consider also a fixed family of locally bounded spinors
{i}i=12,. on Y. We choose the family {t);}i=12.. so that they form a complete
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L2-basis of the space of spinor sections, and they are eigenvectors of the fixed Dirac
operator @, , where Ay is the fixed U(1)-connection that appears in the definition of
Chern-Simons-Dirac functional (3.2). We set

(3.8) ni(A, ) = / (0% A=Ay .

The following properties are satisfied:
(1) m; is invariant under H;
(2) the map
(m,...,n): A— CE

is equivariant with respect to the action of G on A and the corresponding action of
U(1) x H(Y,Z) on C~.

3.2.2. We choose a class of functions p3 : C* — R which is invariant with respect to

the action of U(1) x H'(Y,Z). We consider the corresponding perturbation term
p3(n17"'777L) A — R; .

and the resulting perturbed Chern-Simons—Dirac functional of the form

(39) CSD(A )=CSD(A ¢)+p1(7-17 TN)+p2(C1’aCK)+p3(n17anL)

Lemma 3.3. The L?-gradient of the perturbed functzonal (3.9), with the additional
perturbation ps3, is given by -

(3.10) |
VC/’-EB(A,’(I)) _ { *Fpq — o(, lb) ZJ =1 arJ - Ze_1 e P2 dG (iS(e~ G4 (A~ A°)¢e ¥))

Ba — 3K, ag c(vi)y — Ee_l 5%;6—0‘1*('4 A0)hy

Thus, the Dirac equations derlved from the perturbed critical point equatlons
VCSD(A P)=0

and perturbed flow lines equations

d
5 (AQ), v(t )) + VCSD(A(2), %(t)) =
for the functional (3.9) are, respectively, of the form
6p2 6p3 o—Gd"(A=A0)
(3.11) Z 3. ¢ Z (A=Ao)yy, =

on the compact 3—man1fold Y and, on the non—compact four-manifold Y x R,

o 3)32 OPs —Ga* (A(t)-4o)y, —
(3.12) (55+@A(t)) Z Zam 7T = 0.
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3.3. The UCP problem for Case II. Unlike the perturbations p; and p, of Case I,
the problem of UCP is a lot more delicate for the perturbations ps of Case II.

We begin with a very simple example, again taken from the theory of ordinary differ-
ential equations, which shows that UCP may fail for a toy model of the perturbations
of Case II. More precisely, we consider perturbations of the form

(3.13) Ba(u)le := (u, a)a(z),

for a fixed L2-spinor a(z), and with (-, -) the L?~inner product on spinors,

(u,a) = / (u(2), a(z)) dv(z).

We take this class as a simplified version of (3.8), and of the resulting ps. In any case,
we are only looking at the Dirac part of the Seiberg-Witten equations.

Example 3.4. Let a : [0,2] — R be a continuous function which vanishes for z € [0, 1]
and satisfies

2
/ a(s)ds = v/2.
1

Then the function A

u(z) = 0 for z € [0,1)

) [fa(s)ds forze(1,2]
belongs to C*([0,2]) and satisfies
u'(z) = (u,a)a(x) (for z € [0,2]),

(U, @) = /0 u(t)a(t) dt = %u2(2)=1.

This shows that, already in the one~dimensional case and with the simplified per-
turbations of the form (3.13), weak UCP fails. This means that, in general, it will be
difficult to expect (even weak) UCP for the perturbations of Case II.

However, there are special conditions under which perturbations of the form (3.13)
do still satisfy weak UCP:
Lemma 3.5. Assume that one of the following conditions is satisfied:

e the spinor a does not vanish on any open subset, or

e The support of a is contained in the interior of the support of the solution u
under consideration, or, alternatively put, there ezists a positive constant Cy
such that |a(z)| < Colu(z)| for all z € M.

Then the Dirac equation with a perturbation of the form (3.13) satisfies the weak UCP.
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Proof. The second listed condition makes our perturbation admissible in the sense
of Definition 2.5 (cf. the second item of Example 2.6), and weak UCP follows from
Theorem 2.7.

Now we deal with the first listed condition. Let u be a solution of the perturbed
equation

Pau(z) +(u,a)a(z) =0, z€M.

