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Abstract

Modeling blood flow and especially the propagation of the pulse wave in the sys-
temic arteries is a topic which is interesting to the medical society since the shapes of
the pressure profiles have diagnostic significance.

We set up a mathematical model for the blood flow in the larger arteries and pro-
pose a physiologically based boundary condition representing the smaller arteries and
arterioles as a structured tree in which a simplified version of the model is solved. Be-
cause the structured tree models wave propagation effects we claim that it is able to
capture more of the dynamics in blood flow than traditional approaches. Numerical
simulations and comparisons with existing models as well as empirical data supports
this claim.



Preface

A central problem when modeling blood flow and pressure in the larger systemic ar-
teries is to determine a physiologically based boundary condition such that the arterial
tree can be truncated a few generations distally from the aorta, iliac, and femoral arter-
ies. In this dissertation we have developed a one-dimensional fluid dynamical model,
based on Navier-Stokes equations for an incompressible Newtonian fluid, predicting
flow and pressure in the systemic arteries. The boundary condition, representing the
smaller arteries, is modeled by calculating the root impedance of a structured tree
which is attached to each terminal branch of the larger arteries. The root impedance
for each of the structured trees is determined using a semi-analytical approach based on
linearization of the viscous axisymmetric Navier-Stokes equations for an incompress-
ible Newtonian fluid. This provides a dynamical boundary condition that reflects the
actual phase-lag between flow and pressure and also accommodates wave propagation
effects for all of the systemic arteries. The result is a model which is physiologically
adequate as well as computationally feasible.
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Chapter 1

Introduction

Modeling of blood flow and pressure in the systemic arteries has been a topic of in-
terest both to theoretical and clinical investigators. Thus, research in this field has a
strong interdisciplinary aspect. The aim of this research has been to obtain a thorough
theoretical as well as clinical understanding of physiological systems in order to be
able to treat cardiovascular diseases better. This is important since the majority of
deaths in developed countries result from cardiovascular diseases, most of which are
associated with abnormal flow in the arteries (Ku, 1997).

The inspiration for this project arises from previous and present efforts to develop
an anesthesia simulator based on mathematical models. An important aspect of such
a simulator is having a good model of the cardiovascular system. During surgery
monitoring of invasive arterial and venous pressures at certain locations are important
means for observing the state of a patient. Pressure and flow profiles are often affected
by various pathological conditions but these relations are not always fully interpreted.
In order to understand the changed or manipulated hemodynamic conditions occurring
under diseases or during anesthesia it is important to understand blood flow under
normal physiological conditions. It is exactly these normal situations which will be
analyzed in the dissertation.

Our model constitutes a one-dimensional fluid dynamical model of the systemic
arteries predicting blood flow and pressure at all times in one spatial dimension. The
blood is viewed as an incompressible Newtonian fluid and the vessels as elastic. The
model is split in two parts: The first comprises the larger arteries (ranging not more
than two generations from the aorta, iliac, and femoral arteries) and the second the
smaller arteries. For these we set up a structured tree in which the geometry of all
daughter vessels are determined from the parent vessel. For the larger arteries we
solve the non-linear Navier-Stokes equations and for the smaller arteries we solve,
analytically, a linearized system of equations. The purpose of the smaller arteries is
to provide an outflow boundary condition which can be applied at the terminals of the
larger arteries, this is done by determining the impedance at the root of the structured
tree. There are two reasons for choosing to make a one-dimensional model. The first
is that it is not possible to make a computationaily feasible model of the entire arterial
system in any higher dimension and the second is that measured flow- and pressure
profiles during surgery are one-dimensional.




2 Introduction

QOutline for the dissertation

Chapter 1: Introduction. This introduction.

Chapter 2: Historical review. Gives a short review of the development of arterial
modeling from ancient times till today and places our model in the context of anesthe-
sia simulation.

Chapter 3: Background, the physiology of blood flow. Gives an overview of the
physiological properties of blood and arteries.

Chapter 4: Model of flow and pressure in the systemlc arteries. States the hypoth-
esis for the dissertation.

Chapter 5: Structure of the larger arteries. Descnbes the geometry and elastic
properties of the larger arteries.

Chapter 6: Structure of the smaller arteries. Describes the geometry and elastic
properties of the smaller arteries. It focuses on how the smaller arteries can be com-
bined into a structured model.

Chapter 7: Fluid dynamical model of a large artery. Derives the fluid dynamic
equations for blood flow and pressure in the larger arteries.

Chapter 8: Flow and pressure in the tree of larger arteries. Extends the fluid
dynamic model of a single vessel to apply for the tree of systemic arteries and gives
the equations in non-dimensional form.

Chapter 9: Numerical methods for the larger arteries. Shows how to solve the
fluid dynamic equations numerically. Two approaches, both explicit, are presented:
the method of characteristics and Richtmeyer’s two step version of the Lax-Wendroff
method.

Chapter 10: Fluid dynamical model of a small artery. Presents a linear fluid dy-
namic model predicting blood flow and pressure in the smaller arteries. These are
combined to give the impedance at the root of any vessel in the structured tree of
smaller arteries.

Chapter 11: Flow and pressure in the tree of smaller arteries. Derives the impe-
dance at the root of the tree comprising the smaller arteries. The impedance is used as
outflow boundary conditions for the larger arteries and thus provides coupling to the
model of the larger arteries discussed in Chapter 8. Since the root impedance is found
using a simple numerical approach the algorithm is described in this chapter rather
than in a separate chapter.

Chapter 12: Results. Gives results from simulations with the combined model in-
cluding a comparison with both data and other models.

Chapter 13: Conclusion.

Appendix A: Derivation of non-linear equations for the Lax-Wendroff method.
Derives the residual equations and the Jacobian matrix used when solving the fluid
dynamic equations for the combined model.

Appendix B: Gas dynamics analogy. Presents an analogy between the fluid dynamic
equations, treating the blood as incompressible and the vessels as distensible, and the
gas-dynamics equations, in which a compressible gas moves in a rigid tube.
Appendix C: The self-similar tree. Presents a self-similar solution for an inviscid ver-
sion of the linearized fluid dynamic equations used when predicting the root impedance
of the structured tree of smaller arteries.

Appendix D: English summary.

Appendix E: Dansk resume. Summary in Danish.




Chapter 2

Historical review

The history of the arterial pulse is the history of medicine — of its art and
of its science. Scientific understanding of the pulse and its application to
medicine has at all times been dependent on the knowledge of theory and
of physiological mechanisms, and on the availability of methods for its
measurements.

This is the first sentence in the first chapter of “The Arterial Pulse” by O’Rourke,
Kelly and Avolio (1992) and it reflects the importance of the arterial pulse. Indeed, the
pulse has always been one of the first clinical signs examined by any physician. What
we find interesting about the story of the arterial pulse are the following two points.
First, the fact that examination and knowledge about the characteristics of the arte-
rial pulse dates much further back than the scientific understanding of the circulatory
system, and second, that throughout time the most important persons contributing to
the understanding of the arterial pulse often had interdisciplinary backgrounds in both
medicine, mathematics, and physics.

Since ancient times detection of the arterial pulse by sensations appreciated by
the physicians fingers (palpation) was an essential part in diagnosing diseases. Chi-
nese, Indian, and Greek medicine used it often. It was believed that a good physician
could diagnose diseases and their severity, detect pregnancy, the sex of an unborn
child among other things solely from palpation of the pulse. Especially in Indian and
Chinese medicine these examinations often took the form of a mystic rite, where the
physician offered diagnosis and prognosis without any other examination at all. An
example is the Hindu physician Susruta who is depicted in Figure 2.1. The story tells
that he took advantage of the situation and gained a huge wealth from his predictions.

In contrast to these ritual predictions ancient Greek physicians had a more practical
and clinical apprbach. In the fourth century B.C. the Greeks recognized and named
various features of the pulse, e.g. the dicrotic and arcrotic waves, names still in use
today. However, they did not make any connection to the beating of the heart and
believed that arteries were filled with air. In fact, it is from this belief that arteries got
their name. The word artery is composed of the two Greek words “aer” and “trachea”,
which literally means air duct. The reason for this was that when a dead person was
cut open there were no longer blood in the arteries but air. Furthermore, they attributed
the pulsatile sensations to an active dilation of the arteries and believed that they were
drawing vital spirits from the airways. After Hippocrates, Herophilus noted that there
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must be some communication between the arteries and the heart. He also was the first
to describe the four basic qualities of the pulse, namely

® size,

e force,

» contour, and
o frequency.

He compared them to a musical note and the cadence of a verse. All of these qualities
were found by palpations without any instrumental measurements. By simultaneously
sensing the pressure at several places on the human body Erasistratos later noted a
delay in the travel of the pulse from central to peripheral arteries.

These early investigators drew the right conclusions even though they based them
on a false notion of the physics of the pulse. Because of the belief that arteries con-
tained air the pulse was regarded as a wave traveling through an air-duct. At that time
the circulation was assumed to consist of two fundamental elements: blood, the source
of matter, which nourished all constituents of the body with natural spirit that it car-
ried and pneuma, in its two forms — vital and animal spirit — which was the source
of energy animating matter. Blood and pneuma were distributed in two separate sys-
tems: (1) Blood was manufactured in the liver and transported, through the veins,
toward all organs. As a result only a small fraction reached the right ventricle. From
here it was unable to return to the vena cava because of the tricuspid valve. Instead
it flowed through the “artery-like vein” (the pulmonary artery) towards the lungs for
their nourishment. (2) Pneuma inspired into the lungs flowed through the “vein-like
artery” (the pulmonary vein) to the cavity of the left ventricle, where it became vital
spirit, and was then distributed to the body through the aorta and the arteries. Fur-
thermore, it was assumed that the part of the vital spirit that reached the brain was
transformed into animal spirit, which was then accumulated in the cerebral ventricles,
and transported through the hollow nerves to the entire body. In this scheme, motion
of blood and pneuma was furnished by the diastolic activity of the heart, and reflux
from or to the ventricles of both blood and pneuma was prevented by the valves. The
unidirectional motion of blood to the lungs and of air to the left ventricle was, for the
first time explicitly recognized. Erasistratos also emphasized that veins, arteries, and
nerves were distributed over all parts of the body and that the finest divisions of the
veins and arteries intercommunicated.

This was the predominant view until Galen (129-199 A.D.) late in the Greek era
corrected some of these false understandings. He was probably the most influential
man at his time, and it was his results which founded the medical practice for the next
1000 years. Galen noted a relation between the heart, arteries, and veins and pointed
out that arteries during life contained blood — not air. However, he still did not relate
the dilation of the arteries to the beating of the heart. He claimed that the arteries
were dilating actively and by this action generated the pulse. Furthermore, he did not
recognize that blood circulated.

Inspired by Erasistratos he considered the venous, the arterial and the nervous sys-
tems, with the liver, the heart, and the brain as the respective but separate centers which
each distributed one of the three spirits; the natural, the vital, and the animal, through




6 Historical review

the body. As Erasistratos he believed that blood was created in the liver and from here
transported to all organs through the veins such that only a small fraction of it reached
the right ventricle. It was this wrong conception which made him believe that arte-
rial blood came from a direct transport from the right and into the left ventricle. This
transport was assumed to occur through invisible pores located in the interventricular
septum. Once in the cavity of the left ventricle, and only there, were blood and air
elaborated into vital spirit. Through their own pulsating activity the aorta and the ar-
teries drew the spirits from the blood in the left ventricle and distributed it throughout
the body. This is seen in Figure 2.2. '

It was not until the beginning of the seventeenth century that these false interpre-
tations were corrected. The full scientific knowledge that arteries are part of a circula-
tory system in which the heart is pumping blood around was not known until Harvey
in 1628 published his book “De Motu Cordis et Sanguinis in Animalibus” or the En-
glish translation “Movement of the Heart and Blood in Animals, an anatomical essay”
(Fishman and Richards, 1964).

His studies established, for the first time, that the arterial pulse is a consequence
of cardiac contraction which causes arterial dilation when blood is flowing through
the aortic valve into the ascending aorta and further into the sophisticated network of
vessels. Two facts convinced him that there must be a circulation, the first was the
discovery of valves in the veins. Their function is a passive fluid mechanical process
and he saw that these could be effective only if the blood in the veins flowed towards
the heart not away from it as proposed by Galen. The other important point was his
estimation of the magnitude of the cardiac output, even though it was still underesti-
mated (he estimated it to approximately 1 liter per minute) this was much more than
previously thought and it was much more than could be created in the liver as believed
since the time of Galen. Furthermore, another old concept was abandoned namely that
blood passed through the wall which separates the two sides of the heart. Based on
these facts he concluded (and managed to convince most of his skeptics) that blood
was circulating. There was a missing link in Harvey’s studies namely the capillaries.
They were discovered soon after by Malpighi in 1661 who used a microscope, some-
thing Harvey did not have at his disposal. Harvey also realized that changes of the
pulse in a diseased body is a consequence of abnormalities in the function of the heart
and blood vessels. Another important point was that he established the effect of the
wave reflection of the arterial pulse.

One can say that with Harvey the modern view of physiology started and the scene
was set for improvements of the basic physiological knowledge. The time of Harvey
is the time of many great scientists. The most important was probably Galileo (1564—
1642) who was a professor of mathematics while Harvey was still a medical student.
He was important because it was probably his teaching which inspired Harvey. Galileo,
who was also an astronomer, was instrumental in changing the perception of the natural
science from a philosophy into the modern science as it is known today.

The understanding of blood flow as a fluid dynamical system, in which the blood
is treated as a viscous fluid pulsating along a system of elastic tubes could not have
been established without the studies by Newton (1642-1727), who was both a math-
ematician and a physicist. His contribution was to establish the concept of viscosity
which is presented in an addended proposition in his book “Principia Mathematica®.
Furthermore, he was as a president for the Royal society responsible for the publica-
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Figure 2.2: Galen’s system of physiology. Blood is created in the liver and circulated
to all organs through the veins. Some of this reaches the right ventricle and from here
it diffuses through the septum to the left ventricle. At this point vital spirits are added
and the blood is distributed through the arteries to the organs. From Crombie (1961).




8 Historical review

tion of the book “Hemostatics” by Hales in 1733. Hales (1677-1761) was the first to
measure arterial pressure, to document the response of arterial pressure to blood loss,
to formulate the concept of peripheral resistance, and to show in an elegantly simple
experiment that the greatest resistance to blood fiow resides in the tiny blood vessels
that are invisible to the naked eye. But probably the most famous of his results is his
comparison of arteries to a fire engine compression chamber, called a Windkessel in
the German translation of his book, a terminology which is widely used today. The
comparison came from observing the similarity between the arterial system and the in-
verted air-filled dome of an contemporary fire engine. The purpose of the dome was to
smooth oscillations, which was a result of intermittent pumping, so that flow of water
through the fire hose nozzle would be almost constant. The comparison was that he
saw the larger arteries as the cushion, the arterioles as the resistance to the intermittent
pumping of the heart, and finally he compared the almost constant flow through the
tissues to the nozzle of the fire hose.

Other people who influenced the development were the founders of the theory for
fluid mechanics. Euler (1707-1783) established the general equations of fluid motion
and he was the first to apply them to blood flow in arteries. He was a multi talented
person, perhaps the greatest mathematician who ever lived, yet he also studied the-
ology, medicine, astronomy, physics and oriental languages. He was a close friend
of D. Bernoulli (1700-1782), who was also both a medical doctor as well as a great
mathematician. Bernoulli used his interdisciplinary competence when he was formu-
lating what is today known as Bernoulli’s equation. A consequence of this equation
is that pressure can be converted to Kinetic and potential energy, or vise versa, pro-
vided that the flow is steady (Fung, 1996). The more general fluid equations known
as Navier-Stokes equations were, however, not derived until 1845 where Stokes pre-
sented a derivation similar to the one used today. Before that, in 1827, the equations
were set up by Navier who found them from model studies.

There are many other important contributions from the nineteenth century. For ex-
ample Poiseuille (1799-1869) started his research in cardiovascular physiology while
he was still a medical student. His primary training was as a physician but he had
a great interest and some training in physics as well. His major contribution was to
establish the relationship between flow, the pressure gradient, and the dimensions of a
capillary tube. He showed experimentally that flow was related to the fourth power of
the tubes internal diameter and this is what is expressed in the well known Poiseuille
equation. However, it was not Poiseuille who established the theoretical basis of the
law, this was derived by Hagenbach in 1860. Another important contribution by Ha-
genbach was to confirm Hales statement, that the most significant part of the periph-
eral resistance should be found in the smaller arteries. Young (1773-1829), who is
mainly known for his research in optics and human vision, contributed with important
achievements within the area of elasticity. This study was based on his interest in the
relationship between the elastic properties of the arteries and the propagation velocity
of the arterial pulse. His studies led to the concept of the elastic modulus which today
is known as Young’s modulus. Finally, we will mention the studies by Moens and
Korteweg. In 1878 they established a relationship between the propagation velocity of
the arterial pulse and Young’s modulus of the arterial wall.

It would take us too far to include all the important contributions of this century.
Therefore, we stop this selective description and start focusing on the one thing which



all of the early researchers have in common,; their variety of interests and commitment -

to multi-disciplinary fields all involving the understanding of hemodynamics together
with the basic science of mathematics and physics. The contributions mentioned here
are selected such that the founding for the basic elements used later in this report are
all covered. For more details and a for a more elaborate discussion of the important
developments in nineteenth and twentieth century we refer to O’Rourke et al. (1992),
Nichols and O’Rourke (1998), Pedley (1980), and Boyer (1989).

Even though today’s knowledge has brought the art and the science of the arterial
pulse much closer together, there are still many problems that remain to be investi-
gated. Today it is important to bring closer together the facts that can be obtained from
measurements and the theoretical knowledge that can be obtained using modeling and
simulations. This is important in our continuous effort to be able to manipulate and re-
pair the body. We want to have the same control as the plumber fixing our pipes. The
biological system is, however, much more complex so more sophisticated tools are

. necessary. Perhaps simulations can help to gain more insight into human physiology

and in particular into the nature of the arterial pulse. Simulations in biology require
close cooperation between two different scientific traditions. In the more technical
sciences, e.g. development of flight simulators, there are mathematicians, engineers,
and physicists working together all people with a similar background, but when we
talk about biology, medicine, and technology the interdisciplinary span increases and
that requires more from the people involved. Looking back this is exactly what char-
acterized the men working in this area from the ancient Greek era until today. The
traditions of doing interdisciplinary studies in this area is long, but the history of simu-
lations in medicine is short, especially compared with the more technical sciences, e.g.
it is commonly accepted today that pilots should have simulator training before flying
with passengers. Today, however, there are many initiatives using interdisciplinary
activities in the development of simulators for the medical sector.

The original idea of this project was not to study the arterial pulse as such but an
interest in cognitive studies of the performance of anesthesiologists in the operating
theater. They work in a typical high-stress environment, similar to pilots. There are
long periods where practically nothing happens and then suddenly they have to act
very fast in order to deal with potentially hazardous situations. In these environments
there are often a large number of human errors, which can be reduced e.g. by simu-
lator training. In Jensen (1997) anesthesia related mortality and morbidity rates are
discussed, and it is concluded that morbidity is low but that a substantial part of the
fatalities are a result of sub-standard care, and that some of these incidents could have
been avoided with better training. The latter is concluded from a study performed
in the United Kingdom where the number of deaths from anesthesia since 1982 was
recorded. It was found that only 1 out of 10000 deaths were totally attributed to anes-
thesia. However, there is a long list of critical incidents occurring during anesthesia
that does not necessarily imply death of the patient, and it would improve patient safety
substantially if these incidents could be avoided. It is likely that this could be accom-
plished with more education in a simulator environment where, in addition to practical
skills, tasks such as teamwork and leadership can be trained. This has been proven
successful in aviation and the study by Jensen (1997) has tried to port a methodology
for studying and identifying cntical incidents from aviation to anesthesia.
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This cognitive project started in 1991; originally the idea was to study anesthesi-
ologists during their work, and record the studies on video. However, since critical
incidents happens with very long intervals there is much wasted time. Therefore, the
idea of developing a cognitive laboratory based on studies of anesthesiologists work-
ing in a simulator environment was born. Soon after it became clear that a simulator
also would be ideal for training purposes, since some of the critical incidents, e.g. ma-
lignant hyperthermia, are very rare. At that time there were only a few other simulators
available and they were very expensive and were only running on some special purpose
equipment, e.g. the simulator developed by Gaba and DeAnda (1988). The idea was
to be able to use the simulator in familiar surroundings, i.e. with standard monitoring
equipment. Such a simulator was not available and hence a new project started with
the aim of developing an anesthesia simulator. The requirements were that it should
run in real time, that it should run on an inexpensive personal computer, and that it
should be possible to connect it to the monitoring equipment and anesthesia machines
common in most operating theaters. Furthermore, in order to predict the output in a
physiological sound way it was decided that the simulator should be based on math-
ematical models. This project was initiated in 1992 as an interdisciplinary research
project by Professor S.A. Pedersen, Department of Mathematics, Roskilde University,
M.D. H. @rding, Ph.D. and M.D. PF Jensen, Ph.D. Department of Anaesthesiology,
Herlev University Hospital, and F. Jensen, Cognitive Systems Group, Risg National
Laboratory.

Developing an anesthesia simulator requires deep knowledge not only of how the
various parts of human physiology work but also of how they interact. Since the aim
was to build an anesthesia simulator that can run in real time the mathematical models
on which it should be based must be simple. However, it requires a thorough physi-
ological understanding to make the right simplifications to these models. Therefore,
the study was split in two projects, a commercial project SIMA, in which the main
objective was to build a real time anesthesia simulator based on simple mathematical
models, and a research project where the aim was to gain more insight and study more
detailed models of the various parts, but keeping in mind that they should be able to be
used when evaluating the models used by the SIMA project. The SIMA project is lead
by Math-Tech in cooperation with Artema Monitoring and Emergency Care, The De-
partment of Anaesthesiology, Herlev University Hospital, the Biomath Group, Depart-
ment of Mathematics, Roskilde University, and CRS4 Center for Advanced Studies,
Research, and Development, Cagliari, Italy.

Since the human physiological system is very complex it is not a trivial process
to identify the areas which need to be modeled. The strategy used when choosing
the models was to examine the information shown on a standard anesthesia monitor,
i.e. pressure, ECG, oxygen and carbon dioxide profiles, heart rate, cardiac output,
temperature, and systolic and diastolic pressures. From this information the following
models were identified:

e A cardiovascular model providing

- heart rate,
— cardiac output

— systolic and diastolic pressures,
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— a number of pressures both arterial and venous, both in the systemic and
pulmonary circuits.

A pharmacokinetic model providing information about the concentration of drugs
and inhalation anesthetics in blood, tissue, and each of the major organs.

A pharmacodynamic model converting these concentrations into effects regu-
lating parameters of the cardiovascular model, i.e. heart rate, compliance, and
peripheral resistance.

e A baroreceptor model relating changes in pressure to physiological regulations
of the parameters in the cardiovascular model.

e A respiratory model simulating transport of oxygen and carbon dioxide. ‘
¢ A metabolic model controlling carbon dioxide and heat production.

¢ A fluid and electrolyte balance model accounting for the body volumes of plasma,
protein, and electrolytes as well as the distribution of the body fluids.

¢ An ECG model providing profiles for the various ECG derivatives.

It is not easy to establish which of these models is most important, but one could
say that the cardiovascular model in some sense is the driving force of the system
and therefore fundamental to the simulator. Therefore, it is the main subject of this
dissertation. Several of the other models have been studied in detail at the Department
of Mathematics at Roskilde University.

During surgery several arterial blood pressures can be measured both non-inva-
sively and invasively; for instance the aortic pressure, the radial pressure, the brachial
pressure, or the femoral pressure. The resulting waveforms as well as the systolic and
diastolic pressure levels are shown on the monitors. These are of diagnostic impor-
tance to the anesthesiologists. For example, in some patients suffering from diabetes
or atherosclerosis, or in elderly people the dicrotic wave is often diminished. Further-
more, since the dicrotic wave is present as a result of reflections, abnormal dicrotic
waves, or maybe even comparison of pressure profiles at different sites, could be used
when diagnosing stenosis in the larger arteries. Generally, it can be said that if the
shape of the pressure wave “looks” wrong it affects the anesthesiologists and he or she
may interpret it to understand what is wrong.

It is difficult to make satisfactory and simple mathematical models of the cardio-
vascular system. As a result the simulator often uses curves generated from drawings
of a number of characteristic situations. In order to give a better descriptive and tech-
nical characterization of the various physiological conditions in the future, we have
found it important to study more detailed mathematical models of the systemic arter-
ies. This dissertation is one of the results from this study. Our first approach was to
study the characteristics of the arterial pulse. These are listed below:

¢ The leading edge of the pressure pulse of the larger arteries undergoes an in-
crease in amplitude and steepness of the wave front.

e The mean pressure of the larger arteries drops slowly towards the periphery.
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o A second “reflected” wave (the dicrotic wave) forms after the leading wave and
they both propagate along the arteries. The dicrotic wave, however, propagates
faster than the leading pulse wave.

e Far from the heart (towards the capillaries) one can observe an approximate
proportionality between flow and pressure, but close to the heart proportionality
is absent.

Since the studies by Galen, investigation of the arterial pulse has been continued and
today there is a large number of studies both based on mathematical models and mea-
surements of the characteristics of the arterial pulse. The study of the shape of the ar-
terial pulse using mathematical models has over the years been done using quite differ-
ent approaches ranging from electrical analog models to advanced three dimensional
models based on fluid mechanics. The cardiovascular model in the SIMA project is
based on an electrical analog model, see Figure 2.3, where only a small number of
pressures labelled PA[1-3] (systemic arterial pressures), PV[1-2] (systemic venous
pressures), P P[1-3] (pulmonary arterial pressures), P L[1-2] (pulmonary venous pres-
sures), P[L, R]V (left/right atrial pressures), and P[L, R]V (left/right ventricular pres-
sures). While such a model can be used when determining the systolic and diastolic
pressures correctly it is not adequate in describing the phenomena listed above. There-
fore, we have chosen to derive a one-dimensional model that, as closely as possible,
follows physiological principles.




13

Pulmonary Peripheral Resistance

I 1

T

Pulmonary Arteries %

R. Ventricle <

R. Atrium

N

Systemic Veins %

~ Systemic Peripheral Resistance

} Pulmonary Veins

Left Atrium

> Left Ventricle

L Systemic Arteries

W\— Inductor / Inertia

-——'{ I—— Capacitor / Compliance

- -} Resistor/ Resistance
—H— Diode / Rectification

Figure 2.3: The cardiovascular model from the SIMA anesthesia simulator.






Chapter 3

Background, the physiology of
blood flow

The function of the circulation is to service the needs of the tissues — to
transport nutrients to the tissues, to transport waste products away, to
conduct hormones from one part of the body to another, and in general
to maintain an appropriate environment in all the tissue fluids for optimal
survival and function of the cells.

The above quotation is taken from “Textbook of Medical Physiology” by Guyton
(1991). It states that the purpose of the circulatory system is to be our pickup and
delivery system servicing all cells in our body. In this chapter we will give an overview
of the physical characteristics of the circulatory system together with some specific
details about the systemic arteries.

3.1 The circulatory system

The cardiovascular circulatory system is divided into two parts each connected to the
heart, see Figure 3.1. These are the systemic circulation which emanates at the left
ventricle and ends at the right atrium, and the pulmonary circulation which emanates
at the right ventricle and ends at the left atrium. The purpose of the systemic circulation
is to transport oxygenated blood to all tissues, where part of the oxygen is exchanged
with carbon dioxide, and then to transport the partly deoxygenated blood back from
these tissues to the heart. The purpose of the pulmonary circulation is to transport the
partly deoxygenated blood to the lung tissues, where the carbon dioxide is removed
and the blood becomes fully oxygenated again, and then to transport the oxygenated
blood back from the lungs to the heart. The basic organization of the two systems is
similar. They are each composed of two parts; an arterial part, which transports blood
from the heart to the tissues, and a venous part, which transports blood from the tissues
towards the heart. The transport in the arteries is conducted under high pressure and
high velocities, hence the arteries have strong vascular walls, while the transport in the
veins is conducted under low pressure and low velocities, hence the venous walls are
generally thin. In addition to transporting blood back to the heart the veins serve as a
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major reservoir of blood. Both veins and arteries are often classified according to their
size in the following four groups:

e Larger arteries and veins.
e Smaller arteries and veins.
e Arterioles and venules.

e Capillaries.

The circulation is driven by the heart: Cardiac contraction forces the mitral valve to
close preventing flow back into the left atrium. This implies that the pressure of the left
ventricle increases. When the pressure level has increased above the aortic pressure
the aortic valve opens and a surge of blood is ejected into the ascending aorta. This
is called the systolic phase. When pressure in the ventricle has fallen below the aortic
pressure the valve closes and remains so until the beginning of the next cardiac cycle.
During this period there is no flow into the aorta. This is called the diastolic phase.
These two alternating phases define the heart cycle and they are repeated periodically.
The period of the heart cycle for a normal adult at rest is approximately 0.8 s. It is
the periodic repetition of a high outflow and no outflow which in turn leads to flow
and pressure pulsations in the arteries. From the ascending aorta blood is pumped
through the arteries and arterioles into the capillary network. The arterioles act as
control valves through which blood is released into the capillaries. The arterioles have
a strong muscular wall capable of both closing the arterioles completely or dilating
them severalfold. The purpose is to alter the blood flow into the capillaries in response
to the needs of the tissues. The function of the capillaries is to exchange fluid, oxygen,
carbon dioxide, nutrients, electrolytes, hormones, and other substances between the
blood and the interstitial fluid of the cells or alveolus in case of the pulmonary circuit.
This diffusion is achieved through a slow and steady flow through the vast network
that the capillaries cover in all organs, muscles and tissues; and it takes place because
the capillary walls are permeable to small molecular substances. Since flow through
the capillaries has to be steady and slow, another important role of the arteries is to
cushion the flow fluctuations resulting from the pulsating ejection from the heart.

Blood is collected from the capillaries by the venules and transported via pro-
gressively larger veins into the right atrium and then into the right ventricle. Gen-
erally, none of the arterial pulsations are transmitted into the veins. However, it is
possible to observe pulsations here as well, but these are either due to heart gen-
erated waves passing retrograde towards the periphery or to respiratory fluctuations
(O’Rourke et al., 1992). From the right ventricle blood is pumped into the pulmonary
circuit where it is oxygenated prior to its return to the left atrium. This part of the
circulation works similarly to the systemic circulation. However, there are some dif-
ferences. The most obvious difference is that the oxygenated blood is found in the
veins and the deoxygenated blood in the arteries.

Furthermore, the pressure level in the pulmonary circuit is much lower than in
the systemic circuit, see Figure 3.2. The high pressure in the systemic arteries ranges
from 80-120 mmHg under normal rest conditions, while pressure in the pulmonary
arteries ranges from only 8-25 mmHg. This is opposite in capillaries and veins: In the




3.2 Systemic arteries 17 .

Cross-Sectional | Percentage of
Diameter | Wall Thickness Area Blood Volume
(cm) (mm) (cm?) Contained
Aorta 2.5 2 4.5 2
Arteries 0.4 1 20 8
Arterioles 0.003 0.2 400 1
Capillaries 0.0005 0.01 4500 5
Venules 0.002 0.02 4000
Veins 0.5 0.5 40 54
Vena Cava 3 1.5 18

Table 3.1: Lumen diameter, wall thickness, approximate total cross-sectional area, and
percentage of blood contained in the given group of arteries. The total volume of blood
is not 100% since the table does not account for 12% blood in the heart and 18% in
the pulmonary circulation. From Gregg (1966). '

pulmonary capillaries and veins pressure drops to 7 mmHg, whereas pressure in the
systemic capillaries and veins drops to as little as 0 mmHg.

The blood ejected from the left ventricle into the ascending aorta is called the car-
diac output which in an adult at rest is approximately 5 Vmin. The blood ejected from
.the right ventricle into the pulmonary artery is slightly smaller (1-2%) because the
oxygenated blood needed to supply the lung tissues is not returned to the right atrium
but continues through the lung into the pulmonary veins. However, this blood contin-
ues into pulmonary vein and enters the left atrium rather than passing back through the
systemic veins into the right atrium.

3.2 Systemic arteries

The systemic arteries consist as described above of the larger arteries, the smalier
arteries, and the arterioles, see Figure 3.4. Together, they form a vast network of
branching vessels. As seen in Table 3.1 the cross-sectional area increases from 4.5 cm?
at the root of the aorta to approximately 400 cm? at the entrance to the arterioles. These
numbers should be seen as orders of magnitude because it is impossible to measure
the arterioles precisely. Consequently, there is a considerable variation in the tabulated
values given in different textbooks of physiology (Guyton, 1991; Gregg, 1966; Caro,
Pedley, Schroter and Seed, 1978).

The diameters of blood vessels range over several orders of magnitude. This may
be a problem for modeling purposes, but it can be overcome by dividing the arteries
into two groups: the larger arteries and the arterioles. This distinction is somewhat ar-
bitrary, because the properties of the vessels change gradually as they become smaller.

Seen from a mechanical point of view the distinction makes sense because blood
flow in the arteries and the arterioles are significantly different. This can be explained
in terms of the fluid mechanical characterization of the flow: If the flow has a Reynolds
number significantly larger than one it is dominated by inertia and if it is much smaller




18

Background, the physiology of blood flow

. Systemic, capliierien of hoad, neck,
" -and upper exiremitias o

Aorta

. wunm,;mnk
Superior vens ceve
Right strium L% pulmonsry artery

_ Right ventricle
infer(or veng Cava
Sinusoids of

W Left puimonary veins

Left atrium

tiver

Leit vantricle
Callac artery

Hepatic vein
Laft guatric artery
Right common Splent
ltiac vein © anery
Commen hepatic
Portsd vein sy
Right Internal Bilac Cupiitaries
{hypogastric) vein of stomach

Rigt extemsl

Hag vain Superior mesenteric

_antery

interior cassenteric
Systermic capieries of anary
gglrolm-suml tract Left common
Hisc artery

Laft Internat litac
{hypogastric) artery

Laft extornat illac artery
Arterioies

capiiaries
of peivis

Systemic of
iower extramitise

Figure 3.1: The circulatory system. From Tortora and Anagnostakos (1990).



3.2 Systemic arteries ‘ 19

120

100

80

(1

PULMONARY  CAPILLARIES

CAPILLARIES

VENULES

SMALL VEINS

LARGE‘ VEINS

VENAE CAVAE

RIGHT ATRIUM

RIGHT VENTRICLE
PULMONARY ARTERIES
PULMONARY VEINS
LEFT ATRIUM

40

PRESSURE (mmHg)

20

AORTA

LARGE ARTERIES
SMALL ARTERIES
ARTERIOLES

\\\,

Y

Figure 3.2: Pressure levels in the cardiovascular circulation. From Noordergraaf
(1978).

than one it is dominated by viscosity. In case of blood flow the Reynolds number
drops below one when the vessels diameter becomes less than 100 pum (Caro et al,,
1978). This corresponds to the diameter of the larger arterioles they have a diameter of
50-100 um. The diameter of the arterioles decreases by progressive bifurcations until
at the level of the origin of the met-arterioles where the diameter is approximately
30 um. This is the diameter shown in Table 3.1. Furthermore, there is a functional
difference between the two types of arteries. The purpose of the larger arteries is
to distribute blood to the different organs and tissues, while the role of the smaller
arteries and arterioles is to distribute blood (and, in the case of the arterioles, to control
its distribution) within those organs and tissues.

The arteries and larger arterioles can all be modeled as sophisticated bifurcating
trees. We will henceforth refer to this as the arterial tree. However, the smaller arteri-
oles (sometimes called the met-arterioles (Caro et al., 1978)) do not have a bifurcating
tree structure since multiple branches and loops often occur.

The order of the arterial tree is large. Assume an arteriolar diameter of 30 pm and
a total cross-sectional area of 400 cm?, as shown in Table 3.1. If we then construct a
binary tree consisting of the aorta, the arteries, and the larger arterioles it will have 26
generations. Even if we do not take the arterioles into account and only consider the
larger and smaller arteries, i.e. those with a diameter larger than 100 xm (correspond-
ing to 40 cm?) then the tree will have as much as 19 generations. Such a tree cannot
be depicted but the tree shown in Figure 3.3, where only the larger and a few of the
smaller arteries are shown, is still rather complex.

