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This preprint contains two draft articles of a rather expository character.

In the first article, I give some new results and various puzzles regarding the boundary
reduction of spectral invariants. I consider (elliptic) operators of Dirac type and’ families of
such operators over a compact smooth Riemannian manifold with boundary and over
partitioned manifolds. I apply suitable boundary conditions and discuss three types of results
regarding the involved function spaces, operators, and spectral invariants (index, spectral flow,
and determinant): reductions to the boundary, correction formulas for changing the boundary
condition, and pasting results.

In the second article, I summarize present basic knowledge about the Unique Continuation
Property (UCP, also = Uniqueness of the Cauchy Problem) for linear elliptic operators of first
order for a readership of geometers and topologists. I explain why the weak UCP, i.e. UCP
from open subsets or, equivalently, UCP from separating hypersurfaces, is almost trivial for
operators of Dirac type by simplifying a proof previously given by K.P. Wojciechowski and
the author.




Boundary Reduction of Spectral
Invariants —
Results and Puzzles

Bernhelm Booss—Bavnbek
This report is dedicated to Sergio Albeverio on his 60th birthday

ABSTRACT. We consider (elliptic) operators of Dirac type and
families of such operators over a compact smooth Riemannian ma-
nifold M with boundary £ and over partitioned manifolds M_ U
M,, where M_ N M, = 8M_ = M, = £. We apply suitable
boundary conditions and discuss three types of results regarding
the involved function spaces, operators, and spectral invariants
(index, spectral flow, and determinant): reductions to the bound-
ary, correction formulas for changing the boundary condition, and
pasting results. We shall emphasize the joint features of the dif-
ferent approaches, but focus, as well, on some puzzling differences
between them.

Introduction

Philosophers and physicists have discussed the relation between ap-
pearance and essence, between observable surface and underlying inter-
nal content for centuries. Some aspects of their discussion have been
formalized quite successfully by mathematicians working with bound-
ary integral methods in numerical analysis for instance, or with long
exact (co)homology sequences in algebraic topology. '

In this Note we shall present and analyze various cases of boundary
reduction of spectral invariants. They are all related to the index,
the spectral flow, and the (—function regularized determinant of Dirac
operators resp. families of Dirac operators over a compact manifold

1991 Mathematics Subject Classification. 58G25, 58G20.
Research partially supported by Danish Science Research Council Grant
9503564.
1



2 BERNHELM BOOSS-BAVNBEK

with boundary. We shall not attempt to give a complete list of all
known boundary reduction phenomena in this field but rather restrict
our attention to selected topics representative for a wide range of typical
features.

Under the general heading of ‘boundary reduction’ we shall address
three types of results: genuine boundary reduction when a global in-
variant can be recovered from expressions defined on the boundary;
correction formulas when the difference between two spectral invari-
ants can be localized at the boundary; and pasting formulas when a
global invariant on a partitioned manifold can be split into components
or localized along the splitting hypersurface.

In Section 1, we give general restriction results for Dirac operators
and spaces of sections and distributions.

In Sections 2-3, we treat the index and the spectral flow. We do
this in two slightly different and almost complementary set-ups, dis-
tinguished by differentiability and naturalness assumptions about the
Cauchy data spaces. Since the index and the spectral flow are both
topological invariants, the main results clearly have quite something in
common. At some points one could feel tempted to put up a catego-
rial frame work and a ‘functor’ to describe the boundary reduction in
terms of a homology theory. The delicacy and the variability of some
of the results seem, however, to speak against the productivity of such
possible frame work.

In Section 4, we recall the three basic concepts of the determinant as
used in quantum field theories: the quadratic functional, the Fredholm
determinant, and the (—determinant. We present our view of the recent
Scott-Wojciechowski Formula, relating the second and third concept in
a satisfactory way over manifolds with boundary. It is interesting that
many of the basic concepts discussed in the earlier sections also apply
to the study of the determinant which is not a topological invariant
but much ‘finer’.

Acknowledgments. [ would like to thank S. Albeverio and M. Lesch
(both Bonn), E. Balslev and A. Venkov (both Aarhus), K. Furutani
and N. Otsuki (both Tokyo), G. Morchio and F. Strocchi (both Pisa),
S.G. Scott (London) and K.P. Wojciechowski (Indianapolis) for shar-
ing some of their ideas and calculations with me and for valuable sug-
gestions and comments which have entered in this Note.
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1. Boundary Reduction of Function Spaces and
Distributions

1.1. The Tangential Operator. Let M be a compact smooth
Riemannian manifold with boundary ¥. We shall assume that M does
not contain a connected component which is closed (i.e. with empty
boundary). Let

A:C*®(M;S) — C*®(M;S)

be an operator of Dirac type acting on sections of a Hermitian bundle S
of Clifford modules over M, i.e. A = coV where ¢ denotes the Clifford
multiplication and V is a connection for S which is compatible with ¢
(i.e. Ve =0). To begin with, we assume that all metric structures of
M and S are product in a collar neighbourhood A of the boundary.
Then

0

where u denotes the (inward) normal coordinate, ¢ denotes the Clifford
multiplication with du and B denotes the canonically associated Dirac
operator over X, called the tangential operator. Here the point of the
product structure is that then ¢ and B do not depend on the normal
variable. We note that ¢ is unitary with 02 = —Id and 0B = —Bo.
In the non—product case, there are certain ambiguities in defining a
‘tangential operator’ which we shall not discuss here.

1.2. General Restriction Results. We consider the Sobolev spa-
ces H(M;S) and H*(Z; S|s) (s € R). There is not one single space,
one single s to pick up as a canonical choice for solving the system of
Dirac equations or determining the spectral quantities: from the point
of view of physics, e.g., one would be mainly interested in smooth
sections. Clearly, within the smooth category, one has no problems
restricting a section to the boundary. We shall write

Yoo : C®(M; S) — C*(Z; Slx).

We recall the Green—Stokes Theorem which is the model of all boundary
reduction formulas. It takes the following form in our context.

LEMMA 1.1. (Green’s Formula). All (compatible) Dirac operators
are symmetric with

(Af,9) - (f,Ag)=~— /2 (0Yo0f1 Yo0g) dvols

for any f,g € C*(M;S).
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From the point of view of analysis, however, one is mainly interested
in Lo—sections or even in distributional sections. But v extends to a
bounded map

(1.2) ¥s : H'(M; S) — H*3(5; S|5)
1

only for s > ;. For general s we can, however, prove the following

restriction theorem by a Poisson operator type argument for elliptic
operators of first order. First we define:

DEFINITION 1.2. For any real s we shall distinguish the null spaces
ker(A,s):={f € H'(M;S) | Af =0}
and the corresponding Cauchy date (or Hardy) spaces

8= i .
A(A,8) =7l f ECOM. ) [Af=0m M\z} o5
The null spaces consist of sections which are distributional for neg-
ative s; by elliptic regularity they are smooth in the interior; and by
a Riesz operator argument they can be shown to possess a trace over
the boundary in H*~3(Z; S |z). More precisely, we have the following
General Restriction Theorem:

THEOREM 1.3. ([11]). (a) Let f € H*(M;S) and A f € H'(M; S)
witht > —1. Then the trace of f on I is well-defined in Hs“%(E; Sls)
for any real s.

(b) For any real s the mapping

K= r+;‘:_1'y;°a : C®(%; Slg) — C*(M; S)
extends to a continuous map K& : H*"Y2(Z; S|s) — H(M;S) with
range K(*) = ker(A, s).
(c) In fact, the restriction
K\, : A(A, 8) — ker(A, s)

is an homeomorphism (relative to the respective Sobolev norms), and
we have A(A, s) = vs(ker(A, s)) for all real s.

(d) The Cauchy data space A(A,3) is a Lagrangian subspace of the
Hilbert space Lo(X; S|g) equipped with the symplectic form w(yp, ) =

(o0, 9).

In the preceding theorem, / A denotes the invertible double of A
defined on the closed double M = —M Us M, where the bundles are
glued by 0. We denote the restriction operator by v, : H s(JT/f ; :S") —
H*(M; S) and the dual of 7, in the distributional sense by v% . The
composition P(A) 1= v, 0K is called the (Szegé-) Calderdn projection.
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It is a pseudo-differential projection. Its extension P(A){® to the sth
Sobolev space over ¥ has the corresponding Cauchy data space A(A, s+
3) as its range.

2. Boundary Reduction of the Index

Up to now we have discussed only the restriction of the section
spaces to the boundary, and in particular the restriction of the null
spaces. Those are all infinite-dimensional spaces. To obtain finite-
dimensional null spaces we must impose suitable boundary conditions.
To begin with, we restrict ourselves to the Grassmannian Gr(A) of all
pseudo—differential projections which differ from the Calderén projec-
tion P(A) by an operator of order —1. It has countable many connected
components; two projections P;, P, belong to the same component, if
and only if the virtual codimension

(2.1) i(Py, P;) := index { P, P, : range P, — range P}

of P, in P, vanishes; the higher homotopy groups of each connected
component are given by Bott periodicity.

2.1. Boundary Reduction Formulas. Let P € Gr(A). We con-
sider the extension

(22) Ap : dom(Ap) — LQ(M; S)
of A defined by the domain
(2:3) dom(Ap) := {f € H'(M;S) | POn(f) = 0}.

It is a closed operator in Ly(M;S) with finite-dimensional kernel and
cokernel. That Ap is a closed L, realization can be deduced from the
explicit description of a left parametrix for A by

(2.4) (rt(A)let) A = Id — Koo,

which is a direct consequence of the Calder6n construction. We have
an explicit formula for the adjoint operator

(2.5) (Ap)" = As1d-Pio- 5

and, in particular, Seeley’s Boundary Reduction Formula for the Index
([40], see also [11]):

PROPOSITION 2.1.
index Ap = index {PP(A) : A(A, }) — range(P®)}.
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To prove the Proposition, one begins with the 1-1 relation be-
tween the subspace ker Ap of H'(M;S) and the space ker{ PP(A) :
A(A, }) — range(P®)} which is contained in the kernel of the ellip-
tic pseudo—differential operator of order zero (the ‘fan’) (Id — P(A)) +
P(A)P*PP(A) and therefore only consists of smooth sections. So, the
reduction to the fan is the true boundary reduction, even though the
fan does not appear in the final formulation of Proposition 2.1.

Note that the bundle S of Clifford modules splits naturally into
S = S~ ® S* on even—-dimensional manifolds. Correspondingly, the
Dirac operator splits

(2.6) A= ( A0+ AB_)

with the chiral Dirac operators A* and A~ = (A¥)*. Also the Calderén
operator and the Grassmannian split, and all the preceding results
remain valid in the chiral setting. Notice, however, that the Lagrangian
property of the Cauchy data space (Theorem 1.3d) has to be replaced
by the chiral twisting property

1 1
(2.7) o(A(AT, 3 ) =A(A7, §)l-
NOTE. In the rest of this section, we shall not always distinguish
between the total and the chiral Dirac operator because all the index
formulas we are going to present are valid in both cases.

