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The dynamics of cocirculating influenza strains
conferring partial cross-immunity

Viggo Andreasen, Juan Lin, and Simon Levin

We develop a model that describes the dynamics of a finite number of strains that
confer partial cross-protection among strains. The immunity structure of the host popu-
lation is captured by an indez-set notation where the index specifies the set of strains to
which the host has been exposed. This notation allows us to derive threshold conditions
for invasion of a new strain and to show existence of an endemic multi-strain equili-
brium in a special case. The dynamics of systems consisting of more than two strains
can ezhibit sustained oscillations caused by an overshoot in the immunity to a specific
strain if cross-protection is sufficiently strong.

1 Introduction

The hemagglutinin and neuraminidase molecules, the antigenically active parts of the
influenza A surface, exhibit considerable polymorphy due to a high mutation rate in the
viral genome. Especially the gene coding for the surface protein hemagglutinin mutates
so rapidly that this has been interpreted as a sign of positive Darwinian selection (Fitch
et al., 1991). The surface proteins of the influenza virus undergo two kinds of change,
shift and drift. In shifts, a new virus with an antigenically distinct hemagglutinin (HA)
or neuraminidase (NA) region appears, the new virus is referred to as a new subtype.
The virus drift consists in point mutations continuously changing the composition of the
antigenic sites giving rise to new virus strains (Palese and Young, 1982; Webster et al.,
1982). It is well known that variation in surface molecules contributes to antigenic
variation and that this property confers a selective advantage to new viral strains
allowing them to escape partially the host immunity acquired from previous infections.
The fate of a new mutant strain, however, is affected by the presence of other strains
since infection by one strain reduces the susceptibility to related strains. The aim of
this paper is to describe the dynamics of interaction among such related strains.
Immunity to influenza A — and hence cross protection — is mainly related to the
recognition of the HA surface-structure, although antibodies are formed to many other
viral proteins (for reviews see Levine, 1992; Webster et al., 1992). The HA-receptor site
responsible for the virus penetration through the cell membrane is protected in such a
way that antibodies cannot bind to it. Instead antibodies bind to five so-called epitopes
on the HA-structure, effectively neutralizing the virus. . Point mutations in the gene



coding for HA may result in minor changes in one or more of the epitopes. Apparently
the human immune system varies among individuals in its ability to recognize slight
changes in epitope composition. Mutant strains therefore meet a host population that

1s somewhat but not completely protected. This cross-immunity has been demonstrated

in vitro by use of hemagglutination inhibition (Levine, 1992). In vivo the existence of

1978) and in long term studies of closed populations (Davies et al., 1984; Davies et al.,
1986). Finally the pattern of influenza epidemics supports the idea that immunity to

previous strains. gives some-protection. -This is corroborated by observations of smaller

annual and biannual epidemics following the appearance of the first pandemic of a new

subtype. Thus the study of Spicer and Lawrence (1984) on influenza epidemics based on

London’s mortality records suggests that the infectivity of a subtype as measured by its
basic reproduction number (Dietz, 1975) decreases as time passes since its introduction.
Cross protection may occur between subtypes but empirical studies show no clear

pattern (Frank et al., 1983; Sonoguchi et al., 1985).

The intensity of cross-protection has been linked to the number of amino acid
substitutions in the HA-gene (Both et al., 1983; Sleigh et al., 1981; Sleigh and Both,
1981; Levine, 1992) although the evidence is somewhat conflicting (Xu et al., 1993).

Only few theoretical studies have investigated the effects of cross-immunity. The
selective forces acting on the strains are mediated through the disease transmission dy-
namics. Therefore, by keeping track of the number of hosts infected with each strain,
one can use an extension of the well known SIR models to describe the outcome of
natural selection acting upon a finite number of interacting strains. This approach has
been used to model the co-circulation of strains that interfere by prohibiting superin-
fection (Dietz, 1979) or by conferring partial cross-immunity (Castillo-Chavez et al.,
1989). Both investigations focused on two interacting strains and found that stable
co-existence is possible when suitable invasion conditions are satisfied. Gupta et al.
(1994) modeled the effect of cross-immunity on two co-occurring strains of malaria by
including into the Castillo-Chavez et al. (1989) model an explicit account of vector-
transmission. In this situation more complicated dynamics could result; and, as we
shall see, similar dynamics arise in the case of direct transmission when more than two
strains interact. The consequences of cross-immunity for the transmission dynamics
of influenza have been studied through stochastic Monte Carlo simulations although
the emphasis has been on the detectability of viral interactions through their effects
on observed attack rates (Ackerman et al., 1990).