So far we have discussed the geometrical properties of the vessels, but in order
to find out how to model flow in the systemic arteries we also need to investigate the
composition of the blood and the arterial walls.

3.2.1 The arterial wall

The arterial wall is composed of variable amounts of elastic fibers and smooth mus-
cles enabling it to dilate when the pulse wave propagates along an artery. It is not
purely elastic but exhibits some viscoelastic behavior. To a first approximation arteries -

. are circular vessels tapering along their length. Arteries can be subdivided into the
following three groups according to their elastic behavior:’




20 Background, the physiology of blood flow

\)
fl
Vo .

&4
/L

Occipital

tnternal carotid

{

|
{ N
\ m XY
{ ) Et.:' g";? wl

Arch of aorta o A —y I
Right y ’1?/4&7/’1 . :@;\% \\-

External carotid-———

Right common carotid

P

Pulmonary

Axillary

v

2177,
Aorta l.“ky” -

i l'/. D "1 Ny
ff Ay

Brachial

Left coronary
Splenic
Renal

hd

Superior mesenteric.
Common ifiac:
Internal ilia

Externat iliac Inferior mesenteric

Radial

Ulnar

Deep palmar arch

N
W
i

Digitals

Superficial palmar arch

Popliteal

Anterior tibial

Posterior tibial

Dorsal pedis
Borsal artery of foot

Borsal metatarsals

Figure 3.3: The arterial tree. From Solomon, Smidt and Adragna (1990).



3.2 Systemic arteries — 21

o Elastic arteries which comprise the major distribution vessels, such as the aorta,
the common carotid arteries, or the subclavian arteries.

e Muscular arteries (see Figure 3.5) comprise the main distributing branches of
the arterial tree, such as the radial or femoral arteries.

e Arterioles (see Figure 3.6).

The transition in structure and function between the three arterial types is gradual.
Generally, the amount of elastic tissue decreases as the vessels become smaller and at
the same time smooth muscle component becomes more prominent (Wheater, Burkitt
and Daniels, 1979). Hence, the arteries become markedly stiffer with increased dis-
tance from the heart. The parameters characterizing the elastic properties are Young’s
modulus, which increases away from the heart, and the relative wall thickness which is
constant for the larger arteries, but increases for the smaller arteries and arterioles. The
arterial wall is composed of three layers characterized by their predominant structure
and cell types.

e The internal layer, the tunica intima, is composed of an endothelial layer and an
outer elastic laminar layer.

The endothelial layer comprises an inner layer consisting of a single layer of
endothelial cells and an outer sub-endothelial layer. The single cell endothelial
layer is present as a border to all surfaces that come in contact with the blood.
It is rather fragile and is easily damaged e.g. by excessive shear rates, however,
it also easily regenerates. The sub-endothelial layer contains a few collagen
generating cells and collagen fibers.

The elastic laminar layer consists of branching elastic fibers. It is particularly
well defined in the smaller arteries where it forms a clear boundary to the middle
layer.

e The middle layer, the tunica media, is the thickest layer in the wall. It is also the
layer which has the greatest variation in structure and properties in the different
regions of the circulation, and it is the transitions in the structure of this layer
which has given rise to the partition above in elastic and muscular arteries.

The tunica media of the elastic arteries is made of multiple concentric layers of
elastic tissue separated by thin layers of connective tissue, collagen fibers and
sparse smooth muscle cells organized in a longitudinal way forming cross-links
to the successive elastic layers. For more details see Caro et al. (1978). In
the corresponding layer of the muscular arteries, elastic tissue is reduced and
the smooth muscle cells are dominant and oriented circumferentially in spiral
structures.

e The external layer, the tunica adventitia, can in some places be as thick or even
thicker than the tunica media, however, it is less prominent microscopically. It
is composed of loose connective tissues and relative sparse elastin and coliagen
fibers running in a predominantly longitudinal direction. The boundary with the
surrounding tissue is often not well defined.
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Figure 3.4: A cross-section of an artery and the relative contents of the various layers
of tissue in the circulatory system. From Li (1987).

In Figure 3.4 the various layers of the arteries are shown including the order of magni-
tude of the various vessels. The walls of arteries larger than about one mm in diameter
have their own nutrient blood vessels, the vasa vasorum. They originate either from the
parent artery or from a neighboring one and break up into capillary networks, which
supply the tunica adventitia and part of the tunica media. The tunica intima and the
innermost layers of the tunica media are primarily supplied by transport of materials
from the arterial lumen. Due to the complex composition of the arterial walls the dis-
tensibility or elastic properties of the arteries are non-linear and therefore not easily
described by a mathematical model.

In order to investigate the mechanical properties of blood flow an important input
parameter is the thickness of the arterial wall. It is hard to describe the wall thickness
precisely. The arteries are not loose vessels inserted in the body but attached to the
surrounding tissue, and the outer layer of the arterial wall, the tunica adventitia, usu-
ally merges gradually into the surrounding tissue. We will, however, attempt to do it
anyway. Generally, the thickness of the arterial wall varies considerably throughout
the circulation, as can be seen in Tables 3.1 and 3.2. Instead, one often studies the
thickness of the wall relative to the diameter of the vessel. For the larger arteries the
ratio is approximately constant. For the smaller arteries this is no longer true. Even
though the wall thickness decreases, the wall thickness to radius ratio increases. The
increase continues until the bottom of the arterioles where the external diameter are
almost twice that of the lumen even when the smooth muscle is relaxed. Finally, thick-
ness of the vessel wall in the capillaries is very similar in all mammalian species. This
is due to the fact that the wall has to be thin and permeable in order for diffusion of
molecules to occur. These have a fixed size independent on the species in question and
require a certain structure of the wall.

In the dissertation we concentrate on modeling a normal young adult at rest. How-
ever, it should be mentioned that the wall thickness of the arteries changes significantly
with age along with the change of the elastic properties of the vessels. Aging causes
elastic elements in the wall to degenerate. The vessels may become calcified and the
collagen fibers increase in number, both replacing muscle-cells and proliferating in
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Figure 3.5: The wall of a muscular artery. The internal layer mainly consist of a
thin elastic sheet (stained black), it is marked with IEL. The middle layer, the tunica
media (marked with an M) is composed mainly of smooth muscle (stained white).
The outermost layer, the tunica adventitia is composed of a diffusive external elastic
lamina. Note finally that collagen fibers (stained gray) are scattered throughout the
vessel wall. From Wheater et al. (1979).

Figure 3.6: A large arteriole. The arterioles have a very thin internal layer which com-
prises a endothelial lining, little collagenous connective tissue and a thin but distinct,
internal elastic lamina. The middle layer is almost entirely composed of smooth mus-
cle cells organized in concentric circles. The outermost layer the tunica adventitia is
very thick and merges with the surrounding connective tissue. From Wheater et al.
(1979).
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other parts of the wall. The overall effect is that the diameter of the vessel increases,
and the wall becomes thick and much less distensible.

In Table 3.2, taken from Caro et al. (1978), typical values for the various physi-
ological parameters are presented. These are based on measurements from dogs but
most of them apply approximately to humans as well.

3.2.2 Blood

Blood consists of plasma with red (erythrocytes) and white (leucocytes) blood cells,
and platelets (thrombocytes) in suspension. The primary function of erythrocytes is
‘to transport oxygen and carbon dioxide. Leucocytes constitute an important part of
the defense and immune systems of the body. Thrombocytes are a vital component of
the blood clotting mechanism. Erythrocytes comprise approximately 40-45% of the
blood in the larger arteries, this percentage is called the hematocrit. Normally erythro-
cytes are biconcave discs with a mean diameter of 6—8 pm and a maximal thickness
of 1.9 um. The average volume of an erythrocyte cell is approximately 83 (um)? and
the number of erythrocytes per mm? is approximately 46 x 105. Leucocytes, which
are roughly spherical, are usually larger than the red blood cells ranging from 6-17
um, however, their number is small, approximately 4-11 X 10° per mm?3 in a normal
adult. Thrombocytes are, however, much smaller than both erythrocytes and leuco-
cytes. They are rounded or oval and have a mean diameter of approximately 2-3 um,
so even though there are approximately 2.5-5 x 10° per mm®, their total volume is
small. Together leucocytes and thrombocytes have a volume concentration of only ap-
proximately one percent. Furthermore, it should be noticed that these cells are all very
deformable, with the erythrocytes being the most deformable of them all. Significant
deformations occur when the cells are passing through the capillaries. However, the
cell membranes do not rupture because the cells have a cytoskeleton that supports their
shape.

Therefore, the mechanical properties of blood should be studied by analyzing a
liquid with a suspension of flexible particles. By definition, a liquid is said to be New-
tonian if the coefficient of viscosity is constant at all rates of shear. This applies to most
homogeneous liquids including blood plasma, but in the case of a liquid with a sus-
pension of particles the mechanical behavior can deviate such that the liquid becomes
non-Newtonian. These deviations become particularly significant when the particle
size becomes appreciably large in comparison with the dimension of the channel in
which the fluid is flowing. This is the case of the vessels in the micro-circulation.

Consider a suspension where the suspending fluid has a Newtonian behavior. Then
if the suspended particles are spherical and non-settling, that is, if they have the same
density as the suspending fluid, then in any motion the shear stress will be proportional
to the rate of shear and the suspension will behave as a Newtonian fluid. This applies
as long as the concentration of spheres is low, less than 30 percent. This is a result of
experiments performed under steady-state conditions with suspensions of rigid spheres
(Caro et al., 1978). These experiments showed that the viscosity of the suspension,
defined as the viscosity when measured in a particular viscometer under particular
conditions, was independent of the shear-rate for volume concentrations of suspended
spheres as high as 30 percent. However, if the suspended particles are not spherical or
are deformable in any way, then the shear stress is not proportional to the shear-rate
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Table 3.2: Physiological data for the various parameters in the circulatory system.

From Caro et al. (1978).
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Figure 3.7: The apparent viscosity as a function of the shear rate in human blood.
When the shear rate is about 1000 s=! the non-Newtonian behaviour becomes in-
significant, and the apparent viscosity approaches an asymptotic value ranging from
0.03-0.04 g/(cm s) (= 3-4 mN s m~2). From Caro et al. (1978).

unless the concentration is much less than 30 percent.

Blood does not consist of rigid spheres and the volume fraction of erythrocytes
is about 40 percent. Thus it should be expected that the behavior of blood is non-
Newtonian. It has been shown that human blood is Newtonian at all rates of shear for
hematocrit up to about 12 percent, although blood has a higher viscosity than plasma
(Caro et al., 1978). However, as the hematocrit is raised, not only does the viscosity
of the suspension increase, but non-Newtonian behavior is observed, detectable first at
very low rates of shear.

Since the hematocrit in arteries usually is higher than 12 percent, blood might
be expected to have a non-Newtonian behavior. Results based on several studies with
human blood, however, show that viscosity is independent of shear rate when the shear
rate is high. With a reduction of shear-rate the apparent viscosity increases slowly, until
at a shear-rate less than 1 s where it rises extremely steeply, see Figure 3.7 (Caro
et al., 1978). The shear stresses can be divided into two groups according to the effect
of the shear rate:

e At low shear rates, the apparent viscosity increases markedly. The reason is that
a tangled network of aggregated cell structures (Rouleaux) can be formed. If
blood is subjected to shear stress below a critical value, then aggregated struc-
tures form without the blood flowing, and as a result they exhibit a yield stress.
This is, however, only present if the hematocrit is high. If the hematocrit falls
below a critical value there are not enough cells to produce the aggregated struc-
tures and no yield stresses will be found.
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Figure 3.8: The relationship between the apparent viscosity of blood relative to the
plasma viscosity and the diameter of the tube in which the blood is flowing. The tube
is assumed to be cylindrical. From Caro et al. (1978).

o At high shear rates, the apparent viscosity in small vessels is lower than it is
in the larger vessels. The progressive diminution with the size of the vessels
becomes detectable when the internal diameter of the vessels becomes less than
one mm and becomes marked in tubes with a diameter of 100-200 ym. This
is known as the Fihraeus and Lindqvist effect (Caro et al., 1978). Experiments
were performed at high enough shear rates for the erythrocytes not to aggregate.
It was found that the viscosity was approximately constant in vessels larger than
0.1 cm, but when the radius dropped below that, there was a substantial decrease
in viscosity. This is shown in Figure 3.8

In the large vessels it is a reasonable assumption to regard the blood viscosity as con-
stant, both because the vessel diameters are large compared with the individual cell
diameters, and because shear rates are high enough for viscosity to be independent
of them (Caro et al., 1978). Hence, the non-Newtonian behavior becomes insignifi-
cant and blood can be considered as a Newtonian fluid. Measurements of the apparent
viscosity show that it ranges from 0.03-0.04 g/(cm s).

In the micro-circulation, it is no longer possible to think of the blood as a homoge-
neous fluid; it is essential to treat it as a suspension of red cells in plasma. The reason
being that even the largest vessels of the micro-circulation are only approximately 15
cells in diameters. Also, as discussed earlier in this chapter, viscosity starts dominating
leading to very low Reynolds numbers; typical Reynolds numbers in 100 um arteries
are about 0.5. ’

Summing up we can conclude that blood is generally a non-Newtonian fiuid, but it
is reasonable to regard it as a Newtonian fluid when modeling arteries with a diameter
larger than 100 pm. For the very small vessels it is not easy to make any conclusions
because some of the effects here tend to decrease the viscosity the Farhaeus-Lindqvist
effect, and others tend to increase the viscosity. The latter is due to a small flow which
increase the viscosity significantly as well as the fact that cells often become stuck
at constrictions in small vessels, this happens, however, most often in the capillaries.
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However, the result is that it is reasonable to assume that the overall viscous effects in
the small vessels are approximately equivalent to those that occur in the larger vessels
(Guyton, 1991).




Chapter 4

Model of flow and pressure in the
systemic arteries

Modeling of blood flow and pressure has been studied intensively over the years, and
as discussed in the previous chapters the shape of pressure and flow profiles can have
diagnostic significance.

Good examples are the old studies by Lax, Feinberg and Cohen (1956), Lax and
Feinberg (1959), and Dawber, Thomas and McNamara (1973). They suggest that
changes of shape of the dicrotic wave are results of changes in the elasticity of the
vascular walls and the peripheral resistance. This conclusion stems from observations
showing that the dicrotic wave is either diminished or totally absent in patients with
diabetes, hypertension, atherosclerosis, or in elderly people. Furthermore, observa-
tions by Jensen (1994-1998) have shown that a proximal stenosis, e.g. at the iliac
bifurcation, can lead to amplification of the dicrotic wave simply because the partly or
fully occluded artery behaves as a high peripheral resistance giving an early and more
prominent reflection of the pulse wave. Hence, these studies suggest that regular ob-
servations of the changes in the shape of the pulse wave can be used for early detection
of some vascular diseases.

Consequently, the purpose of this study is to investigate the shape of the arterial
pulse from mathematical models based on physiological principles such that it be-
comes possible to reproduce the true physiological behavior of the arteries. If one
wants a precise model it is necessary to set up a three dimensional model including:
the exact geometrical structure of all vessels, the compliance of the walls, and the non-
Newtonian fluid equations. This is not computationally feasible. The other extreme
would be to derive a model of the entire circulation based on a lumped element model.
While such a model is adequate when studying relations between cardiac output and
the peripheral load it can not imitate the wave propagation effects unless a large num-
ber of elements are used. Finally, the relatively small number of elements also have the
disadvantage that the high frequency behavior of the system can not be captured well
(Raines, Jaffrin and Shapiro, 1974). The lumped models can, however, be expanded
by including a large number of elements, see e.g. Karlson (1995), but they approxi-
mate a true one-dimensional model, and then it would be better to develop an explicit
one-dimensional model. The advantage of the one-dimensional model is the ability to
capture the wave propagation effects, see e.g. Anliker, Rockwell and Ogden (1971),
Raines et al. (1974), Stettler, Niederer and Anliker (1981), Stergiopulos, Young and
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Rogge (1992), or Olufsen and Ottesen (1995a). However, a one-dimensional model of
the entire systemic arterial tree, as shown in Figure 3.3, is too large for computational
purposes. It is not feasible to construct a model that comprises everything ranging
from the aorta to the capillaries. Therefore, the tree has to be truncated in some way
and this truncation is the main topic for the dissertation. Besides the computational
difficulties in making such a large model there is also another problem: Not enough
detailed data are available for the smaller arteries (Raines et al., 1974). It is possi-
ble to measure the dimensions of the smaller arteries from casts, but because of their
large number it would be practically impossible to measure all of them. Based on the
‘material presented in this chapter we state the following hypothesis:

Hypotbhesis:

We put forward a mathematical model based entirely on fundamental
physiological principles, which predicts blood flow and pressure at any
site along the systemic arteries. It is suggested that the model can be
divided into two parts: one comprising the larger arteries and one com-
prising the smaller arteries, linked together through an outflow boundary
condition at the terminals of the larger arteries.

o Blood flow and pressure in the larger arteries are predicted from
a non-linear one-dimensional model, based on the incompressible
Navier-Stokes equations for a Newtonian fluid in an elastic tube.

o The inflow boundary condition is modeled using a function matching
the outflow from the left ventricle into the aorta, while the outflow
boundary condition is predicted from a dynamic impedance applied
at all terminals of the larger arteries. This impedance will be found
Jrom a separate model of the smaller arteries.

o Blood flow and pressure in the smaller arteries are predicted from
a linear one-dimensional viscous model (a wave-equation) which is
derived from linearization of the incompressible axisymmetric Navier-
Stokes equations for Newtonian fluid in a tube.

We claim that such a model is adequate for prediction of blood flow and
pressure in human systemic arteries.

The model will be validated by comparison with both human data and other ex-
isting models using other (and simpler) boundary conditions, a pure resistor boundary
condition (Anliker et al., 1971) or a three-element Windkessel boundary condition
(Raines et al., 1974; Stergiopulos et al., 1992). Furthermore, we will investigate the
feasibility of this model as a reference model for the lumped cardiovascular model
which is part of the SIMA anesthesia simulator and described in Olufsen et al. (1994).
We will investigate this problem by:

e Setting up geometrical models of the larger and the smaller arteries, respectively.

¢ Deriving and solving numerically the fluid dynamic equations for the larger and
the smaller arteries, coupled together.
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e Comparing the results with other models and measured data, and analyzing the
model response to changes, within physiological range of the involved parame-
ters.







Chapter 5

Structure of the larger arteries

The purpose of the systemic arteries is to supply all organs, tissues, and muscles of
the body with with oxygenated blood and nutrients. The arteries are organized in a
sophisticated network that covers the entire organism. This is denoted the arterial tree
and it is characterized by:

¢ Geometrical properties 'of the individual vessels; their diameter and lengths.

e Structural properties of the vessels; the wall thickness and Young’s modulus.

5.1 Geometrical properties of the larger arteries

The larger systemic arteries are organized in a bifurcating tree in which the individual
vessels are tapering along their length. At each bifurcation, the cross-sectional area at
the top of each of the daughter vessel is smaller than that of the bottom of the parent
vessel. However, the combined cross-sectional area of the daughter arteries is larger
than that of the parent artery.

Several papers describe the geometry of the la:ger arteries, many of them date back
to the study by Westerhof, Bosman, DeVries and Noordergraaf (1969) which presents
data for a standard man. Examples are the studies by Stergiopulos et al. (1992) and
Segers, Dubois, DeWachter and Verdonck (1997). The first presents data to be used in
a mathematical model while the second presents data to be used in a physical latex tube
model. In addition to these, data are also presented in Anliker, Stettler, Niederer and
Holenstein (1978), Stettler et al. (1981), McDonald (1974), Li (1987), and Schaaf and
Abbrecht (1972). Most of these data are estimated for use in mathematical models of
the human systemic arteries, but the data in McDonald (1974) and Li (1987) are from
dogs. Generally, the dimensions presented in the papers above vary significantly across
individuals. This reflects the large variations found in humans where it is not unusual
to see deviations of more than 50 percent from the mean values (Jensen, 1994-1998).
The radius, r, of the tapering arteries follow an exponential curve of the form

7(2) = riop exp(—kz) (5.1)

where 744y is the mean proximal radius, k is the tapering factor, and z is the location
along the artery, see e.g. Anliker et al. (1971), Caflisch, Majda, Peskin and Strumolo
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[ Artery k (cm™)
Abdominal aorta | 0.027 £ 0.007
Iliac artery 0.021 £ 0.005
Femoral artery | 0.018 & 0.007
Carotid artery | 0.008 & 0.004

Table 5.1: The exponential tapering factors for a number of arteries. From Li (1987).

© (1980), Werff (1974), or Li (1987). In Li (1987) tapering factors for a number of
arteries are listed, see Table 5.1. These data are from dogs so we cannot assume that
the tapering factors for humans are the same. Therefore, we have chosen to model the
tapering according to (5.1) and with the tapering factor k = log(ryot/Tt0p)/L found
from measured geometrical values for each vessel. Hence, the radius is given by

z/L
T T T
() = riopexp (log (T:ot> Z) = Tiop (f) (5.2)
op op

where 7zop, Tbot are the top and bottom radii, and L is the length of the vessel. For
the aorta L = 55.75 cm, 740p = 1.530 cm, 7p; = 0.540 cm, giving a tapering factor
k = 0.019 cm~!. This corresponds well to the data in Table 5.1. Thus, in order to
describe the full geometry for the tree of larger arteries, we need data for the proximal
and distal radius for each vessel as well as the length of each vessel segment.

The physical latex tube model in Segers et al. (1997) is based on data by Stergiop-
ulos et al. (1992) but with some modifications. We have chosen to base our simulations
on these data because they are new and similar to numerous older studies. Hence, we
define the larger arteries as those shown in Figure 5.1 with the dimensions presented
in Table 5.2. We have rounded all segment lengths to units of 0.25 cm and assumed
that:

e The aorta, iliac and femoral, subclavian and brachial arteries taper continuously
with a constant exponential rate. This is a contradiction to the data presented in
Segers et al. (1997), but we find it more physiological to have these vessels taper
gradually.

e The body is symmetric, in the sense that those vessels existing in both the left
and the right side of the body have the same dimensions. Some examples are the
arm, from the subclavian artery and down, the renal arteries, and the iliac and
femoral arteries. The latter example has a computational advantage because the
bifurcation is symmetric, i.e. the inflow into the daughter arteries is identical,
gp = 244, where g is the flow in the parent vessel and gy is the flow in the
daughter vessels. Hence, we only need to calculate flow and pressure for one
leg. A similar approach can not be used for the subclavian and renal arteries
because, even though their dimensions are the same, they do not have the same
inflow. Hence, both the right and left parts must be computed separately.

e The coronary arteries each with cross-sectional area A; and length L can be
lumped into one branch with length L and cross-sectional area Ay = v/2A4;.
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B BB B
41 41/ 42 |42

Figure 5.1: The larger systemic arteries. The numbers on the figure refer to Table 5.2.
Branches marked by the same numbers are identical and thus only modeled once. The
letters mark the terminals of the arteries, i.e. the blood flows into the arteries at the
vessel marked with an A, and it flows out at the vessels marked with B.
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Structure of the larger arteries

[ # | Artery | L(cm) | ryop (cm) | 7poe (cm) |
1 | Ascending aorta 1.00 1.525 1.502
3 | Ascending aorta 3.00 1.502 1.420
4 | Aortic arch 3.00 1.420 1.342
12 | Aortic arch 4.00 1.342 1.246
- 14 | Thoracic aorta 5.50 1.246 1.124
15 | Thoracic aorta 10.50 1.124 0.924
27 | Abdominal aorta 5.25 0.924 0.838
29 | Abdominal aorta 1.50 0.838 0.814
31 | Abdominal aorta 1.50 0.814 0.792
33 | Abdominal aorta 12.50 0.792 0.627
35 | Abdominal aorta 8.00 0.627 0.550
36 | External iliac 5.75 0.400 0.370
37 | Femoral 14.50 0.370 0.314
40 | Femoral 44.25 0.314 0.200
38 | Internal iliac 4.50 0.200 0.200
39 | Deep femoral 11.25 0.200 0.200
43, 44 | Post. + ant. tibal 32.00 0.125 0.125
2 | Coronaries 10.00 0.350 0.300
5 | Brachiocephalic 3.50 0.950 0.700
6,17 | R. + L. Subclavian 3.50 0.425 0.407
9, 19 | R. + L. Brachial 39.75 0.407 0.250
10, 21 | R. + L. Radial 22.00 0.175 0.175
11,20 | R. + L. Ulner 22.25 0.175 0.175
46, 47 | R. + L. Ulner 17.00 0.200 0.200
45, 48 | R. + L. Interosseus 7.00 0.100 0.100
8,18 | R. + L. Vertebral 13.50 0.200 0.200
7 | R. com. carotid 16.75 0.525 0.400
13 | L. com. carotid 19.25 0.525 0.400
41, 42 | Ext. + int. carotid 15.75 0.275 0.200
16 | Intercostals 7.25 0.630 0.500
28 | Superior mesenteric 5.00 0.400 0.350
22 | Celiac axis 2.00 0.350 0.300
23 | Hepatic 2.00 0.300 0.250
24 | Hepatic 6.50 0.275 0.250
25 | Gastric 5.75 0.175 0.150
26 | Splenic 5.50 0.200 0.200
30,32 | R. + L. Renal 3.00 0.275 0.275
34 | Inferior mesenteric 3.75 0.200 0.175

Table 5.2: Data for the length, top and bottom radii for the larger arteries
bering in the left column refer to the numbers shown in Figure 5.1.

. The num-
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This relation is found by letting the flow in the lumped branch be twice the
flow in each of the coronary arteries, i.e. by letting g = 2¢;, and assuming
Poisseuille flow. The reason for this is that the coronary arteries branch off the
ascending aorta very close to each other, and hence it is inconvenient to insert a
separate piece of artery between the two branches. The same approach is applied
to the intercostal arteries. However, in this case it is not because they are close
to each other but because it reduces the number of arterial segments. There are
approximately 10-15 intercostal arteries which are all very small, and modeling
each of them separately would increase the computational time considerably.
However, it could easily be done if necessary. An alternative approach for mod-
eling the intercostal arteries could be to include a continuous outflow function
along the thoracic aorta, see e.g. Anliker et al. (1971) or Stettler et al. (1981). In
fact our derivation in Chapter 7 of the fluid dynamical equations allows for this
possibility. '

e The renal arteries are modeled as two separate branches. They could be lumped
together using the same approach as for the coronary arteries because they are
also situated very close to each other. However, we have modeled them sep-
arately because of the magnitude of their outflow. In order for the numerical
computations to converge and for the flow to be fully developed, we have in-
creased the distance between these arteries, even though it is somewhat larger
than in the natural life.

o The tibal and interosseous arteries have been neglected in most of our computa-
tions. We did this for computational reasons, but it can be justified because the
order of magnitude of the flow in these vessels are smaller than that of the other
arteries.

5.2 Structural properties of the vessel walls

The arterial wall is composed of several layers consisting of different materials as de-
scribed in Chapter 3. Mathematically the arterial wall can be described by the volume
compliance or the elasticity of the vessels. The volume compliance C can be approxi-
mated by

W 3l

¢ dP~ 2 Eh

(5.3)

where V is the volume of the given segment, P is the pressure, 7 is the radius, 4¢ =
7rr§ is the cross-sectional area, L is the length of the artery, E is Young’s modulus,
and h is the wall thickness. Thus, the elastic properties of the vessels can either be
found from the compliance or from Young’s modulus. This relation is estimated from
7.17). .

In this study we have chosen to describe the elasticity from estimates of Young’s
modulus, the radius, and the wall thickness. In fact, it is possible to show that there
is a connection between Young’s modulus, the wall thickness and the vessel radius.
This is seen in Figure 5.2 where Eh/rq is plotted as a function of ry. The data for the
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Figure 5.2: Fit to data for Eh/rg, where E is Young’s modulus, A is the wall thickness
and r¢ is the radius. The fitted function has the form k; exp(kor) + k3, where k; =
2.00 x 107 g/(s?cm), kp = —22.53 cm™!, and k3 = 8.65 x 10° g/(s*cm). This fit was
made using the “fit” function in gnuplot.

figure are as given in Stergiopulos et al. (1992). However, Stergiopulos’ data gives the
volume compliance and are therefore converted to Young’s modulus using (5.3). The
data for Eh/ry are marked with +. Through these points we have empirically fitted a
curve of the form

Eh
—’I"— = kl exp(kgro) + k3 (54)
0

where k; = 2.00 x 107 g/(s?cm), ko = —22.53 cm™?, and k3 = 8.65 x 10° g/(s%cm).
The discrepancies between the observations and the fitted curve are due to compliance
variations throughout the body. This means that two arteries with the same radius may
have different compliance, and hence different values for Eh/ry, if they belong to
different organs.



Chapter 6

Structure of the smaller arteries

The role of the smaller arteries and arterioles is to provide the capillaries of all organs,
tissue, and muscles with a sufficient blood supply. The total cross-sectional area of

the smaller arterioles in a normal human adult is approximately 400 cm2. This should

be compared with the total cross-sectional area of the larger arteries which is approxi-
mately 20 cm?, or with that of the aorta which is approximately 4.5 cm2, see Table 3.1.
Since the smaller arterioles have a diameter of approximately 0.003 cm the arterial tree,
ranging from the aorta to the arterioles, will have approximately 26 generations if we
assume that it is binary.

The larger arteries can be modeled as the tree shown in Figure 5.1. According to
this, the smaller arteries generally originate 2-3 generations from the aorta, iliac, and
femoral arteries, e.g. at the end of the tibal arteries, the internal or external carotids,
or the radial arteries. Hence, they have approximately 24 generations. Dealing with
such large trees is practically infeasible unless they are structured in some way. How-
ever, there are evidence that the smaller arteries are distributed in a structured and
optimal way, see e.g. Zamir (1978), Bassingthwaighte, Liebovitch and West (1994), or
Schreiner and Buxbaum (1993). ‘

These studies mostly comprise two-dimensional models of local areas such as the
coronary arteries, but Bassingthwaighte et al. (1994) suggest that such models could be
generalized to cover any area of small arteries. We have used some of these results to
construct a one-dimensional asymmetric structured tree model of the smaller arteries
where the radii of the daughter vessels are scaled linearly relative to their parent vessel
by factors o and 3, i.e.

Tdy, = frp

the subscript p refer to the parent vessel and the subscripts d; and d» refer to the two
daughter vessels, respectively. This is seen in Figure 6.1.

The aim is to construct a tree representing the smaller arteries that can be applied at
each of the terminals of the larger arteries, i.e. at the B’s in Figure 5.1. The combined
model including both larger and smaller arteries looks as shown in Figure 6.2. We
have assumed that the arterial tree is binary. Hence, it is only necessary to consider
one type of junctions, the bifurcations. While this is not true in general, the majority of
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Figure 6.1: A structured tree, at each bifurcation the radii of the daughter vessels are
scaled by a factor « and 3, respectively. Because each branch is terminated when the
radius is less than some given minimum radius the tree does not have a fixed number
of generations.

the junctions in the systemic arteries are bifurcations (Caro et al., 1978). Furthermore,
we assume that the tree is asymmetric and structured in such a way that the radii of
the daughter vessels are scaled with factors @ < 1 and 8 < 1, respectively. In order
to determine « and B we need a relation determining how the geometry (radius or
cross-sectional area) changes over a bifurcation, as well as an area and asymmetry
ratio between the cross-sectional area of the parent and its two daughter vessels. As
for the larger arteries we also need to describe the length L and the compliance

C = dA/dp ~ 3Aer0/(2ER)

for each vessel. The compliance here differs from the one defined for the larger arter-
ies, in (5.3), since it is not the volume compliance but the area compliance, i.e. it is
defined per unit length of the vessels. However, this is the definition we will use in the
remainder of this chapter.

It is not practically possible to determine these parameters individually for all the
vessels in the structured tree. So we will investigate the possibilities of determining
these parameters as functions of the vessel radius. Thus, to construct an asymmetric
structured binary tree we need the following relations:

e A radius relation over the bifurcations.

e Area and asymmetry ratios.
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Figure 6.2: The systemic arterial tree. The tree consisting of the larger arteries, in
which the non-linear equations are solved, originates at the heart (marked with an A)
and terminates at the points marked with B. The structured trees representing the
smaller arteries originate at these terminals and provide the main tree with outflow
boundary conditions.
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e Estimates of the order of each sub-trees.
e The length of the arteries, preferably as a function of the vessel radius.

e Wall thickness and Young’s modulus, preferably as functions of the vessel ra-
dius.

Because of the repetitive scaling of the daughter arteries with factors « and 3 together
with the definitions of the other geometrical parameters as functions of the vessel ra-
" dius, the tree is geometrically self-similar.

6.1 Radius and asymmetry relations

The first relation determining how the radius changes over an arterial bifurcation was
suggested by Murray in (1926a; 1926b). It is derived from the principle of minimum
work and is given by

3 _ .3 3
Tp = T4, +rd2

This relation is based on the assumption of laminar flow in a cylindrical vessel. Uylings
(1977) derived a more general power law (still based on the principle of minimum
work) which is valid for a range of flows; from turbulent to laminar.

rg = rfil + rgz 6.1)
& = 3.0 corresponds to laminar flow (this corresponds to the relation suggested by
Murray) and £ = 2.33 corresponds to turbulent flow.

Constructing an asymmetric tree requires some information about the area and
asymmetry-ratio, i.e. an area ratio relating the cross-sectional areas of the two daughter
vessels to their parent vessel and a ratio relating the areas of the two daughter vessels.
In Zamir (1978) the following definitions are made, the area-ratio is given by
it

n= (6.2)

2
™p

and the asymmetry-ratio is given by
Y= (ra/ra,)’ 6.3)

Now we have three conditions, (6.1), (6.2), and (6.3), that characterizes the struc-
ture of the tree. However, the parameters £, 7, and «y can not be determined indepen-
dently of each other. They are related by

S s
=W er2)2e

This means that if we know the asymmetry-ratio -y and the exponent £ we can calculate
the area-ratio 7, but it is not trivial to invert the relation. This is necessary since we
have data for the area-ratio and not the asymmetry-ratio.
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[ Reference | Value Comment ]
Uylings (1977) Measurements by Thoma (1922):
[ n=1.04 Abdominal aorta — comm. iliac art.
Measurements by Newman et al. (1971):
] 7=1.11 Across symm. aortic — iliac bifurcation.
Calc. from zero reflection Karreman (1952):
. n=1.15 Symm. bifurcation (arbitrary).
Womersley (1958): Ext. of above + viscous eff.
. 7 =1.15 ~ 1.20 | Min. refl. abdominal aorta of dog or man.
McDonald (1960):
] =135 Min. reflection in symm. art. bifurcation.
Hunt (1969): Study of opt. energy transfer:
) n=10-1.25 Symm. aortic bif. in man, ’
Horsfield et al. (1981) £§=126-3.00 Bronchial tree (method 1), *
£ =12.885 Mean value.
£=21-28 Bronchial tree (method 2). 2
Roy et al. (1982) £=0.8-10.0 Exp. in arteries suff. var. deg. of atherosclerosis:
A ' §=3.0 Average value by Hutchins et al. (1976).
£€=22-31 13 regions from pulm. arteries:
A £ =2.885 Mean value.
Kamiya et al. (1988) A £=26 Average for systemic art. tree Groat (1948).
A =127 Av. renal, mesen. and other art. Suwa et al. (1971).
£=32 Left main coronary art. Hutchins et al. (1976).
Griffith et al. (1990) A £€=3.0 Exp. rabbit ear art.’
Pollanen (1992) A £E=2.5 Av. aorta + main branches, Altman et al. (1972).
A £ =2.58 Av. aorta + main branches, Griffith (1989).
A £=2320 Av. art. generations 2 and 3, Griffith (1989).
Schreiner et al. (1995) Simulation of coronary arteries:
£ =255 Min. wave reflection, Arts et al. (1979).
£=23.0 Min. shear stress + exp., Zamir et al. (1987,1988).
Schreiner et al. (1994) £§=30 Exp. coronary art., Smaje et al. (1980).
Min. shear stress, Robard (1975).
Rossitti et al. (1993) Exp. carotid, anterior and mid. cerebral art.:
. 1=12+04 Mean value and std. deviation.
A £§=29=x07 Mean value and std. deviation.
Kassab et al. (1995) Coronary arteriolar bifurcations:
£§=273 Min. work fct. and close to exp. val.
A §=27 Exp. casts var. human org., Suwa et al. (1973).
Horsfield et al. (1989) A £§=23+01 Arithmetic mean exp. data pulm. arteries:
° n = 1.09 Regression from exp. data.
Papageorgiou et al. (1990) | # = 1.179 Mean val. exp. for coronary bif.
7 = 0.848 Mean val. exp. for aortoiliac bif.
n=114 Overall mean area-ratio.*
71 =1.259 Min. work in small art., Murray (1926).