A more specific boundary reduction formula can be obtained by
choosing the Atiyah-Patodi—Singer boundary condition defined by the
spectral projection IT> (B) of Ly(X; S|z) onto the space spanned by the
eigensections of the boundary Dirac operator B corresponding to the
non—negative eigenvalues. It is a pseudo—differential operator with the
same principal symbol as the Calderén projection P(A). It can be
shown that the difference P(X) — I, (B) is a smoothing operator ([34],
see also [20], [28], and [45] for related, partially also adiabatic results).
Then we have

(2.8) index Ap, +3(n5(0) + dimker B) = / o(z) dz.
= M

Here o(z) denotes the locally defined indez density of A and

: -2 1 *® z=2 -
(29) ms(z) == ) signAA = f(TJ;_Tj/ 7" Tr(Be~*5") dt
Aespec B\{0} 2 0

denotes the 7-function of B. It is (i) well defined through absolute
convergence for R(z) large; (ii) it extends to a meromorphic function




g

BOUNDARY REDUCTION OF SPECTRAL INVARIANTS 7

in the complex plane with isolated simple poles; (iii) its residues are
given by a local formula; and (iv) it has a finite value at 2 = 0 (see e.g.
Gilkey [19]).

Equation (2.8) is modelled after the celebre Gauss-Bonnet Theo-
rem. It separates the contributions to the index from the whole ma-
nifold and from the structure on the boundary. A special feature is
that it expresses the spectral quantities on the left side in terms of a
classical integral on the right side.

2.2. Boundary Correction Formulas. Since by definition the
index of the operator Ap(s) vanishes, we may read Proposition 2.1 as
providing a boundary correction formula for the difference index Ap —
index Ap(a). We have, however, also true boundary correction formulas
under a change of the boundary condition. If P, P, € Gr(A), we obtain
a version of the classical Agronovié-Dynin formula:

(210) index (APl) — index (Apz) = i(Pl, Pz) .

On odd-dimensional manifolds, the chiral splitting of the bun-
dle S|z over the (even—dimensional) boundary provides a splitting

B = ( }3(‘)+ %—) and two local boundary conditions induced by the

respective chiral projections IT.. The corresponding boundary correc-
tion formula becomes

(2.11) index Ap_ —index Ap, = index B*
and leads at once to the Cobordism Theorem:

THEOREM 2.2. (Atiyah, Singer [3])) The indez of a (chiral) Dirac
operator Bt : C®(X;S*) — C*®(X; S~) over a closed even-dimen-
stonal manifold & vanishes, if the couple (£, S™) is a ‘boundary’, i.e.
if there exists a manifold M with boundary ¥ and a bundle of Clifford
modules over M which, restricted to T, is equal to ST & S™.

PROOF. The result follows from (2.11) since index Ay, vanishes by
Green’s formula (Lemma 1.1). ' O

2.3. Pasting Formulas. A third type of reduction results to be
discussed here are pasting formulas for the index. Let X = M; UM, be
an even—dimensional closed partitioned manifold with OM, = OM,; =
M, N M, = ¥. As always in this Note, we assume that no connected
component of M, or M, is closed. Let A be a Dirac operator over X, let
A; denote its restriction to M;. By combining the boundary correction
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formula (2.10) and the Atiyah-Patodi-Singer index theorem (2.8) with
Seeley’s index formula for closed manifolds

index A = / a(z)dz,
X

we obtain a non-additivity formula for the splitting of the index over
partitioned manifolds. The formula is valid for the total and (more
interesting, on even—dimensional manifolds) for the chiral Dirac oper-
ator. :

THEOREM 2.3. Let P; be projections belonging to Gr(A;), j =1,2.
Then '

index A =index (A)p, + index (A2)p, — i(Pe,Id — P).

It is immediate that i(P,,Id — P,) = index (0(0, + B); P», P1) where
the last operator is on the cylinder [0, 1] X ¥ with boundary condition
P, at u =0 and P, at u = 1. The preceding pasting formula provides
an analytic explanation for the combinatorial additivity of the Euler
characteristic of compact 2k—dimensional manifolds and the Novikov
additivity of the signature of compact 4k—dimensional manifolds be-
cause, in both cases, the projections are the complementary spectral
projections. Hence the correction term vanishes on the separating hy-
persurface ¥. It may appear strange that the precise additivity can
be obtained topologically just by applying the two related cohomology
sequences (see [4], p. 588) whereas the analytical proof is rather deli-
cate. But that is part of the game with spectral invariants where the
analytical gains are highest when the topology can not make headway.

Another pasting formula for the index, the Bojarski Conjecture,
which relates the ‘quantum’ quantity index with a ‘classical’ quantity
(coming from the Lagrangian geometry of the Cauchy data spaces),
was suggested in [5], proved in [11], and generalized in [16].

PROPOSITION 2.4. Let X be a partitioned manifold as before and
let P(A)) and A(A;, %) denote the corresponding Calderdn projections
and L, closures of the Cauchy data spaces, j = 1,2. If X is connected,
we have

index A = i(ld — P(A;), P(A;)) = index (A(Ay, 3), A(As, 2))-
Recall that
index (A(A. ). A(As, 1)) := dim(A(Ay, §) N A(Az, 1))
— dim(L3(Z; Slz)/ (A(A1, 3) + AA2, 3)),

and that pairs of closed subspaces for which the two dimensions in the
preceding definition are finite are called Fredholm pairs of subspaces.
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The proof depends on the unique continuation property for Dirac
operators and the Lagrangian property of the Cauchy data spaces (The-
orem 1.3d), more precisely, the chiral twisting property (2.7).

3. Boundary Reduction of the Spectral Flow

A particular clarity of the concept of boundary reduction is required
and can be obtained when discussing the spectral flow sf{A;p} of a
continuous family of (from now on always total) Dirac operators A, with
the same principal symbol and the same domain D. Roughly speaking,
the spectral flow is the difference between the number of eigenvalues,
which change the sign from — to + as ¢ goes from 0 to 1, and the
number of eigenvalues which change the sign from + to —. It can be
defined in a satisfactory way, following a suggestion by J. Phillips (see
[6] and [31]; see also [30] where recently a topological framework has
been presented for the definition of the spectral flow for families of
unbounded self-adjoint Fredholm operators with varying domain).

3.1. Boundary Reduction of Global Sections, Revisited.
We give a systematic presentation of the boundary reduction of the
solution spaces, inspired by M. Krein’s construction of the maximal
space of boundary values for closed symmetric operators (see [6], [7]).
In all this section we stay in the real category and do not assume prod-
uct structure near ¥ unless otherwise stated.

We denote by Ag the restriction of the (total, compatible) Dirac
operator A to the space C§°(M;S) of smooth sections with support
in the interior of M. As mentioned above, there is no natural choice
of a Sobolev space for the boundary reduction. Therefore, a system-
atic treatment of the boundary reduction may begin with the minimal
closed extension Ani, := A and the adjoint Ap.e := (Ag)* of A,.
Clearly, Anax is the maximal closed extension. We have

Duy = dom(Amin) = O (05 3). = CR(M8) "

and
Drax := dom(Amax) = {u € Lo(M;S) | Au € Lo(M; S)
in the sense of distributions}.

Here, the superscript G means the closure in the graph norm which co-
incides with the 1st Sobolev norm on C§°(M;S). We form the space 3
of natural boundary values with the natural trace map v in the following



10 BERNHELM BOOSS-BAVNBEK
way:

Doy 5 Dmax/Dmin =: 8
z = 7(z)=[z] =2+ Dy -

The space 8 becomes a symplectic Hilbert space with the scalar prod-
uct induced by the graph norm

(3.1) (z,9)g = (z,y) + (Az,Ay)
and the symplectic form given by Green’s form

3.2)  w(al, ) = (Az,y)-(z,Ay)  for[z],[v] € B.

One shows easily that w is non-degenerate.

We define the natural Cauchy data space A(A) := y(ker Amax) 25 a
Lagrangian subspace of 3.

By Theorem 1.3a and, alternatively and in greater generality, by
Hérmander [21] (Theorem 2.2.1 and the Estimate (2.2.8), p. 194), the
space 3 is naturally embedded in the distribution space H=2(E; S|s).
If the metrics are product close to ¥, we can give a more precise de-
scription of the embedding, namely as a graded space of distributions.
Let {pk, A} be a spectral resolution of Ly(X) by eigensections of B.
(Here and in the following we do not mention the bundle S). For sim-
plicity, we assume ker B = {0}. Then By = My for all k£ € Z \ {0},
and A_x = =\, 0(¢r) = o—k, and o(p_g) = —pi for k > 0. We have
([7], Proposition 7.15, see also [12] for a more general setting)

(3.3) B=pB_® B, with
H- ¥ (D)

B- = [{ ¥k }<o] and B, = [{px}e>0]

Then B_ and B, are Lagrangian and transversal subspaces of 8.
Let us define two Lagrangian and transversal subspaces Ly of Ly(Z) in
a similar way, namely by the closure in Ly(X) of the linear span of the
eigensections with negative, resp. with positive eigenvalue. We have
that L, is dense in B, , and B_ is dense in L_. This anti-symmetric
relation may explain some of the well-observed delicacies of dealing
with spectral invariants of continuous families of Dirac operators.

Moreover, we have y(Dgps) = B_ , where

(3'4) Daps = {f € HI(M) l H>(f|2) = 0}
denotes the domain corresponding to the Atiyah-Patodi-Singer bound-
ary condition. Note that a series ),  Cxpx may converge to an ele-

ment ¢ € Ly() without converging in Hz(Z). So, such ¢ € L_ can
not appear as the trace at the boundary of any f € Dpax.

HE(T)
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For all domains D with Dpin C D C Dp,a and y(D) Lagrangian,
we have that the extension Ap := An,y |p is self-adjoint. It becomes a
Fredholm operator, if and only if the pair (v(D), A(A)) of Lagrangian
subspaces of 3 becomes a Fredholm pair. In particular, (3_,A(A)) is a
Fredholm pair. One can show the following proposition in the product
case (and may expect it to be valid also if the metric structures near
the boundary are not product, see [8]):

PROPOSITION 3.1. The Ly(Z) part A(A) N Ly(X) of the natural
Cauchy data space A(A) is closed in Lo(X). Actually, it is a Lagrangian
subspace of L»(X) and it forms a Fredholm pair with the component L_ .

3.2. Spectral Flow and Maslov Index. Partly, the project of
understanding the topology of low—dimensional manifolds has to do
with understanding the spectral flow of a family of Dirac operators
with the same principal symbol on a partitioned manifold. Inspired
by the surgery operations, so successful in topology, one replaces the
spectral flow of a continuous 1-parameter family of self-adjoint Fred-
holm operators, which is a ‘quantum’ entity, by the Maslov indez of a
corresponding path of Lagrangian Fredholm pairs. The idea is due to
Floer and was worked out subsequently by Yoshida in dimension 3, by
Nicolaescu in all odd dimensions, and pushed further by Cappell, Lee
and Miller, Daniel and Kirk and many other authors. For a survey, see
6], (7], [27].

First, we give a general result - without assuming differentiability
of the path, invertibility at the ends, regular crossings, or a product
structure near ¥. On a compact manifold M with boundary ¥, we
consider a continuous family of Dirac operators {A;} (induced by a
continuous family {V,} of connections). We can fix the space 3 for the
family and derive the continuity of the corresponding family {A(A;} of
natural Cauchy data spaces from the weak unique continuation prop-
erty ker Apax NDpmin = {0} and the existence of a Fredholm extension
with domain D. We obtain the General Boundary Reduction Formula
for the spectral flow ([6]), which gives a family version of the Bojarski
conjecture (our Proposition 2.4):

THEOREM 3.2. (a) The spectral flow of the family {A¢p} is well
defined under the preceding assumptions.
(b) The family {A(A;) := y(ker Aymax)} @5 a continuous curve of La-
grangian subspaces of B3 which all make Fredholm pairs with v(D).
(c) The Maslov indez mas ({A(A¢)},v(D)) is well-defined and we
have

(3.5) sf {A,p} = mas ({A(A)},7(D)).
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We have two corollaries for the spectral flow on closed manifolds
with fixed hypersurface. The first corollary treats the case of a separat-
ing hypersurface, the second the case of a non-separating hypersurface.
Both cases can be reduced to the situation of the preceding theorem
by cutting the manifold along ¥. Then we get a manifold with two
isometric boundary components in both cases (see [7]).