If © is open in M and u vanishes identically on €2, then either (u,a) must vanish or a
must vanish identically on €. In the first case we have no longer a perturbation and
we are left with Lemma 2.3 which guarantees weak UCP.
. The second case is excluded by the first listed condition of our lemma. O

By the choice of the {%;}i=1,2.., we know that each %;, as an eigenvector of the
Dirac operator @, , satisfies the weak UCP by the argument of Remark 2.3, so the
additional perturbation in (3.11) and (3.12) satisfies the first condition of Lemma 3.5.
The argument given in the proof of Lemma 3.5 for perturbations of the form (3.13)
extends easily to the more general case of perturbed equations of the form (3.11) and
(3.12).

Thus, we have proved the following weak unique continuation result for solutions of
the perturbed Seiberg—-Witten equations (3.11) and (3.12).

Theorem 3.6. If (A, ) is a solution of (3.11), and the spinor ¢ vanishes on an open
set, then v vanishes everywhere on the compact connected 3-manifold Y. Suppose then
that (A, W) is pair of a connection and spinor on the non—compact four—dimensional
manifold Y x R, with cylindrical metric and spinor bundle S = St @ S~ obtained by
pulling back the Spin®-structure s on'Y. If (A, W) is gauge equivalent to (A(¢),¥(t)) in
a temporal gauge, satisfying (3.12), and ¥ vanishes on an open set, then ¥ vanishes
everywhere on 'Y x R. '

3.4. Linearizations. A detailed discussion of the transversality results for monopole
moduli spaces resulting from these perturbed equations will be presented elsewhere.
However, in view of such application, we state another result, which follows from
Theorem 2.7. Recall that, in the proof of transversality for monopole equations (see
[14, §2.3]), one argues that a possible element in the Cokernel of the linearization must
in fact vanish identically. By varying the choice of the perturbation (transversality of
the universal moduli space), the question can be reduced to an argument involving
weak UCP for the adjoint of the (perturbed) Dirac operator (we refer to [14, §2.3] for
details).

There is a conjecture by Laurent Schwartz [16] that weak UCP for an elliptic dif-
ferential operator will always imply weak UCP for its formal adjoint. The matter was
discussed in [4] in detail, but is still unsolved, see also [3, Section 2.2]. However, in
the special case considered here we can prove similar results for the linearizations and
their adjoints, applying Theorem 2.7.
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Consider the linearization of equations (3.5) and (3.6). This gives linear operators
0(4,y) and D(ag) respectively. Notice that the linearization D44 or its adjoint Dz A)
acts on pairs of a 1-form and spinor (¢, ¢), and it involves a term of the form « - %.
Thus, this operator is not of the type directly considered in Theorem 2.7, hence we shall
not apply directly the result to this operator. However, for the proof of transversality
(see e.g. [14]) it is sufficient to know that the operators 07, and D, y) acting on
“pure spinor elements” (0, ¢) satisfy the UCP property, and this can be shown using
Theorem 2.7. The case of D4 y) is completely analogous.

Corollary 3.7. Let the linear operators 97, and D7,y be the L*-adjoint to the
linearizations of equation (3.5) and equation (3.6), respectively. If an element (0, ¢)
of pure spinor part is in the kernel of 04 OF Diawy and the spinor ¢ vanishes on a
non—empty open set, then ¢ vanishes identically on'Y (orY x R).

Proof. The adjoint operators @, and ]),* are again of Dirac type. In particular the
adjoint operators D( A) and ,’DZ‘A,\I,), acting on elements of pure spinor part, are Dirac—
type operators with admissible perturbations. Then the weak UCP for an element in
the kernel of A and DE‘A,\I,) follows from Theorem 2.7. a

4. APPENDIX

In this Appendix we give an alternative proof of Theorem 2.7 which is also instructive,
though longer than the one we have given in the paper.

We prove that the perturbed Carleman inequality

(4.1) / / T |yt P dydt < C / / RT-1° T (2, y) 2 dy dt
, t=0 Spt Spt

holds for any real R sufficiently large.
In order to make the various steps of the proof more transparent, we have subdivided
the proof-in short paragraphs.