Table 6.1: Area-ratios and exponents for the radii relation. Rough approximations
show an average for the area-ratio (those marked by e) of 1.16 and for the exponent
(those marked by A) of 2.76.
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However, there is a one-to-one relationship between 7 and - for any given £. Hence, it
is possible to determine the inverse function numerically using binary search. Several
suggestions for the exponent ¢ and the area-ratio has been analyzed over the years.
These results are shown in Table 6.1.

From the relations discussed above it is then possible to determine the scaling
parameters « and 3. According to the radius relation (6.1) and the asymmetry ratio
(6.3) one finds that

a= (1 + ;}5/2) “ie Ié) = ay 6.4)

6.2 Order of the structured tree

As mentioned earlier the smaller arteries and arterioles comprise a tree with approx-
imately 24 generations. However, because the structured tree is asymmetric a fixed
number of generations will yield significant variations in the diameter of the terminal
branches. This is not physiologically correct, because for a given organ or tissue the
arterioles will have have approximately the same diameter in order to ensure a even
blood supply. Therefore, we have chosen to terminate the structured tree when the ra-
dius of the terminal vessels becomes less than some given minimum radius. However,
the peripheral resistance, which is regulated by the smaller arterioles varies among the
organs. For example, the peripheral resistance of the renal arteries is very low while the
resistance of the femoral arteries is high. This can be modeled by allowing a variable
minimal radius determined to match the peripheral resistance of the organ in question.

6.3 Length of the segments

A number of the papers offer suggestions to estimate the physical lengths of the various
arterial segments, e.g. Kamiya and Togawa (1972), Zamir (1976), or Schreiner (1993).
In these papers the length of the segments and bifurcation points are found from geo-
metrical principles based on minimization (e.g. of the volume) of a two-dimensional
distribution of the vessels, i.e. the length of the vessels were determined from the lo-
cation of the origin and angles between the vessels.

Alternatively, disregarding small side branches (compared to the main vessel), Ib-
erall (1967) suggests expressing the vessel length as a function of its diameter. The
conclusion is that

L/d=25+5 6.5)

where L is the length and d is the diameter of the vessel. This relation is extrapolated
from measurements by Suwa (1963) who found that L/d tends to be constant for

1Good results are achieved for the pulmonary arteries. Data for other species than humans are also
given but will not be repeated here.

2Best for monopodially branching trees, intervals found from median values instead of mean values
as is the case in method 1.

3The effect of EDRF (endothelium-derived relaxation factor) was studied and except for one case £
were close to 3.

4 A list of various measurements is listed in the paper, a total of 444 measurements were made.
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d € [20;4000] pm and Patel (1963) who, for d € [2;20] mm, suggested a 20 to 1 ratio
of length to the entrance diameter. The constant length to diameter (or similar length
radius) relation is also repeated in West, Bhargava and Goldberger (1986). However,
this study is concerned with the airways in the mammalian bronchial tree. Finally, the
paper by Kassab, Rider, Tang and Fung (1993) finds that the mean vessel length in the
coronary arteries obeys Horton’s law (log;, L, = a + bn), where a, b are constants,
and n is the Strahler order within the tree. The Strahler order is defined such that the
capillaries have order 0 and the smallest arteries have order 1, i.e. when two order 0
capillaries meet. Now if two daughter vessels of order 0 and 1 meet the parent vessel
will be of order 1.

Generally, we have chosen the constant length to radius relation since this seems
most well documented. However, even though the paper by Kassab et al. (1993) only
involves the coronary arteries, it would be interesting to investigate this idea further as
a possible basis for constructing a structured tree model.

6.4 Wall thickness and Young’s modulus

If we can find expressions relating the wall thickness h and Young’s modulus E to the
radius g of the blood vessel we can determine the compliance C' = 3Agr/(2Eh)
solely as a function of the radius rg.

This is exactly what has been done for the larger arteries, see Figure 5.2. How-
ever, the relation found here does not apply to the smaller arteries because we cannot
extrapolate the interpolating function outside its domain. Furthermore, one has to be
careful because the walls of the smaller arteries and arterioles have a different com-
position of layers than the larger arteries, see Figure 3.4. However, when trying to
investigate these parameters we only found a few papers discussing the wall thickness
and Young’s modulus specifically for the smaller arteries. Therefore, we will in the fol-
lowing sections present a more general discussion of the wall thickness and Young’s
modulus, for both large and small arteries.

6.4.1 Wall thickness

Oka and Nakai (1987) propose the relation h = A rég, where A and B are dimension-
less constants, and 7 is the vessel radius (cm). This relation is based on empirical
measurements and they give data for small arteries with a radius less than 0.1 mm.
In Kassab and Fung (1995) they refer to a study by Tomanek et al. (1986) where the
thickness of the wall of various caliber coronary arteries in dogs were measured, They
fitted their data using a least square method and found that A = 1.06 and B = 0.457.

McDonald (1974) refers to experiments for measuring the wall thickness in the
larger arteries in a series of 8 dogs. He found that k/(2rg), where 7 is the mean radius,
remained remarkably constant in all larger arteries (ranging from the ascending aorta to
the saphenous artery). He notes, however, that the ratio varies with the arterial pressure
and that it is technically difficult to measure. For the same animal one must measure
the dimensions of a large number of arteries at identical mean pressure and this requires
extensive surgical dissection. On the other hand the stipulation of a constant ratio
applies well to the physical properties: The mean pressure is approximately the same
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| Relation i Reference ]
h= Ar§,ro < 0.05 mm. A B
Renal arteries 0.032 0.25 Oka et al. (1987).
Mesenteric arteries 0.055 0.46 do
Var. cal. coronary art. 1.06 0.457 Kassab et al. (1995).

NB: £ = 2.73.

h/(2ro) = ¢,ro > 0.05 mm. | h (cm) h/(2ro0)
Asc. aorta — saphenous art. 0.08 e | McDonald (1974).
Larger arteries 0.1 e | Rodkiewicz (1983).
Arterioles 7o < 0.05 mm. - 0.04 : “ I do . -
As—, descending aorta’ 0.065 0.07 . e | Caroetal. (1978).

| do® . 0.05 —0.08 | 0.055—0.084 | do
Abdominal aorta® 0.05 0.06 e | do
do® 0.04 — 0.06 | 0.04 —0.09 do
Femoral artery’ 0.04 0.07 e | do
do® 0.02 — 0.06 | 0.055 —0.11 do
Carotid artery’ 0.03 0.08 e [ do
do® 0.02 — 0.04 | 0.53 —0.095 do
Arteriole’ro < 0.05 mm. 0.002 0.4 do
Capillary’ry < 0.05 mm. 0.0001 0.17 do

Table 6.2: Wall thickness and wall thickness to diameter ratios. A rough average of
the values for vy > 0.05 mm (marked with a ) is 0.077 mm.

throughout the larger arteries, and the wall tension, which in a cylinder is proportional
to the pressure, decreases linearly with the radius. Furthermore, if we assume that the
elastic properties of the wall are similar throughout the arterial tree it is to be expected
that the arteries will only require a wall thickness that decreases linearly with the radius
in order to maintain the wall tension. This was pointed out in Thompson (1988). This
also indicates that the constant ratio only applies as long as the composite of the wall
remains the same, such as the smooth muscle coats of the arterioles.

Rodkiewicz (1983) shows, for animals weighing more than 60 kg, that the vessel
diameter changes proportionally to the wall thickness with a ratio of approximately
0.1. In the smaller peripheral arteries the wall becomes thinner, but the thickness to
diameter ratio increases. Finally, he states that in the arterioles the ratio may be as
big as 0.4. The same relation is presented in Caro et al. (1978). Furthermore, they
add that in the smallest vessels of the micro-circulation, particularly for capillaries, the
relation with body size disappears and the diameter to wall thickness ratio is similar in
all species.

Another important point is that both wall thickness and diameter of the vessel
changes with age in general, but again it seems that the wall thickness to diameter
ratio is approximately constant for all ages. The values for the wall thickness h and
the wall thickness diameter ratio h/(2rg) are shown in Table 6.2.

SMean value.
SRange.
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6.4.2 Young’s modulus

Generally, an analysis of elastic behavior of the arterial wall should include viscoelas-
tic, anisotropic, and inhomogeneous properties. The composition of blood vessel walls
is not homogeneous and since the material is arranged in such a way that it is most un-
likely to be isotropic, classical elasticity theory cannot be applied directly and a single
Young’s modulus cannot be defined. However, it is still possible to describe the defor-
mation of the wall as a whole in response to known applied stresses, and to infer from
these measurements the value which Young’s modulus would have had if the material
had been elastic, homogeneous, and isotropic. In this model all the different con-
stituent parts of the wall are lumped together to obtain an effective Young’s modulus,
defined as a function of the vessel radius, see Figures 5.2 and 6.3.

[ Tissue | E, 10° g/(s’cm) | Reference ]

Thoracic aorta,

— static, 100 mmHg 44 McDonald (1974).
—dyn. 2.0 Hz, 100 mmHg | 4.7 do

—dyn. 18.0 Hz, 100 mmHg | 5.3 do

Abdominal aorta,

— static, 100 mmHg 9.2 do

—dyn. 2.0 Hz, 100 mmHg | 10.9 do

—dyn. 18.0 Hz, 100 mmHg | 12.2 do

Femoral artery,

— static, 40-200 mmHg 1.2-16.1 do

— static, 100 mmHg 9.0 do

—dyn. 2.0 Hz, 100 mmHg | 12.0 do

—dyn, 18.0 Hz, 100 mmHg | 10.6 do

Carotid,

— static, 40-200 mmHg 1.0-12.8 do

— static, 100 mmHg 6.9 do

—dyn. 2.0 Hz, 100 mmHg 11.0 do

—dyn. 18.0 Hz, 100 mmHg | 12.8 do :

As-, descending aorta’ 48 Caro et al. (1978).
do® 3-6 do
" Abdominal aorta’ 10 do

do® 9-11 do

Femoral artery’ 10 .| do

do® 9-12 do

Carotid artery’ 9 do

do® 7-11 | do

Thoracic aorta” 0.36-4.09 Langewouters et al. (1984).
Abdominal aorta 0.39-2.52 | do

Thor. and Abd. aorta” 1 do

Table 6.3: Young’s modulus.

McDonald (1974) presents a comprehensive discussion of the elasticity of the ar-
teries, but we will only mention the essentials here.

"Mean value.

SRange. '

Only one value goes up to 4.09 g/(s?cm). However, in general they stay below 2.85 g/(s*cm).
1A typical value.
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In vivo the arteries are tethered in all directions. However, because of the structure
of the tissue they are able to dilate in the radial direction, but are fixed in the longitudi-
nal direction. Therefore, the stresses in the longitudinal direction can be neglected and
Young’s modulus can be described from the tangential stresses only. Even with this
simplification it is difficult to estimate Young’s modulus. For example in the thoracic
aorta, which according to McDonald (1974) has the most linear behavior, the results
vary with a factor of 10 over the physiological range of blood-pressures. In Table 6.3
some of these results are shown. The advantage of these measurements is that the
vessels are kept in their in vivo length, tethered at both ends. In all these studies the
wall is considered isotropic and incompressible, even though this is not entirely phys-
iologically correct. McDonald presents extensive data from in vivo measurements of
blood vessels in dogs, but we have only quoted those for pressures of approximately
100 mmHg, since they compare well with the mean blood-pressure in the human ar-
teries. However, we have included values for a range of frequencies. The frequency
dependent modulus shows a significant rise between 0-2 Hz. Thereafter the modulus
is no longer frequency dependent (up to 18 Hz). Generally, all of these measurements
(both the static and dynamic modulus) show that the arteries become stiffer, i.e. that
Young’s modulus increases, towards the periphery.

Also Caro et al. (1978) gives a range of Young’s modulus for different sizes of
arteries, see Table 6.3. In these all of the elastic properties are lumped into one coeffi-
cient. As for the data in McDonald (1974) only the tangential stress component of the
modulus is measured. The data are measured in vivo for a variety of blood vessels in
dogs. These data also show that E increases peripherally.

Finally, Langewouters, Wesseling and Goedhard (1984) gives measurements of the
static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro. The
results are significantly scattered but show a strong dependency on pressure and age of
the person examined. In the thoracic aorta the values vary from 0.36 x 108 g/(s>cm)
to 4.09 x 108 g/(s’cm). However, only one value is as high as this. In general they
stay below 2.85 x 10® g/(s?cm). The lowest value is obtained for the youngest person
examined (30 years). In the abdominal aorta the values vary from 0.39 x 10° g/(s?>cm)
t0 2.52 x 10° g/(s?cm).

In Figure 6.3 we have plotted Young’s modulus as it appears in Stergiopulos et al.
(1992), which are the same data presented in Figure 5.2and measured values presented
in Table 6.3. However, only the static modulus from McDonald (1974) and the data
from Caro et al. (1978) are included. Thus, we have left out both the dynamic moduli
from McDonald and the data from Langewouters et al. (1984). From the figure it
becomes clear that the relation between Young’s modulus and the vessel radius is not
nearly as obvious as when the wall thickness is also taken into account which was the
case in Figure 5.2. Moreover, the comparison with measured data shows that they are
generally higher than the converted compliance data. This is especially pronounced for
the abdominal and carotid arteries whereas data for the ascending and thoracic aorta as
well as the femoral arteries are fairly close to the estimates by Stergiopulos. Keeping
in mind that McDonald mentions that measurements easily vary with a factor of ten
we find the converted data by Stergiopulos et al. (1992) acceptable.
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Figure 6.3: Fit to data for Young’s modulus. The points marked with circles corre-
sponds to measured values, see Table 6.3, the points marked with a + corresponds
are converted from measured compliance data, see Stergiopulos et al. (1992), and
the line is fitted through all points marked with a +. The the fitted function has the
form k; exp(kor) + k3, where k; = 1.89 x 107 g/(s’cm), k; = —18.34 cm™!, and
ks = 3.53 x 10° g/(s2cm). This fit is made using the “fit” function in gnuplot.

6.5 Conclusion — Parameter choices

In the previous sections we have discussed some of the problems and suggestions made
in the literature regarding the parameter choices for characterizing some of the physi-
ological features. In general, many of the parameters vary significantly and since the
measurements reviewed are not taken from the same environments, it is quite compli-
cated to extract anything general using simple statistical methods. We are interested
in modeling a structured tree based on a representative physiological behavior, so we
have tried to estimate these parameters, regardless. In the following we have listed our
parameter choices.

o Radius relation: The exponent £ discussed in Section 6.1 varies from 2.33 to
3, at least if the aorta and its side-branches are excluded. We have chosen a
value of 2.76, but it is not quite clear if this is the correct choice. In fact, from
Table 6.1 we see that the exponent increases slightly as we descend down the
tree.

e Area- and asymmetry-ratios: Again there are large variations and it is not at
all clear whether this parameter can be kept constant for all sub-trees and even
throughout each of these. But from the mean values it seems appropriate to
choose an area ratio of n = 1.16 giving an asymmetry ratio of v = 0.41.

o Scaling ratios: The relations in (6.4) and the estimates above give the scaling
ratios & = 0.9 and 8 = 0.6.
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e Number of generations: We have chosen to terminate the structured trees when

the radius becomes smaller than some given minimum radius. The minimum
radius determines the overall resistance of the structured tree, so it should be
chosen to simulate the resistance of the tissue or organ in question.

Length of the segments: According to Iberall (1967) the ratio between the
vessel lenth and diameter (L /d) is constant. For the smaller arteries we have
choosen L/d = 25.

Young’s Modulus and wall thickness to radius ratio: None of our investiga-
tions have indicated that the functional dependence in Figure 5.2 cannot be con-
tinued for smaller radii. Hence, we have chosen to use the extrapolated function
for the smaller arteries. It should be noted that we do not need Young’s Modulus
and the wall thickness seperately, only the combination Eh/rq is significant.




Chapter 7

'Fluid dynamical model of a large
artery

In this and the following chapters we derive and solve the model of blood flow and
pressure in the larger systemic arteries. As discussed earlier the aim is to derive a
one-dimensional model based on Navier-Stokes equations for fluid flow in a network
of vessels. The larger arteries can be thought of as a binary tree of compliant and
tapering vessels containing an inviscid, incompressible, and Newtonian fluid.

There exist numerous one-dimensional models predicting blood flow and pressure
in the larger arteries. While all of these models are based on Navier-Stokes equations
they differ in the way they treat the shear stresses of the fluid, the relation between
pressure and cross-sectional area, and the boundary conditions. The derivation pre-
sented here will primarily be based on Barnard, Hunt, Timlake and Varley (1966) and
Peskin (1976) but we will discuss some of the other approaches where the models
differ. '

In this chapter the model is derived for one compliant vessel with a continuous
outflow along it and in Chapter 8 this derivation is extended to include more vessels -
organized in a binary tree structure. In Chapter 9 we discuss two numerical methods for
solving the equations. Finally, in Appendix B an analogy to gas-dynamics is presented:
We show that the blood flow in arteries either can be modeled using compliant vessels
containing and incompressible fluid, as we are doing, or as rigid vessels containing a
compressible gas. Most of these chapters were used as lecture notes for a graduate
course in fluid mechanics taught by the author at Roskilde University.

7.1 Momentum and continuity equations

A blood vessel can be regarded as a rotation symmetric tubular surface S, with end-
surfaces in the planes z = 0 and z = L see Figure 7.1. Assume that:

e S moves with velocity v = (vz,vr,vg) Where z is the longitudinal coordinate
and the polar coordinates are r and 6.

e S encloses a volume V' which is filled with an incompressible fluid moving
with velocity u = (ug,ur,ug). Both u; and v; are functions of (z,r,0,t).
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Surface = S

r R(z,t) 8" =8\ (A(0,t) U A(L, 1))

A(L,t)

CA0,1)

A(z,t)

Figure 7.1: A typical vessel.

Furthermore, note that the surface S does not in general move with the same
velocity as the fluid, i.e. u and v are generally different.

The density p of the fluid is constant.
The pressure in the fluid is denoted p(z, , 6, £).

ro(z) is the vessel radius at zero transmural pressure, i.e. when p = pg. As
discussed in Section 5.1 we assume that the arteries taper exponentially, hence

z/L
ro(2) = Ttop (:”"t) 7.1)

top

where z is the position along a given artery with length L, and 744y, 730, are the
radii at the proximal and distal ends of the artery, respectively.

R(z,1t) is the radius of the vessel.

A(z,t) = nR(z,t)? is the cross-sectional area, i.e. the end-surfaces of S are
A(0,t) and A(L,t), respectively.

A(z,t) = {(r,0) : 0 <r < R(z,t),0 < 8 < 27} is the collection of points in
the plane z at time t. The area of A(z,t) is A(z,t).

S =S\ (A(0,8) U A(L,1)).
v = 0on A(0,t) and A(L, t).
n is the outward unit normal to the surface S.

ey, €r, ey are the unit vectors in the z, r, 8-directions.

Using conservation laws (of volume and z-momentum) it is possible to derive the
one-dimensional equations predicting blood flow and pressure in the larger arteries.
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Conservation of Volume:

gz/‘[/dV+//(u—v)-ndA=0 -
o (//dA)dﬁ J[ wmvnns [fu-vnsizo <

A(0)UA(L)

L
-g—t/ Adx+[//usz:l +/ (u=v)-ndd=0 (7.2)
0 A 0 S’

Conservation of z-Momentum:

%// pude-*-//puz(u—v)-ndA%-

/ (P(n ex)— (dn) -ex)dA=0 <&

(//P“sz) dz + [//pusz} +ll/pUz(u—V)-ndA+
/ (// apdA) dz*/oL (/Ozw(dn)-edee) 1+(ZR) dz=0 (13)

where d is a tensor representing the shear stresses (also called the deviatoric stress
tensor, see Ockendon and Ockendon (1995)). The last integral can be explained from
Figure 7.2. :

Generally, the surface stress tensor for incompressible flow is given by Ockendon
and Ockendon (1995)

gij = —inj + dij

The tensor has two components; —pcS,-j which is the isotropic part, as would exist in an
inviscid fluid, and d;; which is the deviatoric part, which is due to the viscous forces
in the fluid. The isotropic part of the tensor —pd;; is already incorporated in the fourth
term of (7.3). Assuming that uy = 0, i.e. that there is no swirl, then, according to
Batchelor (1992), the deviatoric part of the surface stress tensor is given by

oA 1/(8 o

o 23 +35) 0
d=w| ey o

0 0 w |
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0 - dzr

Figure 7.2: The surface integral in (7.5) can be split into two parts. The first integrates
over the circumference with radius R for § € [0 : 27]. The second integrates over the
length of the tube, z € [0 : L]. Since the vessel is tapering each infinitesimal piece is

given by do’ = /1 + (8R/8z)%dx.

where  is the viscosity. Hence,

(dn) -ex =
B 3(B=+%=) o0 0 !
a3 & o 1) 0 )=
0 o =],
Ou, Oug
["(az+ar>]R 79

If the vessels were not tapering then u, = 0 and hence du,/dz = 0. Assuming that
the tapering is small this term can be neglected. Hence, the last integral in (7.3) can be
written as

/(dn)-ex = /()L(/ozw(dn)-edeG) 1+(Q—§>2dx

s
L Ouy dR\?2
‘/0 2nuR [ r }R 1+ (5{;) dz 7.5

The first equality is explained in Figure 7.2. The assumption of a small tapering factor
also justifies neglection of 9R/dz. Hence, the wall shear stress can be found from

L Buz]
2nuR | —=| dzx 7.6)
/o # [ or |g ¢
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Let ¥(z) be the outflow of volume V" and let ¥ p(z) be the outflow of momentum

(both per unit length), i.e.
L
/ ‘Ildx=//(u—v)-ndA
0
SI

L
/\Ilpdm=/ puz(u—v)-ndA
0
Sl

Note that both ¥ and ¥ p vanish when the normal component of the surface velocity
equals that of the fluid (when (u — v) - n = 0), i.e. all outflow from the system occurs
through the end surfaces A(0) and A(L). Inserting (7.6) in (7.3) and differentiating
(7.2) and (7.3) with respect to L, and replacing L by z throughout gives

aA 8//usz+\Il 0 (7.7)
//pudi+—//pudi+//apdA o R[a’] +¥p=0
or |z
(7.8)

These equations describe flow in the vessel shown in Figure 7.1. However, they do
not constitute a one-dimensional theory since the velocity distribution over the cross-
sectional area appears in the equations. Hence, a few more assumptions are needed.

First, it is assumed that p and thus dp/0z are functions of z and ¢ only, i.e. that
pressure is constant over the entire cross-sectional area. Then the average velocity over
the cross-sectional area is defined as

[
A
X = Y //u dA

Using these definitions (7.7) and (7.8) can be written by

and

Up = pu¥
0A 0(Au)
B + p +0=0 (7.9
d(Au)  O(xAu?) Op Ouz _
p( o+~ | + Az~ 2muR | = R+\I:p_0 (7.10)

Assuming that the velocity profile is parabolic, i.e.

2
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then

and

1 (R r2\? 4
=— [ 4?{l1-—=) 2 ==
X A'u,2/0 U ( R"’) T dr 3

Many of the earlier models assumed a parabolic velocity profile, e.g. Streeter, Keitzer
and Bohr (1963), Barnard et al. (1966), Anliker et al. (1971), Raines et al. (1974),
Werff (1974), Anliker et al. (1978), Forbes (1981), or Reuderink, Hoogstraten, Sip-
kema, Hillen and Westerhof (1989). However, many of these papers note that the
simple way of describing the wall-shear stress only applies for a steady and laminar
flow. Generally, the system is much more dynamic and the velocity profile changes
according to the flow conditions. In general for laminar flow in slightly tapering ves-
sels the velocity profile is rather flat (McDonald, 1974; Pedersen, 1993). Therefore, a
better approach is to assume that the velocity profile is flat but with a boundary layer
of thickness 4, hence

U, for r<R-¢
Uy =
: u(R-r)/§ for R—d<r<R

The thickness of the boundary layer can be estimated from (vT')!/2 ~ 0.2 cm for the
aorta, where v = u/p is the kinematic viscosity. This also corresponds to the results
obtained by McDonald (1974) and Pedersen (1993). In this case

Ouz;| _ 2mpuR
27!'[.LR [W] R = 3 (.11
and
1 R=6 B yw(R-7) 44 82
X—m(/{; U2ﬂ"f‘d’r+/_6—T—27erT)—1—'3§+ﬁ§~1

The last approximation only applies if the boundary layer is thin compared with the
vessel radius.

Both of these conditions are derived from an approximation of steady flow, but
blood flow in real arteries is not steady. Therefore, the wall shear stresses should be
investigated in further detail. In fact there are papers accounting for the shear stress
in a more detailed way, e.g. Olsen and Shapiro (1967), Wemple and Mockros (1972),
Schaaf and Abbrecht (1972), or Stergiopulos et al. (1992). In these, the shear stress is
defined as a combination of two terms; one accounting for the steady part of the flow
and one from the unsteady part. The first is found from assuming Poiseuille flow and
the second from assuming a sinusoidally driven flow in a long straight rigid tube.
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Inserting the conditions arising from the assumption of a flat velocity profile and
dividing by p, the momentum equation becomes

Up=ul
0A O(Au) _
Er + 5a T =0
O0(Au) 9(Au®) Adp 2mvuR o
5 T o Tpewt s =0

Finally, the equations can be rewritten in terms of the flow ¢ = Au, with ¥ replaced
by q/AV¥.

0A Bq

S ta t¥=0 (7.12)
8g 0 (¢* Adp 2mvqR q
0t+6x( )+;5—+ A +\I/—A-——0 (7.13)

These equations cannot be solved analytically and many numerical schemes require the
system to be in conservation form. In order to rewrite the equations in conservation
form we introduce the quantity B chosen to fulfill

B(ro(z),p(z,t)) = %fAdp o (114)

Hence,

8B A ap + 9B 0B dro
9z o 00z Org dr

Since the term (8B /0rq)(dro/dz) does not contain any partial derivatives of p and
hence of A and g, it can be evaluated directly and therefore may be added to both sides
of (7.13). Thus, the momentum equation (7.13) can be rewritten as

dqg & (f +B> _ _2mvgR vl 0B drg

5t oz \4 A At endz

5 " Bz (7.15)

The momentum equation (7.15) and the continuity equation (7.12) can be rewritten in
conservation form

-v
8 (A ] q
= + =1 ¢ = 9B 0r, (7.16)
at ( > oz \ 2,920
! atP it oo
where C = —2nvR/d — U. The equations above are the basic equations for the one-

dimensional theory for the wave propagation of the arterial pulse. However, there are
two equations and three dependent variables, namely p, g, and A. Therefore, we need
a third relation, the so-called state equation. This is based on the compliance of the
vessels and gives an equation for pressure as a function of cross-sectional area. Several
approaches can be taken on how to model these “elastic” properties. We summarize
some of these in the next section.
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Figure 7.3: Pressure versus cross-sectional area in the brachial and radial artery, re-
spectively. A clear hysteresis between the systolic and diastolic period is seen. From
Tardy et al. (1991).

7.2 State equation

The arterial wall exhibits a viscoelastic behavior. This means that there is a delay from
the time a given change in pressure takes place until it affects the corresponding cross-
sectional area. Hence, the state equation should take this into account. For simplicity
the theory for viscoelasticity is often left out in the original one-dimensional models.
Generally it is assumed that cross-sectional area is related instantaneously to pressure
for any given time and space, i.e. there is no phase lag. The simplest equations on
this form are those derived from the theory of elasticity. However, in addition to not
including the viscoelastic properties, these relations do not exhibit the right behavior.
First of all they predict a decrease in the wave-speed with an increase in pressure,
which should be opposite. Second, the cross-sectional area A becomes infinite at a
finite transmural pressure, “blow-out”. This can, however, be avoided by having a
non-linear Young’s modulus which increases with increasing strain.

Another approach is to fit measurements of the arterial compliance to some empir-
ical function and in this way obtain a state equation which does not have the problems
with decreasing wave-speed and “blow-out” as discussed above. However, these ad-
hoc relations do not necessarily take the viscoelastic effects into account either.

When plotting experimental values for pressure versus cross-sectional area over
one cardiac cycle, we get a picture as shown in Figure 7.3, where pressure is plotted as
a function of cross-sectional area for a given z. The resulting curves show a hysteresis
between the systolic and diastolic part of the cardiac cycle. According to Tardy et al.
(1991) the hysteresis is a result of two independent factors: First, a phase lag due to
a finite distance between the two sites of measurement of pressure and cross-sectional
area, and second, because of viscoelasticity of the vessel walls as described above. In
their paper they claim that the first factor is dominant. This hypothesis is supported
by the fact that the separation between the pressure and diameter measurement sites
is smaller for the radial artery than for the brachial artery and that the observed delay
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and hysteresis are correspondingly smaller, see Figure 7.3. Furthermore, he supports
the idea by setting up a method correcting for the finite difference between the mea-
surement sites. In this way most of the hysteresis can be eliminated and a resulting
curve, approximating the one obtained during the diastolic period, is obtained. How-
ever, since we have only one paper discussing the delay due to varying measurement
sites the idea should be investigated further.

The larger arteries are viscoelastic, but the discussion above shows that it is the
elastic properties that dominate, and hence it can be justified to study one of the sim-
ple models which do not account for viscoelasticity. However, for further details on
viscoelastic models we refer to Horsten, Steenhoven and Dongen (1989), Rockwell,
Anliker and Elsner (1974), Milnor (1982), Gerrad (1985), Steenhoven and Dongen
(1986), Holenstein, Niederer and Anliker (1980), Holenstein, Nerem and Niederer
(1984), Niederer (1985), and Bergel (1972). In the following we will summarize and
discuss some of the different non-viscoelastic models.

7.2.1 Elastic models

- One of the simplest models is the one discussed by Bamnard et al. (1966). They assume
that arteries are tapered thin-walled vessels with 7(z,t) being the radius of the moving
boundary, and rg(z) being the radius at zero transmural pressure. The relation between
pressure and cross-sectional area is then found from balancing the internal and external
forces in the radial direction of a surface element of the vessel wall. This analysis is
carried out in detail in Chapter 10. In that chapter equation (10.29) gives the linear
stress-strain relation :

T

—ﬁ—p=0 <

7o

4 Eh Ap 4Fh (1AA _ ‘
=-—— |1y — | =c—=— .
=37 ( A) 370 (2A0> (7.17)
since
AA=A-— Ay, Ao-7r'r(2)

and

T_(i:r—'ro Eh2 (7.18)

) ToT l—ap

Ty/ro is the tangential strain and p is the corresponding external stress per unit radius.
In the equation above we assumed that the Poisson ratio o, = 1/2. A

A plot of p is shown in Figure 7.4. From the figure and from (7.17) it is seen that
the relation between p and A is almost linear but with a slight curvature, however,
opposite to what it is supposed to. For comparison see Figure 7.3. However, since
the curvature is small the error is not significant. Furthermore, the wave-speed c(z, t)
decreases with an increased pressure.
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Figure 7.4: Pressure versus cross-sectional area using a simple model based on linear
elasticity.

where ¢y = /2Eh/(3prp) is the Moens-Korteweg wave-speed. This expression for
the wave-speed is derived in Section 7.4.

This model has been used in many of the previous one-dimensional models of the
larger arteries. They vary slightly but are all on the form

_, Eh AT
p= k K (1 - E) hg

where k, m, and ho are non-dimensional constants. hg is a correction factor taking
the thickness of the wall into account (Lambert, 1958; Streeter et al., 1963; Olsen
and Shapiro, 1967; Wemple and Mockros, 1972; Schaaf and Abbrecht, 1972; Taylor
and Gerrard, 1977; Gerrard, 1981; Mazumdar, 1989; Nichols and O’Rourke, 1998;
Belardinelli and Cavalcanti, 1992). Finally, Lighthill (1989) imposed the condition

o [E_
p= To Ag

The reason why this expression differs from the equation above is that (7.18) between
the tangential strain and p is approximated by

Ty Ehr—mg
ro  ro 7o
In this case the Poisson ratio o, = 0 and the relative expansion of the radius is

T—7To — T—Tg
T = To
However, the behavior of the wave-speed using Lighthill’s expression is qualitatively
correct; an increasing wave-speed with an increasing pressure.

c2__éd_P_ 2, P

B YZ AR
where as before ¢; is the Moens-Korteweg wave-speed.
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7.2.2 Ad-Hoc models

Pedley (1980), Anliker et al. (1978), Stettler et al. (1981), Jones (1973), and Forbes
(1981), among others, derive a state equation from the following empirical function
for the wave-speed.
' Adp
2 _A44p _ 2 2

c S 94 (co + c1p)“(1 + nzx) (7.19)
where ¢y, c1, and n are constants estimated by fits to experimental measurements. It
should be emphasized that the parameters as such do not have a physiological meaning.
Integration of (7.19) gives

A
p = pc(p, z) c(po, z) log (ZE) + po

By definition the wave-speed above has the right qualitative behavior, i.e. an increasing
pressure leads to an increasing wave-speed.

Werff (1974) derives a state equation fitted from measurements of the static pres-
sure versus volume for the aorta

p= pc,zl tanh™! (-i - 1) + Po
Ao

where ¢, (z) = co exp{kz/ro}, k is the "wave-speed factor", Ay is the mean cross-
sectional area, pq is the mean pressure, cg is the mean wave-speed, and ry is the mean
radius; all evaluated at z = 0. It should be noted that these definitions differs from
our usual definitions where the quantities with subscript O refer to the state with zero
transmural pressure. This model also has the right qualitative behavior; the wave-speed

2__A3p_. C?;

¢ T L0A T 2- 44,

" increases when the cross-sectional area (and hence pressure) is increased.

Finally, there are a number of models based on measurements of the arterial com-
pliance. We will discuss two of these. They are based on the same idea, but yields
results which have somewhat different characteristics. -

The simpler of the two is given by Raines et al. (1974). They assume that the
arterial compliance C(z,t) is given by

94 _ b
op p

where b is taken to be constant over a limited range of arteries. The paper emphasizes
that the expression above is only valid for a normal physiological range of parameters
i.e. pressures ranging from approximately 50-200 mmHg. Integration of (7.20) yields

A—Ap
D = po €xp b

C =

(7.20)

It is possible to determine b from measurements of the vessel distensibility, i.e. by
estimating the change in cross-sectional area per 50 mmHg. This estimate is denoted
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by a. From the equation above it is then possible to obtain a relation between a and b.
For a pressure change from p; = 75 mmHg, to p, = 125 mmHg

b Ph P1
— — l — = —
TP, 8 (Pl) Aob
where pyy, is the mean pressure and p; = py, log(pn/p1)-

In general a can be found in two ways either by direct measurements or by mea-
suring the wave-speed which is given by

Adp P(Pl | (P))

2

¢ === —+10g —
pBA  p\a Po

In fact Raines et al. (1974) advocate the latter way for finding a because they have
found that this is more precise. The state equation also shows the right qualitatively
behavior; an increasing pressure with an increasing wave-speed.

Finally, we mention the model by Langewouters et al. (1984). It is also based
on measurements of the arterial compliance. This model resembles much the one
suggested by Werff (1974), however, it is based on compliance measurements instead
of measurements for static pressure versus volume. It follows the same idea as Raines
et al. (1974) but with a more sophisticated model assuming that

o4 1
0p a+bp+cp?