For product structure near ¥, one can obtain an Le—version of the
preceding Theorem which is closely related to the corresponding results
by the aforementioned authors.

3.3. Correction Formula for the Spectral Flow. Let D, D’
with Dpin € D, D' C Dy be two domains such that both {A;p}
and {A;p'} become families of self-adjoint Fredholm operators. We
assume that D and D' differ only by finite dimension, more precisely,
that

(3.6) dimy(D)/v(D)N (D) = dimy(D")/y(D) Ny(D') < +oo.
Then we find from Theorem 3.2 (for details see [7], Theorem 6.5):

(37) sf ({Aup}) - sf ({Acp})
= mas ({A(A)}, (D) — mas ({A(A)}, ¥(D)).

On the right side of (3.7), the difference of the Maslov indices does
not depend on the curve {A(A;)}, but only on the endpoints and is
also called the Hérmander indez of the four determining Lagrangian
subspaces. The assumption (3.6) is rather restrictive. The pair of
domains, for instance, defined by the Atiyah—Patodi-Singer projection
and the Calderén projection, may not always satisfy that condition.
For the present proof, however, it seems indispensable.

4. Boundary Reduction of the Determinant

The understanding of the determinant for Dirac operators is in
rapid development. A formula, recently obtained by Scott and Wojcie-
chowski, shows that the concept of boundary reduction is crucial for
illuminating the relations between the competing concepts of the Fred-
holm determinant and the {—function regularized determinant. This
section presents the Scott—Wojciechowski formula and puts it under
the perspective of boundary reduction.




BOUNDARY REDUCTION OF SPECTRAL INVARIANTS 13

4.1. Three Determinant Concepts. Let us begin with the most
simple integral of statistical mechanics, the partition function which is
the model for all quadratic functionals:

(4.1) Z(B) = / e~ PT=2) gy
r

To begin with, let dimT" = d < oo and [ real with § > 0 and assume
that T is a strictly positive, symmetric endomorphism. In suitable
coordinates we evaluate the Gaussian integrals and find

Z(B) =n¥?. 3792 . (det T)"% .

Two fundamental problems arise when we try to take a Dirac op-
erator for T and all sections in a bundle S over a compact manifold
M for T" according to the Feynman recipes in the Matthews and Salam
program ([25], {26]. What if T" is not > 07 And what if d = +oo (i.e.
if M is not a finite set of points)? To get around the first problem, we
reproduce a calculation made by Adams and Sen, [1]:

We decompose ' =T, xI'_ and T = T, @T_ with T, —T_ strictly
positive in I'x and dimI'x = d.. Formally, we obtain by a suitable
path in the complex plane approaching g = 1:

(4.2) Z(1) = n%/2 X3¢ (det |T|) 7,
with ( :=d++d_and n:=d, —d_.
We shall not discuss the various stochastic approaches to evaluate

the integral when d = +o0, but present two other concepts of the
determinant.

From the point of view of functional analysis, the only natural con-
cept is the Fredholm determinant of bounded operators acting on a
separable Hilbert space of the form e or, more generally, Id + o where
« is of trace class. We recall the formulas

oo}
(4.3) detp, e =eT° and detp,(Id+a)= ZTr Nea .

=0
The Fredholm determinant is notable for obeying the product rule, in
difference to other generalizations of the determinant to infinite dimen-
sions where the error of the product rule leads to new invariants, see
e.g. [22].

Clearly, the parametrix (or Green’s function) of a Dirac operator
leads to operators for which the Fredholm determinant can be defined,
but the relevant information about the spectrum of the Dirac opera-
tor does not seem sufficiently maintained. Note also that Quillen and
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Segal’s construction of the determinant line bundle is based on the con-
cept of the Fredholm determinant, though without leading to numbers
when the bundle is non—trivial.

A third concept is the (—function regularized determinant, based on

Ray and Singer’s observation that, formally,

detT =[] A = exp{D_InNe™21% .o} = emEr(@l=o

where (r(2) = L2, X7 = gy ot Tre ™ dt. By a result of
Seeley, for a positive definite self-adjoint elliptic operator T of second
order, acting on sections of a Hermitian vector bundle over a closed
manifold M of dimension m, the function (r(z) is holomorphic for
R(z) sufficiently large and can be extended meromorphically to the
whole complex plane with z = 0 no pole.

The preceding definition does not apply immediately to the Dirac
operator A which has infinitely many positive A; and negative eigen-
values —u;. As an example, consider the operator A, := —i% +a:
C®(SY) — C®(S*) with A, pr = ko + apy, where pi(z) = e, It
follows that spec A, = {k + a}xez-

Choosing the branch (—1)~% = e~%"?, we find

Cale) = 3o X7+ Yo (1)~
=5 {weB) +m@} + 2 {w ) -m@)},
where 74 () is defined as in (2.9). Thus:

1 LT
CA(0) = 5G42(0) = 5 {Ca2(0) — ma(0)}
and
(4.4) det A = %0 = e 5 {Caz@=1a(0)} | o—3¢,2(0)

REMARK 4.1. (a) The three spectral invariants which enter in the
preceding formula are of very different character. The first invariant,
¢a2(0), is the most stable of the three. It is given by [,, a(z)dz, where
a(z) denotes the index density which is a certain coefficient in the heat
kernel expansion and is locally expressed by the coefficients of A. In
particular, (,2(0) vanishes on a closed odd—dimensional manifold.

The second invariant, 74(0), is not given by an integral, not by a
local formula. It depends, however, only on finitely many terms of the
symbol of the resolvent (A —)~! and will not change when one changes
or removes a finite number of eigenvalues.
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The third invariant, ¢}(0), is the most delicate of the three: even
small changes of the eigenvalues will change the (’-invariant and hence
the determinant and make it capable of detecting small anomalies.

(b) It should be noted that for Dirac operators in even dimen-
sions also a vanishing determinant can provide some insight by replac-
ing the operator A on the finite-dimensional kernel by the rotation
M(m,0,,) := me with suitable ‘mass’ m and ‘angle’ 6,, and chi-
ral switch 75 := (§ % ). Then the standardized determinant takes the
form det’¢-m™++7-ein+=1-)0m where det; denotes the rest-determinant
after removing the zero—eigenvalues and n. denotes the dimension of
the kernel of the chiral Dirac operators (see [9] and [44], based on the
manifold-with-boundary case discussed in [27]).

(c) Our choice of the branch e=? for (—~1)~% does not coincide
with Singer’s original choice € in [42] which gives an extra term in
the Scott—~Wojciechowski Formula (our Theorem 4.2, see [38], Theorem
7.1), unless the argument for the Fredholm determinant is also suitably
reversed.

4.2. The Scott—Wojciechowski Formula. In a recent paper by
Wojciechowski it was shown that the (-regularized determinant can
also be defined for certain self-adjoint Fredholm extensions of the Dirac
operator on a compact manifold with boundary, namely when the do-
main is defined by a projection belonging to the smooth, self-adjoint
Grassmannian '

(4.5)
gri (A) = {P € Gr(A) | P is self-adjoint, P — P(A) is smoothing

and range(P(®) is Lagrangian in Ly(Z; S|s)}.

We refer to [43] for the details of the delicate estimates needed for
establishing the three involved invariants in that case.

Scott and Wojciechowski have now established a boundary correc-
tion formula which relates the (—determinant and the Fredholm deter-
minant (see [37], [38]).

THEOREM 4.2. (a) Let A be a Dirac operator over an odd-dimen-
stonal compact manifold M with boundary ¥ and let P € Gry (A).
Then the range of P(A) and the range of P can be written as the
graphs of unitary, elliptic operators of order 0, K, resp. T which differ
from the operator (B*B~)~Y2B* : C®(%; S*|g) = C®(Z; S |g) by a
smoothing operator. Moreover,

(46) det( Ap= det( A'p(A) . detpr%(ld + KT—l) .
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(b) If we pick the alternative sign for the phase of the determinant and
- define - ' ) ' '

dete Ap = eF{mO—Cu @} . -3¢0
we obtain
(47) det< Ap = detc A'P(A) . detFr%(Id + KT—I) . detFr(gP) :

where gp denotes fthe unique unitary elliptic pseiudo—diﬁerential opera-
tor of order zero acting on C*(X; S~|5) which differs from the identity
by a smoothing operator, such that

Id 0 Id 0
P= (0 gp) PA) (0 g;l) |

In geometric terms, the key to the understanding of the preceding
Theorem is that the determinant line bundle, parametrized by the pro-
jections belonging to the smooth self-adjoint Grassmannian, is trivial
so that one can attribute complex numbers (up to a multiple) to the
canonical determinant section. This may explain why earlier attempts
to relate the concept of the (—~determinant with the Fredholm deter-
minant (see for instance [15]) had to be content with discussing the
metric of the determinant bundle in terms of the (~determinant, and

why the break-through in understanding the mutual relation required
a concept of boundary reduction.

4.3. A 1-Dimensional Toy Model. Some basic ideas of the
proof of the Scott~Wojciechowski Formula can be best understood by
analyzing a simple example on the interval M = [0, 2r]. We follow [10]
which gives a setting consistent with the Scott—Wojciechowski For-
mula, though with the alternative sign choice in the definition of the
(—determinant. For a review of other and more general approaches we
refer to [23] (see also [13] and [34]).

Let T be a unitary N x N-matrix and A := —i% DD —iad; be
acting on

dom Ar := {f € H([0,2n]; C") | f(27) = TF(0)}.

The natural space 8 of boundary values is now finite—-dimensional and
the Grassmannian of boundary conditions of Atiyah-Patodi-Singer
type is not really defined. Anyhow, we can let —Id € U (N) play
the role of the Calderén projection. We find spec A_j4 = {&t ez
By the Hurwitz (~function we find det; A_jq = 2. Then the Scott—
Wojciechowski Formula would imply:
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PROPOSITION 4.3.
-1
(4.8) det; Ar = 2" det Id—CN—2—T— :

This is precisely what we obtained in [10].

PROOF. The proof of (4.8) in [10] uses a variational argument. Let
T, := €T be such a variation with a a self-adjoint N x N-matrix.
For the phase and the modulus of the boundary term (the right side)
in (4.8) we find at once

d

Idey — T tro
o~ N C r
(4.9) \s(—dr In 27 det -—-————) =

5 - and

#(") = —% tr(a(ld - 7)1 (14 + 7).

The variation of the phase and modulus of the (-determinant is more
delicate. First we fix the domain under the variation by replacing the
operator Az, by the unitarily equivalent operator A, := (U, AU )z,
where U,(z) := T~1e"X®°T with a smooth cut-off function x being
constant equal 1 near 0 and constant equal 0 near 27. Then (42(0) is
constant vanishing. By Duhamel’s principle we can replace the heat
kernel for x'(z)e=¢43 by the standard heat kernel and we obtain

T d w2 \ —eAz  tra
(4.10) 53;77A,(0)|,=0_§ ﬁlg%\/ETere b=

and, plugging in the standard integral kernel for A~!,
(4.11) ; (——cAz () =0 = lim Tr &g A7 e+

= -z tr(a(Id ~T)}(1d + T)).
0

Comparing the middle terms in equations (4.10) and (4.11) we see
that the variation of the {’-term is much more delicate than the vari-
ation of the n—invariant.