4.0.1. First consider a few technical points. The Dirac operator I), has the form
G(t)(8, + B;) on the annular region {S,}sc[0,77, and it is obvious that we have wUCP
for the operator 9, + B; if and only if we have it for ID,. Moreover, we have by Lemma
2.2 that B, = B; + C; with a self-adjoint elliptic differential operator B; and an anti-
symmetric operator C; of order zero, both on Sy ;.
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4.0.2. Now make the substitution v =: e=RBT~9*/2y which replaces (4.1) by

(42) R /0 ’ /S o, )"dy
<of [ |5

We shall denote the integral on the left hand side by Jy and the integral on the right
hand side by J;.

2

9 dy dt .

= + By + R(T — t)vo + e 2T~ (v)

4.0.3. Now we prove (4.2). Decompose & + B; + R(T — t) + P4 into its symmetric
part Bt + R(T — t) + P4 and anti-symmetric part 8; + C;. This gives
2

- = // l (81}0 + C’tv()) + (Btvo + R(T — t)vy + e%(T‘t)z‘/BA(U)) »

dydt-l—//l (B, + R(T — 1)) v

—

dy dt

+ Ct’UO

7

skew szm

+ ez T0°@  (v)]? dy dt

+ 2R // <@)£ + Cyvg, By + R(T — t)vo> + e%(T‘t)z‘I}A(v) dy dt
= Jokew + szm + Jmix -

4.0.4. First we investigate the term J,;,. We integrate by parts and use the identities
for the real part g

R(S, Pf) = 55, (P+ P*)J)

and
2
2R(a,b) > —2|{a,b)| > — <<€|b|2 o e| ) .
We get, almost like in [3, p.30], ' '
(4'3) Imix = RJy + J3 + Jskew.pert-

4.0.5. The first term on the right in (4.3) is

RJ() / I’Uo|2 dt.



20 B. BOOSS-BAVNBEK, M. MARCOLLI, AND B.L. WANG

The second term on the right in (4.3) is the most delicate and was thoroughly analyzed
in the unperturbed case:

J3 // <’U0, —-a-?—t-vo'f' [Bt,Ct]v0> dydt .

The third term on the right in (4.3) is

Jskewpert = 2§}2//<3U0 + Ciuo, egi(T—t)z"pA(U» dydt

o]l el wa [ |

4.0.6. As a matter of fact the term Jg.w was not used at all for establishing the
Carleman inequality in the unperturbed case. Hence we can balance the first negative
term in the preceding estimate for Jsew.pert With Jokew-

, 2
ez ‘BA(v)l dy dt.

To balance the second negative term we decompose
Jom = e// |(Bu+ R(T ~ £)) vo? dy dt
41— e)//|(Bt+R(T—t))vo|2 dy dt

2.
e ST’ Pa(v)| dydt + Jsympert

with
1

Joympers = 2R / [(Be+ BT )00, 3T (0) dy

>~ [ [1(Bi+ RT - ) wl* dys

-/

4.0.7. Now the second (negative) term in the estimate for Jsew.pert balances exactly
with the third term in the decomposition of Jyy,. Moreover, the first (negative) term
in the estimate for Jyym pert balances exactly with the first term in the decomposition
of Joym. Note, that a fraction of [ [|(B; + R(T — t)) vo|* dy dt (say, the second term
in the decomposition of Joym) was needed for balancing J3 in the unperturbed case (see
also Remark 4.1). So, we must choose ¢ sufficiently small, say ¢ = i .

To balance the second (negative) term in the estimate for Jsym pert We are left with
the only positive term not yet (fully) used: RJp.

2
e T, (v)| dydt.
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4.0.8. Let us first consider the case of admissible perturbations satisfying (2.5). In-
troducing the perturbation induces a final error

T 1
Jerr = / / |'Uo|2 (R - -'P('U)‘z) dydt
0 JSpu €

with fixed e. For fixed v we can choose a positive Ry such that the error term J,
becomes > 0 for all R > Ry.

Remark 4.1. In the unperturbed case, the completely elementary character of the argu-
ments was made possible by exploiting one single non-elementary ingredient, Garding’s
inequality (here the equivalence of the first Sobolev norm to the graph norm of any
linear first order elliptic differential operator). It was used for estimating the term J;
by szm and a fraction of Jy. For the perturbed case, it is worth mentioning that
we do not need any kind of non-linear elliptic estimate but can keep the necessary
modifications on the elementary level.
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