C= (7.21)

Let
pz
by

2po
b(ro) = —
(ro) G
1
C\T =

where 7 is the radius at zero transmural pressure and pg, p1, and C,, are parameters
dependent on ry. Using these parameters (7.21) can be rewritten as

C = B_A - ____Cm
=% = —
1+ (upl °)
Langewouters et al. (1984) derive the relation for a given artery and hence the param-
eters do not depend on 9. However, the model cannot be extended to comprise all of

the larger arteries without taking this into account. By integration with respect to p
equation (7.22) becomes

(7.22)

A=1p,Crtan~? (3;1—1"’) + Ay (7.23)

where Aj(ro) is the integration constant. Assuming that lim,_, ., A = 0then Ay(rg) =

7 p1Crm /2. Thus, equation (7.23) can be written as

A=A, (1 + Lian-? (Z—’——p")) (7.24)
2w b1
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where A, (ro) = mp;Cy, represents the maximal cross-sectional area of the given
artery at high pressures at a given site. This is referred to as the "max area". pg is the
pressure at the inflection point of the pressure cross-sectional area curve for a given ry.
A = Ay, /2 for p = py, at this point the compliance is maximal and hence py is called
the "max-C-pressure”. Finally, p; represents the steepness of rise of the compliance.
When p = pp + p; the compliance is halved C = C,, /2 and hence p; is called the
"half-width pressure". It is possible to estimate A,,, po, and p; from data. However,
in order to determine how these parameters depend on rg results from a number of
vessels are needed and this is not easy to obtain (Wiinberg, 1996-1997). Now, p can
be found by inverting equation (7.24). Hence,

A 1
P = po + p1tan (’” (Z,; - 5)) | (7.25)

and the wave-speed is given by
where

Also in this case the wave-speed increases with an increased pressure as it is supposed
to, but, only for p > py. However, py is usually small, of order 20-40 mmHg, depend-
ing on age, so within the physiological range of pressures the behavior of the model is
correct.

There are a number of papers advocating this model, e.g. Gizdulich and Wesseling
(1988), Tardy et al. (1991), Laurent, Hayoz, Trazzi, Boutouyrie, Waeber, Omboni,
Brunner, Mancia and Safer (1993), or Wesseling, Jansen, Settels and Schreuder (1993).
Tardy et al. (1991) compares a number of models and with their data the model is
significantly better.

7.3 Coupling the state equation to the fluid dynamic equa-
tions '

The state equation suggested by Langewouters et al. (1984) has proved to behave well
for the thoracic and abdominal aorta. However, because of lack of data we were not
able to estimate the parameters to apply it for all systemic arteries. Provided that data
for all relevant arteries can be obtained, this is the model we recommend. However,
- because of the lack of data we have chosen to use the model by Barnard et al. (1966)
but with an Young’s modulus which depends on the vessel radius rg, i.e. the radius at
zero transmural pressure. Specifically, we set

Eh
-; =k e:z:p(kg'ro) + k3
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as shown in (5.4), and then we use

() A\
p(ro, A) 370 (1 A) (7.26)

together with the fluid dynamic equations (7.12) and (7.13) or as stated on conservation
form in (7.16). In order to couple the state equation to the fluid dynamic equations the
followmg quantmes should be detennmed

plro, A)  B(rop) = = / Adp
0 OB
p (7.07 ) a_A(TO)p)
OB
'3;(?‘0,14) -a—x(ro,p)
9°B
aAa (To,p)
Using (7.26) and the shorthand notation f(rg) = 4Fh/(3r) yields
9 _ f
0A 2 A3

Spdry _ [ df \/" \/' dro
67‘0 dz - dTo f

_fA
B = /A = \/A A
P e T WV
0B _ f |4
A — 2 A
0Bdry _ 1 (2mrof+Avily | Aw _df ) dno
Org dz p 1-p/f f(L—p/f)*dro ) dz
[ / df df d’r‘o
- p(z\/—(\/—f+ ) dro) dz
@B dro _ 1 (fVT+VAuGE  df \dn
Org0A dz ~ p VA T drg | dz
Inserting these definitions in (7.16) gives the total system of equations
q
d (A a
37?(!1) 3x(qz+£\/AgA) (7.27)

e 4
2nrvqR g 1 daf df \ dro
(‘T“PT;@‘“(‘/’_”’”A—"&‘TE) )d)
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7.4 Characteristic equations

Using (7.26) equations (7.12-7.13) can be rewritten as

dA  Jq _

Er 729
dg O q2) Adpdry AdpdA 2mvqR  q_
a“fa—z(A porodz T poAds T A T4 -0 0B

or from (7.27) on conservation form: For appropriate choices of ¥ this form a system
of hyperbolic quasi-linear first-order partial differential equations. In order to show
that they are quasi-linear first-order partial differential equations they must have the
form :

ow ow

5 + A% =B (7.30)
where w = (4,¢)7, and A and B are functions of (z,t), and w. In order to show that
they are hyperbolic the eigenvalues of A must be real.

Assuming that there is no outflow, i.e. the walls move with the fluid ¥ = Up = 0.
This applies for the larger arteries since they are almost impermeable. Hence, all
outflow is localized to the top and bottom of the vessel. Thus, these equations can be
applied to all branches of the larger arteries.

0A Jq
dg 8 (¢ Adp  2mvqR
o (A b0z~ oA 732
Expanding the terms 8p/0z and 8(q*/A)/0x gives
0A 0Oq
o o] |
0 2409 (&  AOp\0OA_ _AGp0ry 2mvR
ot Adz A2 pOA) 8z pOry Oz JA
If w, A and B is defined as below it is possible to obtain the desired form
A
= 7.33
w=[4] (.39
and
A 0 . (7.34)
= 2 L AdP 2 :
~mtiea A
Using (7.26) for p gives

Aaparo_é df _ Ag _ _71'_ gm
> e Oz —p( (1 ) f ) - (7.35)
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Inserting

AEh 4 af 4
=20 2k k _2
f 370 3 (k1 exp(karo) + k3) and dr 3k1k2 exp(karo)

Equation (7.35) can be written as

Adpdry  ClA+CoVvA

porg 0z p
~ where -
' df dro
“ dry dz
_ df — drg
G = (d’l‘g Ao + f\/7_r) dz
Thus, the right hand side of (7.29) becomes
B= [ 0 (7.36)
~ | =(C1A+CVA) [p-C3/A '

where C3 = 2m1vgR/4.

Hyperbolic equations can be analyzed by studying their characteristics which are
the curves (z(s),t(s)) in the (z,t) plane along which the system of partial differen-
tial equations reduces to a system of ordinary differential equations. Since the partial
differential equations above are non-linear, the characteristics will not be determined
from the partial differential equations alone but also from their solutions. This is
caused by the fact that slopes of the characteristics (the velocity of the propagation
of the solution, “the system sound velocity”) depends on the values of ¢ and A, re-
spectively. Consider the curve (z(s), t(s)) parameterized by s, the total derivative of
w is then

dw _0Owds Owdt
ds ~ Oz ds dt ds

In order to match this to the partial differential equation (7.30) one takes t = s and
gets dt/ds = 1. Hence, the curve is given by (z(t), ). Let

dx
c=— (7.37)
Along a curve satisfying this condition any differentiable function w has the form
dw Ow ow
EIRE T (7:39)

Using the definitions (7.33), (7.34), and (7.36) for w, A, and B in (7.30) together with
(7.38) we get

10 , 0 1 DA/Bt 0

01 -L+4% X 8g/0t | _ | —(CrA+ CoVA)/p— Cs/A
10 c 0 dA/8z dA/dt

01 0 c 9q/0z dg/dt
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or on a more compact form

I o)\ ow/oz dw/dt | ©
(x &) (ofee) = (ampar)

((I) cIfA>(g:://g::> - (dw/E—B)

This has a solution if and only if the subproblem (of order 2 x 2)

ow dw

has a solution. We are only interested in solutions along the characteristics. Recall, that
a characteristic is a curve along which the expression to be integrated is independent
of partial derivatives in other directions.

If the determinant of (cI — A) is non-zero we can specify w arbitrarily and extend
w as a solution of the partial differential equations over a strip in some neighborhood
of the curve (7.37). In that case, we can choose w on the curve and hence determine B
and dw/dt. Then we can solve for 9w /0t and 0w /Oz which can be used to expand
w off the curve; but this is not a reduction of the original problem. On the other hand,
if the determinant is zero then

iI-Al=0 &

c -1
¢ _Ad 2 |=0
A2 poA A
gives
=l (AP _9, (7.40)

where c3 is the wave-speed. Hence, the equations for the characteristics are

dx q
= = Z 7.4
i - A tco (7.41)
dt

= 7.
T 1 (7.42)

Note that, since c (the eigenvalues of A) are real, the system of partial differential
equations is hyperbolic.

Furthermore, a zero determinant implies that w /0z exists only if B and dw/ dt
fulfill the condition given in (7.44). This is seen by multlplymg (7.39) with 4T

(71,72) yielding

oz dt

If 47 is chosen as the left eigenvectors to (cI — A) then
ow
or

AT(cl- A2 — (i"l—B)

AT(l—A)— =0 ‘ (7.43)
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and
~T (1vz - B) = (7.44)

This is a necessary condition for the existence of a solution. Using the definition for ¢
(7.43) gives

2:tco -1
A

(71,72) 2 . q =0
2% —g*q

Lety; = 1, then
ne (e

From (7.44) the following system of ordinary differential equations, which is valid
along the characteristics in (7.38), can be obtained

dA
(1(-%£e)7) - S
"4 @+\/Z(01A+02\/Z+g§)
ds P A
dA q “ldg .
Es-+(—zﬂ:c0) 2=H (7.45)

where

-1 (ClA+CVA  C
gt =~ (L 20 (_L_pz’_\/_—_+_£)

The result is a system of ordinary differential equations which can not be solved ana-
lytically, except in some simple cases which we will not discuss further here. Instead,
we will (in Chapter 9) set up a numerical scheme based on the characteristics.




Chapter 8

Flow and pressure in the tree of
larger arteries

In this chapter we derive the boundary conditions needed to establish the complete
system of equations for modeling flow and pressure in the arterial tree. In addition
we make the equations non-dimensional, preparing them for the numerical method
described in Chapter 9.

8.1 Boundary conditions

The model derived in the previous chapter predicts blood flow and pressure for a single
vessel segment only. In order to extend the model to the arterial tree some appropriate
boundary conditions must be established.

The arterial tree is, as seen in Figure 3.3, a very complex structure, even when
the model is limited to the larger arteries, as shown in Figure 5.1. But simplifications
are obtained from the fact that the tree is binary and the vessels are one-dimensional.
Therefore, three types of boundaries can be identified; one at the inflow, one at the
bifurcations, and one at the terminals.

The system of equations is hyperbolic with a positive wave propagation velocity
much larger than the velocity of the blood. Thus, the characteristics will cross and
have opposite directions. This means that one boundary conditions is needed at each
end of the vessels. Consequently, the following boundary conditions for the arterial
tree must be derived:

e One equation at the inlet to the arteries, i.e. at the aortic valve. This is marked
with an A in Figure 5.1.

e Three equations at the bifurcations; an outflow condition from the parent artery
and inflow conditions to both of the daughter arteries.

e One equation specifying the outflow from each of the terminal vessels of the
arterial tree. These are marked with B in Figure 5.1.

Each of these should be specified by an equation for either flow, pressure, or a relation
between them.
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Figure 8.1: A single binary branch consisting of a parent and two daughters, even
though they are depicted as symmetric they do not need to be so.

In order to describe these boundary conditions we will consider a tree with only
three branches, see Figure 8.1. The inflow appears at In the outflows at Out and the
bifurcation conditions are applied at Bif. In general, when modeling the arterial tree,
the branches will be labeled as shown in Figure 5.1.

8.1.1 Inflow boundary condition

At the aortic valve practically all previous models specify the flow, i.e. ¢(0,t), em-
anating from the aortic valve. This is done either directly from measurements or by
deriving a function based on a simpel model. Since we are interested in the qualita-
tively behavior we have chosen the latter. Such a function can be the following periodic
function based on parameters for the total cardiac output and the length of the cardiac
period.

9(0,¢) = ot/r?exp(—t?/(27%)), 0<t<T 8.1
Q(O,t+_]T)ZQ(O,t), J=12,3,...

gy is the cardiac output, 7 is the time at which the maximal cardiac output is reached,

and T is the length of the cardiac period. The function has a jump at ¢ = T, but it is

of order 1078 and can hence be neglected. Furthermore, it should be noted that the

back-flow into the left ventricle is not included. Figure 8.2 shows ¢(0, t) for the first
three periods.

8.1.2 Bifurcation conditions

Assuming that the bifurcation takes place at a point (at Bif) the three conditions needed
to close the system of equations should be evaluated at this point. Assuming that there
is no leakage of blood at the bifurcations the in- and outflows must be balanced. Hence,

gp = Qd; + 4, (8.2)
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Figure 8.2: The inflow as a function of time over three periods of length 0.8 s.

The remaining conditions are found from assuming that pressure is continuous over
the bifurcation, i.e. that

Pp = Pdy = Pdj (8.3)

However, these conditions pose some questions because of the Bernoulli law that may
or may not apply depending on the details of the flow pattern at the junction. Ata
boundary where the total cross-sectional area decreases proceeding downstream, one
would, according to the Bernoulli law, expect a drop in pressure associated with the
increase in velocity. In the arterial system, however, the total cross-sectional area typi-
cally increases at junctions (again, proceeding downstream towards the periphery) and
hence an decrease in pressure would be expected. On the other hand, because the
change in area at the junction is discontinuous, flow separation and vortex formation
is expected just downstream from the bifurcation and the Bernoulli law does not ap-
ply. In these circumstances, which invoke dissipation of kinetic energy, it seems more
appropriate to use pressure continuity. Alternative models of the bifurcations are dis-
cussed in Anliker et al. (1971), Stettler et al. (1981), Lighthill (1989), and Olufsen and
Ottesen (1995a).

8.1.3 Outflow boundary conditions

The outflow boundary condition can be determined in several ways. We will discuss
three of these approaches, a pure resistance model, a Windkessel model, and our struc-
tured tree model.

The simplest reasonable approach is to let the outflow be proportional to pressure,
i.e. to let the boundary condition be determined by a pure resistive load. This is com-
monly used in previous studies (Olsen and Shapiro, 1967; Schaaf and Abbrecht, 1972;
Anliker et al., 1971; Streeter et al., 1963; Forbes, 1981; Stettler et al., 1981). However,
it is not obvious how to choose the correct value for the peripheral resistance at the
points where the larger arteries are terminated. Furthermore, if we assume a constant
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Figure 8.3: The Windkessel element model used for predicting-the impedance at the
terminals of the larger arteries. The resistances R; and Ry and the capacitance Cr
must be estimated for each of the terminal vessels.

relation between flow and pressure at the downstream boundary flow and pressure are
forced to be in phase, which is generally not physiologically valid in these relatively
large arteries. This is also pointed out in e.g. Anliker et al. (1978) where it is noted
that the pure resistance boundary condition only applies if the arteries are sufficiently
small. The problem can be seen from the hysteresis curves appearing when plotting p
versus g parametrized by ¢ and for a fixed z, see Figure 12.6 in Chapter 12. The forced
in-phase condition propagates back through the vessel changing the overall slope as
well as narrowing the width of the hysteresis which means that the phase is disturbed
throughout the vessel. Since we are looking for some reflections in the system (just
enough to produce the dicrotic wave) a small change in the hysteresis curves is ex-
pected, but not as drastic as the one appearing with this boundary condition. In order
to avoid these problems, the boundary condition should incorporate a phase-shift be-
tween p and q.

Another approach is to set up a model based on the basic properties for the impedance.
This has been accomplished by Wemple and Mockros (1972), Raines et al. (1974), and
Stergiopulos et al. (1992) among others. They derive an outflow condition by attach-
ing a three-element Windkessel model at the boundary. Such a model represents the
resistance and elasticity of the vessels by an electrical analog model consisting of a
resistance in series with a parallel combination of a resistance and a capacitor, the re-
sistances R; + R3 simulates the total resistance and the capacitor Cr simulates the
compliance of the vascular bed. This circuit is shown in Figure 8.3. The frequency
dependent impedance of the Windkessel model is given by

_ Ry + Ro + iwCrR1 Ry

20w) = —— =g, @4

where the parameters C7, Ri, and Ry are the volume compliance and resistances
as shown in Figure 8.3. Transforming this to the time domain gives the following
differential equation.

Op 0q P q(R1 + Ry)

&£ o p =i 8.5

5 % T RCr T ROy (8.5)
In order to apply the boundary condition three parameters must be specified. That
could be the total peripheral resistance Ry = R; + Rj, the fraction R, /Ry, and the
total compliance C'r. The total peripheral resistances for each of the terminals can be
found in Schaaf and Abbrecht (1972) and Stergiopulos et al. (1992). They are found
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from estimates of the total arterial peripheral resistance and the distribution of flow to
the various branches. The ratio R;/Rr was taken to be approximately 0.2. This has
been estimated in Raines et al. (1974) by fit to data. Finally, the arterial compliance
Cr, for each segment was estimated from the total volume compliance (Westerhof
et al., 1969). These parameters are listed in Table 12.1.

Such a model can not include the wave propagation effects in the part of the ar-
terial system that it models and it should also be shown whether it is able to capture
the phase-lag between p and g adequately. Therefore, we have investigated how the
physical domain extends beyond the boundary of the larger arteries. As discussed in
Chapter 6 the smaller arteries comprise a large asymmetric tree with a varying number
of generations, ranging to approximately 24 generations before the arteriolar level is
reached. At this point, however, all vessels have approximately the same diameter.
Beyond this point loops are formed and the structure becomes too complex to eas-
ily describe the geometry. In Chapter 6 we showed that the smaller arteries can be
modeled as an asymmetric structured binary tree.

It would be too comprehensive to compute the full non-linear model of such a tree.
Therefore, a more appropriate strategy is to describe flow and pressure in these smaller
arteries using a simpler model that can be solved analytically, e.g. a linear model. From
these sub-trees for the smaller arteries it is possible to obtain a boundary ‘condition
for the system of non-linear equations as a time dependent relation between flow and
pressure. These sub-trees of smaller arteries are treated as a structured tree of straight
vessels in which the corresponding linear equations are solved, this was described in
detail in Chapter 6. From these solutions it is possible, using Fourier analysis, to
determine a dynamic impedance, which can be used to get a relation between flow and
pressure.

The three boundary conditions discussed here, the pure resistance model, the Wind-
kessel model, and the structured tree model will be compared in Section 12.2.

For any Fourier mode, the frequency dependent impedance Z(z,w) (e.g. obtained

by the structured tree model, see Chapters 10 and 11) can be related to pressure and
flow by

P(z,w) = Z(z,w)Q(z,w) 8.6)

where we have used the terminology of electrical networks, with P playing the role of
voltage and Q) the role of current.

Because the inflow boundary condition is periodic we assume that flow and pres-
sure can be expressed using complex periodic Fourier series. Then any feature of the
system response can be determined separately for each term. Let

pE,t) = Y P(z,w) e ®8.7)
k=—o0
gz,t) = Y Qz,wx) et (8.8)

k=—00
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where wy, = 27k /T is the angular frequency and

1 [T/2 . '
p(z,t) e kit 8.9)

Plz,w) = =
(z,wr) T |z
1 T/2 .
Qaw) =7 | TR (8.10)

By inverse Fourier transform the results for Z(z,w) can then be transformed to obtain
z(z,t). By the convolution theorem it is then possible to arrive at an analytic relation
between p and q: : ' ’ '

t
7 p(z,t) = /;_T q(z,7)2(z,t — 1) dT , (8.11)

This is our new outflow boundary condition for the larger arteries which should be
evaluated at each of the terminals, marked by B in Figure 5.1, i.e. at z = L; where L;
is the length of the ith terminal segment.

How the convolution integral will be evaluated when solving the model of the en-
tire arterial tree, consisting both of the smaller and the larger arteries, will be described
in Chapter 9.

8.2 Non-dimensional formulation

Before solving or analyzing the equations in further detail it is convenient to make the
equations non-dimensional. In order to do so, the following characteristic parameters
are applied:

e r. = 1 cm, the characteristic radius of the vessels.
® g, = 10 cm®/s, the characteristic flow through aorta.
e p = 1.06 g/cm3, the density of the blood.

The latter two parameters are used in order to determine the characteristic pressure
p(ge/r2)?. Using these the following non-dimensional quantities can be defined:

iF= Z i = ti;
Te rs
2
Te T'c
4
- - pr
§ = e P = —
qc Pac
The non-dimensional form of (7.31) is then given by
o(rd) | i) _,

a(tri/g.) ~ O(Zro)
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Dividing by ¢./7. gives
dA 0§ _
e — + == Fri (8.12)
The non-dimensional momentum equation (7.32) is
Gg) 0 (dfqz) ArgdGpgs/rd) _ . 4 re
o(trifg) O(Ere) Ar? P o(Z rc) x‘if’z STC

Multiplying by 3 /g2 and inserting the Reynolds number R = pg./(urc) = ge/(vre)
yields

~2 . -~
%, 9 (q )+A?£ _2mr g (8.13)

5 oz % - IR A

If we drop the tildes the non-dimensional equations (8.12) and (8.13) can be rewritten
as

J0A dq

s tor = 0
8qg 9 (¢ dp  2mrgq
T (A>+A0 = TRA4 ®.19)

As for the continuity equation the state equation and the equations for the boundary
conditions can be written directly in terms of the non-dimensional quantities.
Using these quantities equations (8.14) can be rewritten on conservation form. Hence,

d (A ] 7
2 (gm) o

0
(—fm (2\/_<\/—f+\/A-odf> df)%’)

d7‘0






Chapter 9

Numerical methods for the larger
arteries

In Chapter 7 we saw that the fluid dynamic equations for the larger arteries are quasi-
linear and hyperbolic. Such a system can be solved numerically with several methods
ranging from first-order finite difference schemes such as the method of characteris-
tics to implicit methods. One should keep in mind that the wave-propagation is fast
(of order 10 m/s) so the method will have to operate with relatively small time-steps.
The most optimal approach to solve this system would be to use some implicit scheme
which would make it possible to use large time-steps. However, since our focus is
on the model, not the implementation, we have used explicit schemes which are much
simpler to implement. Hence, our simulations are based on Richtmeyer’s two-step ver-
sion of the Lax-Wendroff method (henceforth simply referred to as the Lax-Wendroff
method), but we use a first order method of characteristics for the right boundary, i.e.
at the terminals of the larger arteries. Numerical experiments suggest that this choice
ensures stable computations at the right boundary. In the following sections we de-
scribe both the method of characteristics and the Lax-Wendroff method. Finally, in
Section 9.3 we discuss the convergence of the two methods for a single vessel.

9.1 Numerical method of characteristics

The ordinary differential equations (7.45) can be solved numerically using a method of
characteristics based on specified intervals, i.e. on a fixed grid. Such a grid is shown in
Figure 9.1. This grid has lines parallel to the axis whereas the method of characteristics
in general uses a grid where the lines follow the characteristics. However, since we
are interested in the propagation of the solution for fixed time-steps the fixed grid, or
specified intervals, this approach has been chosen. Therefore, let Az = L/M where
L is the length of the vessel and M is the number of points along the z-axis, denote
the spatial discretization and At = T/N where T is the length -of the period and
N is the number of time-steps in the period, denote the time-discretization. Hence,
the solution is approximated at grid-points (mAz,nAt) form = 0,1,... ,M and
n=0,1,...,N.
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Figure 9.1: The figure shows the points of interest in the specified interval grid.

9.1.1 The interior

In order to find the solution, the system of ordinary differential equations (7.45), valid
along the characteristics, should be approximated at any given point in the grid. Lo-
cally, the characteristics can be approximated at any given point () at time-level n by
straight lines with slopes determined by the characteristic wave speeds. These must
intersect the line segments |AT'| and |T'B)|, respectively, in order for the numerical
method to be convergent, see Figure 9.1. This is the geometrical expression of the
requirement that the numerical domain of dependence should include the physical do-
main of dependence for any point in the (z,t) plane. If this is not possible Az must
be increased or A¢ must be decreased. The points of intersection on the previous
time-level n — 1 are called R and S respectively. Since the time-level can be inferred
implicitly from the notation of the points @, R, and S the dependent variables will not
have the time indicated unless it is required by some special situation, e.g. Ag := AD.
The grid is shown in Figure 9.1. Using these definition the ordinary differential equa-
tions (7.45) together with the characteristic equations (7.41) and (7.42) can be solved.
At the curve defined by (z(t), t) Equation (7.42) can be approximated by

4Q — 4R -+
Ag—-Ap+ ——=—"—— = HFAt
r, : {0 " —r/Arten i 9.1
Y o ©.D
T — IR = A—R- +cr ) At
aQ — 4s -
: 9T ST Tgs/As —cs 5
I'. : gs 9.2)
IQ —Tsg = (Z; - CS) At

Thus, the problem stated in (7.45) is reduced to the treatment of the equations above.
Assuming that the values of q and A are known at the points A, B and T then they can
be determined at the point Q. In order to do so the terms A, ¢, ¢, and H must first be
determined at S and R, respectively. Let n be either of the terms A, ¢,¢, or H at R
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then by linear interpolation

77T—77R=$T—SER
nr—nNA IT—TA

nr —ns — rr — g8
nr — 7B T — IB

4

Multiplying (9.3) by (go/Ar % cg) and (dz/dt)™' = (tr — ta)/(zr — zg) =
(qr/Ar +cr)™" gives

nr = nr— (N7 —N4) (Z—S+cs) 6;
s
where 6; = (tg — tr)/(zT — z4). Similarly, (9.4) yields
ns =nr — (17 — 1B) (%—CS) Os
s

where 8, = (tg — tr)/(2T — zB). Assuming that the spacing between the grid-points
is equidistant then 6; = 8, = At/Ax. This only applies if

. -1

<
<7

Az

for :1=R,S

This is the socalled CFL—condition named after Courant, Friedrichs, and Lewy (Courant,
Friedrichs and Lewy, 1928).

Substituting these expressions into (9.1) and (9.2) gives the following expressions
for gg and Aq, respectively.

1 1 -1 '
= + 9.5
e (CR —gr/AR cs+ QS/AS) ©-3)

dr qs + -
Ar — Ag + + + (Hf — Hg) At
( RS T R —ar/AR  cs +4gs/As (Hg 5) )
and
qr gs\ !
AQ = (CR - A_R +cs + A—S> 9.6)
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Figure 9.2: On the left boundary z = 0 only the '™ characteristics flow into the
boundary as time increases. Analogously only the 't characteristics flow into the
right boundary z = L.

9.1.2 Boundary conditions

At either of the boundaries, only one characteristic flows into the boundary as time
increases, see Figure 9.2. Because there are two dependent variables (g and A) and
because the characteristics are pointing in opposite directions one boundary condition
is needed at each end of any vessel, i.e. at the inflow, at the bifurcations, and at the
terminals of the arterial tree. The equations for these boundary conditions are as de-
rived in Chapter 8. The numerical scheme for the bifurcation conditions uses the same
approach as the one for the right boundary. Therefore, and because we do not use the
method of characteristics for the entire arterial tree we will not describe this part of the
numerical scheme in detail.

Inflow boundary condition

The inflow boundary condition, i.e. at zg = 0, can as discussed in Section 8.1, be
modeled using the following periodic function :

q(0,t) = got/T2exp(—t?/(272)), 0<t<T 9.7
q(0,t + 5T) = ¢(0, ), i=123,...

where g is the cardiac output, 7 is the time at which the maximal cardiac output
is reached, and T is the length of the cardiac period. The discretization of the left
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boundary condition only involves the negative characteristic '™, i.e. the equations
zQ—ZTs = (qQ/As —cg) At
90 —4ds — A
Ag — Ag+ ———— =H; At 9.8
? —gs/As ~cs o ©8)

where ¢s, As, cs and Hg are calculated as for the interior pomts and qq are deter-
mined using (9.7).

Outflow boundary condition

The outflow boundary condition for the larger arteries should be evaluated at each of
the terminals marked by B in Figure 5.1, ie. at zg = L; where L; is the length of
the 7’th terminal segment. It is determined from the convolution integral in (8.11).
This can be rewritten in terms of the Fourier transform of the admittances Y (zq,w) =
Z(zg,w)™?, giving

T
ozg,t) = /0 p(zq,t — ) y(zq,7) dr ©.9)

Since t = nAt = T/N where T is the length of the period and N is the number
of time-steps and At is the length of the time-step. Then the equation above can be
discretized by

Z p<n-k>N k: At

q(zq,nAt) = g3

k=0
N-1
= p(Q,AQ)yQ At+ > pSFIN b At (9.10)
k=1

where NV the symbol < - >y denotes the modulus function defined such that < n >p
€{0,1,... ,N—1}foralln € Z, N > 0and p(Q, Ag) = p(ro(zq), A(zg,nAt)) =
p(zg,nAt) should be evaluated using the state equation from (7.26). In practice the
modulus is implemented by choosing values from the previous period whenn—k < 0
" and values from this period when n — & > 0. This is shown in Figure 9.4.

When initializing the computations p and g for ¢ = [0; T'] contain the initial values;
the flow and transmural pressure are zero. This is not physiological, and hence the
pressure and flow profiles are not immediately reliable. Therefore, the model needs
a few periods to stabilize itself. However, as shown in Figure 9.3 the simulations
converges after only a few periods. The discretization of the right boundary condition
only involves the positive characteristic I't. Hence,

IQ —ZR= (‘Z—I;-FCR) At
AQ—AR+—M—=H;5M (9.11)

—qr/AR+cR
Let

N-1
—k
(gtms)™ Zp nTRIN k At
k=1
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Figure 9.3: The pressure profiles stabilize after a few periods.

k

L i
Values from this period n n + 1 Values from the previous period
n—k>0 n—-k<0

Figure 9.4: The discretized convolution integral runs over a whole period. For a given
time ¢t = nAt the values for p predicted from this period is used fork = 1,...,n and
the values predicted in the previous period fork =n+1,... ,N — 1.

then (9.11) can be written as

P(@, AQ) yQ At + ¢k, — ar
—qr/AR+cr

Ag - Ag+ = HEAt 9.12)
This is a non-linear equation in Ag. Let z; = Ag, then the residual of (9.11) is given
by

(@ z0) yd At

+C
—qr/AR +cr

f(zs) =z +

where

Qins — 4R +
= — Ap - HF At
cr — qr/AR E
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Then

4 _ ., dwem)  vgAl
da:, dz; —qr/Ar+cgr -

Using these definitions z; can be estimated using Newton’s method, see e.g. Press,
Teukolsky, Vetterling and Flannery (1989) or Stoer and Bulirsch (1980). It solves
f(z;) = 0 by extending the tangent line at some current guess for the root z; until
it crosses zero. Then it sets the next guess z;1 to the abscissa of that zero-crossing,
Algebraically, the method is derived from the Taylor series expansion of the function
in the neighborhood of a point giving

AN -1
s =z~ (L) j(a ©13)

K3

The indices 1 refer to the number of iterations, and z is the independent variable. This
iteration is then continued until the error | f(z;) — f(zi-1)| < €. However, one should
note that this only works if df /dz; # 0 and if it is possible to come up with a good
initial guess zg. The latter is required because if the initial guess is to far from the root
one often ends up finding some other root. A good initial guess for this situation is the
value at the previous time-step, i.e. att = (n — 1)At.

9.2 The Lax-Wendroff method

In this section we will show how to solve the equations for the arterial tree using
Richtmeyer’s two-step version of the Lax-Wendroff explicit scheme (Peskin, 1976).
This is a second-order method, and it requires that the equations are in conservation
form, i.e. the equations in (8.15). Similar to the method of characteristics we need a
basic scheme dealing with the interior of each vessels, a scheme for the inflow, one for
the outflow, and one for the bifurcation conditions.

9.2.1 The interior

The solution at all points in the interior is determined by first determining some inter-
mediate values at steps (m + 1/2,n + 1/2) as shown in Figure 9.5.
From (8.15)

6<A> 9 ?
— + — q2 =
at\ ¢q Oz 74'+f\/A0A

0

27rr0 q df df dro
iR A (2‘/2 (ﬁf +‘/‘ZEE£) dro> iz

The non-dimensional version of the boundary and bifurcation conditions are identical
to the dimensional equations. Now, let the dependent variables be represented by the
vector U

U= (A’Q)y
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Figure 9.5: In order to determine the values of Q and A at n + 1, the intermediate
values defined in (9.17) must be determined first.

the system flux by R

2 2

A

and the right hand side of the equations by S

S=(5,5) = (O,—g;%-i (2\/_(\/—f+\/A_o > CZ{O) f;:)

The system of equations (7.16) may then be written as

g 0 :
5 U+ 5 R=S (9.15)

Let U7, = U(mAz,nAt) and similarly for R and S. Using a uniform grid, one can
derive a four point formula, predicting the flow at time-level (n + 1) as follows

n+1 __
UL =

n At +1/2 +1/2 At n+1/2 +1/2
Un — Az (RZL+1/2 - RZL-UZ) + 5 (Sm+1//2 + Snm_l//2) (9.16)

Using two intermediate points at time-level n + 1/2 it is possible to determine

+1/2 +1/2
R:2n+1/2 Snm+1/2
+1/2 +1/2
R:1—1/2 S?n—l/Z

using (9.14) and (9.15). This is done using the definition

n+1/2 _
16,3098 ;U?.l/z o (_R?ﬂ/'z ; Ricie |, Sinp ; S3‘1—1/2)(9.17)

forj=m+1/2andj=m—1/2.
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Figure 9.6: Left boundary: All variables are known at the points marked with a cross.
In order to determine the value of A7+, we apply the boundary condition for gg +1/2 o
the point marked with a square, and from this it is possible to determine an approximate
value at the ghost point marked with a circle. The latter is done by taking the average
of the point marked by a circle and the point (1/2,n + 1/2). The value of g5 *! can

then be found using this construction and the boundary condition.

9.2.2 Boundary conditions

All three conditions will be described in the following sections. The details for these
derivations will be left out here, but they are described in Appendix A.

Inflow boundary condition

The inflow into the aorta is described by the periodic function (8.2). Also in this case

A will be determined using the boundary condition for g. In order to find A we need to

evaluate q’_";/lz/ 2. 'This can be found by introducing a ghost point, see Figure 9.6. Then

+172 _ 1 apip2 +1/2
% = 3 (‘ﬁuz/ +q?/2/ ) Aad
Tt = 2T - gl (9.18)
and from (9.16)
Az +1/2 +1/2\ , At +1/2 +1/2
ap+t = A3 = 22 (BOTE7 - ROT) + 5 (077 + (50™0°)

where and (Sl)’f;/lgz are given by

(RO =q"13" and (S)7T12 =0

Outflow boundary condition

The convolution integral at the right boundary can be written as

T
q(MAz,t) = / p(MAz,t — 7)g(Mébz,T) dr
0
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Figure 9.7: Right boundary: All variables are known at the points marked with a cross.

In order to have enough equations to determine the values of Q and A at (M, n + 1),

we need to add a ghost point, marked with a circle, and use the boundary condition at

the point marked with a square. Similarly to the left boundary we determine the value

at the point marked with a circle by averaging the square point over this and the point
M —-1/2,n+1/2).

and discretized by

dhr = p(M, A%y) y3s At + (Gems) s

where the current time is t = nAt and

—k
(gtms)ir = Zp<n N IICVI t

Here N is the number of time-steps per period, and < - >y denotes the modulo oper-
ator, the range of which is the set {0,1,... , N — 1}. The sum contains the remaining
terms from this and the previous period depending on the value of &, see Figure 9.4.
Treating this boundary condition is a bit more tricky, since g(zps,t) is not known
explicitly, but only as a function of the unknown p (and hence A).