We may rest assured that Proposition 4.3 will not lead to new
number theory insights since the relevant integrals of one variable have
probably all been checked before in analytic number theory. We may,
however, exploit the simple relation ¢ _ 25 (2) = 2Criem(22) to develop

an approach which in higher d1mens1ons, applied to Theorem 4.2 for
suitable symmetric spaces, may lead to new insight in the Dirichlet (-
function. The following calculation (suggested by K.P. Wojciechowski)
shall serve not only as a pilot for future, hopefully more relevant number
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theoretical calculations but also to check the validity and in particular
the signs of the reduction formula of Proposition 4.3.

We consider the case N = 1 and a path {T; := >} close to r = 1.
We find

.d .d
spec Ay, = spec(—za +7)q = spec(—za +7)|sr = {k+ r}rez-
Note that A, =1. We find

d o
(412) 5(111 det< lr—- ( tA2 dt) I
_ 2
= TrA% e ‘A% dt
—tA%
(z+1 / 1 P dt|m = 277A1 (1).

We expand like in [24], but at r = 7, and get for the right side of (4.12)

may (D) = 223" PG 2+ 1)

n=0

o0

n=0
By elementary summation, the difference vanishes in the preceding
equation in the parentheses on the right side. Alternatively, we could
determine it by using our boundary reduction formula for the determi-
nant of Proposition 4.3. We recall from [19] that 7., (0) =signr — 2r

and find
det¢Ap, = = %02 . 9sinr.

So, In(2sin7r) = —Czlx’A’T (0) and we get for the left side of (4.12)

r=1 -
2 2sin7r
in nice agreement with our previous completely elementary result.

d
%(ln det A%, )] 2cosmr|,—y =0

REMARK 4.4. As seen in (4.11), the variation of the modulus of the
¢(—determinant contains a truly global term and can not be localized
near the boundary. This may explain why the proof method, which
was successful in the 1-dimensional case, can not literally be imitated
in higher dimensions. It works with the phase as demonstrated in [36],
but not with the modulus. In [38], the authors get around that problem
by varying a quotient of determinants. That idea has been applied
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before by Forman [18] for a boundary reduction of the determinant of
the Laplacian with local boundary conditions.

Then the main ingredients in the Scott-Wojciechowski proof are,
first to assume that Ap is invertible or, equivalently, that the boundary
integral operator PP(A) : A(A,}) — range P© is invertible. Then
they determine a parametrix for Ap and find

;1 =A"1-Ko (P'P(A))_1 oPoyoA~l,

where A™! denotes the parametrix for A introduced in (2.4). Then
they show that the difference Ap! — A,‘,21 is a smoothing operator and
they prove the variation formula

d -
— (ln det Ap,,; —Indetc Ap, ) lro = Tr Ao(A7 — A7),
from which the boundary reduction follows.
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Unique Continuation Property for Dirac
Operators, Revisited

Bernhelm Booss-Bavnbek'

ABSTRACT. We summarize present basic knowledge about the Unique
Continuation Property (UCP, also = Uniqueness of the Cauchy
Problem) for elliptic operators of first order for a readership of ge-
ometers and topologists. We explain why the weak UCP, i.e. UCP
from open subsets or, equivalently, UCP from separating hypersur-
faces, is almost trivial for operators of Dirac type by simplifying a
proof previously given by K.P. Wojciechowski and the author.

Introduction

One of the basic properties of an (elliptic) Dirac operator A is the
weak Unique Continuation Property (UCP). Let M = M_ Ug M, be
a closed connected partitioned manifold of dimension m with a sepa-
rating hypersurface ¥ = M_ N M, = 0M_ = 0M, . The weak UCP
guarantees that there are no ghost solutions of Au = 0, i.e. there are
no solutions which vanish on M_ and have non—trivial support in M.
This property is also called UCP from open subsets or across any hyper-
surface. For Euclidean (classical) Dirac operators the property follows
from Holmgren’s uniqueness theorem for scalar elliptic operators with
real analytic coefficients (see e.g. Hormander [14], Theorem 5.3.1).

In [10], Booss-Bavnbek and Wojciechowski gave a rather simple
proof of the weak UCP for operators of Dirac type. Various geometric
consequences are established.

1. Any non-trivial global solution leaves a non-trivial ¢race on the
separating hypersurface ¥ (and, in fact, on any hypersurface of
a closed manifold with orientable normal bundle).

1991 Mathematics Subject Classification. 58G03, 35B05.
Report of a discussion with S. Alinhac, Paris Sud, Orsay.
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2. If m is even, then the index
index A = dimker A — dim coker A
of the operator A over M is equal to the Fredholm index
index (H—,H;) =dimH_NH, — codim(’H_VGB Hy)

of the Fredholm pair of the Cauchy data spaces H.. The spaces
‘H. consist of the traces at the boundary of the solutions in suit-
able Sobolev spaces on the two sides of the partitioned manifold.
This formula is also called the Bojarski Conjecture.

3. If m is odd, then the families ({#-:}, {H+;}) of Fredholm La-
grangian pairs of Cauchy data spaces in a suitable symplectic
Sobolev space over £ are continuous for a continuous family {A;}
of symmetric operators of Dirac type over M. To prove the con-
tinuity of the Cauchy data spaces, the weak UCP is required
(see Booss-Bavnbek and Furutani [9], Theorem 3.8). Moreover,
the weak UCP implies the Yoshida—Nicolaescu Theorem, namely
that the spectral flow sf ({A;}) is equal to the Maslov intersec-
tion index m({H_.},{H.})-

4. Any operator of Dirac type over a smooth compact manifold with
boundary can be extended to an invertible operator of Dirac type
over the closed double.

5. The kernel of the maximal extension A* of a (symmetric) oper-
ator of Dirac type over a smooth connected compact manifold
M_ with boundary ¥ intersects the minimal domain

dompn(A) = CR(M, \ 5 E). P

transversely. It follows that A* maps the first Sobolev space
HY(M,; E) onto Lo(My; F).

Motivated by the classical mechanics of a vibrating membrane, Bar
[5] and other authors use the notion of a nodal set for the zero locus {z €
M | u(z) = 0} of a solution of Au = 0. Then, we may restate item 1 and
item 5 of the preceding list by claiming that neither a hypersurface with
orientable normal bundle of a closed connected partitioned manifold
nor the boundary of a compact connected manifold are contained in
the nodal set of a solution.

Using an unpublished system version of the Aronszajn—Cordes The-
orem on the hard UCP, i.e. the UCP from a point (see below), Bar
[5] obtains a sharper version of item 5, namely that no single con-
nected component of the boundary is contained in the nodal set of a
non-trivial solution.
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In special cases, one can obtain much sharper results, namely re-
lations between the nodal set of solutions of Dirac equations and the
geometry of the underlying manifold. The model case is the Riemann—
Roch Theorem giving a relation between a divisor, i.e. a weighted
(discrete) set of zeros and poles; the dimensions of the solution spaces
of meromorphic differential forms with the prescribed zeros and poles;
and the genus of the underlying Riemann surface. See also Kotschick
[21] for a survey of recent results by C. Taubes exploiting precise knowl-
edge about the nodal set of solutions in the theory of 4-dimensional
symplectic manifolds.

In this Note we shall give an expository, almost self-contained pre-
sentation of the weak UCP for operators of Dirac type. Our goal is to
explain how simple the arguments for the weak UCP are and why other
types of the UCP possibly need different types of arguments. Our point
is that the symmetry of the principal symbol of the tangential operator
for any hypersurface is sufficient to prove the weak UCP. One needs
not to recur to the property of the Dirac Laplacian that its principal
symbol is scalar and real.

In Section 1 we fix the notation and give the precise form of our
Main Theorem on the weak UCP and of the lemmata on which its
proof is built. The first lemma establishes a Carleman type inequal-
ity for operators of Dirac type. Here the point is that we use only a
simple property of operators of Dirac type, namely that their tangen-
tial operator along any hypersurface is always an elliptic differential
operator of first order with self-adjoint principal symbol. The second
lemma explains how we obtain the weak UCP from our Carleman in-
equality. That is standard. We then summarize questions raised by
the “suspicious” simplicity of our UCP proof.

In Section 2 we explain the relation between the weak UCP and
various other UCP concepts, approaches, and puzzling aspects and
riddles. :

In the Appendix we present the details of the proofs of the two
lemmata. We follow [10] with two simplifications: we do not need the
compatibility of the connection and we refrain from any deformation
of the metric.

1. The weak UCP for operators of Dirac type

Let (M, g) be a compact smooth Riemannian manifold (with or
without boundary), dim M = m. We denote by

CZ(M) = {CZ(TM:::, gx)}zEM
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the bundle of the Clifford algebras of the tangent spaces. Let £ — M
be a smooth vector bundle of Clifford modules. To keep the presen-
tation as simple as possible, we assume that E is a complex vec-
tor bundle. Then the Clifford multiplication is a bundle map c :
C4(M) — Hom(E, F) which yields a representation ¢ : C4(T M, g.) —
Hom¢(E;, E;) in each fibre. We may assume that the bundle E is
equipped with a Hermitian metric which makes Clifford multiplication
skew—-symmetric

(1) (c(v)s, s") = —(s,c(v)s) for v € TM, and s € E,.
DEFINITION 1. Any choice of a smooth connection
V:C®M;E) - C®(M;T*M ® F)

defines an operator of Dirac type A := coV under the Riemannian
identification of the bundles TM and T* M.

In local coordinates we have A := 3~", c(e;) V., for any orthonor-
mal base {ej,...,en} of TM,. Actually, we may choose a local frame
in such a way that

0
Ve, = 2— + zero order terms

8:z:j
for all 1 < 7 < m. So, locally, we have

= 0
(2) A= Zc(ej)ég + zero order terms.

j=1 I

It follows at once that the principal symbol o,(A)(z,&) is given by
Clifford multiplication with 7£. Therefore any operator A of Dirac type
is elliptic with symmetric principal symbol. Actually, if the connection
V is compatible with Clifford multiplication (i.e. V¢ = 0), then the
operator A itself becomes symmetric. We shall, however, admit non—
compatible metrics. Moreover, the Dirac Laplacian A? has principal
symbol o2(A?)(z,&) given by the Riemannian metric ||£]|2. So, it is
scalar real (i.e. a real multiple of the identity) and elliptic.

In the literature, the last mentioned property of the Dirac Lapla-
cian, namely that the principal symbol is real, is usually considered
as the key property to establish the weak Unique Continuation Prop-
erty, i.e. UCP from open subsets, for any real elliptic equation of
second order (see e.g. Taylor [26], Chapter XIV, Corollary 2.9). In
fact, Aronszajn [4] and Cordes [12] derived a much stronger UCP re-
sult from this property (real, second order, elliptic, scalar symbol), see
below Theorem 7.
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As shown in Booss-Bavnbek, Wojciechowski [10] (Theorem 8.2, pp.
43-49), there is-an alternative shorter line of arguments for deriving the
weak UCP directly for operators of Dirac type, using only the following
well-known property.

LEMMA 2. Let X be a closed hypersurface of M with orientable nor-
mal bundle. Let t denote a normal variable with fized orientation such
that a bicollar neighbourhood N of ¥ is parametrized by ¥ x [—¢, +¢].
Then any operator of Dirac type can be rewritten in the form

3) Al = c(d?) (% +B,+Ci),

where B; is a self-adjoint elliptic operator on the parallel hypersurface
L, and Cy : El|g, — El|s, a skew-symmetric operator of Oth order,
actually a skew-symmetric bundle homomorphism.