From the numerical scheme (9.16) we had

A= Ay = (RO = RUTEL) + 5 (S0 + (033
= Ay~ 22 (RFELE, — (RO ©.19)
since S; = 0, and
Gt = (9.20)
s~ 22 (B2, - (B2 + 5F (S5, + (50742
The unknowns in these equations are
an\?-l An+1

n+l/2  4n+1/2 +1/2  4n+1/2
R (qM+1/2’A7I:/I+1/2) 52 (q71\14+1/2"4’1:f+1/2)
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As for the left boundary, these can be determined by esfablishing a ghost point, see
Figure 9.7, such that ‘

n+1/2 n+1/2

Apr_172 H4

‘15\71/2 _ M 1/22 M+1/2 ©9.21)
ATHY2 L gnt1)2

AK/}H/Z _ M-y M+1/2 9.22)

2

These equations add two more unknowns, namely q"M+1/ 2 and A';;‘l/ % to the system.

Hence, two more equations are needed. These can be found using the boundary con-
dition at the time-levels n + 1/2 and n + 1.

S = p(M,A’;;”V") Y3 At + (qems) (9.23)
@t = p(m, ATFY) yly At + (gims) i (9.24)

The subscripts and superscripts are only mentioned if the respective variables depend
on the corresponding parameter. The six equations (9.19-9.24) have the unknowns

n+1 Ar]tx?-l qn+1/2

dpm M
n+1/2 n+1/2 n+1/2
Ay U1z Ay

The number of equations can be reduced by substituting (9.21) and (9.22) into (9.23).
Hence, (9.23) can be written as
n+1/2 n+1/2 An+1/2 + An+1/2

-2t Iasie M-1/2 M+1/2
2 =p| M,

5 Y At + (gems)y T 929)

Thus, the four equations to be solved are (9.19), (9.20), (9.24), and (9.25), and the
unknowns are

_ n+1)2 - _ an+l/2

i = dyvyy2 Ty = Ayl
n+1 1
T3 = qp Ty = Ay

The residual equations f(z;) for i = 1...4 and the Jacobian Df(x) are derived in
detail in Appendix A. As for the method of characteristics it is possible to find 1 — z4
using Newton’s method. From (9.13) we had the following first-order accurate scheme

xip1 = x; — (DE(x)) " f(x;), =0,1,2,3,... (9.26)

where the indices i refer to the number of iterations, and x = (z1,Z2,Z3,%4). AS
before, this method only applies if the Jacobian of Df(xp) is nonsingular and if a
good initial guess for xo can be found. In this case an obvious initial guess is

(z1)o = dm (x2)0 = Al

(z3)o = q}\";“_l{}"z (4o = A;f_l{?z
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Bifurcation conditions

At the bifurcations there are an outflow (right) boundary for the parent vessel and an
inflow (left) boundary for the daughter vessels. The prediction of g and A are still
given as stated in (7.16). But in this case :"M :{?2 and :’;}:{22, E being either R or
S, originating from the daughter and parent vessels, respectively, can not be estimated.
As for the left and right boundary conditions we introduce ghost points in order to
get these estimates, see Flgures 9.6 and 9.7. Using the ghost points, (q(‘))"“/ ? and

(A2 "where i = p,dy, dy, can be found by linear averaging as in (9.21) and
(9.22).

The bifurcation conditions, at time-level n + 1 /2andn + 1, leads to the followmg
equations. The conservation of flow gives

(q(p)); _ (q(dl))fw - (q(dz)); 9.27)
and the assumption of continuous pressure across the bifurcation gives
B = 6= (6,

where j = n+1/2,n + 1. These can be written in terms of A using the state equation
(7.26).

AP _ A(d,-))
(F®) e (1_ (_,i(ﬁ);)}ﬂ{/_?) = (f4)),, (1—,’#)(9.29)

and
) ()
(#) _ | (Ao )M (@) _ | AT )M
(fP)m | 1 (G (f ) | 1 (AT (9.30)

where ¢ = dj,dy and f(rg) = 4Eh/(3r). Assuming that i = p,d;,dy then the
numerical scheme in (9.17), written out for g and A, gives

i ; Az 2\t A\ el
@ = @+ = ((R&”)M:% + (R&”)Mi) + 931
At (1 6) @\"+3
2 ((S ) Y (32 ) M-t (9.32)

and

. i Az )\ " +3 D\t
o = e 3 ((RO)+ (RO)]) o

because S; = 0. In case of a bifurcation we then have the following unknowns in the
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system of equations

2= @ oz o= @ m o= (@)
zqg = (g zs = (q@)3? 6 = (¢
2= @O e = @Y w o= @@L
s = (AP oz o= (AP g, = (AR
z13 = (Al T4 = (A(dl))z\l/}*—l/z s = (A(dl))y—l{%
me = (A9 o o= AN o = (AP0

Equations (9.21, 9.22, 9.27-9.33) comprise a system of eighteen non-linear equations
in the variables listed above. The detailed derivation of the corresponding residual
equations f,(z;) for i = .18 and the Jacobian Dfr(xg) can be found in Ap-
pendix A. Also in this case we solve the equatlons using Newton’s method. From
(9.26) we had

Xi11 = X; — (Dfe(x:)) 1 e(x:), §=0,1,2,3,...

where the indices i refer to the number of iterations, and x = (z1,z3,23,... ,Z18).
As mentioned before, this method only applies if the Jacobian Df,(xg) is nonsingular,
and if it is possible to find good initial approximations for xg.

It should, however, be noted that this system of equations can be split into a linear
part which can be solved analytically and a much smaller non-linear part which should
be solved numerically. This has not been done for the present work but it would be an
obvious simplification.

9.3 Convergence of the two methods

In order to test the convergence of the two methods we conduct the following experi-
ment. Let

g=A=z+t+1

Then equations (8.15) can be satisfied if their right hand sides and boundary conditions
are modified accordingly. This gives

0A 49 dq
ot ' or

9 8 (&) . o0 _ (Ao
§+31:(A)+A3$ = 247 A
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or on conservation form (8.15)

_B_(A)+£_ 2 ? —
ot \ ¢ oz qz+f\/A0A B
2

e (n (e i) 4)

where p is given using the state equation in (7.26), f(ro) = 4Eh/(3rp), and Ay = 773

as described in Chapter 7. For both systems the corresponding boundary conditions
are given by

A0,t) = q(0,8) =t+1
AL,t) = q(Lit)=t+2

and the initial condition is
A(z,0) =q(z,0) =z +1

In these experiments we have used the infinity norm to determine the rate of conver-
gence. Let U denote the approximate computed solution, and u the exact solution.
Furthermore, let the interval [0; 1] be divided into M intervals. Hence, Az = 1/M.

Assume that |U — ul|e is O (Az™). Then

n
U -l < cAa:"zc(—j?) &

log (JU —u||ec) = logc—nlogM

where c is some positive constant. The order of convergence n can then be read of
the graphs as the negative slope of log||U — ul| plotted as a function of log M.
Furthermore, the constant ¢ can be determined from the intersection of the graph with
the line log M = 1. As shown in Figure 9.8, n = 1 for the method of characteristics,
and n = 2 asymptotically for the Lax-Wendroff method. These are the expected values
because the method of characteristics is a first-order method and the Lax-Wendroff
method is a second-order method.
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-13

1.5 3 4.5

Figure 9.8: The figure shows a plot of log ||U —u/|c (the y-axis) as a function of log M
(the z-axis) for both the Lax-Wendroff method and the method of characteristics. From
this plot one gets that the convergence rate (n) for the Lax-Wendroff method is n = 2
and log ¢ &~ —4.5, and that n ~ 1 and log ¢ & —3 for the method of characteristics.







Chapter 10

Fluid dynamical model of a small
artery

In this chapter we present the system of equations describing flow and pressure in the
smaller arteries. It consists of a continuity equation and an z-momentum equation.
They are derived by combining the axisymmetric Navier-Stokes equations for flow in
an elastic cylinder with a wall-equation balancing the forces of the elastic wall with
those acting on the fluid inside.

In Chapters 7 and 8 we derived a similar model of the larger arteries. This model
can, however, not be used for the smaller arteries. First, because solving a non-linear
model for such a large tree is not computationally feasible, (see Section 6.2) and sec-
ond, because it does not model the wall shear stresses in a satisfactory way. Therefore,
we need a model which is simpler in some respects, but which at the same time models
the boundary layer in more detail. :

A good way to simplify the model is to linearize it. A direct linearization of the
non-linear equations will, however, not be adequate. In the model of the larger arteries
the wall shear stress was accounted for in the same approximate way by assuming a
given velocity profile. This gave rise to a friction term on the right hand side of the
equation, see Section 7.1. In this case we include the viscosity in the derivations and
do not simplify them until very late in the approximations. This is important since the
wall shear stress is more dominant in the smaller arteries and thus cannot be dealt with
in the approximate way. We have decided to base our study on the linear model by
Womersley (1957). This is rather comprehensive, and hence we give a rather detailed
description of the derivations. Since Womersley originally derived his model a number
of papers have been elaborating on it. Especially thorough treatments are presented in
Atabek and Lew (1966), Atabek (1968), Pedley (1980), Lighthill (1989), and more
recently by Berger (1993).

In Sections 10.1-10.6 we derive the equations for flow and pressure and in Sec-
tions 10.7-10.10 we solve the equations analytically and find the impedance at the
root of the vessel. The derivation in this chapter is primarily based on Atabek and Lew

(1966), Atabek (1968), and Pedley (1980). Sections 10.1-10.7 are very technical and -

the reader may wish to jump directly to Section 10.8 where the simplified momentum
equation is described.
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10.1 Model assumptions and basic equations

An artery is essentially an elastic vessel filled with fluid that interacts with the vessel
walls. Thus, the mathematical model of the smaller arteries can be established by three
equations, describing:

e The motion of the fluid.
e The motion of the vessel walls:
o The interaction between the fluid and the walls.

Except for the modeling of the boundary layers we let the assumptions for the smaller
arteries match those used for the larger arteries. However, in our attempt to simplify
the model we neglect the assumption of tapering vessels, i.e. the vessel radius is no
longer dependent on z. Hence, p is a function of A only. Moreover, we assume that
the fluid is Newtonian and incompressible.

10.2 Motion of the fluid

The fluid dynamic equations are derived using cylindrical coordinates (r, z,6). We
assume that the flow is axisymmetric (no dependence on #) and also without swirl
(no theta component). Hence, the velocity in the radial and longitudinal directions
are given by u = [u(r, z,t), w(r, z,t)], and the pressure by p(r, z,t). Furthermore,
we assume that no body forces are acting on the system. Hence, the Navier-Stokes
equations take the form

du  Ou du  18p u 10u %u  wu

a*“gwa—‘m“(éﬁ*m w-r—z) (10.1)

ow ow Oow  10p Pw 10w 0w

a+“57+w5;—‘;5;+”(w+;5 5;2) (10:2)
19 ow

10.3 Motion of the vessel walls

Since the vessel wall is elastic it will be deformed as the pulse-wave travels along it.
These deformations are balanced by the external strain and the corresponding internal
elastic stresses.

The movement of the vessel wall can be described by balancing the internal and
external forces on a surface element of the vessel wall in its deformed state. It is
convenient to change the variables to a coordinate system connected to the surface of
the vessel. This is shown in Figure 10.1. Let H be any vector pointing to the middle
surface shown in Figure 10.1, then

H=zi+ R?
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v | |
f H 0
L/ Y

iwi

Figure 10.1: The original (r, z, ) and the new (n, t,8) coordinates.

where Z and 7 are the unit vectors in the cylindrical coordinate system in the longitu-
dinal and radial directions, respectively, and R(z,t) is radius of the vessel. The new
coordinates (n,t,8) can be determined from H.

By the assumption of axial symmetry all equations can be expressed in terms of #
and #. The unit vector £ is given by

. Y 349y i+ 8¢
T (R P 2172 (10.4)
oz z Bzrl [1.{.(?_%)
and
N R -
T— 52T
A = 0z (10.5)

because # and £ are orthogonal. Equations for motion of the vessel are derived by
balancing the internal and external forces on an infinitesimal surface element of the
vessel wall. This is described in the following sections.

10.3.1 Internal forces

The internal forces on an infinitesimal surface element (dxz x df) are composed of
three components; a force N across the vessel wall, a shearing force S on the sides
of the element, and a force T normal to each of the edges, see Figure 10.2. Most of
these components are zero The vessel wall is thin so any variation in the force across
the wall can be neglected, i.e. V; = Ny = 0, and the flow is axisymmetric. Hence, no
shearing force will be acting on the side of the element, i.e. S; = Sy = 0. The only
forces left are T; and Ty, the normal forces to each of the edges, see Figure 10.3.

10.3.2 External forces

The internal forces must be balanced by external forces acting on the element. If these
are denoted by P they are given by

P = Pi+ P,n (10.6)
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Figure 10.2: The forces on an infinitesimal surface element. N is the force acting
across the vessel wall, S is the shearing force acting on the side of the element, and
T is the force acting normal to each of the edges. The subscripts ¢ and € indicate the
direction according to the coordinate system following the surface of the vessel and
the superscript  indicate that the force is acting in the negative direction.

T

Figure 10.3: In case of an axisymmetric vessel with thin walls the only internal forces
on any infinitesimal surface element are the forces normal to each of the edges.
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in the (n, t,0) coordinate system. Since the system is axisymmetric and without swirl
there is no dependence on 8 or components in the 8 direction.

The forces can be split into three groups; the inertia forces, the tethering forces,
and the surface forces. In the following sections, these will be analyzed separately.

Inertia forces

Let &(r, z,t) and (r, z, t) be the longitudinal and radial displacement of the wall. The
inertia force per unit area (Atabek and Lew, 1966) is then given by

32
—poh ( at§ at2 ) (10.7)

where pg is the density of the wall and A is the thickness of the wall (because of the
thin wall approximation A must be small compared with the vessel radius). We assume
that both py and A are constant along any vessel of a given radius.

Tethering forces

As mentioned previously, the arteries in the human body do not move freely because
- they are tethered to the surrounding tissue. Therefore, the motion of the arterial wall
can be considered as an interaction between two viscoelastic media; the vessel wall
and the surrounding tissue. However, as we also discussed earlier, modeling the ex-
act viscoelastic behavior is rather complicated. Therefore, it is assumed (according to
Atabek, 1968) that the tethering force Tr,. can be modeled using a simple mechani-
cal model consisting of a spring, a dash-pot and some lumped additional mass. The
tethering force (per unit area) acting in the radial and longitudinal directions is

Tr, = (10.8)

82«;’ o¢ ) 9%n an
- [(M wgg + Lo +Kx§)z+ (M a2 Tl +K,n) ]

where K; and L;, 1 = z, r, are the spring and the frictional coefficients of the dash-pot
in the ith direction, and M, is the additional mass of the system. This is assumed to
be the same in both directions.

Since both inertia and tethering forces act in the same direction it iS convenient
to add them before projecting the forces in the normal and tangential directions. The
resultant force is given by

Try,,, = ' (10.9)

9? 0 0 0 .
- [<M°ET§+L ai-{-K é) (Moat;’+Lr£+Krn) T]

where

Mo = M, + poh
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Solving (10.4) and (10.5) for £ and 7 gives

(10.10)

Inserting these solutions in (10.9) gives the resultant inertia and tethering force in the
tangential and normal directions, respectively

: OR
TFTres.t [1-*_(333) ]

1/2

0% § 8n on OR
[M°6t2 + L, 2% + K, £+(Mgat2 +Lrat+K,n> Bz] (10.11)
and
-1/2
L OR
Try,,, 7 = [1+(Bz>]

8% % BR &n Bn

Surface forces

The surface force is a result of the fluids interaction with the vessel wall. If the stress
tensor of the fluid is given by T, then the interaction with the inner vessel wall (i.e. at
r = R—h/2 = a)is given by —Tr - 1. Assume that the stress tensor can be separated
into the radial and longitudinal directions such that

(=Tp-n)-t, (-Tp-7)-n (10.13)

As seen in Chapter 7 the surface stress tensor for incompressible flow is given by
Ockendon and Ockendon (1995)

Qu; | Ou;
gij = “péz] +u 3 81:
i

In cylindrical coordinates the surface stress tensor becomes
TR T
Tp = Trr Tz P hor ar ' 8z
TT:E TZL‘.‘E

(6w+6u) 42 Ow
ar L

S

(10.14)
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Using (10.5) and (10.14)

~Tr-h = {”(gf) }

-1/2
7 2] [
Ty Tis a —%

-1/2
OR OR OR
= [1+ (82‘) ] [_Trr+Trx 5;7—T7‘.’L‘+sz _a_EL
Thus, the fluid stress in the 7 and ¢ directions can be found as
(-=Tf-7)-1 |
- -1
oR\?] OR AR] [ 2B
= — oz
L1+(az) [ TTT+TT$6 TTI+TZ$B ] [ 1 ]
 /ar\?] oR oR\?
= Ll + (am) [(sz - Trr)'é; + Tr:c <<-3_m) - 1):] ] (10‘15)
and
(—TF-7)- -7
1-1
AR\ 2 dR &R 1
.= |:1+ (b’;) [—Trr +Tr:ca s Tr$+Tzz%:|a|: _%% ]
ar\?2]™ oR OR\?
— lil -+ (-é;) 2Tr$ —é—m— - Trr - Tzz (a) ) (1016)
Total external forces

The total external force can now be found by adding the inertia and tethering forces
(10.11) and (10.12) as well as the surface forces (10.15) and (10.16). Equation (10.6)
gives
P =Pi+Piv= ((-Tr 7)) +Try,,,) i+ ((-TF - 7) + Try,,,) - 0
The tangential component is
I z

| [(Tm - Trr)g—f + T ((%—?)2 - 1)} -

-1/2

2]
14+ <3R) (10.17)

oz

8% )3 82n an AR
Moat2 + Lo+ Ko+ <M062 + Lo + Kn) %]
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T(z + dz) R(z + dz) df

Figure 10.4: A volume element and its internal (T;) and external (P;) forces.

and the normal component is

i 21! 2
P, = |1+ (B_Ri) 2T, oR _ Tpp — Tox (Q‘E) +
] Oz ] Oz oz .
r 97 -1/2
OR
1+ (—a-;) (10.18)
026402 g OB (1, on
\Moge Thagy +Kal ) 5y — (Mo +Lrgy + Ko

10.3.3 Balancing internal and external forces

Equation (10.6) gives the total load on the system. When a wave is propagated along a
vessel it will dilate. Hence, the surface will look as shown in Figure 10.4. Considering
this surface we can derive the equilibrium equations. As for the external forces the
balancing of internal and external forces will be carried out in two parts; one for the
tangential contributions and one for the normal contributions.

Balancing tangential components of the internal and external forces

The area of the surface in Figure 10.4 is given by Rdf dzy/1 + (OR/0x)? and the
tangential part of the external strain P; is given by

ar\?]"*

2
Py, = RdBdx [1 + (—) :I P,
dz
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This is pointing in the direction of the normal to the surface. Hence, the pressure
load on any given volume element is given by — Pez¢. This should be balanced by the
internal stress over the surface element projected on the tangential direction. Thus, the
stress over the surface in the tangential direction is given by

Tian, = —Ti(z)R(z)d0 + Ti(z + dz)R(z + dz)db
0
= EE(T}R) dz df

if the last equality is approximated using a first order Taylor expansion for T;(z +
dz)R(z + dz).

Furthermore, the stress from the radial tension also contributes. As seen on the
right side of the surface element in Figure 10.4 the radial tension Ty gives contributions
both in the tangential and radial directions. Of course, since we have axial symmetry,
the net tension around the vessel at any location is zero. The part of Ty pointing
backwards in the tangential direction is given by

ar\T]?
Tian, = -Tpdz |1+ (E) cos(m/2 — v)
ORrR\%|"'" R 8R
= —Tg de |1+ <—a;) J E [1 -+ (a) de
= —Tod.:z‘dﬁg-fE
- oz

where v is defined as shown in Figure 10.4. Balancing Tian, and Tian, with Ping and
dividing by dx df gives

27 1/2
_‘;_ng+ %(RTt)-i—R [1 + <%§) } P=0 (10.19) .

Balancing normal components of the internal and external forces
The balancing of the normal internal stresses with the normal external strain gives
TgK‘,a -+ Tt Kt

where k;, i = 6,t, is the curvature in the 7 direction. As seen in Figure 10.5, the
curvature in the longitudinal direction is given by

__®R| (0R\?
"6 = " 5z2 9z

and in the angular direction by

—3/2



102 Fluid dynamical model of a small artery
A 1
dz (1+(2)")°

\ dz

Figure 10.5: The curvature of the vessel. The longitudinal curvature (in A) is given by

-3/2
kg = (0?°R/0z?) (1 + (82R/83:2)2) / and the tangential curvature normal to the

. L. 2 -1/2
surface (in B) is given by ¢ = (1/R) (1 + (OR/0x) ) .

Hence, the balancing equation becomes

Toks +Tikg — P, =0 &

T, ar\?| ™ om ar\?]7*
0 ——
5l l:l + (63:) ] Ttami’ [1 + (_8;:_) } P,=0 (10.20)
Inserting (10.17) and (10.18) in (10.19) and (10.20) gives
OR
9% 23 a &*n an oR

-1/2

R[u(‘;f” [(Tu ")%?wm((%f)z—l)}a:o (1021)

o[, (2R _per [, (RN, oy
R 8z el or Bz
5%¢ o¢ OoR & 87)
((M" g T Lo T e 5) 3z (M" a2 Tle t K’"))
8R dR OR\?
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10.4 Elasticity Relations

The purpose of this section is to set up stress-strain relations such that the stress com-
ponents T; can be related to the displacements of the wall (§,7). These are measured
from some reference state, but still in the situation where the vessel is placed inside
the body. The reason is that a loose piece of artery (unstressed) requires very large de-
formations to be brought to its original stressed state. This gives some problems since
the general theory of elasticity only applies for small deformations, see e.g. Landau
and Lifshitz (1986). These problems can be avoided by making the derivations depart
from some initial stressed state, i.e. not going all the way back to the initial unstressed
state of the material. Hence, it is assumed that when a wave moves along the artery
then it only undergoes small deformations from its reference state. The initial state is
chosen to be the state where the transmural pressure of the artery is zero. Furthermore,
it is assumed that it is adequate to apply a linear relation between stress and strain.

Let the reference state of the stresses in the longitudinal and circumferential direc-
tions be denoted by T3, and Tp,. Then the following relations can be obtained

Egh

To-To = ;—o— z_ - (e + 9062) (10.23)
E;h

Tt — Tto 1—#00_2; (62 + O'IGT) (1024)

where E;, i = 6, t, is Young’s modulus in the ith direction, £ is the wall with thickness,
a;, 1 = 0,t is the Poisson ratio in the sth direction, and ¢;, 1 = 6,1, is the displace-
ment relative to the reference state, see e.g. Landau and Lifshitz (1986). The relative
circumferential displacement is given by

&=z

and in the longitudinal direction it is
9
*7 dz

10.5 Balancing fluid and wall motions

Boundary conditions linking the velocity of the wall to the velocity of the fluid remains
to be specified. Assume that the fluid particles are at rest at the wall. Hence,

_ on

[ur=a = 5t | (10.25)
_ %

[Wlr=e = 5 (10.26)

Furthermore, assume that the component of the fluid velocity normal to the wall is
equal to the normal velocity of the inner surface of the vessel. Hence, the normal
velocity of the wall, i.e. ata = R — h/2, is given by

d h
a—t(T—R'f"z—)——O =4

or_OR_

[U]r=a - [w]r=a6-z' - ot
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10.6 Linearization

In principle the right number of equations and boundary conditions are present. How-
ever, in their present form they are too complicated to solve analytically, and as dis-
cussed earlier, the purpose was to set up a simple system of equations for the smaller
arteries. Therefore, following Atabek and Lew (1966) we have chosen to linearize
them. : :
The linearization is based on expansion of the dependent variables, in power series
of a small parameter ¢, around a known solution. This is defined by a situation where
the fluid is at rest and the vessel is inflated and stretched. Furthermore, if € = 0 then
all dependent variables give the known solution. ' i

U1€+U2€2+...

w16+w262+...
= po+pie+pre+...
fre+ Eae® + ...
7]1€+77262+...
Ro+ Rie+ Roe® + ...
Ty = Ty + To,e+Toe2 +...
Tio + Tiye + Tipe? + ...
Tory + Torye+ Trr2€2 +...
Tpx = Tipzy+ Tige+ Tmze2 +...
Trz = Trge+ Trgpe® +... (10.27)
where po, Ry, Tj,, T, are constants defining the reference state at zero transmural
pressure. Let f(r, z,t) be either of the functions in (10.27). In order to accomplish the

linearization the f(r,z,t) must be evaluated at r = @ = R — h/2. The power series
expansion together with Taylor series expansion to first order yield

f(’l”,.’L‘,t) = f(a,x,t)+f'(a,a:,t)(r—a)
= fole,z,t) + kfy(a,z,t) +
€ ([f1(a,z,t) — R1fj(a, z,t) + kfi(a, =, t)) (10.28)

where k = r— Rg+h/2. Using (10.27) and (10.28), the zeroth and first order equations
can be obtained by assembling terms to the respective powers of € of the non-linear
equations (10.1), (10.2), (10.3), (10.21), and (10.22).

VN s & @
l |

2
I i

10.6.1 Terms of zeroth order approximations

From the fluid equations (10.1), (10.2), and (10.3) only the pressure terms contributes
since the expansions for » and w has no zero-order terms. Hence,

Opo _ Opo _
or -0 g 0
From the shell equations only (10.22) contributes, namely
T,
i} —po=0 (10.29)

Ry
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10.6.2 Terms of first order approximations

In this case all equations give some contributions. The momentum equations (10.1)
and (10.2) gives

Bul _ 1 8p1 82u1 1 3U1 32u1, Uy
B8t por g ( a2 Trer T e T ;'—2_) (10.30)
Bw1 _ 1 3p1 62w1 1 8w1 82w1
ot~ poz ”( % T T e ) (10.31)
and the continuity equation (10.3) gives
10 6w1 _ .
;57-:(7’"11:1) + Bz 0 (10.32)

Expansion of the shell equation (10.21) to first order yields
O(Rie) | O((Ro+ Ri)(Ty, +Tyi€))
+ _—
oz oz

2
(Ro + Rie) (Moa (,()f;e)

(Moaz(mf) +LT3(771€) K 1716) 3(R;€)) +

— (T, + Tpy¢€)

ot? ot T

(Ro + Rqe) [1 + (9(———

O(Ry e d(Rie)\*
l:(T-’CxO + Tozi€ — Trrg — Trri€) (a; ) + (Trao + Trzy€) ((‘%?) - 1>:| =~

The first order terms are

3R 0
—-Too—a-ml + 8—$(R0Tt1 +R1Tto) -
0%¢ 0 »
Ry (Mo-at—21+Lz'(%+Kx§1> — Ro[Trz,), =0 | <
9? ) 8T, Ty — Ty, OR ) )
Mo atil LI ail + K = a; + toRO 8o 6; ““["{9%““3%’] (10.33)

where the first order approximation of (10.14) is inserted for the surface stresses. We
do not get any contributions from the terms involving Ty, and T, since the zeroth
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order terms cancel. Equation (10.22) gives

-1/2 ' 97-3/2
T, + To, € 8(Rie) > _ 8%(Ry€) &(Rye)
Ro + Rie 1+ ( oz (Tt +Tue) 72— |1+ (5, -
-1/2
B(Rie)\” ( e |, e d(Rie)
[1+( 2 ) M, 542 + L, pon + K &€ o
8° a(
| (Mo g;?zle) + L, (gze) +K7-771€)) —
8(R1e)\2] " [ 8(Rue) 8(Rie)\?
!:1 + (—'a?—) } l:z o1 Trz € — Trrg — Trrie+ ( oz > (szo + Ta:mlf)
where the first term can be approximated by
~-1/2
Too +Tore | (3(R1e))2 / . Tp +Tpe
Ro + Re Bz Ro (1+ &2¢)
Dutlhe (i B o Ty (Tog,B)
Ry 1 ROE = Ry + Ro Ts, Rg €

Using this, the following first order approximations can be obtained

*m om
MO 6_t2 + Lr —B_t + Kr"]l =
To, R, &R, Ouy
— Ro + T90 Rg + Tto BIL‘Z + y 2“ r . (10'34)

where again the first order approximation of (10.14) is inserted for the stress exerted
on the wall.

Assuming that the first order perturbations (indexed with 1) are small enough to
neglect the second order perturbations, then e can be incorporated in the dependent
variables and we can set it to 1. For any (z,t) the first order Taylor expansion of
R(z + &,t) gives

R(s+6,8) = R(z,1) + 906 = Ro +1

as seen in Figure 10.6. The corresponding first-order expansion of R is given by
R(z,t) = Ry + Rie + O(e%) = Ry + me + O(€?)

since 7 has no zeroth order term. Furthermore, Ry is approximated by the inner radius
a = Ry — h/2, but, since the walls are assumed to be thin compared with the vessel
radius i.e. b < a, the error is negligible. Finally, the indices 1 are dropped and the
definitions in (10.23) and (10.24) are used for T, and T3,. The linearized equations
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(zt)  (z+&,1)

Figure 10.6: Estimation of R(z + £, t) using the definitions of £ and 7.

can then be obtained from their first order approximations, i.e. (10.33) and (10.34)
becomes

Mo%;%+Lz%§‘+Kl§=
Mogg+Lr%¥+Krn=

10.7 Solution of the linearized equations

Equations (10.30), (10.31), and (10.32) for the fluid motion must be solved first be-
cause the equations for the wall motion (10.35) and (10.36) couple to the fluid equa-
tions. Propagation of blood flow and pressure in human arteries is periodic and hence
the solutions can be constructed from simple harmonic functions, i.e. u, w, p, £, and
71 can be written as propagating waves harmonic in both z and £. Therefore, we seek
solutions of the form

u(r,z,t) = up(r) erlt=2/c)

w(r,z,t) = w(r)ewrt=2/9

p(r,z,t) = po(r) ewst==/9) | (10.37)
E(z,t) = & ewrlt=z/0

n(z,t) = np ewrt=z/o

where wy = 27k/T is the angular frequency. More general solutions can be found
by superposition of solutions of this form (Whitham, 1974). Inserting these in (10.30-
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10.32) for each w = wy, gives

1 dpr

d%u, lddr 202

WU = — il 20U VWU  Ur
Wl = p dr +V(dr2 Y c? 7'2)
_iwp, dw, ldw, % w,
wir = +U( dr? + r dr c2

1d (upr) = Wwwy
rdr "’ ¢

Let Bp = iaw/c, w2 = i%a®w/v be dimensionless parameters. Multiplying the equa-
tions above by a?/v and use y = r/a then give the following inhomogeneous Bessel

equations
adp, d?u, | ldu, o 2 Uy
ndy R Ty dy + (wp + Gy) ur — = (10.38)
R,BO _ dzwr 1 d’w,- 2 2
L Pr= a7 + oy + (wg + Bg) wr (10.39)
—l-d(uy)—-ﬁw =0 (10.40)
y dy a oWy .
The solutions to the corresponding homogeneous equations are
Ji (ﬁ VWy+ ﬁo)
U )
" ¢ Jo(Wo)
% (5 i ﬁo) 10.41)
Wy = W .
i © Jo(wo) (
The divergence of (10.31) gives
1d ( & d?
=22 ()L 2P
v’y rdr (rdr) dz? 0 =
d’p, ldp S
a2 T T =0
which has the solution
T
pr = p1Jo (—%—) (10.42)
Assume that the particular solution has the form
U = ugJy (é&t) (10.43)
w o= wedo (@f) (10.44)
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Inserting (10.42) together with (10.43) and (10.44) in (10.38) and (10.39), and using
(10.40) to determine the constants gives the following solutions

— _apc,BO @1 _Ap_c_ﬁo_ r
T [ w7 ( a ) AT (a\/W5+ﬂ3)] (10.45)
- apcﬂo Bor m
T [ ww5 “uwg ( a )+ woJo(wo) Jo ( m)] (10.46)

Pr = pedo <ﬂ°r>

where Jo(z) and J; (z) denote the zeroth and first order Bessel functions and A and
p. are the integration constants. wg and 3 are dimensionless parameters given by

2
2 _ 30°W 3 9

Wy =1"— = 1°w

0 v
where w is the Womersley number. Furthermore, assume that A = A/(cop), where co
is the Moens-Korteweg wave propagation velocity. However, we will reuse the letter
A in order to avoid writing the tildes. Inserting the expressions above for u, w, p, and

A into the boundary conditions (10.25) and (10.26) gives

Ap.fo ! (V Wo +ﬂ0)

apc ,30 ) =
J (Bo) + . cop wodo(wo) wm =0
apcﬁo Jo(Bo) + Apev/Wo + By JO(” w0+ﬁ0) ~iwé =0
w2 cop wodo(wo)

The system has four unknowns p., A, &;, and 7;. Therefore, two more equations are
needed. They stem from the equations for motion of the wall (10.35) and (10.36).
Expanding £ and 7 as in (10.37) and using u, and w, from (10.45) and (10.46) gives

pe [Jowo) —‘% (Jo(Bo) - sza))]

Apcﬂouvw + 8 / /
acpp WOJ?)(WO;J[ ( w%+ﬂ§)—J2( wg+ﬂ§)]+

" [Ttoﬂo +To —Bu <M0 _ 2% - &)] + %52_1.[’_0 =0 (1047

a? w?
2pc 32 A w2 + 32 B + Ty, — T,
288 gy o) + SR OB 5, (i gg) - Bt T T mbh
0
2 L o
£ [%ﬂ—" + w? (Mo - zf - %)] =0 (10.48)
where
h
By = Ee Bgo = Eah
1—-o0.09 1—o0z09
By, = Egho, By = E hog
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These provide the last two equations for the four unknowns &;, 7, p. and A. They are

kd

however, still too complicated but they can be simplified using a long-wave approxi-

mation. This rest on the assumption

6ol = || « 1

Hence,
Jo(ﬂo) ~ 1
N(Bo) = %
2
B = 2
wi+ By = wp

which gives

2
Pe (_ aby . AﬂoFJ> iy =

2uwl  2cop
aﬁo .
— | —w& =0
pc( »U'Wo COP) &1
A B
pe - Apepfo Apctboy gy 12ﬂ0§1
acop
Ti, 52 + Ty, — B L K
771[ 155 +a200 1, 2 (Mo_i:}__u_)_;;)] —
Py + ApcpwiFr  (Bar + T — Tpy) fom +
w2 2acyp a?
0
2 K
& [———B”f“ + w? (Mo _ils _;)} =0
a w w

where the recursion formula
Jnt1(z) = ?Jn(m) - Jn—l(-'l’)

and

2J3(wo)

Fy = 22\%0)
/ woJo (W)

(10.49)

(10.50)

(10.51)

(10.52)

have been used. Equations (10.49-10.52) comprise a complete system for the vari-
ables p., Ap./(cop), m, and &. They have non-trivial solutions if the determinant
is zero. Computing the determinant gives in fact an equation which has the complex

propagation velocity as the only unknown. The determinant is given by
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a 53 BoFy :
—5owI e 5 —iw 0

— a8 1 0 —iw

HWg
2 _ (10.53)
1 - Fy) ToftthTPugy 2gr Bube
3 2 Boy +Tsn— 2
_gv% H“;QaFJ _(Bart e:z To,)B0 B??ﬂo +w2K;

where K! = My — iL,/w — K, /w? and K, = My — iL;/w — K;/w?. In order to
simplify (10.53) we analyze the magnitude of the terms in order to neglect the smaller
ones and perform a number of row/column operations on the determinant.

First, it should be noted that T3, 32 /a? is much smaller than the other parts, which
are of order one. Hence, this can be neglected. Second, w3 = i®w? and By = i3 are
expanded and the following operations are performed:

1. Multiply the first column by zw?/(Ba), the third column by 3/w, and the fourth
column by 7/w.

2. Multiply the second row by 1/(i3), the third row by Ba/(uw?), and the fourth
row by ia/p.

3. Replace the second row by the first row minus twice the second row, and the
third row by the first row minus the third row.

Thus, the determinant becomes

1 1 0 1
0 1-Fy 2 ' 1
- 22 -F T, —B 2 2 71 2 (1054)
0 1+ TR BuTt el 1+ B8
_1322. W2F; (B21+T1,+ Ty )52 Bye3%  waK]
2 . awy aw s 73

A further analysis of the magnitude of the terms yields that 1 + §%(2 — Fy)/w? ~
1. Expanding the determinant after first column gives two sub-determinants with the
same order of magnitude. Hence, the one arising from —i3? can be neglected. The
remaining sub-determinant is

1-Fy 2 1
Ty—~B 2 2K! 2
1 ¢ fu‘m&;:}ﬂ _W:’szwr 1+&%;2'\%f =0 (10.55)

W2F; (B21+Ti-+T5) 52 By2f? _ waKy

2 awp awp ©
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Let
) By — Ty, B. = By
11 acgp 12 acgp
By, + Ty, — T Boo
By = c2° ° By = 2
acgp acg§p
2 . 2
wa 1L K, wa
K’ = —F —M == = K, = - M
i p%(°+w+ﬂ - e

iLy

K,
+-w—2')

where K| and K7 have been redefined. Inserting these and expanding w? = ¢%w/v, 7

B = aw/c gives
1-Fy 2 1
1 (K?BL+K;) 1+#)By | _ 0

F

7" (k')?By, (K')*Bj, t a2 K CO

where k' = ¢g/c and p = p/v. Thus, the resulting determinant is
(k) (1 = Fy) [By(Biy + K;) — BioBy] +

4 +KI

(10.56)

02 [P (Bta+ By — P Ee ) —omp, 4 sty + )1 - £ +

FJ+ 260 K"'O

(10.57)

This is the dispersion relation for the waves and it is is equivalent to the result obtained

by Pedley (1980).

The original equations can be simplified by neglecting the terms corresponding to
the simplifications that led to (10.55). This gives the following system of equations,

which can also be found in Pedley (1980).

Ba  AF;\ .
De ( 2w + 200p iwn; =0
Boa A ) .
—8 L L) g =0
pc( “wg cop 51
Do+ Too — Bu (Mow? — iLow — K,)| Buabol1 _
a? T a2

Ap.uwiFy _ (Bar + Ty, — T )Bom +
2acyp a?

Bap 32 )
[ fzﬂo + (Mow? — iLyw — sz2)] £ =
Generally k' is a complex number

2 = Ko+ ikl

(10.58)

(10.59)

(10.60)

(10.61)
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Giving
exp (iw(t — z/c)) = exp (iw(t — zk],/co)) exp (—zwkin,/co) (10.62)

The real part of the wave propagation can be written as

<o

!
"

w
k
where k is the wave number. Hence, (10.62) becomes

exp (iw(t — z/c)) = exp (iw(t — zk}./co)) exp (~27klz/(Mkpe))

where A = 27 /k is the wavelength. The last exponential represents the transmission
per wavelength. The fourth order equation (10.57) gives two solutions for (k')2, but
only one of them represents the pressure wave. If z > 0 the solutions represent the
outgoing waves, and if z < 0 the solutions represent the incoming waves. Since we
want to study the waves propagating distally (from the heart towards the peripheral
vessels) we will only consider the solutions representing the outgoing waves.

In any case the solutions depends on w, the Womersley number, through F;. The
ratio of the vessel radius to the thickness of the oscillating Stokes boundary layer is
proportional to w. If w is large, the boundary layer is thin and the velocity profile is
almost flat across the core vessel; if w is small, the boundary layer is thick (the vessel is
fully occupied by the innermost portion of the boundary layer) and the flow becomes
quasi-steady. For w — 0 a Poiscuille flow is obtained. The following asymptotic
expansion can be derived for F; for large and small values of w, respectively.

2/(wil/2) [1+ 2w)"1 + O(w™2)] forw — oo

(10.63
1 —i(w?/8) — (w?/48) + +O(w®) forw =0 ( )

Fy(w) = {

This system is still too complicated to solve for any real applications. Therefore, |
it must be simplified further. This can be done by assuming longitudinal tethering.
Hence, T3, = 0, T, = 0, and

o _ Egh

Cyp = 77—

2pa

Thus, B{j are
2 20

B, = ——— ! - __3:__
11 1-o0.09 12 1—-o0,09
B 2E;/Egoy B = 2E;/Ey
2 1—o0.00 2 1—o0.09

These quantities are of order one. According to Bergel (1972) good estimates are
o, = 0g = 0.29 and E; /Ey = 1.2. This yields

1, =218, Bb, =262, B|,=063, Bj =076
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Bergel also gives values for the tethering constants,

K.z~ 33x10% kg/(s?m?)
Loz~ 17x10% kg/(s m?)
My = 4 kg/m?

Consequently, M is negligible compared with K, ; and L, ;. Hence,

’ 33 + 17iw) a
K:',x ~ L_.T)_
PG

x 10® kg/(s?m?)

In the smaller arteries a =~ 1073 m, p ~ 10% kg/m®, ¢g ~ 5 m/s, and w =~ 4ms~1,
hence |K] ;| ~ 0.009. These data are as estimated by Pedley (1980). From these
estimates we see that K| < B; and hence K; can be neglected in (10.57). The term
involving K, appear as c3/(w?a?) K, ~ 1400 which is large compared to the other
terms. Therefore, the dispersion relation (10.57) reduces to:

2K

ao(k')* + (a1 K — a3) (K')? - =0 (10.64)
1-Fy
where
ao = BypBi — BBy
ay = Bil
1]
a2 = Fy (Bb + By - Tu) — 2By
and
2
- %
K= a——szK;

Since K is large, ap can be neglected as well and we are left with

2K
1—FJ—

ao(K')* + a1 K (k')? - 0

which has the approximative solutions

wr = -5 (12 (- mt )

(k') (10.65)

1-Fpa’ a0

The first of these solutions is the pressure wave. This can be compared to the result
found by Lighthill (1989), where the wall is assumed to be an isotropic elastic solid,
ie.a; = Bj; = 2/(1 — 0?) and w — oo such that F; ~ 0. Then (10.65) gives
(k")2 = 1 — o? or equivalently ¢ = ¢y /(1 — o2).
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The solution can also be found by letting K — oo directly in (10.58-10.61).
However, this is possible only if £ = 0. Hence, from (10.61) one finds (still neglecting
K}) that

Bum = Z—Ic)é:
From (10.58)
A=-F
and from (10.59)
2m 2

N2 = =
) = T mapfpd ~ T B,

which is consistent with (10.65). Finally, from (10.60)

Fjap.
2c¢p

Bym = -

10.8 Momentum equation

The one-dimensional flow associated with the longitudinal velocity w, is given by

a
Q= / w, 27 dr (10.66)
0

The long-wave approximation, see page 110, gives rise to the following approxima-
tions
Jo (-ﬁ—oz) ~1
a

(2)-%

a 2a

5 (Gh )~ ()

for i = 0, 1. Inserting these in (10.41) gives

De Ba A wor
= — |- 10.67
wr Wo ( HUWo + Jo(wo) Jo ( a ) ( )
Expanding wg and (3, and inserting A = k' in (10.67) gives
Pc y1 Jo (W r)
wp = —Fk (1 - —2~ 10.68
Y [ woJo(wo) (108

Integrating over the cross-sectional area yields

Q=A% _py (10.69)
pco
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where Ag = ma? is the cross-sectional area of the vessel, k' /cop = 1 /e,

—iwp, OP :

T = 9 (10.70)
is the complex pressure gradient, and F; is defined according to (10.63). In Pedley
(1980) it is shown that it is reasonable to use the lower expression in (10.63) when w <
4 and the upper expression in (10.63) when w > 4. This function is not continuous at
w = 4 because it is derived as approximations for the limits of w. However, splitting
"~ at w = 4 seems very crude. Instead we have set up a continuous equation by using
the upper equation for w > 3 and the lower equation for w < 2 and making a linear
interpolation between the two values. ) ' :

The final momentum equation is obtained by inserting (10.70 ) in (10.69)

—Ag 8P
oz

wQ = (1~ Fy) (10.71)

10.9 Continuity equation

The one-dimensional continuity equation for the smaller arteries is the same as for the
larger arteries, namely

A Oq
‘a—t -+ 5—' =0
We use the Fourier series expansions from (8.7) and (8.8)
w .
p(e,t) = Y Plz,w) et
k=—00
w .
azt) = S Qz,wy) e
k=—00

with Fourier coefficients given by

1 [T/2 .
P(z,w) = ?/T/zp(z,t) e~ Wrtdt

1 T/2 .
Qz,wg) = —/ g(z,t) e “rtdt
T J_1)2

where wy = 27k/T is the angular frequency. These are equivalent to the Fourier
expansion in (10.37). For each w = wy the continuity equation can be transformed to

wep+22 = (10.72)
oz

where C is the compliance. This can be approximated by

oo 94 _ 34 3pa\T? 34
“ dp  2EhR 4Eh ~ 2Eh

which applies since Eh >> pa.
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10.10 Solutions of the linear model

For each vessel in the smaller arteries (10.72) and (10.71) must be solved. The equa-
tions comprise a continuity and a momentum equation determining the flow resulting
from an oscillatory pressure gradient in a non-tapering vessel where the amplitude and
the phase depend on the wall distensibility and viscoelasticity through the factor &'.
These are

iw0P+%—§- =0 oy
iwQ+ DA =F)OP (10.74)
P oz

These equations are periodic with period T and apply for ariy vessels of length L.
Differentiating (10.74) with respect to z and inserting the result in (10.73) give

w2 32Q w2 82P
0—2Q+5x—2—0 r ?2-P+'a—m§—0 (10.75)

with the wave propagation velocity

_ [A(-Fy)
o=y 2z (10.76)
Solving (10.75) yields
Q(z,w) = acos(wz/c)+ bsin(wz/c)

P(z,w) = i,/ 670(“1/)_—‘1&7) (—asin(wz/c) + beos(wz/c))

where a and b are arbitrary constants of integration. As stated in (8.6) the impedance
Z(z,w) for any Fourier mode can be defined by the relation

P(z,w) = Z(z,w) Q(z,w)
Hence, the impedance can found by

_ g7 (beos(wz/c) — asin(wz/c))

2(@,w) = = oS wa]o) + ben(wz/d) (10.77)
where
9=+/CA(1-Fy)/p (10.78)
Atz =1L
2(1,0) = L )
andatc =0
Z(0,w) = 2 (10.79)

ga
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Assuming that Z(L,w) is known b/a can be found using (10.77).

b _sin(wL/c) - igZ(L,w) cos(wL/c)

a  cos(wL/c)+1i9Z(L,w)sin(wL/c)

Then, the root impedance for any vessel can be found from (10.79).

ig~!sin(wL/c) + Z(L,w) cos(wL/c)
cos(wL/c) + igZ(L,w) sin(wL/c)

20,0) = (10.80)

For any vessel, the input impedance for zero frequency, or in the electrical terminology
the DC impedance, can be found as

]

2(0,0) = lim Z(0,w)

= lim (ig7 " sin(wL/c) + Z1(L,w) cos(wL/c))
— lim (w28
= “1)1_% (zwLAO o + Z1(L, w))
8uL
= 2.z
wrd + Z(L,0)

lrr
= 3 210 (10.81)

Ty

where I, = L/rg is the length to radius ratio, as discussed in Chapter 6. Equation
(10.81) suggests that in general, for any network, the root impedance will be propor-
tional to gy 3, Since we terminate the structured tree when the radius of the leaves is
smaller than some given minimum value r < 7p;y, the constant of proportionality
can not be derived analytically. In the special case of a symmetric tree, i.e. where all
vessels scale such that r; = a’ry, with N generations and where the impedance at the
terminal vessels are zero (when Zy (L, 0) = 0), we get

N 1 N
2(0,0) = e 5 (LY _ 8udr 20 ~ (g53) (10.82)
’ nry 4\ 2a° g 208 -1 '

1=




Chapter 11

Flow and pressure in the tree of
smaller arteries

In analogy to the larger arteries we could now solve (10.73) and (10.74) with appro-

"priate boundary conditions and predict the blood flow and pressure at any site along
the smaller arteries. However, we are only interested in the impedance at the root
of the structured tree as explained in Chapter 10. Equation (10.80) gives Z(0,w) =
f(Z(L,w)) for any of the smaller arteries. The aim of this chapter is to determine an
expression for the root impedance of the structured trees comprising the smaller arter-
ies. This is done by imposing appropriate boundary conditions combining the smaller
arteries into the structured tree. These are:

e A bifurcation condition.

e A terminal boundary condition.

11.1 Bifurcation condition

Setting up the bifurcation condition does not require much more than we have already
established. As for the larger arteries we assume that pressure is continuous and that no
flow is leaking at the bifurcation, see Section 8.1.2. Hence, the bifurcation is analogous
to a transmission-line network and the admittances add, i.e.
1 1 1

> =5+ (11.1)

Zy  Zay  Zg,
where as before the subscript p refers to the parent vessel and the subscripts d, d2
refer to the daughter vessels.

11.2 Outflow boundary condition

Because of the viscous treatment of blood in the smaller arteries the structured tree
yields a resistance by itself and we can assume a zero impedance at the leaves of the
structured tree. Because various parts of the body serve different needs and hence show
a variation in the peripheral resistance, the approach above requires that the minimum
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radii (Tmin) applied at the terminals are chosen individually for each of the structured
trees. While ry,;, may vary for the different structured trees it is kept constant in
each of them. Altematively, one could choose a common minimum radius and then
vary the total impedance by applying a variable terminal impedance at the bottom of
the vessels and then propagate this back through the tree together with the induced
dynamic impedance.

11.3 Root impedance of the structured tree

Because of the structure of the tree, all parameters are determined as functions of the
vessel radius. Hence, both g, defined in (10.78), and the length L for each vessel can
be determined as functions of the vessel radius. Furthermore, because of the geomet-
ric self-similarity it is very easy to compute the root impedance Z(0,w) by solving,
(10.80) and (11.1) recursively. However, in order to do so all basic parameters must be
initialized. These are:

e The scaling parameters o and 8 which are given by (6.4).
e The terminal resistance Z; (see discussion on page 122).

e The minimum radius 7,,:n, at which all vessels of the structured tree are trun-
cated.

o The root radius 7,40:.

Recall that the root impedance should be used with the outflow boundary condition
for the larger arteries, i.e. when evaluating the convolution integral in (8.11). Since
we assumed that the wave propagation of the larger arteries is periodic the impedance
should be determined forall 0 < t < T'. Hence, in the frequency domain this translates
to discrete angular frequencies wy = 27k/T, fork = —N/2,... ,N/2 where N is
the number of time-steps per period. Now, because of the possibility to apply self
conjugation

Z(07 w—k) = Z(O’ UJk)

we only need to determine Z(0, wy) fork = 0,1,... ,N/2.

Finally, before describing an algorithm for determining the root impedance we will
describe how to take advantage of the fact that the tree of smaller arteries is structured.
A binary tree with N generations would have 2% terminal leaves. In our case the tree
is structured such that the radius of any vessel at the nth generation is scaled with the
factor:

o*prF  for ke [0;n)
Each scaling factor appears with frequency

n!

Fred = S =)
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For a tree with N generations there are

N =n
Y ) 1=0(N?

n=0 k=0

different impedances which must be calculated. This is illustrated in Figure 6.1. This
should be seen in contrast to a general binary tree in which all vessels may have dif-
ferent impedances. In this case the complexity is O(2"). Thus, the simplifications
achieved by storing (e.g. in the table computed) each of the impedances once they
have been calculated is what makes the algorithm computationally feasible. However,
it should be noted, that the estimates above are for a tree with a fixed number of gen-
erations. Since the structured trees are truncated when the radius of any given vessel
becomes smaller than some minimum radius, however, these estimates are not exact,
but for most practical situations they are still valid.' In any case, the savings obtained
from reusing the pre-computed values are crucial to this approach.

The recursive algorithm can thus be written as:

‘Algorithm 1:  Computes the root impedance Z(wg, pa,pg) recursively.

e Determine all parahweters for the vessel (as described in Chapter 6):

m The radius r = oP= P8 rp0t.
s The cross-sectional area 4 = wr2.
s The elasticity relation f(r) = Eh/r, see (5.4).
s The length | = r1,, where [,, is the length to radius ratio.
u The viscosity u.
¢ Determine the wave propagation speed ¢ and the scalar g as given in

(10.76) and (10.78). These depend on F;, defined in (10. 63) and thus
on the Womersley number w.

« The recursive algorithm:

m If r < rin then
» Zr(wk,Pa,pg) = terminal resistance.
u else

» If the root impedance of the left daughter (p, + 1,pg) has been
previously computed then
o Zg(wk,pa + 1,p5) = computed(ps + 1,pp)
» else
o Compute the root impedance of the left daughter by calling
Zo(wk, pa + 1,pa) recursively.

o If the root impedance of the right daughter (p, + 1,pg) has
been computed previously then

Zy(wk, Pa, pg + 1) = computed(pq,ps + 1)
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o else
Compute the root impedance of the right daughter by
calling Zy(wg, pa, pg + 1) recursively.
. ZL(“-’k,PaaP/J’) = 1/(Z0_1(wk1pa + lvpﬂ) + Z()—l(wkapa;pﬂ + 1))

e If wg # 0 then

" Zo(wk, Pa,pg) = f(ZL{wk,pa:pp)) using (10.80).
o else, if wy = 0then

u Zo(wk, P, Pg) = f(ZL(wk, Pa,pp)) Using (10.81).

¢ Update the table of pre-computed values:
computed(pq,pg) = Zo(Wk, Pa, Pg)-

For most of our simulations the terminal resistance is taken to be zero and the
impedance is predicted solely from the structured tree. However, it is easy to modify
the algorithm to incorporate an additional terminal impedance beyond that provided
by the tree itself. Assume for example that the total terminal impedance Z; is given
and that it is distributed evenly over all terminals. The terminal impedance for each
terminal Z;, is then

Ztg = NtZt

where N, is the total number of terminals. This applies since the admittances add to
give the total admittance, and impedance is the reciprocal of admittance. Because we
have chosen to terminate the structured tree when the radius r < 7,4, the number of
terminals cannot be determined analytically. However, it can be counted recursively as
shown in Algorithm 2 by calling the subroutine count (0, 0) where the zeros refer to
the root of the tree.

Algorithm 2: count (pq, pg). Counts the number of terminals of an asymmetric
binary tree truncated when the radius r < r,;,. The algorithm assumes that
Ny, the number of terminals, is initialized to 0 when called at the top level:

o Letr = aPo 0P8 1o p0t.
s If r < rin then

a Ny=N;+1
e else

= Count the number of terminals of the left subtree by calling
count (p, + 1,pg).

s Count the number of terminals of the right subtree by calling
count (pq,pg + 1).
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By inverse Fourier transform of the root impedance Z(0,w) the response function
z(0,t) in the time-domain and hence the impedance that appears in the convolution
integral in (8.11) can now be found. Thus, the boundary condition for the larger arteries
can be determined and this closes our model. Another possibility is to investigate if
the equations can be solved using a self-similar approach. This is not quite possible
due to the viscous treatment of the momentum equation. However, this approach gives
some insight which could be used for other purposes. Therefore, we have chosen to
show the self-similar solution to the inviscid wave equation in Appendix C.







Chapter 12

Results

In this chapter we will present a selection of results which elucidate our hypothesis.
Our main aim was to show that the structured tree model is a feasible outflow boundary
condition for determining blood flow and pressure in the larger arteries.

Therefore, we will show that our model captures all essential features characteriz-
ing the arterial pulse. In addition, we compare our model with a pure resistance and a
three element Windkessel model as well as with measured data.

As discussed in Chapter 2 the characteristic features of the arterial pulse are:

e The maximum pressure of the larger arteries increases away from the heart to-
wards the periphery because of tapering of the vessels.

e The mean pressure of the arteries drops according to the distribution of flow
impedance of the vascular bed (Noordergraaf, 1978).

o The steepness of the incoming pressure profile increases towards the periphery.
This is a result of the pressure dependence of the the wave propagation velocity .
¢(p) such that the part of the wave with higher pressure travels faster than that
with lower pressure.

e The reflected dicrotic wave separates from the incoming pressure wave and is
more prominent at peripheral locations than at proximal locations.

All results shown in this chapter represent solutions of the non-dimensional fluid
dynamics equations (8.15) with the state equation (7.26) and boundary conditions (8.2)
and (8.11). The outflow boundary condition will be determined by the structured tree
model, a pure resistance model, or a three element Windkessel model.

This chapter is divided into three sections: In Section 12.1 we show some results
based on the parameters discussed in Chapters 5 and 6. These data reflect typical
patient data. However, in real life the resulting flow and pressure profiles vary signifi-
cantly among normal healthy human subjects. Therefore, a model for a particular case
would require an investigation of the data for the patient in question. In Section 12.2
we compare our structured tree model with a pure resistance and a Windkessel model.
Finally, in Section 12.3 we investigate the impact of variation of some of the important
parameters.
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12.1 Results from the model problem

The results presented here are based on the following choices:

e The geometrical data for the larger arteries are as described in Table 5.2.
o The parameters for the structured tree follow the choices in Chapter 6.
o The terminal resistance for the smaller arteries is set to zero.

e The minimum radius 7, is chosen to be 0.04 cm for all structured trees.

The ratio for Young’s modulus times the wall-thickness to radius, Eh/rg, is
chosen as shown in Figure 5.2.

The viscosity is kept constant for the reasons discussed in Chapter 3. The effect
of a radius dependent viscosity will be studied in Section 12.3.

We have restricted the presentation to flow and pressure profiles for a few repre-
sentative vessels. These are flow and pressure in the aorta (see Figure 12.1) as well
as the iliac and femoral arteries (see Figure 12.2). All profiles capture the characteris-
tics described in the beginning of this chapter, but it should be noted that the outflow
boundary condition is applied at the bottom of the femoral arteries, i.e. the tibal ar-
teries are not included in this simulation as discussed on page 34. Furthermore, our
results show a small negative flow peripherally even though back-flow into the left
ventricle is not included in the model, see Figure 8.2. It can be difficult to see all of
these characteristics in the three-dimensional figures. In particular, it is not easy to
see the steepening of the wave front. However, this can be seen in Figure 12.3, where
two-dimensional cross-sections of flow and pressure profiles are plotted as functions
of time at five equidistant Jocations along the aorta, iliac, and femoral arteries. Further-
more, the two-dimensional plots are more easily compared with measurements which
are normally presented as such.

From McDonald (1974) we have results for flow and pressure at various locations
along the aorta and femoral arteries in dogs, see Figure 12.4. For comparison, Fig-
ure 12.5 shows pressure profiles at various locations along the human aorta and iliac
artery. These profiles, which are recorded from a single patient by Pedersen (1997),
are typical for a healthy human adult. Both the measured and our computed results
show the characteristics discussed in the introduction to this chapter even though the
actual profiles vary.

12.2 Comparison of the structured tree, the Windkessel, the
pure resistance models, and measured data

In order to investigate the performance of the structured tree model, we will compare
it with two other models:

1. A pure resistance model
Zy(w) = Rr

where Ry is a constant representing the peripheral resistance.
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Figure 12.3: Time dependent pressure and flow in the ascending, thoracic, and abdom-
inal aorta, the common and external iliac, and the femoral arteries; all given for one
period. These graphs are cross sections of the 3D plots of Figure 12.1 and 12.2.
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Figure 12.4: Time dependent pressure and flow in the ascending, thoracic, and abdom-
inal aorta, as well as the femoral and saphenous arteries in dogs. The curves are plotted
at fixed locations during one period. From McDonald (1974).

2. A three element Windkessel model, which is a lumped model predicting the
impedance as a result of a resistive and a compliant behavior of the smaller
arteries, i.e.

_ Ry + Ry +iwCrR1 Ry

- 1+ iwCrR,

where Rt = R; + R is the total peripheral resistance, Cr is the total peripheral

compliance. This is discussed in detail in Section 8.1.3.

Zr(w)

The comparison falls into three parts:

e A comparison of the three outflow boundary conditions applied to a single iso-
lated vessel, see Section 12.2.1.

e A comparison of the Windkessel model, the structured tree model, and measured
data for the impedance in humans, see Section 12.2.2.

e A comparison of the Windkessel model and the structured tree model using data
by Stergiopulos et al. (1992), see Section 12.2.3.
12.2.1 Comparison of the three outflow boundary conditions for a single

isolated vessel

The advantage of both the pure resistance and the Windkessel models is that they are
easy to understand and computationally inexpensive. The disadvantage of the Wind-
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kessel and the pure resistance models is that they are not able to capture the wave
propagation phenomena in the part of the arterial system that they model. Furthermore, -
neither the pure resistance nor the Windkessel model can account for the phase-lag be-
tween flow and pressure. The Windkessel model requires estimates of the total arterial
resistance, R, and compliance, CT, for each terminal segment and the pure resistance
model needs the total arterial resistance. Still, when coupled to the non-linear equa-
tions for the larger arteries both models are able to capture the overall behavior of the
system. For the Windkessel model it is even possible to get a good estimate of the
impedance and as we will see in the next section using the data given by Stergiopulos
etal. (1992) good agreement can be obtained between the two models.

~ In order to show the differences between the three models we have (for simplicity)
used a single tapering vessel of length 100 cm, with top radius 0.4 cm, and with bottom
radius of 0.25. Then we have applied all three models as different outflow boundary
conditions to this vessel. In order to make them match as well as possible we have esti-
mated the parameters for the Windkessel and the pure resistance models from the root
impedance determined by the structured tree model. The total resistance Ry (the DC
term from the structured tree model) is the same for all three models and the total com-
pliance C7 for the Windkessel model is fitted empirically to match that which is given
by the structured tree model. It should be emphasized that this study is theoretical and
hence the parameters should not be compared with physiological values. However, the
same differences can be seen when applying the three models to the whole tree.

We have made the following plots:
o Pressure versus flow, see Figure 12.6.

¢ Impedance (both modulus and phase) versus frequency at the boundary, see Fig-
ure 12.9. Since the pure resistance model does not depend on the frequency this
plot only comprises the structured tree and the Windkessel models.

e Pressure as a function of = and ¢ during one period, see Figure 12.7.
o Flow as a function of = and ¢ during one period, see Figure 12.8.

The pressure versus flow curves in Figure 12.6 show the phase lag between flow
and pressure for a single vessel. The top figure is for the pure resistance model, the
middle one for the Windkessel model, and the lower one for the structured tree model.
Comparing these, the most striking difference is that the pure resistance model affects
the overall shape of the curve. The forced in-phase condition at the outflow boundary
results in a narrowing of the width of the loop back through the vessel. Furthermore,
it is worth noticing that the pure resistance model to some extend can be viewed as a
simplification of the Windkessel model incorporating only the DC resistance. For the
Windkessel model the flow and pressure are also nearly in phase, but the narrowing
is not reflected back through the vessel. Finally, it is observed that the structured
tree model does indeed keep some phase lag between flow and pressure. However,
the pressure-flow plots look fairly similar for the Windkessel and the structured tree
models. The reason for this is that the local dynamics of the impedance can not be seen
on such a plot. This has to do with the fact that the structured tree model includes wave
propagation effects for the entire tree, which the Windkessel model cannot do. Hence,
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Figure 12.6: Pressure versus flow in a single vessel at six equidistant locations, i.e. for
a vessel of length L, z = 0,L/4,L/2,3L/4, L. both flow and pressure are plotted
as functions of time during one cardiac cycle. The top graph is from the pure resis-
tance model, the middle one from the Windkessel model, and the bottom one from the
structured tree model.
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it is possible that the Windkessel model will introduce more artificial reflections than
the structured tree model. When we compare the result for the aortic pressure and
flow waves (see Figures 12.7 and 12.8) this is exactly what we see as a difference
between the two models. The reflections from the pressure when using the Windkessel
model are slightly more pronounced than for the structured tree model, but seen from
an overall point of view, the differences are small. However, if we instead make a
socalled Bode plot of the impedance at the bottom of the large vessel, Zy (w), versus
the angular frequency, w, i.e. making a plot of log(|Z (w)|) versus log(w) and a plot
" of phase(Z) versus log(w), the differences between the two models become more
clear. The impedances are computed as functions of all frequencies needed in order to
evaluate the outflow condition in (8.6). For example, if the number of time-steps in a
period of 1 sis V = 2048 then w € [—27N/2,27w N/2]. First of all it is seen that the
Windkessel model cannot predict any of the dynamic behavior resulting in oscillations
at high frequencies. But in this academic case where the peripheral resistance is rather
low these oscillations are significant. The question which then arises is whether such
oscillations actually occur in human data.

12.2.2 Comparison of structured tree and the Windkessel models with
measured data

In Nichols and O’Rourke (1998) they have a whole chapter discussing the impedance
of the larger arteries and we have compared our results with those obtained there.
Nichols and O’Rourke (1998) results for humans are mainly from the larger arteries.
In order to directly show the difference between the Windkessel and the structured tree
models we have applied the two models directly as outflow boundary conditions for
these larger arteries even though the outflow boundary conditions usually are applied
further down-stream.

The comparisons of the Windkessel, the structured tree, and the measured data are
made for the brachiocephalic, the subclavian, and the femoral arteries. However, since
the structured tree model is not designed to be valid for these large arteries one should
not assume perfect matches without some adjustments of the parameters.

For the brachiocephalic and subclavian arteries we had to modify the length to
radius ratio to 130. This much larger length to radius ratio corresponds with the arteries
of the arm: From table 5.2 we see that starting from the subclavian artery no large
side branches occur before the bifurcation between the ulner and interosseus arteries.
Hence the combined length of the subclavian and brachial arteries is 43.25 cm and the
average radius is 0.32 cm. This results in a length to radius ratio of 135. Now, starting
at the brachiocephalic artery we have a major bifurcation after only 3.5 cm resulting in
a very short length to radius ratio. However, this is then followed by a the rather long
length to radius ratio. This is not taken into account here. Instead we have kept the
same length to radius ratio as for the subclavian artery. These large variations, confirm
what we discussed in Section 6.3, namely that it is not easy to find a universal length
to radius for the larger arteries. However, since we know that the length to radius
ratio gets smaller for the smaller arteries further studies might be able to reveal some
functional dependence, e.g. on the radius, of the length to radius ratio.

For the brachiocephalic artery we have chosen an input radius of 0.5 cm and a
minimum radius of 0.025 cm. An input radius of 0.5 cm is rather small, but it is not
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specified exactly where the measurements have been carried out. Thus the compar-
isons should be interpreted with all of these reservations in mind. For the vessel wall
parameters we have let Eh/ry = kjexp(korg) + k3 as shown in Figure 5.2. The
results for these comparisons are shown in Figures 12.10 and 12.11.

For the femoral artery we have, using a similar argument as before, assumed a
length to radius ratio of 210. This corresponds to a length of the femoral arteries of
58.5 cm and a mean radius of 0.28 cm. The top radius is 0.370 cm and the minimum

}'adius 1s 0.025 cm.

It becomes clear from all of these ﬁgures that the structured 'tree model 1s, m fact,
able to capture some of the observed oscillatory dynamics in the impedance which
cannot be captured by the Windkessel model.

12.2.3 Comparison with Stergiopulos model

We will now compare our structured tree model with the three element Windkessel
model discussed by (Stergiopulos et al., 1992) when used with a full arterial tree. In
Figures 12.13 and 12.14 we have plotted the the impedance as a function of the angular
frequency for the renal and the femoral arteries. As for the previous graphs we have
plotted the modulus for the entire spectra needed for the outflow boundary condition,
a zoom, as well as Bode plots of the impedance modulus and phase.

From the plots showing only the impedance modulus versus the frequency of the
renal artery ( Figure 12.13), we see that the two Windkessel curves compare well with
the curves resulting from the structured tree model (see Table 12.1). However, as we
saw earlier, the Windkessel model does not exhibit the high frequency oscillations
which are observed in actual measurements. It should be noted that these plots are
made at the points where the outflow boundary conditions are attached. Unfortunately,
for these small arteries we do not have any measured data to compare with. But if we
compare these results with the measured data further proximal in the system we do see
similar patterns in the Bode plots suggesting that the structured tree model is able to
represent the dynamics in more detail.

In Figure 12.14 we see a slightly slower decay of the fitted impedance than what is
expected from the Windkessel model. This shows in the Bode plots as an earlier min-
imum for the phase and an earlier decay for the impedance. A more detailed analysis
could be done by fitting the structured tree model with data, but, even with this crude
fitting, adjusting Young’s modulus and the minimum radius the results do correspond
within orders of magnitude.

Generally, the comparison show that there are two parameters of the structured tree
which are essential, Young’s modulus, ¥, and the minimal radius, 7y, determining
when to terminate the structured tree. In order to get the best agreement between the
structured tree and the Windkessel data E and 7y,;, must be determined individually
for each terminal branch of the larger arteries.

In order to compare the result from our model with one where the Windkessel
model is applied as outflow boundary conditions for the entire arterial tree we have
fitted parameters for the structured tree to all of the outflow branches present in the
model by Stergiopulos et al. (1992). After adjusting Young’s modulus as well as the
minimum radius for each outflow vessel we are able to get a similar behavior for all
outflow vessels. Especially the total resistances have a very good agreement varying
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Figure 12.11: Impedance and Bode plots for the subclavian artery compared with measured data. The measured data (m.d.) are from (Nichols and
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Figure 12.13: Impedance and Bode plots for the renal artery, the root radius is 0.260 cm and the radius at which the structured tree is truncated is
0.01 cm.
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less than five percent from the measured data. However, the compliances do not have
as good a correspondence; on the average they vary about 50-60 % from the measured
data. The compliance error is seen in Figure 12.14 as the difference between the spike
width of the two Windkessel profiles; the one based on measurements and the one
fitted to the structured tree. All parameters are fitted in a least squares sense using
the Curvefit function available in Matlab. Due to the large differences in order of
magnitude between the compliance and the resistance data it is difficult to get a more
precise estimate, without applying some local method. ) ) B

As we saw for the one vessel comparison, the Windkessel model can not include
the high frequency oscillations present in real human data. But again, seen from an
overall point of view, the differences between the pressure and flow profiles of the
larger arteries are small. The same results apply to the more peripheral vessels, i.e.
that the overall shape of the pressure and flow are similar, but that the reflections and
the maximum pressure are more damped for the structured tree model.

In both cases we have used the geometrical data shown in Tables 12.1 and 12.2 and
the radius dependent relation for Eh/rg, see (5.2), for the larger arteries. The radius
dependent relation for Eh /rg is based on Stergiopulos et al. (1992) such that we get
as good fits as possible for all outflow vessels. This is chosen in order to facilitate
the comparisons in this case. Table 12.1 shows that the fitted values for 7,,;, fall in
four distinct classes depending on their order of magnitude. Hence, the corresponding
peripheral resistances can be organized into four groups as follows:

Peripheral resistance group | Typical 7y, (cm)
very low 0.056

Low 0.01

Medium 0.002

High 0.0005

It is common knowledge that organs have different peripheral resistances reflecting
the physiological characteristics of the organs which they supply and that these fall into
groups such as the ones mentioned here. Hence, i, is chosen from knowledge of
resistance only. For example the renals have a small peripheral resistance reflected in a
large minimum terminal radius and the Femoral artery has a large peripheral resistance
reflected in a small minimal terminal radius.

In contrast to this, the Windkessel model needs estimates of arterial resistance
and compliance, which are often less accessible because they require sophisticated
measurements.