PROOF. Let (t,y) denote the coordinates in a tubular neighbour-
hood of ¥. Locally, we have y = (y1,-..,Ym-1).- Let ¢, €C1,...,Cno1
denote Clifford multiplication by the unit tangent vectors in normal,
resp. tangential, directions. By (2), we have '

' 0
A=c; En + Z Ck 6—% + zero order terms

§ & o
=cl|l=—++ — ;¢ — + zero order terms).
(G S,

—

"

=:B:
We shall call B; the tangential operator component of the operator A.
Clearly it is an elliptic differential operator of first order over ¥. From
(1), we have

0 \* 0 0
(Ct Ck %];) = (—a—yk> (— Ck)(_ Ct) = —C C; —a—y'l: + zero order terms

0
= C; Cx — + zero order terms.
Oy
So,

B; = B; + zero order terms.

Hence, the principal symbol of B; is self-adjoint. Then the assertion of
the lemma is proved by setting

1 1
(4) Bt = 5(8; + B:) and Ct = -2‘(Bg - B:)
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REMARK 3. (a) If all structures are product near %, the collar be-
comes a true cylinder and, moreover, the dependence of ¢; and B; on
the normal variable can be removed on the collar. If, additionally, the
tangential operator B is self-adjoint (which is the case for a compati-
ble connection), we obtain a trivial case of UCP on the cylinder. The
reason is that on the cylinder any solution can be expanded in the
form _ h;(¢)y;(y), where {¢;} is a complete orthonormal system of
eigenfunctions of B. Even if we restrict ourselves to product structures
near ¥ or near the boundary, we must, however, admit non—product
structures elsewhere. Then the preceding expansion argument breaks
down.

(b) The point of the preceding lemma is not the splitting into a normal
part -g—t and a tangential part B;. That is natural for any differen-
tial operator of first order. Moreover, under that splitting one always
obtains an elliptic tangential operator when starting with an elliptic
operator. Finally, also the splitting of the tangential part B; + C} into
a symmetric part and an anti-symmetric part in (4) is canonical. The
special property of Dirac type operators which distinguishes them from
many other elliptic differential operators of first order is that the tan-
gential part has elliptic and symmetric principal symbol. In general,
the symmetrization made in (4) will destroy the ellipticity. That would
be the case for a tangential operator with elliptic principal symbol of

0 ]1 when k = 3 + it with 7 # 0.

(c) Note that the symmetry of an elliptic differential operator of first
order A = G(£ + B) only implies B* = GBG modulo zero order terms,
whereas according to the preceding Lemma we have B* = B modulo
zero order terms for any operator of Dirac type.

(d) A different product formula is used in Grubb, Seeley [13],

e.g. Jordan form (k

(5) Aly = U(%+B+t1%‘” +P§°’),

where the identification of all parallel hypersurfaces %; with ¥ is in-
duced by the metrics; U is a unitary morphism not depending on the
normal variable ¢; neither B depends on ¢: it is a fixed self-adjoint
elliptic operator of first order on ¥; so, when ¢ moves, the change of
the coefficients in front of the partial derivatives is coded away; the

operator Pt(l) is of first order and the operator Pt(o) is of order zero.

Surprisingly, the preceding Lemma 2 implies almost directly the
following theorem.
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THEOREM 4. Any operator A of Dirac type has the weak unique
continuation property.

Here, weak unique continuation property (weak UCP) means the
UCP from open subsets, i.e. any solution of Au = 0, which vanishes on
an open subset w of M, vanishes on the whole connected component
of the manifold.

Basically, the proof of Theorem 4 follows the standard lines of the
UCP literature. First we localize and convexify the situation and we
introduce spherical coordinates. Without loss of generality we may
assume that w is maximal, namely the union of all open subsets where
u vanishes. If the solution u does not vanish on the whole connected
component containing w, we consider a point zo € suppu N dw. We
choose a point p inside of w such that the ball around p with radius
r := dist(z, p) is contained in @. We call the coordinate running from
p to zo normal coordinate and denote it by ¢t. The boundary of the ball
around p of radius r is a hypersphere and will be denoted by S, . It goes
through z, which has normal coordinate ¢ = 0. Correspondingly, we
have larger hyperspheres S, C M for 0 < ¢ < T with T > 0 sufficiently
small. In such a way we have parametrized an annular region N7 :=
{Sp,t}teo,r] around p of width T and inner radius r, ranging from the
hypersphere S, ¢ which is contained in & to the hypersphere S, + which
cuts deeply into supp u, if supp u is not empty.

Next, we replace the solution u by a section

(6) v(t,y) = @(t)u(t,y)

with a smooth bump function ¢ with ¢(t) = 1 for ¢t < 0.87 and
p(t) =0fort > 0.9T. Then supp v is contained in N . More precisely,
it is contained in the annular region Npger. Moreover, supp(Av) is
contained in the annular region 0.87 <t < 0.97T.

Theorem 4 follows immediately from the two following lemmata.

LEMMA 5. Let A : C®°(M;E) — C™(M;E) be a linear elliptic
differential operator of order 1. Let us assume that A can be written
on Nt in the product form

0
A=0ty)(5+B:+C),  te[0T], y €Sy,
where o(t,y) is invertible, By is a symmetric elliptic differential oper-
ator of order 1 over Sp;:, and C; a skew-symmetric bundle homomor-
phism over Sp;. Let v denote a section made from a solution u as in
(6). Then for T sufficiently small, there exists a constant C such that
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the Carleman inequality

" |
(1) R / / R0 || (z, )12 dy dt
t=0 J Sp¢

T
<o [ emopay)ayas
t=0J Sps

holds for any real R sufficiently large.

LEMMA 6. If (7) holds for any sufficiently large R > 0, then u is
equal 0 on Nz, .

We shall give a short-cut presentation of the proofs of the two
preceding lemmata in the Appendix to this Note. One will see that the
underlying argument for the weak UCP for operators of Dirac operators
truly consists only of a short series of “cheap tricks”.

2. Different Concepts of UCP

Now we sort out which aspects of the UCP are intricate and which
are simple; and which aspects are well-understood and which are seem-
ingly still unsettled.

2.1. UCP from a point versus UCP from open subsets.
One reason for the intricate character of the UCP literature is the
emphasis on the hard UCP, i.e. UCP from a point. That was the
main achievement by N. Aronszajn [4] and H.O. Cordes [12] in their
legendary parallel papers on elliptic equations. Independently of each
other, they proved the following (and a little more).

THEOREM 7. (Aronszajn, Cordes, 1956). Let L be a linear scalar
elliptic operator of second order with smooth coefficients and with real
principal symbol. A sufficient condition for the constant vanishing of
a solution u of Lu = 0 in a connected domain is that u vanishes at a
point xoy with all its derivatives.

REMARK 8. (a) As pointed out by Aronszajn [4], Remark 3 on p.
248, the Theorem remains valid for second order elliptic systems, if the
principal symbol is in diagonal form, real, and scalar, i.e. all diagonal
elements coincide. That is exactly the case for the square of operators
of Dirac type, i.e. the Dirac Laplacian discussed above (see also Kazdan
[20] for an alternative approach).

(b) There is an interesting explanation for the fact that almost all
UCP literature is on equations and not on systems (besides for Kazdan
[20] and the few publications dealing with Dirac operators, see also
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e.g. the delicate articles Berthier and Georgescu (7], Jerison [18], Kalf
[19], Roze [24], and Vogelsang [28] who treat Dirac operators with
non-smooth coefficients).

The UCP for an elliptic first order equation is well-established be-

cause of simple characteristics. From that point of view only elliptic
systems are interesting. Anyhow, all real (resp. complex) elliptic dif-
ferential equations of first order are only in one (resp. two) variables.
For higher order systems, however, one can have the impression that
equations are more complicated than systems because one has “less
space” to reduce to standard cases.
(c) Contrary to a common belief among geometers, it turns out that
operators of Dirac type actually provide the most simple case of UCP
and that the Dirac Laplacian is a far more subtle object than the
original Dirac type operator regarding UCP.

The UCP from an open subset suffices for many geometric applica-
tions. One reason for that is the following simple property of elliptic
operators of first order, seemingly first observed in Palais [22].

PROPOSITION 9. Let M be a closed partitioned Riemannian mani-
foldy M = M_ UM, with M_NM, =% = 90M_ = 0M,, and let
A:C®(M;E) - C®(M; F) be an elliptic differential operator of first
order acting between sections of vector bundles E and F. Then any
section uy € C°(My; E|p,) with Auy =0 over My and uy|s =0 can
be continued to a smooth solution for the operator A over the whole
manifold M by setting

u, on M,
U=
0 onX\M,.

Proor. We show that u is a weak solution for A over the whole of
M. Apply Green’s formula on M, with 4 = o(t,y)(& + B;) close to
3.

(u: A"v)g =/M(u(x);A*v(a:))dvol(x)
- /M (s (2); A*v (2))dvol(z) + / 0

= /M (Auy(z); vy (z))dvol(z)
+ [6(0,0)us@); 0. 0))dvol(y) = 0
by



32 BERNHELM BOOSS~-BAVNBEK

for any v € C®(M;F) with vy := v|p,. By the regularity of the
solutions of elliptic equations over closed manifolds it follows that u €
C*(M;E) and suppu C M,. a

Applying Theorem 4 yields the UCP from hypersurfaces with ori-
entable normal bundle for operators of Dirac type. More precisely, we
have:

COROLLARY 10. (a) Let A be an operator of Dirac type over a
closed connected manifold M and X a hypersurface with orientable nor-
mal bundle. Let u € C®(M;E) satisfy Au = 0 and u|s = 0. Then
u=0o0on M.

(b) If M is a compact connected manifold with (not necessarily con-
nected) boundary OM = X, A an operator of Dirac type over M, and
u € C®(M; F) satisfies Au=0 and uls =0. Thenu =0 on M.

PROOF. Assertion (a) for separating hypersurfaces follows at once
from the preceding proposition. Then Assertion (b) follows by passing

from M to the closed double M = M Us (—M) and extending A to

~

the invertible double Dirac type operator A = A Uy(oy) A*. We refer
to [10], Chapter 9 for the details of this construction.

To prove (a) for a non-separating hypersurface ¥ of M we cut M
along ¥ and obtain a compact manifold M, := M\ Z U (=X UX) with
boundary —X U E. Then we apply (b) to M;. a

As mentioned in the Introduction to this Note, Bér [5] has obtained
a sharper version of the preceding Corollary. In (b), it suffices that the
solution vanishes on one connected component of the boundary. More-
over, the compactness of the underlying manifold is dispensable. More
precisely, he obtains the following result by combining a system version
of the Aronszajn—Cordes Theorem with a special case of Malgrange’s
Preparation Theorem.

THEOREM 11. (Bir, 1997). Let M be a connected m~dimensional
Riemannian manifold and A an operator of Dirac type over M. Then
the nodal set of any non-trivial solution u of Au = 0 is a countably
(m—2 )-rectifiable set and thus has Hausdorff dimension m—2 at most.

REMARK 12. Clearly, the UCP from submanifolds of codimension
> 1 is a more complicated story than the UCP from hypersurfaces. For
elliptic differential operators of first order, the weak UCP, i.e. the UCP
from open subsets, is equivalent to the UCP from hypersurfaces or from
the boundary. That was shown in Proposition 9. At present, however,
it seems not to be clear whether one can obtain the “UCP from one
connected component of the boundary” directly from the “UCP from
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open subsets” or whether one depends (as in Bér’s proof) on the UCP
from points.