12.3 Parameter variation

Both models, i.e. models of the smaller and the larger arteries, include parameters
affecting the overall behavior in various ways.
Parameters for the smaller arteries are:

e The exponent £ = 2.7 used in the radius power law (6.1).

e The asymmetry ratio y = r3,/r5 = 0.4048, from (6.3).
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# | Artery L (cm) | Teop (cm) | Tpor (cm)

1 | Ascending Aorta 1.00 1.470 1.440

3 | Ascending Aorta 3.00 1.440 1.353

4 | Aortic arch 2.00 1.353 1.300

12 | Aortic arch 4.00 1.300 1.194

14 | Thoracic Aorta 5.25 1.194 1.071

15 | Thoracic Aorta 10.50 1.071 0.861

27 | Abdominal Aorta 5.25 0.861 0.772
29 | Abdominal Aorta | 1.00° 0.772 0.756 |

31 | Abdominal Aorta 1.00 0.756 0.740

33 | Abdominal Aorta 10.00 0.740 0.601

35 | Abdominal Aorta 7.00 0.601 0.520

36 | External Iliac 5.75 0.368 0.347

37 | Femoral 14.50 0.347 0.299

40 | Femoral 44.25 0.299 0.190

38 | Internal Iliac 5.00 0.200 0.200

39 | Deep femoral 12.50 0.255 0.186

43 | Posterior Tibal 32.00 0.247 0.141

44 | Anterior Tibal 34.25 0.130 0.130

2 | Coronaries 10.00 0.350 0.300

5 | Brachiocephalic 3.50 0.620 0.620

6,17 | R. + L. Subclavian 3.50 0.423 0.423

9,19 | R. + L. Brachial 42.25 0.403 0.236

10, 21 | R. + L. Radial 23.50 0.174 0.142

11, 20 | R. + L. Ulner 6.75 0.215 0.215

46,47 | R. + L. Ulner 17.00 0.203 0.183

45, 48 | R. + L. Interosseus 8.00 0.091 0.091

8,18 | R. + L. Vertebral 14.75 0.188 0.183

7 | R. com. Carotid 17.75 0.370 0.370

13 | L. com. Carotid 20.75 0.370 0.370

41, 42 | Ext. + int. Carotid 17.75 0.177 0.083

16 | Intercostals 8.00 0.200 0.150

28 | Superior Mesenteric 6.00 0.435 0.435

22 | Celiac axis 1.00 0.390 0.390

23 | Hepatic 1.00 0.220 0.220

24 | Hepatic 6.50 0.220 0.220

25 | Gastric 7.00 0.180 0.180

26 | Splenic 6.25 0.275 0.275

30,32 | R. +L.Renal 3.25 0.260 0.260

34 | Inferior Mesenteric 5.00 0.160 0.160

Table 12.2: Data for the length, top and bottom radii for the larger arteries. As for
Table 5.2 the numbers of the left column refer to Figure 5.1. From Stergiopulos et al.
(1992).
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Figure 12.15: Pressure in the aorta using for the top graph the structured tree model
as outflow boundary -condition and for the bottom graph the Windkessel model is used

as outflow boundary condition. Both curves are plotted as functions of z and ¢ during
one period.
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Figure 12.16: Flow in the aorta using for the top graph the structured tree model as
outflow boundary condition and for the bottom graph the Windkessel model is used
as outflow boundary condition. Both curves are plotted as functions of z and ¢ during
one period.
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e The length to radius relation I, = 50, from (6.5).
e The minimum radius i, = 0.04 cm, see Section 12.1.
Parameters for the larger arteries are:

e The ratio of Young’s Modulus times the wall thickness to the radius: Ehyro =
k1 exp(karo) + k3, where k; = 2.00 x 107 g/s?>/cm, k; = —22.53 cm™!, and
ks = 0.87 x 108 g/s%/cm, see Figure 5.2.

» The cardiac output, which is 3.5 /min for our standard model described in Sec-
tion 12.1 and 2.5 Vmin for the model using Stergiopulos’ data.

e Theperiod T = 1s.

The parameters given above all match the arterial system in its healthy state and
these are the choices used throughout the previous two sections. However, perturba-
tions of these parameters might be used to simulate various diseased states, such as
stiff arteries which is one of the indications of diabetes as discussed Chapter 2. There-
fore, the purpose of the following sections is to investigate how the model reacts to
variations in the above mentioned parameters.

12.3.1 Parameters for the smaller arteries
Radius power law exponent

Figure 12.17 shows the root impedance computed for £ = 2.3,2.5,2.7,2.9. The effect
is not profound; the side-lopes are unchanged and only the height of the spike Z(0.0)
is affected. Figure 12.18 shows a linear interpolation of Z (0, 0) as a function of €. The
graph suggests a maximum at £ = 2.4. However, none of these values vary more than
20 % from & = 2.7 which is the exponent we have chosen.

Asymmetry ratio

Figure 12.19 shows the root impedance computed for v = 0.1,0.2,... ,0.9. As for £
the percentual variation of the average impedance from the chosen v = 0.4 is small;
no more than 18%. It is interesting to observe that the oscillations of the side-lopes
grow as the structured tree becomes more symmetric. This makes sense, since for a
symmetric tree all branches are terminated at the same point and hence reflections will
be superimposed on each other and thus tend to increase at the root of the structured
tree. While the more asymmetric the tree gets the more the reflections will be spread
out and as a result damp the reflections. When comparing this to the human body it
makes sense that the arteries do not branch in symmetric trees. '

Length to radius relation

Figure 12.21 shows the root impedance computed for I, = 10,20,... ,90. The av-
erage root impedance Z(0,0) grows with [, and the frequency of the side-lopes in-
creases. This makes sense since we change the geometrical characteristics and hence
the characteristics for the wave-propagation.
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Figure 12.17: The root impedance Z(0,w) for { = 2.3,2.5,2.7, 2.9, respectively.
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Figure 12.18: Z(0,0) as a function of £.
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Figure 12.21: The root impedance for ., = 20, 30, ... , 70, respectively.
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Figure 12.22: Z(0,0) as a function of [,,.
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Figure 12.24: Z(0,0) as a function of 7, shown together with &, / 3 .. + k2, where
k1 = 0.11 cm®g/s and ky = 5 x 10 cm?g/s.

Furthermore, Figure 12.22 reveals that Z(0, 0) grows linearly with l,,. This linear
growth is expected since the root impedance for each branch is proportional to I, as
shown in (6.5). The significance of this lies in the fact that long thin tubes yield a
higher resistance than short, thick tubes. However, as the comparisons in Section 12.2
show the length to radius ratio differs for the larger arteries. This suggests that the
length to radius ratio might vary with the radius throughout the arterial system. This
should be considered in further studies.

Minimum radius

Figure 12.23 shows the root impedance computed for 7y, = 0.03,0.04,0.05. A
decrease in 7,,;, implies an increase in the overall resistance of the outflow bound-
ary condition provided by the structured tree while the side-lopes remain unaffected.
Figure 12.24 shows Z(0,0) as a function of r,,;,,. Recall from (10.82) that for a sym-
metric tree with N generations Z(0,0) is inversely proportional to r3,,, and hence
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Figure 12.25: Pressure in the aorta as a function of = and ¢ during one period. The
two figures are for 7y, = 0.05 and 7y, = 0.03. The decreased 7.,;, gives an
increased average impedance, which results in an increase in both the systolic and
diastolic pressures as well as an increase in the wave reflections.

to a~3Nr3 . because of the linear scaling. However, as discussed in Section 10.10,

this does not apply to the asymmetric tree. In Figure 12.24 we have plotted both the
average root impedance for an asymmetry ratio of v = 0.4048 and fitted the data to
the function f(r) = ky/r3,, + ko, where k; = 0.11 cm®g/s and ko = 5 x 10® cm?g/s.
From the fit it becomes clear that for the asymmetric tree the exponent is different from
3. Finally, we mention that a positive terminal resistance affects the results similarly
to a decrease in T'min.

Generally, several of the results above imply a significant change in the average
impedance Z(0, 0). For example, a 53% increase in Z(0,0) (which is more than dou-
ble the increase resulting from changes in the exponent £ or the asymmetry ratio =),
effectuated by increasing rp,;, from 0.3 to 0.5 has the effect that both the systolic
and diastolic pressures as well as the wave reflections are increased. This is seen in
Figure 12.25 which shows the aortic pressure for the two choices of 7pin.

From these studies we can conclude that the parameters having the most significant
effect are the minimum radius and the length to radius relation, while the effect of
changes in the exponent £ or the asymmetry ratio <y is much less pronounced.

12.3.2 Parameters for the larger arteries
Young’s modulus

An increase in Young’s modulus and hence in the parameter Fh/rg corresponds to
a stiffening of the arteries. This yields an increase in the systolic pressure and an
attenuated dicrotic wave as illustrated in Figure 12.27 using the Stergiopulos data.
Eh/rq has been increased by increasing the limit

lim Eh/rg

—c0

To

from 0.87 x 10° g/s?/cm to 2 x 108 g/s?/cm as shown in Figure 12.26.
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Figure 12.26: Young’s modulus for the standard case, i.e. where we have fitted a func-
tion to the data by Stergiopulos et al. (1992), and where the value approached for large

7 is doubled.
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Figure 12.27: Pressure in the aorta as a function of z and ¢ during one period. The two
figures are for limy, 00 Eh/To = 0.86 x 10% g/s?/cm and lim,,—,cc Eh/ro = 2 x 10°
g/s?/cm. The increase in Young’s modulus implies an increase in the systolic pressure
and attenuation of the reflected waves.
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Figure 12.28: Pressure in the aorta as a function of z and ¢ during one period. The two
figures are for a cardiac output of CO = 3.5 Vmin and CO = 4.5 I/min. The increased
cardiac output implies an increase in the systolic pressure as well as more pronounced
reflected waves.

Cardiac output

An increase in the cardiac output causes an increase in the systolic pressure as well as
an increase of the reflected waves. This is seen in Figure 12.28.

The period

In our standard model we have chosen the period T = 1 s. An increase in the period
implies that there are fewer bursts of blood into the arteries per minute and in order to
maintain a given cardiac output more blood must enter the aorta at each systole. This
implies that the systolic pressure increases and that the reflected waves become more
pronounced.

A longer period leads to an increased pressure. This is shown in Figure 12.29.

12.3.3 Radius dependent viscosity

Finally, we have not included the variation of the apparent viscosity with radius in any
of the computations above. The decrease in the viscosity for the very small vessels im-
plies that the peripheral resistance obtained for a given minimum radius is decreased;
hence this will also imply a decrease in both the systolic and diastolic pressures as well
as attenuation of the reflected waves. This is seen in Figure 12.30 where pressure is
plotted both for 1 constant and for the radius dependent . Both plots are based on the
Stergiopulos data.
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Figure 12.29: Pressure in the aorta as a function of z and ¢ during one period. The two
figures are for T' = 1.00 s and T = 1.25 s. The decreased period implies a decrease in
the systolic pressure as well as less pronounced reflected waves.
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Figure 12.30: Pressure in the aorta using the structured tree as a function of x and
t during one period. The left graph shows pressure for a constant viscosity and the
right graph shows pressure for a radius dependent viscosity, see Chapter 3. The radius
dependent viscosity causes a decrease in the peripheral resistance leading to a decrease
in both the systolic and diastolic pressure as well as attenuation of the reflected waves.







Chapter 13

Conclusion

The purpose of this study was to develop a model, based on physiological principles,
which can predict flow and pressure in the larger human systemic arteries. This has
been achieved by constructing a fluid dynamical model, including both the larger and
the smaller arteries, where the impedance of the smaller arteries constitute a boundary
condition for the larger arteries. The smaller arteries are modeled as asymmetric struc-
tured trees while the larger arteries are modeled using actual data for the length, top,
and bottom radii for each of the vessels. Flow and pressure in the larger arteries are
found by solving the one-dimensional non-linear Navier-Stokes equations combined
with a state equation predicting the relation between flow and pressure. For the smaller
arteries we only compute the impedance which is found by solving a linearization of
the one-dimensional Navier-Stokes equations combined with the same state equation
as for the larger arteries.

It was shown in Chapter 12 that the resulting pressure and flow profiles all have
the correct characteristics: :

o The systolic pressure increases away from the heart.

e The mean pressure drops slowly.

The steepness of the incoming pressure profile increases towards the periphery.

The velocity of the wave propagation of the reflected dicrotic wave is slower
than that of the main wave, and hence the dicrotic wave separates from the main
wave peripherally.

In addition to showing the correct characteristics, see Figures 12.1, 12.2, and 12.3,
our results reveal that the structured tree model provides a more dynamical impedance
which is much closer to physiological behavior than can be obtained with the Wind-
kessel model, see Figures 12.9-12.12. Furthermore, phase-lag between flow and pres-
sure is retained, and correct quantitative as well as qualitative results for both flow and
pressure are obtained, see Figure 12.6. However, it has been necessary to reduce the
cardiac output to about 3.5 I/min in order to achieve these results. This is a natural
consequence of the fact that we do not include all branches of the arteries and thus
cannot account for the total cardiac output.

We have used a strictly positive function to generate the inflow profile and still
observed the wanted reflected waves. Therefore, we can conclude that the primary
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factor creating the wave reflections is not the appearance of a negative flow into the left
ventricle but the tapering and bifurcations of the vessels combined with the peripheral
resistance. However, as seen in the measurements in Figure 12.5 there is a small
‘hump’ near the apex of the measured curves. This results in a small extra reflected
wave and, since it is not appearing in the simulated results, we assume that it is caused
by the inflow discontinuity represented by the actual negative flow back into the heart.

The advantage of modeling the smaller arteries by applying structured trees at
all terminals of the larger arteries is that it gives a physiological boundary condition
which is able to include wave-propagation effects such that the impedance show the
right dynamic behavior. Furthermore, it only has one parameter that needs to be esti-
mated, namely the radius at which the structured tree must be terminated. However,
this assumes that we are able to use a general functional dependence determining the
elasticity of the vessel walls. This is a result of the viscous treatment of blood flow
in the structured tree. Because we do not apply any resistance at the terminals of the
structured tree the peripheral resistance of the larger arteries is obtained entirely from
the solutions of the linearized equations in the asymmetric structured tree. However,
we have also shown that it is important to estimate the minimum radii correctly. Fur-
thermore, we have shown that it is possible to estimate the minimum radius by studying
the overall terminal resistance of the organ in question.

As mentioned in the section describing the geometry of the structured tree, the di-
ameter of the smaller arteries varies considerably and so does the peripheral resistance
of these very small vessels which have a strong muscular wall. This is consistent with
the observations (Guyton, 1991) that it is the arterioles, and not the capillaries, which
generate the peripheral resistance. Furthermore, since the total peripheral resistance of
the different organs vary it is important to choose the minimum radius individually for
each of the structured trees, i.e. for each of the terminal branches of the larger arteries.

Our investigations of the model behavior under variations of the other parame-
ters show that they affect the model as expected: For the smaller arteries we see that
changes in both the radius exponent £ as well as the asymmetry ratio -y does not have
a significant effect. Hence, better estimates than those given in Table 6.1 are hardly
justified. However, the choice of minimum radius 7,,;, and length to radius relation ,.,
is important. Especially our comparisons show that the length to radius relation might
have a dependence on radius. Hence we propose to investigate this relation further.
Generally, for the smaller arteries, most of the references agree with the relations we
have used, see Section 6.3.

For the parameters of the overall system, i.e. the cardiac output, the length of the
period, Young’s modulus, and the actual geometry of the larger vessels we see that
the model behaves as expected. An increase in the cardiac output causes an increase
in the systolic pressure as well as more pronounced reflected waves. An increase in
the period implies that there are few bursts of blood into the arteries per minute and
in order to maintain a given cardiac output more blood is entering the aorta at each
systole. This implies that the systolic pressure increases and that the reflected waves
become more pronounced. Even though we in most cases used a very simple model of
the Young’s modulus we see the correct behavior when changing the parameter. In the
results we showed that when letting Eh/rg grow with a decreasing vessel radius, then
an increase of lim,,_,o, Fh/rg correctly causes an increase in the systolic pressure
and attenuation of the reflected waves. If the model is to be used for studying a more
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local behavior of changes in the vessel elasticity, this function should be modeled more
carefully.

The basic geometrical data for the larger arteries also have an impact on the results.
The dimensions of the larger arteries in humans vary considerably, for example will
the aorta of a 2 m tall man be much longer than that of a 1.5 m tall woman. However,
for both persons the pressure profiles have the same characteristics provided that both
are healthy.

In summary; the study has shown the feasibility of limiting the computational do-
main. Based entirely on physiological information we have succeeded in deriving a
good boundary condition for the non-linear model predicting blood flow and pres-
sure in the larger systemic arterial tree in such a way that even at the boundary the
impedance shows the right characteristics even for high frequencies. Thus, we have
confirmed the claim stated in the hypothesis.

It is possible to argue that the structured model is too complicated and that the
much simpler Windkessel model is adequate because it provides a dynamic boundary
condition as well. Furthermore, since measurements for both the total resistance and
the compliance are available, the Windkessel model is simple and yet adequate as
boundary condition for the larger arteries. In contrast, the structured tree model is more
detailed, but it does not yield a decisive advantage over the Windkessel model. Finally,
the Windkessel model is local in both time and space, while the structured tree model
is periodic in time but local in space. Therefore, replacing the Windkessel model with
a structured tree model comes at the cost of replacing an ordmary differential equation
by a convolution integral.

However, we find the structured tree model has several important advantages. First
of all because it is based on the underlying physiology, it includes wave propagation
effects. This enables the model to capture the observed high frequency oscillations of
the impedance in the part of the arterial system that it models. Second, the structured
tree model can predict flow and pressure not only in the larger but also in the smaller
arteries, i.e. shifting the purpose of the structured tree from being a boundary condition
to being a more active part of the model.

The idea of using a structured tree in which a simpler set of equations is solved,
could also be applied to other areas involving flow in tree-like structures such as flow
and depth of water in a river delta. However, the use of the boundary condition stated
here is only applicable to phenomena in which there is some scaling law that gives rise
to a structured tree.

13.1 Perspectives

Several modifications and improvements can be made to the arterial model presented
in the dissertation. In the following we will give a summary of some of these.

Order of the structured tree

‘We have shown that the minimum radius of the terminal trees should be varied in order
to account for resistance of various organs. We also showed that the significant part of
the difference in applying the various terminal minimum radii lies in the magnitude of
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the average resistance. Therefore, it would be obvious to investigate the possibility of
keeping one minimum radius common for all the smaller vessels and then adjust it to
the various organs by attaching a variable pure resistance as a boundary condition at the
terminals of the smaller arteries. In this way the dynamics generated by the structured
tree is retained and a pure resistance need not be applied until at the arterioles where the
flow and pressure are almost in phase. This also agrees with the physiological approach
we have used when designing the model. Furthermore, having a pure resistance at the
bottom makes it easier to adapt the model to various physiological conditions. For
example, during exercise, the peripheral resistance of the various tissues decreases.

“Another point which could-be interesting to study is the correspondence between
adapting the structured tree to yield a given resistance at its root and comparing the
resulting minimum radius with the actual physiological radius at the arteriolar level of
the given organ. In order to get a good agreement we believe that such a study require
a more detailed model of the elastic properties such that there is a close match between
the structured tree in question and the organ it models.

13.1.1 Inflow boundary condition

In order to discuss the origin of the various reflected waves in actual measurements
of the arterial pressure it would be useful to change the inflow condition such that it
includes a negative flow into the left ventricle. This is not a leak but a result of the fact
that before the aortic valve closes a small amount of blood flows from the aorta and
back into the ventricle. Making a comparative study including an inflow accounting
for the negative flow and one without would yield this information. Another way to
facilitate this would be to combine this model with a heart model providing the inflow
function. This could in turn also give some more detailed information on pressure in
the aorta, since combining our model with such a model would yield contributions to
both flow and pressure.

13.1.2 Young’s modulus and the state equation

In this dissertation we have used a simple state equation based on linear elasticity
theory, but where Eh/ry decreases exponentially with an increasing radius. The func-
tional dependence between Young’s modulus, the wall-thickness, and the radius is an
improvement of the basic model, however, it is still not physiologically correct to use
a pure elastic model for the arterial wall. As a result the wave propagation velocity
decreases with an increasing pressure, which should be opposite, and when plotting
the cross-sectional area A(zy,t) versus pressure p(z f,t) for some fixed z ; the graph
curves the wrong way, see Section 7.2. However, this is not essential since the curve is
almost a straight line. As a result the model exhibits an overall behavior which is cor-
rect and can thus we get the satisfactory results shown throughout this thesis. But, as
discussed earlier, this may be improved by using an empirically based relation which
allows for varying elastic properties for the individual arteries. This is probably rea-
sonable, since even though the systemic arteries are all composed of the same basic
material there are differences depending on their function. However, in order to de-
velop a better empirical model a more detailed study must be performed such that the
model parameters can be estimated correctly. A good suggestion to such a model is
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the model by Langewouters et al. (1984) which is discussed in Section 7.2.2. Finally,
it should be noted that it is easy to change the present state equation with some other
relation and we highly recommend to investigate this further.

13.2 Pathological situations

In order to get a better idea of the validity of the arterial model one should use it
for studying a number of pathological situations. Since our model is based on the
assumption of laminar flow it would not be well suited for studying phenomena re-
lated to atherosclerosis since these often gives rise to vortices and turbulence (Nichols
and O’Rourke, 1998). However, it would be interesting to study effects arising from
changes in the vascular wall. That could be aging, diabetes, vaso-constriction, or vaso-
dilation. In Section 12.3.2 we looked at some of the phenomena resulting in a stiff-
ening of the arteries, but the opposite should be studied as well e.g. vaso-dilation. In
this case limryg — 0Eh/ry would be decreased, resulting in a stiffening of the smaller
arteries such as the radial and femoral arteries but only little change in elasticity of the
larger arteries such as aorta. This should result in a reduced systolic pressure and a
reduction of wave reflections because due to a delay in the early reflections (Nichols
and O’Rourke, 1998). However, if one wishes to study the implications for specific
arteries, i.e. more local changes, a more sophisticated model of the elasticity of the
arterial wall should be incorporated. '

13.3 Comparison with measured data

Finally, one of the biggest problems with our treatment in this report is the lack of
detailed comparisons with measured data. One study that we would suggest to do
would be to measure pressure and maybe flow at a number of locations e.g. along the
aorta. For each of these measurements one should then estimate the geometry of the
larger arteries and then compare the results with simulations. Since it is easy to adjust
the geometry of the model to the subject being measured, these measurements does
not necessarily have to be on humans. However, in order to be able to use the same
model assumptions comparisons should be made with relative large animals e.g. pigs
or dogs. However, we did initiate such studies by measuring the pressure at number of
locations along the aorta, see Figure 12.5. Unfortunately, we only managed to include
one measurement.

13.4 Arterial modeling and anesthesia simulation |

The model developed here fulfills our purpose of deriving a reference model of the
larger arteries. However, we also wanted to derive a model which in various patho-
logical situations could be used to calibrate the cardiovascular model in the anesthesia
simulator. But, as discussed above it would be easy to set up a number of studies for
certain groups of pathological situations, e.g. vaso-dilation and vaso-constriction.

It is not possible to directly include the model in the anesthesia simulator described
in Chapter 2 since it would not be able to run in real time on a PC which is one of the
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requirements for the simulator. Therefore, the cardiovascular model, and hence the
arterial model, used in the anesthesia simulator is much simpler than what has been
decribed in this study. The disadvantage of the simple model is that it is not able to
predict the correct pressure and flow profiles for the large variety of situations needed
in the simulator. The model in the simulator is mostly used to predict the systolic and
diastolic pressures while the pressure profiles are generated from predefined profiles.
Thus, the simulator contains a database with a large number of standard curves.

Reflecting the correct physiological behavior is thus difficult, and this is where the
reference model will be most useful. Because of the flexible structure of our model it
is possible to construct all of these standard cases by setting up parameters describing
each of the scenarios. '

Such information should include:
o The cardiac output.
e The frequency of the period.

e Young’s modulus.

The peripheral resistances for each of the organs such that the minimum radius
for the structured trees can be chosen correctly.

The actual geometry for the vessels of the larger arteries.

Simulations with these parameters can be used directly to verify or determine the actual
pressure profiles but it is also possible to determine some of the basic parameters for
the simplified model from profiles generated with our reference model.

The main use of the reference model is to create parameters as well as flow and
pressure profiles for the anesthesia simulator. Moreover, the modeling process has gen-
erated much experience and knowledge about physiology. This has proven useful for
evaluating the results of the simpler real time model in the simulator. Since the goal as
stated in our hypothesis was to build and test a reference model for the cardiovascular
model in the simulator we will conclude that we have accomplished our goal.



Appendix A

Derivation of non-linear equations
for the Lax-Wendroff method

A.1 Outflow boundary condition

The residuals ((fr)1, (fr)2, (fr)3, (fr)4...) needed to apply Newton’s method are
given by:

Equation 1 - from (9.25):

AM2 4 og, A
M-1/2 - 1
FANEY <M, DMol2 TR ) o0 A+ (ame)hy P - EEE— (A

2 2
Let
. qn+1/2
M-
ky = (ths)yl/z——z—l/z
ke = YAt
. 4n+l/2
ks = AM—1/2

then (f,); can then be rewritten as

(fr)r =k +p (M, ks ;xz) ko — % (A.2)
Equation 2 — from (9.24):
(fr)2 = P(M,T4) Y3 At + (gims)hf - — 73 ' (A.3)
Let
ks = (gms)}f

then (f,)2 can then be rewritten as

(fr)2 = ka + p(M, z4)k2 — 23 (A.4)
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Equation 3 - from (9.19):

(Fs = Al =6 (o - (RO, (A5)
Let
ks = 7’1:4+9(R1)11t;-1{52

then ( ;)3 can be rewritten as
(fr)s =ks — 011 — 24

Equation 4 - from (9.20):

2
(frle = —z3+43 -0 (;i + B(M+1/2,z2) — (Rz)nM+_1{?2) +
dB(M+1/2,x
~y (F(M+1/2,$1,z2) + ——(Tz/—-—"’—) + (sz)’;;_l{32) (A.6)
where
_ 2n(ro)m41/2 71
F(M+1/2,21,22) = —Tg
B(M+1/2,23) = f(ro)m+1724/%2(40) 112
dB(M+1/2,23) ( 9B drg ) n+1/2
dz Org dr M+1/2
df df dro
= (25 (ﬁf(ro) + \/Ao—) - A_) (_)
< Vo2 dro dro ) pri1/2 \ 42 M+1/2
Let
ks = qiy+0 Ryl + (S5,
then (f,)4 can be written as
2 dB ,
(fr)a=—z3+ks—8 (% + B(Mm+1/2, mg)) + (F(M+1/2,x1,x2) + ——(MT'{:/ﬂ)
2 .
The Jacobian Df, is given by
-2 &4 0 0
_ 0 0 -1 &
D=1 4 0 0 21

& & -1 0
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where
_ dp (M(ks + z2)/2)
&L = ke 7
T3
_ dp (Ma $4)
& = ky e
2 dF (M ,T1,
€& = —0-ﬂ+'y (M+1/2, 71, T3)
To dzy
2
z dB (M+1/2,22) <dF (M+1/2,21,79)  d*B (M+1/2,2)
= @ —_— + —_— ) 4 9
“ ( (:vz ) dza 7 dzs " dz dza

A.2 Bifurcation conditions

The residuals ((f-)1, (fr)2,-.- ,(fr)1s) needed to apply Newton’s method are given
by: :

Equation 1 - from (9.32):

: 2 n+1/2
__ oy _g( T _ (R
(frh z1+ (@) — 0 <$12 + B(M+1/2,712) (Rz )M_1/2> +

dB (M+1/2,ZE12). 4 (Sép))'n+1/2 )

5 (F(M+1/2,x3,x12) + dz M-1/2

where

B(M+1/2,712) = f(ro)m+1/2y/%12 (Ao) a2

27(ro)m+41/2 =
F(M+1/2,23,Z12) = JZTV0/MA/2 B8

R T2
dB (M+1/2,712) (_a__B_fi_Q)n+1/2
dz Oro dz / pry1/2

d df aro
(2@ (\/Ff(ro) + \/Xf;dTJ - Ad_ro) M41/2 (71?—) M+1/2

Then let
- (p) n (P) n+1/2 (p) n+1/2
k= (g™ +6 (R” )M—1/2 7 (52 )M—1/2
and (f,)1 can be rewritten as

2

(fr1i=ki—z1—86 (% + B(M+1/2,x12)> + (F(M+1/2,x3,w12) +

dB (M+1/2,Z12)
dz

Equations 2 and 3 — from (9.32):
A = — (di,d2)\n _ (d1,d2) n+1/2
(fr)2s = —z47+ (g )i —0 ((Rz )M+1/2

(2,3)\"t1/2 dB (-1/2,715,18)
7 ((52 )M+1/2 + F(-1/2, 76,0, 215,18) + dz

- B(—1/2,$15,18)> +
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Where B, F, and dB /dz are defined as above. Now let
141/2 y +1/2
k220 = (q(d1,d2))nM Sy (Rgdl ,dz))n oy (Sgdl ,dz))" /

M+1/2 M+1/2
then

2

z
(fr)23 = k2,20 — T2 + 0 (i + B(-1/2, 3315,18)) +
. ) 15,18 _ .

¥ (F(—l/2, T69,Z15,18) +

dB (_1/2, $15,18)
dzx

Equation 4 - from (9.33):
_ (p) n _ _ (p) 11,+1/2
(fr)a z10 + (A7)} 97 (553 (Rl )M_1/2
Let

n+1/2

e ()

(fr)a = —z10 — 023 + k3
Equations 5 and 6 — from (9.33):

(fr)se = —ziz16+ (A9, — 0 ((R& ' 2))M+1/2 - x6,9>

= (Aldnd2)yn (di,dz)\ *H1/2
Fude = (45505 O(Rl )M+1/2

Then we can rewrite (f,)s 6 as

(fr)s,6 = —Z13,16 + 06,9 + kg 4a

Equation 7 - from (9.21):

(@®) 3202 + s

(fr)? = —z2+ 5

n+1/2
ks = (q(p))M—l/2

- 2

T
(fr)r=—z2 + 73 + ks
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Equations 8 and 9 - from (9.21):

Zo,9 + (@)L

(fr)8,9 = —Iss + 5 M+1/2
Let |
(q(dl,dz))n+1/2
ke 6o = M+1/2
e
Then
T
(fr)so = —xs8+ -%3 + kg 6a

Equation 10 - from (9.22):

(A(p))n+1/2 + 210

(fho = —en+——3L
Let
n+1/2
o
4 2
then

z
(fr)io=—-zn+ % + k7

Equations 11 and 12 - from (9.22):

1/2
215,18 + (A ’dz).rztﬂ{/z

(fringe = —Tu17+ 5
Let
dy,d 'n.+1/2
ko = (ACudy
»00 2
Then
T
(fr)miz = —z1407 + 1;’18 + ks ga
Equations 13 and 14 - from (9.27):
(fr)1304 = —Zo1+ Ts4 + Tg7

Equations 15 and 16 - from (9.29):

(fhsas = —(fP)u (1 _ /A + (flddg (1 _ (Agd"d’))o>
z11

14,17

169
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where f = Eh/frp. Let
koga = - (f(p))M + (f(dl,dg))o
ko = ( f® \/@)
M
k11,11 = (f(dladz) W)

Then (fr)15,16 can be rewritten as

0 _

k k
(fr)is.16 = —= 1L11e

— k
VZii /T14,17 %9
Equations 17 and 18 — from (9.30):
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a =)
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The Jacobian Df; is given by
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Appendix B

Gas dynamics analogy

There is an direct analogy between the equations for the one-dimensional fluid flow in
distensible vessels and the one-dimensional gas-dynamic equations. This is described
by Shapiro (1977) and Forbes (1981) among others.

Our point of departure are equations (7.9~7.10). However, we disregard both the
outflow (¥ = 0) and the wall-shear stress. The latter could easily be taken into the
equations but is left out to simplify the equations. This is acceptable since the purpose
of this section is to show the analogy not to derive our concrete model. Hence, the
continuity and momentum equations are given by

0A | B(Au) _
ot * or O
0(Au)  O(Au?) op
p( ot + oz + %_0

Dividing the momentum equation by p, and expanding the terms 8(Au) /8t and 8(Au?)/dz
gives

04  O(Au)

5t oz 0
bu  [0A O(Au) du Adp _
A6t+u(at+ oz >+Au£+;a_fl}—0

If » times the continuity equation is subtracted the terms in the parenthesis cancel.
Dividing the momentum equation by A yields

0A  0(Au)

ot " ow 0 ®.1)
Ou Ou  10p :
b—t+’u%+;5£—0 (BZ)

Instead of using (7.26) it is assumed that p is a function of A only. Thus, the natural
taper of the arteries is disregarded. Hence, Equations (B.1-B.2) can be reformulated
such that they become identical to the unsteady one-dimensional gas dynamics equa-
tions. In order to do so the following change of variables must be made

~

p=pA
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where p is constant due to the incompressibility in the fluid approach, and

ﬁ=/A@

Using these definitions the following one-dimensional gas dynamics equations are ob-
tained

8 , o(pn) _

_ : En + a9z 0. B.3)
Ou Ou 10p - : 7

—a?-f'u-a; +75£—0 (B.4)

In order to make the similarity complete we need to establish
p=Kp’

This imposes the following restriction on the state equation p(A).
Fory #1

v - 1p—9p* 1/(v-1)
Alp) = (A(p )+ 7———7 p———Kp’; > (B.5)

and fory=1
Atp) = A" exp (222
where p* is constant having the dimensions of pressure. Finally, if we let vy = 1/2,

K = (4/3) Eh+/7/p, and p* = 0 it can be shown that equation (B.5) is identical to
the “elastic” relation stated in equation (7.26).




Appendix C

The self-similar tree

The tree of smaller arteries can be regarded as self-similar if the equations for any
given vessel can be determined as scaled versions of the corresponding equations for
the parent vessel, see Figure C.1.

In this chapter we show that if the fluid in the smaller arteries is treated as inviscid
then it is possible to derive a self-similar solution. However, blood is viscous and
because viscosity can not be scaled self-similarity do not apply

In order for self-similarity to apply, the parameters of a given daughter vessel (in-
dicated with subscript d) must be scaled versions of the corresponding parameters for
the parent vessel (indicated with subscript p), i.e.

tg=aty zg=azp, Ti=ar, Ag= a4, Cy= a2Cp ©.1)
Py=PF, Qd=azQp Pd = Pp wd=wp/a Zd=Zp/C!2 '

where «a is the scaling factor (& < 1). Thus, equations (10.73) and (10.74) scale as

L, (Tp)

Ld (Td)

Figure C.1: The scaled vessels.
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follows
Ap(1 - Fy) 0P, _
Pp Ozp
0Qp

0

twpQp +
= (C.2)

+ (Aa/e®)(1—Fy) OFy

pa ~ Oza/c)
. 3(Qa/?)

2 P —
tawy(Cyfa) Py + B(zq/a) 0
Ag(1—F;)0P;
Pd 0zq4

99 _
dzy
The only term which does not immediately reveal whether it scales is F;. From (10.63)
we had

iowg(Qa/?) =0

0

waQq +

twygCyPy + 0

Fr= { 2/(wil/2) [1 +1/(2w) + O(W‘z)] forw — oo
T 1—4(w?/8) — (w*/48) + +O(wf) forw =0

where the Womersley number w = r/w/v. In order for equations (C.2) to scale Fy
and thus w must be invariant under the scalings by «. The scaling definitions in (C.1)
gives wp = rgq/ay/wya/vy = wg/a. This shows that unless the kinematic viscosity
v can be scaled such that v, = 14/a, there is no self-similar solution to (C.2). Even
though the viscosity, as shown in Figure 3.8, do depend on the vessel radius it does not
scale linearly, so the viscous case does not exhibit self-similarity.

However, it is possible to find a self-similar solution to the inviscid fluid dynamic
equations. These can be found from disregarding the friction term 2rvqRR/(Ad) in
(7.31) and (7.32)

04  0q _

ot 8z
8g 0 (¢ Adp
?a?+ax(74'> P

These equations can be linearized by letting A/9t ~ Cdp/3dt, disregarding the term
d(q*/A)/ 0z, and approximating the factor A/p by Ay/p. Hence,

Op  0Oq _ '

'a—t'l"aTE'—-O (C.3)
9 , Aodp _
at+p3x_0 (C4)

The Fourier transform of these inviscid linear fluid dynamic equations yields exactly
the same equations as (C.2) but without the factor F;. Hence, the inviscid equations
exhibit self-similarity.
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The equations for the daughter arteries can be written in terms of the ones for the
parent artery.

Py(zg4,wq) Pp(zp, wp) Zp(zp, wp)
ZAx , W) = = 4 = PP
#(za, we) Qa(za,wa)  Qp(zp,wp) a?
Hence, the impedance at the inlet of the vessel, i.e. at z = 0, is given by
Zy(0, awy)
Z4(0,wg) = 2=
d( awd) CX2

As discussed in Chapter 6 the daughter vessels scale with ratios o and 3, not necessar-
ily the same. Hence,

Za(Oug) = Z20ge) (©5)
Zdz(oawdz) = _ZI’(—(?B’@ (C6)

In order to apply self-similarity the bifurcation-condition (11.1) must be scaled as well.
Using (C.5) and (C.6) gives

1 1 1
—_——— = -+ =
ZP(Ll”wP) Zdl (01 wdl) Zdz (Oawdz)
1 o? B2
—F = + CD
Zp(Lp, wp) Zp(0,awp)  Zp(0, Bwp)

The comparison is made at the bottom of the parent vessel, at z = L and at the top
of the daughter vessels, i.e. at their local z = 0. Using (C.7) in (10.80) gives the
following self-similar expression for the input impedance.