2.2. Local UCP versus global UCP. The question raised in the
preceding remark leads us to broader questions regarding the relations
between local and global aspects of the UCP.

What we have in Theorem 4 or Theorem 7 and what else is in
the literature (see e.g. Alinhac [2]) is always the local UCP. Then
the global UCP follows. And that is what we need in geometry. In
principle, however, the UCP for global solutions (on closed manifolds
or UCP for L, solutions on open manifolds) should be more simple to
establish than the UCP for local solutions.

In [8] that extra—ingredient (namely that “infinity” is bounded
away) was exploited for proving a kind of global UCP. Following a
suggestion by K. Janich, a fairly standard diffeotopy argument (due
to R.S. Palais) was combined with the trivial observation that, to any
finite—dimensional vector space F of smooth sections over M there ex-
ists a finite subset My C M such that dim F|as, = dim F, to show the
invariance of the relative index dim(ker A)|, — dim(ker A*)|, of ellip-
tic operators of a certain class of translation— and homotopy-invariant
elliptic operators under variation of the open submanifold w of the
underlying closed manifold. So, when we compare the loss of linear
independent solutions of Au = 0 and A*v = 0 due to the lack of the
weak UCP we find that it is the same for A and the formally adjoint

“operator A* for that class of operators. In particular, for that class it
follows that the weak UCP for the operator A implies the weak UCP
for A*, as conjectured by L. Schwartz [25] for all elliptic operators.

Note that the Bojarski Conjecture (now a Theorem and one of the
consequences of the weak UCP for Dirac type operators listed in the
Introduction to this Note) remains valid for all elliptic differential op-
erators of first order under the assumption of the Schwartz conjecture.
Alinhac [3], however, has an example for a non-elliptic equation

ou

Oou
e +a(t,x)£ +bu=0

with the UCP, but without the UCP when reversing the sign of b .
This supports the idea that there might also exist a counter—example
of an elliptic system of first order (of course, not equation) with UCP
but without UCP for the formally adjoint system against the Schwartz
Conjecture. To the best of my knowledge, the literature has only two
examples of elliptic systems with smooth coefficients of first order with-
out UCP, Pli$ [23] and Bér [6] (based on Kazdan [20] which again was
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based on Alinhac [1]). It might be interesting to check the Schwartz
Conjecture on these examples. '

2.3. Conclusions. This is what one gets from a careful analysis
of the details of the proof of Theorem 4 (see the Appendix for details):

There are technical details in the proof which are correct but seem-
ingly without meaning. One example is the factor R on the left side of
the Carleman estimate (7) which is not needed for proving UCP. But
for any reasonable adiabatic inequality (i.e. with a scaling number R
going to infinity), the sum of the power of R and the degree of the high-
est derivative must coincide on both sides of the estimate according to
Fourier analysis philosophy.

The simplicity and transparency of the present UCP proof may be
attributed to various factors. Certainly, the restriction to weak UCP
is most important for simplifying the arguments. Also the separation
(taken from Treves [27]) between the symmetric and skew—symmetric
terms is a particularly simplifying factor for operators of Dirac type
due to Lemma 2. Another trick is the absence of boundary conditions
(also taken from Treves [27]). The trick is first that the sections vanish
near t = 0 and ¢ = T (t is the normal coordinate), and second that the
transversal hypersurfaces S, for the tangential integration are closed.
Finally, a substantial short cut is due to using the first Sobolev norm;
then ellipticity implies its equivalence with the graph norm for sections
with compact support.
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C. Bir (Freiburg), K. Furutani (Tokyo Science University), S. Scott
(King's College London), and K.P. Wojciechowski (Indianapolis/Pur-
due) for inspiring discussions on this subject.

Appendix

PrROOF oF LEMMA 5. First consider a few technical points. The
Dirac operator A has the form G(t)(9; + B;) on the annular region
[0,T} x Sy. and it is obvious that we may consider the operator 8, + B;
instead of 4. Moreover, we have by Lemma 2 that B; = B; + C; with
a self-adjoint elliptic differential operator B, and an anti-symmetric
operator C, of order zero, both on S;. Note that the metric structures
depend on the normal variable t.

Now make the substitution

_ _n\2
v=le R(T-1) /2'1)0
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which replaces (7) by

@/ ImtyW@ﬂ<C/‘/
S S

We shall denote the integral on the left side by Jy and the integral on
the right side by J;. Now we prove (8). Decompose 2 + B; + R(T —t)
into its symmetric part B; + R(T —t) and anti-symmetric part 0; + C;.
This gives

e
-/

-+ 2%// (Q-,l'}'(l + Ct’Uo, B{Uo -+ R(T - t)’Uo) dy dt.
Integrate by parts and use the identity for the real part

R(f; Pf) = 5(f: (P + P)J)

in order to investigate the last and critical term which will be denoted
by J;. This yields

Jo = 2R / / % + Cyvo; Bywo + R(T - t)vo) dy dt

2

9% | By + R(T —t)vo|| dydt.

a 2
% 4 Bwo + R(T — t)v|| dydt

ov
—Q + Ct’Uo

dydt-i—//II(Bt—I-R(T—t))voH2 dy dt

= 2R / / a”" ; Bwo + R(T — t)vo) dy dt

+2§R// Ctvo;Btvo) dy dt

=—2§R// vo,{ Bt+R(T—t))}vo)dydt

- 2%//(1]0,0,13{(10 dydt

// vo,———vo-i—Rvg dydt+//(vo, [Bt; Cilwo) dy dt

= R/ Holl3 dt"‘// Uo;——tvo + [Bt;Ct]vo) dy dt
0 ot
= RJy + J3,

where || - || denotes the m-th Sobolev norm on E|s, and J3 requires
a careful analysis. It follows from the preceding decompositions of J;
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and J, that the proof of (8) will be completed w1th C= 1 when J; > 0.
If J3 < 0, it suffices to show that

® 151<5 (R [ olar+ [ 18+ AT -0l @)
The operators B; are elliptic of first order, hence

1l < c(llfllo + 1B

for any section f of E on S; (and 0 < ¢ < T). Then

|M</lmm

s@g/nwmm&wm+mmoﬁ
0

T
ﬁquummmma
1]

———'Uo + [By; Ciluo ||
0

T
< 010/0 llvollo {[(B: + R(T — t))vollo + (R(T —t) + 1)||vollo} dt
T T
< cie(RT +1) / voll2 dt + crc / 1(B: + R(T — ))voll, l[vollo dt
0 0

The integrand of the second summand is equal to

(w>M&+f%§m“mwﬁwwm
< {2 1B+ RE - )l + el

with the inequality due to the estimate ab < 1(a® + b?). By inserting
(10) in the preceding inequality for |J3| we obtain

T
|Js] < %/0 W(B: + R(T — t))woll2 dt + cicR <T+Clc+2)/ l|vol|2 dt .

So the desired result holds for T' and  sufficiently small. O



UCP FOR DIRAC OPERATORS - REVISITED 37

PROOF OF LEMMA 6. We have

%
T4 / /uu(t Y|P dydt = / /3 eFT/4 u(t, y)|? dy dt
0 t
T 2
< / / T |1yt 4) | dy dt
A
© / / R0 || Ay, )| dy dt
R S,

< Gerrepes / 1Av(t, y) |2 dy dt
R o Js.

hence we have
T

P} C' T
/ lu(t, y)||* dy dt < 56'21”2’100/ / |Av(t, )| dy dt,
0 S 0 St

which gives the result as R — oco. O
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9/92 UPNOK stationer stremning i elastiske rer 231A/92 “Elektrondiffusion i silicium - en

af: Anja Boisen, Karen Birkelund, Mette Olufsen B matemacisk model™
Vejleder: Jesper Larsen af: Jesper Voetmann, Karen Birkelund,
Mette Olufsen, Ole Meller Nielsen
220/92 "Automatisk diagnosticering i digitale kredsleb" Vejledere: Johnny Ottesen, H.B.Hansen
" af: Bjern Christensen, Ole Meller Nielsen
Vejleder: Stig Andur Pedersen : 231B/92 “"Elektiondiffusion i silicium - en
) matematisk model” Kildetekster
221/92  “A BUNDLE VALUED RADON TRANSFORM, WITH af: -Jesper Voetmann, Xaren Bickeluna,
APPLICATIONS TO INVARIANT WAVE EQUATIONS" _ Mette Olufsen, Ole Mwller Nielsen
by: Thomas P. Branson, Gestur Olafsson an Vejledere: Johnny Otiesen, H.B.Hansen

Henrik Schlichtkrull :

222/92  On the Representations of some Infinite Dimensional Y R :
Groups and Algebras Related to Quantum Physics 232/92 Undersegelse om den simuliane opdagelse
by: Johnny T. Ottesen : af energiens bevarelse.og iszrdeles om

de af Mayer, Colding, Joule og Helmholtz

223/92  THE FUNCTTONAL DETERMINANT : udferte arbejder™
by: Thomas P. Branson af: L.Arleth, G.I.Dybkjer, M.T.@stergdrd
) Vejleder: Dorthe Posselt
%24/92  UNIVERSAL AC CONDUCTIVITY OF NON-METALLIC SOLIDS AT 233/92 “The effect of age-dependent host
LOW TEMPERATURES mortality on the dynamics of an endemic
disease and
by: Jeppe C. Dyre ’ instability in an SIR-model with age-

dependent susceptibility
295/92 VHATMODELLEN" Impedansspektroskopti t ultrarent by: Viggo Andreasen

~krystallinsk siliciwm _
ey 234/92  "THE FUNCTIONAL DETERMINANT OF A FOUR~DIMENSIONAL

af: Anja Boisen, Anders Gorm Larsem, Jesper Varmer, BOUNDARY VALUE PROBLEM"

Johannes K. Nielsen, Kit R. Hansen, Peter Boggtild
h H d by: Thomas P. Branson and Peter B. Gilkey
og Thomas Hougaar:

Vejleder: Petr Viscor 235/92  OVERFLADESTRUKTUR OG POREUDVIKLING AF KOKS

226/92 "METHODS AND MODELS FOR ESTIMATING THE GLOBAL - Modul 3 fysik projekt -

CIRCULATION OF SELECTED EMISSIONS FROM ENERGY
CONVERSION"

af: Thomas Jessen

by: Bent Sorensen



236a/93

236b/93

237/93

238/93

239/93

240/93

241,93

242/93

243/93

244/93

245a+b
/93

246/93

INTRODUKTION TIL KVANTE
HALL EFFEKTEN

af: Ania Boisen, Peter Beggild

Vejleder: Peder Voetmann Christiansen

Erland Brun Hansen

.

STRGMSSAMMENBRUD AF KVANTE
HALL EFFEKTEN

‘af: Anja Boisen, Peter Boeggild

Vejleder: Peder Voetmann Christiansen

Erland Brun Hansen

The Wedderburn principal theorem and
Shukla cohomology

af: Lars Kadison

SEMIOTIK OG SYSTEMEGENSKABER (2)
Vektorbadnd og tensorer

af: Peder Voetmann Christiansen

Valgsystemer - Modelbygning og analyse

Matematik 2. modul

af: Charlotte Gjerrild,
Maria Hermannsson,
Ragna Clauson-Kaas,

Jane Hansen,
Allan Jergensen,
Poul Lutzen

Vejleder: Mogens Niss

Patologiske eksempler.
Om s=zre matematiske fisks betydning for
den matematiske udvikling

Runa
Johannes

af: Claus Drazby, Jeorn Skov Hansen,
Ulsee Johansen, Peter Meibom,
Kristoffer Nielsen

Vejleder: Mogens Niss

FOTOVOLTAISK STATUSNOTAT 1
af: Bent Serensen

Brovedligeholdelse - bevar mig vel

Analyse af Vejdirektoratets model for
optimering af broreparationer

af: Linda Kyndlev, Kare Fundal, Kamma
Tulinius, Ivar Zeck

Vejleder: Jesper Larsen

TANKEEKSPERIMENTER I FYSIKKEN

Et l.modul fysikprojekt

af: Karen Birkelund, Stine Sofia Korremann
Vejleder: Dorthe Posselt

RADONTRANSFORMATIONEN og dens anvendelse
i CT-scanning

Projektrapport

af: Trine Andreasen, Tine Guldager Christiansen,

Nina Skov Hansen og Christine Iversen
Vejledere: Gestur Olafsson og Jesper Larsen

Time-0f-Flight mdlinger p3 krystallinske
halvledere
Specialerapport

af: Linda Szkotak Jensen og Lise Odgaard Gade

Vejledere: Petr Viscor og Niels Boye Olsen
HVERDAGSVIDEN  OG MATEMATIK

- LEREPROCESSER 1 SKOLEN

af: Lena Lindenskov, Statens Humanistiske

Forskningsrdd, RUC, IMFUFA

247,93

248/93

249/93

250/93

251193

252193

253/93

254/93

255/93

256/93

257/93

258/93

258/93

260/93

UNIVERSAL LOW TEMPERATURE AC CON-
DUCTIVITY OF MACROSCOPICALLY
DISORDERED NON-METALS

by: Jeppe C. Dyre

DIRAC OPERATORS AND MANIFOLDS WITH
BOUNDARY

by: B. Booss-Bavnbek, K.P.Wojciechowski

Perspectives on Teichmuller and the
sSahresbericht Addendum to Schappacher,
Scholz, et al.

by: B. Booss-Bavnbek

With comments by W.Abikoff, L.Ahlfors,
J.Cerf, P.J.Davis, W.Fuchs, F.P.Gardiner,
J.cost, J.-P.Kahane; R.Lohan, L.Lorch,
J.Radkau and T.Sodergvist

EULER OG BOLZANO - MATEMATISK ANALYSE SET I ET
VIDENSKABSTEORETTSK PERSPEKTIV

Projektrapport af: Anja Juul, Lone Michelsen,
Tomas Hejgdrd Jensen

Vejleder: Stig Andur Pedersen

Genotypic Proportions in Hybrid Zones

by: Freddy Bugge Christiansen, Viggo Andreasen
and Ebbe Thue Poulsen

MODELLERING AF TILFALDIGE FENOMENER

Projektrapport af: Birthe Friis, Lisbeth Helmgaard,
Kristina Charlotte Jakobsen, Marina Mosbek
Johannessen, Lotte Ludvigsen, Mette Hass Nielsen

Kuglepakning

Teori og model

af: Lise Arleth, Kare Fundal, Nils Kruse
Vejleder: Mogens Niss

Regressionsanalyse
Materiale til et statistikkursus
af: Jergen Larsen

TID & BETINGET UAFHENGIGHED

af: Peter Harremoes

Determination of the Freq y Dependent
Bulk Modulus of Liquids Using a Piezo-
eleetric Spherical Shell (Preprint)

by: T. Christensen and N.B.Olsen

Modellering af dispersion i piezoelektriske
keramikker

af: Pernille Postgaard, Jannik Rasmussen,
Christina Specht, Mikko @stergdrd

Vejleder: Tage Christensen

Supplerende kursusmateriale til
"Linewre strukturer fra algebra og analyse”

af: Mogens Brun Heefelt

STUDIES OF AC HOPPING CONDUCTION AT LOW
TEMPERATURES

by: dJeppe C. Dyre

PARTITIONED MANIFOLDS AND INVARIANTS IN
DIMENSIONS 2, 3, AND 4

by: B. Booss—Bavnbek, K.P.Wojciechowski
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262/93

263793

264793

265/94

266/94

267/94

268/94

269/94

270/94

271/94

OPGAVESAMLING
Bredde~kursus i Fysik
Eksamensopgaver fra 1976-93

Separability and the JSones
Polynomial

by: Lars Kadison

Supplerende kursusmateriale til
"Linezre strukturer fra algebra
oa analyse" II

af: Mogens Brun Heefelt

FOTOVOLTAISK STATUSNOTAT 2
af: Bent Sorensen

SPHERICAL FUNCTIONS ON ORDERED
SYMMETRIC SPACES

To Sigurdur Helgason on his
sixtyfifth birthday

by: Jacques Faraut, Joachim Hilgert
and Gestur Olafsson

Kommensurabilitets-oscillationer i
laterale supergitre

Fysikspeciale af: Anja Boisen,
Peter Beggild, Karen Birkelund

Vejledere: Rafael Taboryski, Poul Erik
Lindelof, Peder Voetmann Christiansen

Kom til kort med matematik pa _
Eksperimentarium - Et forslag til en
opstilling

af: Charlotte Gjerrild, Jane Hansen

Vejleder: Bernhelm Booss-Bavnbek

Life is like . a-sewer ...

Et projekt om modellering af aorta via
en model for stremning i kloakror

af: Anders Marcussen, Anne C. Nilsson,
Lone Michelsen, Per M. Hansen

Vejleder: Jesper Larsen

Dimensionsanalyse en introduktion
metaprojekt, fysik

af: Tine Guldager Christiansen,
Ken Andersen, Nikolaj Hermann,
Jannik Rasmussen

Vejleder: Jens Hoejgaard Jensen

THE IMAGE OF THE ENVELOPING ALGEBRA
AND IRREDUCIBILITY OF INDUCED REPRE-
SENTATIONS OF EXPONENTIAL LIE GROUPS

by: Jacob Jacobsen

Matematikken i Fysikken.
Opdaget eller opfundet
NAT-BAS-proijekt

vejleder: Jens Hojgaard Jensen

272/94

273/94

274/94

275/94

276/94

277/94

278/94

279/94

280/94

281/94

282/94

Tradition og fornyelse

Det praktiske elevarbejde i gymnasiets
fysikundervisning, 1907-1988

af: Kristian Hoppe og Jeppe Guldager
Vejledning: Karin Beyer og Nils Hybel

Model for kort- og mellemdistancelsb
Verifikation af model

af: Lise Fabricius Christensen, Helle Pilemann,
Bettina Serensen

Vejleder: Mette Olufsen

MODEL 10 - en matematisk model af intravenese
anastetikas farmakokinetik
3. modul matematik, fordr 1994

af: Trine Andreasen, Bjern Christensen, Christine
Green, Anja Skjoldborg Hansen. Lisbeth
Helmgaard

Vejledere: Viggo Andreasen & Jesper Larsen

Perspectives on Teichmuller and the Jahresbericht
2nd Edition

by: Bernhelm Booss-Bavnbek

Dispersionsmodellering
Projektrapport 1. modul

af: Gitte Andersen, Rehannah Borup, Lisbeth Friis,
Per Gregersen, Kristina Vejre

Vejleder: Bernhelm Booss-Bavnbek

PROJEKTARBEJDSPEDAGOGIK — Om tre tolkninger af
problemorienteret projektarbejde

af: Claus Flensted Behrens, Frederik Voetmann
Christiansen, Jern Skov Hansen, Thomas
Thingstrup

Vejleder: Jens Hejgaard Jensen

The Models Underlying the Anaesthesia
Simulator Sophus

by: Mette Olufsen(Math-Tech), Finn Nielsen
(RIS@ National Laboratory), Per Fege Jensen
(Herlev University Hospital), Stig Andur
Pedersen (Roskilde University)

Description of a method of measuring the shear
modulus of supercooled liquids and a comparison
of their thermal and mechanical response
functions.

af': Tage Christensen

A Course in Projective Geometry

by Lars Kadison and Matthias T. Kromann

Modellering af Det Cardiovaskulare System med

Neural Pulskontrol

Projektrapport udarbejdet af:

Stefan Frello, Runa Ulsee Johansen,
Michael Poul Curt Hansen, Klaus Dahl Jensen

Vejleder: Viggo Andreasen
Parallelle algoritmer

af: Erwin Dan Nielsen, Jan Danielsen,

Niels Bo Johansen




283/94

284/94

285/94

286/94

287/94

288/95

289/95

290/95

281/95

292/95

293/95

294/95

295/95

Granser for tilfaldighed 296/95

(en kaotisk talgenerator)

af: Erwin Dan Nielsen og Niels Bo Johansen
297/95

Det er ikke til at se det, hvis man ikke
lige ve' det!
Gymnasiematematikkens begrundelsesproblem

- . 298/95
En specialerapport af Peter Hauge Jensen

og Linda Kyndlev

Veileder: Mogens Niss

Slow coevolution of a viral pathogen and
its diploid host

by: Viggo Andreasen and

Freddy B. Christiansen 299/95

The energy master equation: A low-temperature
approximation to Bassler's random walk model

by: Jeppe C. Dyre

A Statistical Mechanical Approximation for the
Calculation of Time Auto-Correlation Functions

by: Jeppe C. Dyre 300/95
PROGRESS IN WIND ENERGY UTILIZATION

by: Bent Serensen
301/95

Universal Time-Dependence of the Mean-~Square
Displacement in Extremely Rugged Energy
Landscapes with Equal Minima

by: Jeppe C. Dyre and Jacob Jacobsen

Modellering af uregelmassige belger
Et 3.modul matematik projekt

302/95
af: Anders Marcussen, Anne Charlotte Nilsson,

Lone Michelsen, Per Morkegaard Hansen

Vejleder: Jesper Larsen

1st Annual Report from the project

LIFE-CYCLE ANALYSIS OF THE TOTAL DANISH
ENERGY SYSTEM

an example of using methods developed for the
OECD/IEA and the US/EU fuel cycle externality study

303/95

by: Bent Serensen

Fotovoltaisk Statusnotat 3

af: Bent Sserensen

Geometridiskussionen - hvor blev den af?
af: Lotte Ludvigsen & Jens Frandsen

Vejleder: Anders Madsen

Johannes K. Nielsen,

Vejledere:

304a/95 STATISTIKNOTER Simple

RETIKULER den klassiske mekanik

af: Peder Voetmann Christiansen
A fluid-dynamical model of the aorta with
bifurcations

by: Mette Olufsen and Johnny Ottesen

Mordet pa Schrodingers kat - et metaprojekt om

to fortolkninger af kvantemekanikken »

af: Maria Hermannsson, Sebastian Horst,

Christina Specht

Vejledere: Jeppe Dyre og Peder Voetmann Christiansen

ADAM under figenbladet - et kig pa en samfunds-

videnskabelig matematisk model

Et matematisk modelprojekt
af: Claus Draby, Michael Hansen, Tomas Hejgdrd Jensen

Vejleder: Jergen Larsen

Scenarios for Greenhouse Warming Mitigation

by: Bent Serensen

TOK Modellering af treers vakst under pavirkning

af ozon

af: Glenn Meller-Holst, Marina Johannessen, Birthe

Nielsen og Bettina Serensen

Vejleder: Jesper Larsen

KOMPRESSORER - Analyse af en matematisk model for

aksialkompressorer

Projektrapport sf: Stine Boggild, Jakob Hilmer,

Pernille Postgaard
Vejleder: Viggo Andreasen
Masterlignings-modeller af Glasovergangen