1 o &
ig~ ' sin{(wL/c) + cos(wL/c)/ mika m
Z(0,w) = G i) €8

cos(wL/c) + igsin(wL/c)/ (Z(&Zw) + Z(gzﬁw)) g

It is only possible to derive -an analytical solution for the root impedance of the struc-
tured tree for the unscaled tree, i.e. where @ = 3 = 1. However, a general solution
can be found numerically. In the remainder of this chapter the analytical solution for
a = 3 = 1 is presented along with solution algorithms for the more general symmetric
(e = B) and asymmetric (all a’s and 3’s) trees.

C.1 Case 1: Unscaled bifurcations, (o = § = 1)

In this case the self-similar impedance is found by inserting & = 8 = 1 in (C.8).
Hence,
2(0,0) = ig~lsin(wL/c) + Z(0,w) cos(wL/c)/2

’ cos(wL/c) +ig Z(0,w) sin(wL/c)/2
cos(wL/c)
sin(wL/c)

9°Z(0,w)? —ig Z(0,w)—2=0 (C.9)
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forwL/c # pm.

This equation only has a solution if g # 0 and it depends on wL/c. f wL/c = px
then (C.9) gives Z(0,p7) = 0. Otherwise, if wL/c 5 pr, the solution to the quadratic
equation depends on the sign of the discriminant. Equation (C.9) can be simplified by
lettmg A (0 w) = ¢Z(0,w). This gives

Z(0,w)? —1i cot(wL/c) Z(0, wj -2=0 <«
i cot{wL/c). - cot?(wL/c)
o - L) [ EITD

Reinserting the original Z(0,w) gives the following solutions:

1. If the discriminant 2 — cot?(wL/c)/4 = 0 the solution is purely imaginary and
given by
icot(wL/c)

Z(0,w) = 2

2. If the discriminant 2 — cot?(wL/c)/4 < 0 the solution is also purely imaginary

and given by
Z(0,w) (C.10)
icot(wL/e) | ¢ \/ cot?(wL/c)
= ——1 2y —TL 2
2¢g g 4

= (cot(wL/c) + |cot(wL/c)| \/ cotz(wL/c) ) (C.11)

Since both P and @ are the Fourier transforms of real functions they must be
self-adjoint, i.e.

P(.’E, (d) = P(x’ “CU), Q(SC,CU) = Q(x: _w)

for all z.

The same applies for Z(z,w). Furthermore, the solutions above must approach
OaswL/c — pm.

When |cot{wL/c)| is large (i.e. when wL/c is close to pr) the square-root in
(C.11) can be approximated to first order and the solution becomes

Z(0,w) = 29 (cot(wL/c) + |cot(wL/c)] ( 552(_3,3707)>

In order to figure out which solutions to pick two situations must be studied

(a) For cot(wL/c) > O, that is where wL/c € Upez [pm, (p+ 3)n] the
impedance becomes:

Z(0,w) = —ECO“'(‘*’L/C)( (1‘30?2_(4513_/?)))
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If the solution with the plus sign is chosen Z(0,w) does not converge to 0
aswL/c — pm. However, if the negative solution is chosen, the impedance
becomes

2(0,w) = ?g—itan(wL/c) - ~%tan(—wL/c) (C.12)

which converges to zero as it is supposed to. Finally, this solution is self-
adjoint as required.

(b) For cot(wL/c) < 0, ie. wL/c € Upez [(p+ §),pr| the impedance
becomes:

Z(0,w) = 535 (cot(wL/c) * (- cot(wL/C)) (1 - -cot2(iL/C))>

In this case the positive solution must be chosen in order for the two con-
ditions to be fulfilled and in this case the solution obtained is the same as
(C.12). ‘

3. If the discriminant 2 — cot?(wz/c)/4 > 0 the solution has both a real part and
an imaginary part. Thus, the impedance is given by

; 2
2(0,w) = zcot;u;L/c) " \/2 _ cot (ZL/c) (C.13)

Because cot is an odd function, this solution fulfills that
Z(0,wL/c) = Z(0,—wL/c)

However, in order to get the right properties the positive solution must be chosen.
This can be seen from the following rough analysis of the wave-equation in
(C.4).

Assume that there is no reflected wave i.e. p(z,t) = f(z — ct) then an explicit
expression for the corresponding characteristic impedance can be found. Thus,
the wave equation (C.4) gives

ég@p(:c,t) _ dq(z,t)

p Oz ot
__1_4_0_ o g dq(z, 1)

Ao
)y =2 t
ala,1) = 22 p(z, )

This shows that 2(z,t) = p(z,t)/q(z,t) = pc/Ay is real and positive. There-
fore, we assume that the real part of Z(0, w) in the more general case discussed
above should be positive too.
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C.2 Case 2: Symmetric bifurcations, (o = 3)
~ Inserting o = (§ in (C.8) gives

ig~!sin(wL/c) + Z(0,aw) cos(wL/c)/(2a2)

Z00) = = L o) + 9 200, ow) sin(wL /)] (2a)

(C.14)

Since the tree is sjmmetric the radius relation (6.1} gives

1/€
rg = 27'5 =2arp)t & a= (-;—)
This can also be seen from (6.4) and (6.4) because the geometry of the tree is self-
similar.

It is now possible to determine Z(0, w) using a recursive approach. This is done
by predicting Z for smaller and smaller values of wL/c. When wL/c becomes smaller
than some given threshold some approximate value is assigned to Z. This approxi-
mation can be found by expanding Z in a series around w = 0. Let Z(0,w) = h(w)
then

Z(0,w) = h(w) = h(0) + k' (0)w + O(w?)

Assuming that Z (0, w) = aw then

h(0) = 0
we) = LyZ0ow)
cg 2a
Hence,
1L w

We have left out the computation for A’ (w) since it is rather messy. Since the algorithm
for the asymmetric case is similar we refer to 3.

C.3 Case 3: Asymmetric bifurcations, (a # )

From (C.8) we had

ig~ ! sin(wL/c) + cos(wL/c)/ ( Z(&im + Z(g 2«4))

Z (07 w) = .. a? 82
cos(wL/c) + igsin(wL/c)/ (Z(O,aw) +z (O,Bw))

and from (6.1) we had

ré=(arp)f+ (Brp)¢ & 1=of+4¢
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Using the asymmetry-relation (6.3) we get
(arp)? =v(Brp)* & o =76 %
Hence,
(BB =1 p=(P+nT

These correspond to the « and 3 found in Chapter 6. The algorithm follows the same
approach as the symmetric case and in order to describe the recursive scheme we must
again supply a stopping condition for small values of wL/c. In this case the expansion
of Z(0,w) in a series around w = 0 yields

Z(0,w) = h(w) = h(0) + K (0)w + O(w?)

Hence,

Z(o,w)=f£( ud ) (C.16)

1
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As for the symmetric case the details are left out.

Algorithm 3: Determines Z(0,w) for a self-similar asymmetric structured tree
using a recursive scheme.

o For all allowed frequencies:

— Determine «, 5, and g.

- fwL/c < e set Z(0,w) to the approximate value in (C.16).

- Otherwise compute Z(0, aw) and Z(0, Sw) recursively.

- Finally, determine Z(0,w) = f(Z(0, aw), Z(0, fw)) using (C.8)







Appendix D

English summary

Several approaches can be used when modeling the arterial system. These range from
simple Windkessel type models to advanced three-dimensional fluid dynamic models.
This study is motivated by the need for a spatial and physiological, yet simple, model
of the larger systemic arteries. The model should be used to evaluate and generate
physiologically correct flow and pressure profiles for use in an anesthesia simulator.
Thus, the aim of this dissertation was to develop a one-dimensional fluid dynamical
model based on physiological principles for the larger systemic arteries showing that:

e The maximum pressure of the larger arteries increases away from the heart to-
wards the periphery.

e The mean pressure of the smaller arteries drops according to the distribution of
flow impedance of the vascular bed (Noordergraaf, 1978).

e The steepness of the incoming pressure profile increases towards the periphery.

e The reflected dicrotic wave separates from the incoming pressure wave and is
more prominent at peripheral locations than at proximal locations.

We have constructed such a model by regarding the systemic arteries as a binary
tree (the arterial tree) where each branch is represented by an elastic and tapering
vessel. For each vessel flow and pressure are determined by solving Navier-Stokes
equations for an incompressible Newtonian fluid (the blood) combined with a state
equation relating pressure to cross-sectional area.

Arterial models for the larger arteries have been investigated earlier, see e.g. An-
liker et al. (1971), Stettler et al. (1981), Lighthill (1989), or Pedley (1980). The basis
for our approach follows the ideas outlined there. However, most of these models do
not explicitly discuss how to derive a physiologically based boundary condition rep-
resenting flow and pressure in the smaller arteries. Choosing an appropriate boundary
condition is a central problem when modeling blood flow and pressure in the larger
arteries. We have modeled the smaller arteries as asymmetric binary structured trees
which are terminated when the radius of any vessel is less than some minimum ra-
dius modeling the peripheral resistance at the arteriolar level in a given organ. Then,
the boundary condition for each terminal vessel of the larger arteries is determined
by calculating the root impedance of the corresponding structured tree using a semi-
analytical approach. In each vessel flow and pressure are found from an analytical
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solution to a linearization of the viscous axisymmetric Navier-Stokes equations for an
incompressible Newtonian fluid. This has provided a dynamical boundary condition
reflecting the actual phase lag between flow and pressure as well as accommodated
wave-propagation effects for the entire systemic arterial tree. The resulting model is
physiologically adequate as well as computationally feasible.

The output from this model is pressure and flow profiles, averaged over the cross-
sectional area of the vessels. These all exhibit the essential features characterizing the
arterial pulse. This has been shown by comparisons to human as well as canine data.
Furthermore, we have compared our model with two other models: a pure resistance
model and Stergiopulos’ three element Windkessel model (Stergiopulos et al., 1992).
Our model essentially agrees with both the pure resistance model and the Windkessel
model. In addition, it is able to predict observed high frequency oscillations for the
impedance at the outflow boundaries. This is not possible with either of the simpler
models. Based on these results, we have concluded that the structured tree is indeed a
feasible boundary condition for determining flow and pressure in the larger arteries.



Appendix E

Resume pa dansk

Blodstrgmning og —tryk i de humane systemiske arterier kan modelleres ved brug af
et bredt spektrum af forskellige principper varierende fra simple vindkeddeimodeller
til avancerede tredimensionelle strgmningsmodeller. Motivationen for denne afhan-
dling er behovet for en model der kan beregne blodstrgmning og —tryk for de store
systemiske arterier. Den skal bide have en rummelig udstrekning og vere fysiologisk
korrekt. Samtidigt skal den veare tilstrekkelig simpel siledes at den i et realistisk tid-
srum kan beregnes pa en computer. Formalet med denne model er, at den skal kunne
anvendes som reference model for tilsvarende men simplere modeller i en anastesisim-
ulator, idet den skal bruges til at evaluere og generere fysiologisk korrekte profiler for
blodstrgmning og —tryk i de store systemiske arterier. Formélet med denne afhandling
har derfor veret at udvikle en endimensional model for de store systemiske arterier
baseret pa fysiologiske principper. Den skal kunne vise at

¢ det maksimale blodtryk for de store arterier stiger distalt fra hjertet.
e middelblodtrykket for de systemiske arterier falder proksimalt fra hjertet.
e stigningen af den indkomne trykbglge gges distalt fra hjertet.

e den reflekterede bglge adskilles fra den indkomne bglge og bliver tydeligere
distalt fra hjertet.

Vi har udviklet en model ved at betragte de systemiske arterier som et binert tree (det
arterielle trz), hvori de enkelte grene er elastiske og snavres ind distalt fra hjertet.
For hvert rgr er blodstrgmningen og —trykket bestemt fra Igsninger til Navier-Stokes
ligninger for en usammentrykkelig vaske kombineret med en ligning, som relaterer
blodtrykket til tvaersnitsarealet af rgret.

Sadanne modeller er blevet studeret tidligere, se f.eks. (Anliker et al., 1971; Lighthill,
1989; Pedley, 1980). Udgangspunktet for vores model hviler pa disse arbejder. De
fleste af disse tidligere modeller beskriver dog ikke, hvordan fysiologisk baserede
randbetingelser, som udggr de sma arterier, skal modelleres.

Dette er et centralt problem i forbindelse med modellering af blodstrgmning og
~tryk i de store arterier. Vi har antaget at de sma arterier kan modelleres som asym-
metriske binzre strukturerede trzer som bliver termineret nar radius for alle rgrene
er mindre end en given minimum radius, som reprasenterer den perifere modstand i
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arteriolerne 1 et givet organ. Randbetingelsen for hver terminal for de store arterier er
modelleret ved at beregne impedancen i roden af de strukturerede traer. Rodimpedan-
cen i de enkelte rgr er sa fundet ved at lgse (analytisk) en lineariseret version af de
viskgse Navier-Stokes ligninger for en usammentrykkelig Newtonsk vaske. Dette har
resulteret i en dynamisk randbetingelse som dels kan vise faseforskydningen mellem
blodstrgmningen og -trykket og dels tager hgjde for de fenomener, der er et resul-
tat af bglgeudbredelse gennem det arterielle tr. P grund af vores behandling af de
smd arterier i et struktureret trz er det lykkedes os at udvikle en model, som er bade
fysiologisk korrekt men som ogsé er mulig at bearbejde numerisk.

Resultatet fra vores beregninger er blodstrgmnings og —tryk profiler som et gen-
nemsnit over tvarsnitsarealet af rgrene. Disse viser alle de fenomener som karak-
teriserer pulsbglgen. Vi har vist at vores model er korrekt; dels ved at sammenligne
den med data fra bide mennesker og hunde og dels ved at sammenligne den med
en ren modstands model og med Stergiopulos et al. (1992) vindkeddelmodel. Sam-
menligningerne viste at vores model kunne beskrive hgjfrekvente oscillationer for
impedancen, hvilket ikke er muligt ved brug af de simplere modeller. Derfor kan
vi konkludere at vores randbetingelse, som modellerer de sma arterier ved at se dem
som et struktureret trz, er fysiologisk korrekt og kan bruges i praksis.
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og Thomas Hougaard

Vejleder} Petr Viscor

"METHODS AND MODELS FOR ESTIMATING THE GLOBAL
CIRCULATION OF SELECTED. EMISSIONS FROM ENERGY

CONVERSION"

by: Bent Serensen
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228/92

229/92

230/92

231A/92

231B/92

232/92

233/92

234/92

235,92

“Computersimulering og fysik"

af: Per M.Hansen, Steffen Holm,

Peter Maibom, Mads K. Dall Petersen,
Pernille Postgaard, Thomas B.Schreder,
Ivar P. Zeck

Vejleder: Peder Voetmann Christiansen

“Teknologi og historie®
af:

Mogens Niss, cens Heyrup,
Hans Hedal

Fire artiklexr

ib Thiersen,

“Masser af information uden betydning*

En diskussion af informationsteorien.
i Tor Nerretranders' "Mark Verden' og
en skitse til et alternativ basserec
pa andenordens kybernetik og semioiik.

af: Seren Brier

"Vinklens tredeling - et klassisk
problem”

et matematisk projekt af

Karen Birkelund, Bjern Christensen
Vejleder: Cohnny Ottesen )

"Elektrondiffusion i silicium - en
matematisk model"

af: Jesper Voetmann, Karen Birkelund,

Mette Olufsen, Ole Mpller Nielsen
Vejledere: Johnny Ottesen, H.B.Hansen

"Elektirondiffusion
matematisk model"

i.silicium - en
Kildetekster

af: Jesper Voetmann, Karen Birkelund,
Mette Olufsen, Ule Mgller Nielsen

Vejledere: Jjohnny Ottesen, H.B.Hansen

"Undersogelse om den simultane opdagelse

af energiens bevarelse.og iszrdeles om

~de af Mayer, Colding, Joule og'Helmholtz

udferte arbejdexr” >
af: L.Arleth, G.I.Dybkjer, M.T.@stergdrd

Vejleder: Dorthe Posselt

"The effect of age-dependent host
mortality on the dynamics of an endemic
disease and :
Instability in an SIR-model with age-
dependent susceptibility

by: Viggo Andreasen

'”THE FUNCTIONAL DETERMINANT OF A FOUR-DIMENSIONAL

BOUNDARY VALUE PROBLEM" '
by: Thomas P. Branson and Peter B. Gilkey
OVERFLADESTRUKTUR OG POREUDVIKLING AF KOKS

— Modul 3 fysik projekt -

af: Thomas Jessen
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236b/93

237/93

238)93

239/93

240/93

241,93

242,93

243793

244/93

245a+b
/93

246/93

INTRODUKTION TIL KVANTE
HALL EFFEKTEN
alf: Anja Boisen, Peter Boggild

Vejleder: Peder Voetmann Christiansen

Erland Brun Hansen
STROMSSAMMENBRUD AF KVANTE
HALL EFFEKTEN
af: Anja Boisen, Peter Bsggild

Vejleder: Peder Voetmann Christiansen

Erland Brun Hansen

The Wedderburn principal theorem and
Shukla cohomology

afi Lars Kadison

SEMIOTIK OG SYSTEMEGENSKABER (2)
Vektorbdnd og tensorer

af: Peder Voetmann Christiansen

Valgsystemer ~ Modelbygning og analyse

Matematik 2. modul

af: Charlotte Gjerrild,
Maria Hermannsson,
Ragna Clauson-Kaas,

Jane Hansen,
Allan Jprgensen,
Poul Lutzen

Vejleder: Mogens Niss

Patologiske eksempler.
Om sare matematiske fisks betydning for
den matematiske udvikling

af: Claus Drazby, Jern Skov Hansen, Runa
Ulsee Johansen, Peter Meibom, Johannes
Kristoffer Nielsen

Vejleder: Mogens Niss

FOTOVOLTAISK STATUSNOTAT 1
af: Bent Serensen

Brovedligeholdelse - bevar mig vel

Analyse af Vejdirektoratets model for
optimering af broreparationer

af: Linda Kyndlev, Kare Fundal, Kamma
Tulinius, Ivar Zeck

Vejleder: Jesper Larsen

TANKEEKSPERIMENTER I FYSIKKEN
Et 1l.modul fysikprojekt
af: Karen Birkelund, Stine Sofia Korremann

Vejleder: Dorthe Posselt

RADONTRANSFORMATIONEN og dens anvendelse
i CT-scanning

Projektrapport

af: Trine Andreasen, Tine Guldager Christiansen,

Nina Skov Hansen og Christine Iversen

Vejledere: Gestur Olafsson og Jesper Larsen

Time-Of~Flight mdlinger p& krystallinske
halvledere
Specialerapport

af: Linda Szkotak Jensen og Lise Odgaard Gade

Vejledere: Petr Viscor og Niels Boye Olsen
HVERDAGSVIDEN - 0G MATEMATIK

- LEREPROCESSER I SKOLEN

af: Lena Lindenskov, Statens Humanistiske

Forskningsrdd, RUC, IMFUFA

247793

248/93

249/93

250/93

251193

252193

253/93

254/93

255/93

266/93

257/93

258/93

259/93

260/93

UNIVERSAL LOW TEMPERATURE AC CON-
DUCTIVITY OF MACROSCOPICALLY
DISORDERED NON-METALS

by: Jeppe C. Dyre

DIRAC OPERATORS AND MANIFOLDS WITH
BOUNDARY

by: B. Booss-Bavnbek, K.P.Wojciechowski

Perspectives on Teichmuller and the
Jahresbericht Addendum to Schappacher,
Scholz, et al.

by: B. Booss-Bavnbek

With comments by W.Abikoff, L.Ahlfors,
J.Cerf, P.J.Davis, W.Fuchs, F.P.Gardiner,
J.;ost, J.-P.Kahane, R.Lohan, L.Lorch,
J.Radkau and T.Soderqgvist

EULER OG BOLZANO - MATEMATISK ANALYSE SET I ET
VIDENSKABSTRORETTSK PERSPEKTIV

Progektrapport af: Anja Juul, Lone Michelsen,
Tomas Hpjgdrd Jensen

Vejleder: Stig Andur Pedersen
Genotypic Proportions in HBybrid Zones

by: Freddy Bugge Christiansen, Viggo Andreasen
and Ebbe Thue Poulsen

MODELLERING AF TILFALDIGE FENOMENER

Progjektrapport af: Birthe Friis, Lisbeth Helmgaard,
Kristina Charlotte Jakobsen, Marina Mosbak
Johannessen, Lotte Ludvigsen, Metie Hass Nielsen

Kuglepakning

Teori og model

af: Lise Arleth, Kare Fundal, Nils Kruse
Vejleder: Mogens Niss

Regressionsanalyse
Materiale til et statistikkursus
af': Jorgen Larsen

TID & BETINGET UAFHANGIGHED

af: Peter Harremoés

Determination of the Frequency Dependent
Bulk Modulus of Liquids Using a Piezo-
electric Spherical Shell (Preprint)

by: T. Christensen and N.B.Olsen

Modellering af dispersion i piezoelektriske
keramikker

af: Pernille Postgaard, Janmnik Rasmussen,
Christina Specht, Mikko QOstergdrd

Vejleder: Tage Christensen

Supplerende kursusmateriale til

"Linemre strukturer fra algebra og analyse"
af: Mogens Brun Heefelt

STUDIES OF AC HOPPING CONDUCTION AT LOW
TEMPERATURES

by: dJeppe €. Dyre

PARTITIONED MANIFOLDS AND INVARIANTS IN
DIMENSIONS 2, 3, AND 4
by: B.

Booss~Bavnbek, K.P.Wojeiechowski




261,93

262/93

263/93

264793

265/94

266/94

267/94

268/94

269/94

270/94

271/94

OPGAVESAMLING
Bredde-kursus i Fysik
Eksamensopgaver fra 1976-93

Separability and the Jones
Polynomial

by: Lars Kadison

Supplerende kursusmateriale til
"Lineare strukturer fra algebra

og analyse" II

af: Mogens Brun Heefelt

FOTOVOLTAISK STATUSNOTAT 2
af: Bent Serensen

SPHERICAL FUNCTIONS ON ORDERED
SYMMETRIC SPACES

To Sigurdur Heléason on his
sixtyfifth birthday

by: Jacques Faraut, Joachim Hilgert
and Gestur Olafsson

Kommensurabilitets-oscillationer i
laterale supergitre

Fysikspeciale af: Anja Boisen,
Peter Beggild, Karen Birkelund

Vejledere: Rafael Taboryski, Poul Erik

Lindelof, Peder Voetmann Christiansen

"Kom til kort med matematik pa

Eksperimentarium - Et'forslag til en
opstilling )
af: Charlotte Gjerrild, Jane Hansen

‘Vejleder: Bernhelm Booss-Bavnbek

-Life is like . a sewer ...

Et projekt om modellering af aorta via
en model for stremning i kloakrer

af: Anders Marcussen, Anne C. Nilsson,
Lone Michelsen, Per M. Hansen

Vejleder: Jesper Larsen

Dimensionsanalyse en introduktion
metaprojekt, fysik

af: Tine Guldager Christiansen,
Ken Andersen, Nikolaj Hermann,

Jannik Rasmussen

Vejleder: Jens Hepjgaard Jensen

THE IMAGE OF THE ENVELOPING ALGEBRA
AND IRREDUCIBILITY OF INDUCED REPRE-
SENTATIONS OF EXPONENTIAL LIE GROUPS

by: Jacob Jacobsen

Matematikken i Fysikken.
Opdaget eller opfundet
NAT-BAS-projekt

vejleder: Jens Hepjgaard Jensen

272/94

273/94

274/94

275/94

276/94

277/94

278/94

279/94

280/94

281/94

282/94

Tradition og fornyelse

Det praktiske elevarbejde i gymnasiets
fysikundervisning, 1907-1988

af: Kristian Hoppe og Jeppe Guldager
Vejledning: Karin Beyer og Nils Hybel

Model for kort- og mellemdistanceleb
Verifikation af model

af: Lise Fabricius Christensen, Helle Pilemann,
Bettina Serensen

Vejleder: Mette Olufsen

MODEL 10 - en matematisk model af intravenese
anestetikas farmakokinetik
3. modul matematik, foradr 1994

af: Trine Andreasen, Bjern Christensen, Christine
Green, Anja Skjoldborg Hansen. Lisbeth
Helmgaard

Vejledere: Viggo Andreasen & Jesper Larsen

Perspectives on Teichmuller and the Jahresbericht
2nd Edition

by: Bernhelm Booss-Bavnbek

Dispersionsmodellering
Projektrapport 1. modul

af: Gitte Andersen, Rehannah Borup, Lisbeth Friis,
Per Gregersen, Kristina Vejre

Vejleder: Bernhelm Booss-Bavnbek

PROJEKTARBEJDSPEDAGOGIK ~ Om tre tolkninger af
problemorienteret projektarbejde

af: Claus Flensted Behrens, Frederik Voetmann
Christiansen, Jern Skov Hansen, Thomas
Thingstrup

Vejleder: Jens Hejgaard Jensen

The Models Underlying the Anaesthesia
Simulator Sophus

by: Mette Olufsen{Math-Tech), Finn Nielsen
(RISQ® National Laboratory), Per Foge Jensen
(Herlev University Hospital), Stig Andur
Pedersen (Roskilde University)

Description of a method of measuring the shear
modulus of supercooled liquids and a comparison
of their thermal and mechanical response
functions.

af: Tage Christensen

A Course in Projective Geometry

by Lars Kadison and Matthias T. Kromann

Modellering af Det Cardiovaskulzre System med

Neural Pulskontrol

Projektrapport udarbejdet af:

Stefan Frello, Runa Ulsee Johansen,
Michael Poul Curt Hansen, Klaus Dahl Jensen

Vejleder: Viggo Andreasen
Parallelle algoritmer

af: Erwin Dan Nielsen, Jan Danielsen,

Niels Bo Johansen
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285/94

286/94

287/94

288/95

289/95

290/95

291/95%

292/95

293/95

294/95

295/95

Granser for tilfeldighed

(en kaotisk talgenerator)

af: Erwin Dan Nielsen og Niels Bo Johansen

Det er ikke til at se
lige ve' det!

det, hvis man ikke

Gymnasiematematikkens begrundelsesproblem

En specialerapport af Peter Hauge Jensen

og Linda Kyndlev

Veijleder: Mogens Niss

Slow coevolution of a viral pathogen and

_its diploid host

by: Viggo Andreasen and
Freddy B. Christiansen

The energy master equation: A low-temperature
approximation to Bassler's random walk model

by: Jeppe C. Dyre

A Statistical Mechanical Approximation for the
Calculation of Time Auto-Correlation Functions

by: Jeppe C. Dyre

PROGRESS 1IN WIND ENERGY UTILIZATION

by: Bent Serensen

Universal Time-Dependence of the Mean-Square
Displacement in Extremely Rugged Energy
Landscapes with Equal Minima

by: Jeppe C. Dyre and Jacob Jacobsen

Modellering af uregelmzssige belger
Et 3.modul matematik projekt

af: Anders Marcussen, Anne Charlotte Nilsson,
Lone Michelsen, Per Morkegaard Hansen

Vejleder: Jesper Larsen

1st Annual Report from the project

LIFE-CYCLE ANALYSIS OF THE TOTAL DANISH
ENERGY SYSTEM

an example of using methods developed for the
OECD/IEA and the US/EU fuel cycle externality study

by: Bent Serensen

Fotovoltaisk Statusnotat 3

af: Bent Serensen

Geometridiskussionen - hvor blev den af?
af: Lotte Ludvigsen & Jens Frandsen

Vejleder: Anders Madsen

Universets udvidelse -
et metaprojekt

Af: Jesper Duelund og Birthe Friis

Vejleder: Ib Lundgaard Rasmussen

A Review of Mathematical Modeling of the
Controled Cardiovascular System

By: Johnny T. Ottesen

296/95 RETIKULER den klassiske mekanik

297/95

298/95

299/95

300/95

301/95

302/95

303/95

af: Peder Voetmann Christiansen
A fluid-dynamical model of the aorta with
bifurcations

‘by: Mette Olufsen and Johnny Ottesen

Mordet p& Schrodingers kat - et metaprojekt om

to fortolkninger af kvantemekanikken

af: Maria Hermannsson, Sebastian Horst,

Christina Specht

Vejledere: Jeppe Dyre og Peder Voetmann Christiansen

ADAM underrfigenbladet - et kig pd en samfunds-

Qidenskabelig matematisk model

Et matematisk modelprojekt
af: Claus Dreby, Michael Hansen, Tomas Hejgard Jensen

Vejleder: Jergen Larsen

Scenarios for Greenhouse Warming Mitigation

by: Bent Serensen

TOK Modellering af traers vakst under pévirkning

af ozon

af: Glenn Meller-Holst, Marina Johannessen, Birthe

Nielsen og Bettina Serensen

Vejleder: Jesper Larsen

KOMPRESSORER - Analyse af en matematisk model for

aksialkompressorer

Projektrapport sf: Stine Beggild, Jakob Hilmer,

Pernille Postgaard

Vejleder: Viggo Andreasen

Masterlipnings-modeller af Glasovergangen
Termisk-Mekanisk Relaksation

Specialerapport udarbejdet af:

Johannes K. Nielsen, Klaus Dahl Jensen

Vejledere: Jeppe C. Dyre, Jergen Larsen

304a/95 STATISTIKNOTER Simple binomialfordelingsmodeller

304b/95

304c/95

3044/95

304e/95

af: Jorgen Larsen

STATISTIKNOTER Simple normalfordelingsmodeller

af: Jergen Larsen

STATISTIKNOTER Simple Poissonfordelingsmodeller

af: Jergen Larsen

STATISTIKNOTER Simple multinomialfordelingsmodeller

af: Jorgen Larsen

STATISTIKNOTER Mindre matematisk-statistisk opslagsverk
indeholdende bl.a. ordforklaringer, resuméer og
tabeller

af: Jorgen Larsen




305/95

306/95

307/95

308/95

309/95

The Maslov Index:
A Functional Analytical Definition
And The Spectral Flow Formula

By: B. Booss-Bavnbek, K. Furutani

Goals of mathematics teaching

Preprint of a chapter for the forth-
comming International Handbook of
Mathematics Education (Alan J.Bishop, ed)

By: Mogens Niss

Habit Formation and the Thirdness of Signs
Presented at the semiotic symposium

The Emergence of Codes and Intensions as
a Basis of Sign Processes

By: Peder Voetmann Christiansen

Metaforer i Fysikken

af: Marianne Wilcken Bjerregaard,
Frederik Voetmann Christiansen,
Jern Skov Hansen, Klaus Dahl Jensen
Ole Schmidt

Vejledere: Peder Voetmann Christiansen og
Petr Viscor

Tiden og Tanken
En underségelse af begrebsverdenen Matematik
udfert ved hjzlp af en analogi med tid

af: Anita Stark og Randi Petersen

Vejleder: Bernhelm Booss-Bavnbek

310/96

311/96

312/96

313/96

314/96

315/96
a+b

Kursusmateriale til 'Lineare strukturer fra
algebra og analyse" (E1)

af: Mogens Brun Heefelt

2nd Annual Report from the project
LIFE-CYCLE ANALYSIS OF THE TOTAL DANISH
ENERGY SYSTEM

by: Héléne Connor-Lajambe, Bernd Kuemmel,

Stefan Kruger Nielsen, Bent Serensen

Grassmannian and Chiral Anomaly

by: B. Booss-Bavnbek, K.P.Wojciechowski

THE IRREDUCIBILITY OF CHANCE AND
THE OPENNESS OF THE FUTURE
The Logical Function of Idealism in Peirce's

Philosophy of Nature

By: Helmut Pape, University of Hannover
Feedback Regulation of Mammalian
Cardiovascular System

By: Johnny T. Ottesen

"Rejsen til tidens indre" - Udarbejdelse af

et manuskript til en fjernsynsudsendelse

+ manuskript
af: Gunhild Hune og Karina Goyle

Vejledere: Peder Voetmann Christiansen og

Bruno Ingemann

316/96

Plasmaoscillation i natriumklynger

Specialerapport af: Peter Meibom, Mikko Bstergérd

- Vejledere: Jeppe Dyre & Jorn Borggreen

317/96

318/96

319/96

320/96

321/96

322/96

323/96

324/96

325/96

326/96

327/96

328/96

Poincaré og symplektiske algoritmer
af: Ulla Rasmussen

Vejléder: Anders Madsen

Modelling the Respiratory System
by: Tine Guldager Christiansen, Claus Draby

Supervisors: Viggo Andreasen, Michael Danielsen

Externality Estimation of Greenhouse Warming

Impacts

by: Bent Serensen

Grassmannian and Boundary Contribution to the
-Determinant

by: K.P.Wojciechowski et al.

Modelkompetencer ~ udvikling og afprevning

af et begrebsapparat

Specialerapport af: Nina Skov Hansen,

Christine Iversen, Kristin Troels-Smith

Vejleder: Morten Blomhaj

OPGAVESAMLING
Bredde-Kursus i Fysik 1976 - 1996

Structure and Dynamics of Symmetric Diblock
Copolymers
PhD Thesis

by: Christine Maria Papadakis

Non-linearity of Baroreceptor Nerves

by: Johnny T. Ottesen

Retorik eller realitet ?

Anvendelser af matematik i det danske
Gymnasiums matematikundervisning i
perioden 1903 - 88

Specialerapport af Helle Pilemann

Vejleder: Mogens Niss

Bevisteori
Eksemplificeret ved Gentzens bevis for
kongistensen af teorien om de naturlige tal

af: Gitte Andersen, Lise Mariane Jeppesen,
Klaus Frovin Jergensen, Ivar Peter Zeck

Vejledere: Bernhelm Booss-Bavnbek og
Stig Andur Pedersen

NON-LINEAR MODELLING OF INTEGRATED ENERGY
SUPPLY AND DEMAND MATCHING SYSTEMS

by: Bent Serensen

Calculating Fuel Transport Emissions

by: Bernd Kuemmel




329/96

330796

331/96

The dynamics of cocirculating influenza 339/97
strains conferring partial cross-immunity

and
A model of influenza A drift evolution

by: Viggo Andreasen, Juan Lin and
Simon Levin

LONG-TERM INTEGRATION OF PHOTOVOLTAICS
INTO THE GLOBAL ENERGY SYSTEM

by: Bent Serensen

Viskese fingre

Specialerapport af:
Vibeke Orlien og Christina Specht

Vejledere: Jacob M. Jacobsen og Jesper Larsen

332/97

333/97

334/97

335/97

336/97

337/97

338/97

ANOMAL SWELLING AF LIPIDE DOBBELTLAG
Specialerapport af:
Stine Sofia Korremann

Vejleder: Dorthe Posselt

Biodiversity Matters

an extension of methods found in the literature
on monetisation of biodiversity

by: Bernd Kuemmel

LIFE-CYCLE ANALYSIS OF THE TOTAL DANISH
ENERGY SYSTEM

by: Bernd Kuemmel and Bent Serensen

Dynamics of Amorphous Solids and Viscous Liquids

by: Jeppe C. Dyre

PROBLEM-ORIENTATED GROUP PROJECT WORK AT
ROSKILDE UNIVERSITY

by: Kathrine Legge

Verdensbankens globale befolkningsprognose

- et projekt om matematisk modellering

af: Jern Chr. Bendtsen, Kurt Jensen,

Per Pauli Petersen

Vejleder: Jorgen Larsen

Kvantisering af nanolederes elektriske
ledningsevne

Forste modul fysikprojekt

af: Seren Dam, Esben Danielsen, Martin Niss,

Esben Friis Pedersen, Frederik Resen Steenstrup

Vejleder: Tage Christensen

Defining Discipline

by: Wolfgang Coy
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