Termisk-Mekanisk Relaksation

Specialerapport udarbejdet af:
Klaus Dahl Jensen

Jeppe C. Dyre, Jergen Larsen

binomialfordelingsmodeller

af: Jorgen Larsen

304b/95 STATISTIKNOTER Simple normalfordelingsmodeller
Universets udvidelse - af: Jergen Larsen
et metaprojekt
304¢/95 STATISTIKNOTER Simple Poissonfordelingsmodeller
Af: Jesper Duelund og Birthe Friis
af: Jergen Larsen
Vejleder: Ib Lundgaard Rasmussen
304d/95 STATISTIKNOTER Simple multinomialfordelingsmodeller
A Review of Mathematical Modeling of the af: Jergen Larsen
Controled Cardiovascular System e 4
304e/95 STATISTIKNOTER Mindre matematisk-statistisk opslagsvark

By: Johnny T. Ottesen

indeholdende bl.a. ordforklaringer, resuméer og
tabeller

af: Jorgen Larsen



305/95

306/95

307/95

308/95

308/95

316/96
The Maslov Index:

A Functional Analytical Definition
And The Spectral Flow Formula
By: B. Booss-Bavnbek, K. Furutani

317/96

Goals of mathematics teaching

Preprint of a chapter for the forth-
comming International Handbook of

Mathematics Education (Alan J.Bishop, ed) 318/96

By: Mogens Niss

Habit Formation and the Thirdness of Signs

Presented at the semiotic symposium

319/96
The Emergence of Codes and Intensions as /

a Basis of Sign Processes

By: Peder Voetmann Christiansen

Metaforer i Fysikken

3
af: Marianne Wilcken Bjerregaard, 20/96

Frederik Voetmann Christiansen,
Jorn Skov Hansen, Klaus Dahl Jensen
Ole Schmidt

Vejledere: Peder Voetmann Christiansen og

Petr Viscor 321/96

Tiden og Tanken
En undersogelse af begrebsverdenen Matematik
udfort ved hjzlp af en analogi med tid

af: Anita Stark og Randi Petersen

Vejleder: Bernhelm Booss-Bavnbek

310/96

311/96

312/96

313/96

314/96

315/96
a+b

Kursusmateriale til "Lineare strukturer fra 322/96
algebra og analyse” (E1)

af': Mogens Brun Heefelt

. 323/96
2nd Annual Report from the project

LIFE~-CYCLE ANALYSIS OF THE TOTAL DANISH
ENERGY SYSTEM

by: Héléne Connor-Lajambe, Bernd Kuemmel,

Stefan Kruger Nielsen, Bent Serensen 324/96

Grassmannian and Chiral Anomaly

by: B. Booss-Bavnbek, K.P.Wojciechowski 325/96
THE IRREDUCIBILITY OF CHANCE AND

THE OPENNESS OF THE FUTURE

The Logical Function of Idealism in Peirce's

Philosophy of Nature

By: Helmut Pape, University of Hannover

326/96
Feedback Regulation of Mammalian

Cardiovascular System

By: Johnny T. Ottesen

"Rejsen til tidens indre" - Udarbejdelse af

et manuskript til en fjernsynsudsendelse 327/96

+ manuskript
af: Gunhild Hune og Karina Goyle

Vejledere: Peder Voetmann Christiansen og 328/96

Bruno Ingemann

Plasmaoscillation i natriumklynger
Specialerapport af: Peter Meibom, Mikko @stergird
Vejledere: Jeppe Dyre & Jorn Borggreen

Poincaré og symplektiske algoritmer
af: Ulla Rasmussen

Vejleder: Anders Madsen

Modelling the Respiratory System
by: Tine Guldager Christiansen, Claus Draby

Supervisors: Viggo Andreasen, Michael Danielsen

Externality Estimation of Greenhouse Warming

Impacts

by: Bent Serensen

Grassmannian and Boundary Contribution to the
~Determinant

by: K.P.Wojciechowski et al.

Modelkompetencer - udvikling og afprevning

af et begrebsapparat

Specialerapport af: Nina Skov Hansen,

Christine Iversen, Kristin Troels-Smith

Vejleder: Morten Blomhej

OPGAVESAMLING
Bredde-Kursus i Fysik 1976 - 1996

Structure and Dynamics of Symmetric Diblock
Copolymers
PhD Thesis

by: Christine Maria Papadakis
Non-linearity of Baroreceptor Nerves

by: Johnny T. Ottesen

Retorik eller realitet ?
Anvendelser af matematik i det danske
Gymnasiums matematikundervisning i

perioden 1903 - 88

Specialerapport af Helle Pilemann

Vejleder: Mogens Niss

Bevisteori
Eksemplificeret ved Gentzens bevis for
konsistensen af teorien om de naturlige tal

af: Gitte Andersen, Lise Mariane Jeppesen,
Klaus Frovin Jergensen, Ivar Peter Zeck

Vejledere: Bernhelm Booss-Bavnbek og

Stig Andur Pedersen

NON-LINEAR MODELLING OF INTEGRATED ENERGY
SUPPLY AND DEMAND MATCHING SYSTEMS

by: Bent Serensen

Calculating Fuel Transport Emissions

by: Bernd Kuemmel




329/96 The dynamics of cocirculating influenza 339/97 Defining Discipline

strains conferring partial cross-immunity by: Wolfgang Coy

and
A model of influenza A drift evolution 340/97 Prime ends revisited - a geometric point
by: Viggo Andreasen, Juan Lin and of view -
Simon Levin by: Carsten Lunde Petersen
330/96 LONG-TERM INTEGRATION OF PHOTOVOLTAICS . 341/97 Two chapters on the teaching, learning and

INTO THE GLOBAL ENERGY SYSTEM

- --aasessment of geometry
by: Bent Serensen

by Mogens Niss

331/96 Viskese fingre
342/97 LONG-TERM SCENARIOS FOR GLOBAL ENERGY

Specialerapport af: DEMAND AND SUPPLY .
Vibeke Orlien og Christina Specht A global clean fossil scenario discussion paper
Vejledere: Jacob M. Jacobsen og Jesper Larsen prepared by Bernd Kuemmel

Project leader: Bent Serensen

343/97 IMPORT/EKSPORT-POLITIK SOM REDSKAB TIL OPTIMERET

UDN RODUCERET PA VE-ANL.
332/97 ANOMAL SWELLING AF LIPIDE DOBBELTLAG YTTELSE AF EL P T PA VE-ANLEG

Specialerapport af: af: Peter Meibom, Torben Svendsen, Bent Serensen
Stine Sofia Korremann
Vejleder: Dorthe Posselt 344/97 Puzzles and Siegel disks
’ by Carsten Lunde Petersen
333/97 Biodiversity Matters

an extension of methods found in the literature
on monetisation of biodiversity

by: Bernd Kuemmel 345/98 Modeling the Arterial System with Reference to

an Anestesia Simulator

334/97 LIFE-CYCLE ANALYSIS OF THE TOTAL DANISH Ph.D. Thesis
ENERGY SYSTEM by: Mette Sofie Olufsen

by: Bernd Kuemmel and Bent S en
y g orens 346/98 Klyngedannelse i en hulkatode-forstevningsproces

335/97 Dynamics of Amorphous Solids and Viscous Liquids af: Sebastian Horst

by: Jeppe C. Dyre Vejledere: Jorn Borggren, NBI, Niels Boye Olsen

347/98 Verificering af Matematiske Modeller
336/97 PROBLEM-ORIENTATED GROUP PROJECT WORK AT

- en analyse af Den Danske Eulerske Model
ROSKILDE UNIVERSITY

af: Jonas Blomgvist, Tom Pedersen, Karen Timmermann,
by: Kathrine Legge Lisbet @hlenschlager
Vejleder: Bernhelm Booss-Bavnbek
337/97 Verdensbankens globale befolkningsprognose

~ et projekt om matematisk modellering 348/98 Case study of the environmental permission

af: Jorn Chr. Bendtsen, Kurt Jensen, procedure and the environmental impact assessment

Per Pauli Petersen for power plants in Denmark

Vejleder: Jergen Larsen by: Stefan Kruger Nielsen

Project leader: Bent Serensen
’ |

338/97 Kvantisering af nanolederes elektriske
349/98 Tre rapporter fra FAGMAT - et projekt om tal

ledningsevne

Ferste modul fysikprojekt og faglig matematik i arbe jdsmarkedsuddannelserne

af: Seren Dam, Esben Danielsen, Martin Niss, af: Lena Lindenskov og Tine Wedege i
Esben Friis Pedersen, Frederik Resen Steenstrup 350/98 OPGAVESAMLING — Bredde—Kursus i Fysik 1976 - 1998

Vejleder: Tage Christensen Erstatter teksterne 3/78, 261/93 og 322/96

351/98 Aspects of the Nature and State of Research in

Mathematics Education

by: Mogens Niss



352/98 The Herman-Swiatec Theorem with

applications

by: Carsten Lunde Petersen

353/98 Problemlesning og modellering i

en almendannende matematikundervisning

Specialerapport af: Per Gregersen og

Tomas Hejgaard Jensen

Vejleder: Morten Blomhej

354/98 A GLOBAL RENEWABLE ENERGY SCENARIO

by: Bent Serensen and Peter Meibom

355/98 Convergence of rational rays in

parameter spaces

by: Carsten Lunde Petersen and

Gustav Ryd

356/98 Terraznmodellering

Analyse af en matematisk model til
konstruktion af terraznmodeller

Modelprojekt af: Thomas Frommelt,
Hans Ravnkjer Larsen og Arnold Skimminge

Vejleder: Johnny Ottesen

357/98 Cayleys Problem

En historisk analyse af arbejdet med Cayley
problem fra 1870 til 1918

Et matematisk videnskabsfagsprojekt af:

Rikke Degn. Bo Jakobsewn. Bjarke K.W. Hansen,
Jesper S. Hansen. Jesper Udesen, Peter C. Wulff
Vejleder: Jesper Larsen

358/98 Modeling of Feedbas: Mc=ranisms which Control
the Heart Functiow :v. = Viev to an Implemen-—
tation in Cardiovcsc..ar Models

Ph.D. Thests by M:i~nze! [zanielsen

359/99 Long-Term Scenzr~:.:r ¢-- >.cha! Energy Demand
and Supply Four Gl-:n:l [=eemrouse Mitigation
Scenarios

by: Bent Sorense-.

360/99 SYMMETRI I FYSIK
En Meta-projek:irars-=- of Ma=:in Nissg.
Bo- Jakobsen & Tuns Eorres Bownd

Vejleder: Peder Voe:=maw~ Trhristiansen

361/99 Symplectic Functionc. Ana.usis and Spectral
Jnvariants
by: Bermhelm Booss-Bavrtek. Kenro Furutani
362/99 Er matematik en naturvidenskab? - en udspen-
ding af diskussionen
En videnskabsfagsprojekt-rapport af Martin Niss
Vejleder: Mogens Nergaard Olesen

363/99

364/99

365/99

366/99

EMERGENCE AND DOWNWARD CAUSATION
by: Donald T. Campbell, MArk B. Bickhard and
Peder V. Christiansen

Illustrationens kraft

Visuel formidling af fysik

Integreret speciale i fysik og kommmnikation
af: Sebastian Borst

Vejledere: Karin Beyer, Soren Kjorup

To know - or not to know — mathematics,
that is a question of context
by: Tine Wedege

LATEX POR FORFATTERE
En introduktion til LATEX og IMFUFA~LATEX

af: Jergen Larsen