These approaches provide a static view of viral evolution, allowing no place for the
“drift” in viral strain that is observed in nature. Pease (1987) improved the description
by using an SIR-type model to show how a slow change in the antigenicity of a single
influenza variant affects the epidemiology of the disease. While Pease’s “evolutionary
epidemiology” describes the effect of drift (in the viral strains) on disease epidemiology,
his model does not account for the selective forces that give rise to the drift.

cross immunity has been shown both in artificially challenged volunteers (Larson et.al.,. o
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Our aim is to combine these two views of influenza epidemiology. Thus we wish to
include in our description enough strains to allow for a change in the prevalence of the
strains, while at the same time retaining a faithful description of the selection regime
induced by cross-reaction. ‘

In the first section we introduce an SIR-model of n interacting strains and a notation
that allows us to describe the system compactly. The flow between state variables is
extremely complex and only a partial description of the dynamics is possible. We derive
in the following section threshold conditions for invasion of new strains, and show how
they relate to the well-known basic reproduction rate from epidemic theory. Since our
interest is in understanding how host immunity acts as a selective force, we focus on
a uniform version of the model, thus removing all other sources of natural selection.
The uniform model turns out to have a uniform endemic equilibrium that undergoes a
Hopf-bifurcation for high levels of cross-protection.

2 The model

Our starting point is the well-known SIR-model of the transmission-dynamics of a sin-
gle infectious agent. In this model the population is divided into three compartments:
susceptibles S, infected and infectious I, and recovered and immune R. In order to
keep track of the immunity structure induced by interacting strains, we now introduce
a more detailed subdivision of the population. We will assume that immunity is life-
long and independent of the sequence in which infections have been experienced. The
immunity profile of a person can now be summarized by stating the set of all previous
infections. .

If we let ¥

K=1{1,2,3,...,n}

denote the set of all possible strains, the uninfected part of the population falls into 2"
classes corresponding to the subsets of K. We denote by S7 the number of individuals
that are currently uninfected and who have previously been infected by the strains
listed in the set 7 C K. Thus for example S(; 43 denotes the number of uninfected
individuals who have previously been infected by strains 1 and 4 while Sy denotes the
number of individuals who have not encountered any infections (Adler and Brunet,
1991; Christiansen, 1988). The index J runs over the power set 2K of the set K and
the total number of uninfected individuals is

S=% 5= 5.

Je2k JCeK

Similarly I} gives the number of individuals currently infected by strain : who have
previously recovered from infections with the strains in 7, i.e. 1 ¢ J. The number of
infectious classes is n2"~'. This description excludes the possibility of superinfection



i.e. simultaneous infection with two viral strains. However, for influenza this appears
to be a rare phenomenon due to the cell based secondary immune system.
The exact way in which cross-immunity affects infection probability is not known.

 We will assume that cross-immunity works by reducing the probability of infection

when the immune system is challenged with a related strain, because a partial immune

response is induced by the virus with slightly different surface structure. Another

"possibility is that some individuals achieve complete protection against related strains

while antibodies of other individuals are more specific and hence don’t recognize strains
with slightly different surfaces. Finally, it appears that cross-protection in-some cases
acts by reducing the severity of the second infection; this in turn may reduce infectivity.
Since our primary goal is the description and understanding of the immunity structure

"~ we allow ourselves to focus on the first type of cross-protection. However, our basic

results will hold for the other types of cross-immunity as well; we shall return to the
question in the discussion.

In the completely unprotected part of the population, the force of infection of virus
type i, A* can now be determined by summing over all infectious individuals of type i.

We get
N=g6 > I
JCK\i ,

where the transmission coeflicient §3; is a measure of the infectivity of viral type 7. Here
and in the following we use the symbol 7 \ 7 to denote the set consisting of all elements
in J except the element j, ie. 7\ j =J \ {j}. For individuals with immune history
J, cross-immunity reduces susceptibility by a factor o%, which will depend on some
measure of the distance between 7 and the set 7. In particular we set ¢ = 1 for all i.
We will assume that additional immunity can only increase cross-protection and hence
that o <o} for L CJ.

The dynamics of S7 includes two loss terms and one gain term. The loss terms are
due to deaths uS; and due to infections with strains not yet experienced, : ¢ 7

Z U}AiSj.
i¢T

For the Sp-class the gain term represents births at a rate b and for other S 7-classes
the gain term represents recovery from infections for individuals that have the immune

profile J after recovery, i.e. ‘
S vl o

jeT
where v denotes the rate at which infected recover from infection. Thus the equation

for S7,J # @ becomes

Sy = Z VI}\]- - Z G}AiSj — uSy
€T €T
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and for the completely susceptible class Sp

Sp=b—uSs— Y AS,.

JjeK

Similar considerations lead to the following dynamics for the infectious class I,
JCK,i¢J o .
I; =05\ Sy — (p+v)I;.

The total population size N is determined by summing up over all classes, and we

find that .
N =b—puN.

In order to avoid the complications of varying population size, we will assume that the
population has reached its equilibrium size N* so that b= pN* and N = N*.

3 Non-dimensional model

We start by observing that if we measure time in units of the average infectious period
(v+p)7! and S and I as fractions of the total population NV, the number of parameters
is reduced by two. The new parameters are e = p/(u + v), r; = BiN/(p + v), while o7 ~
is not affected by the change.

In these variables, the model reads

Sy = e—eS@—ZAjSQ o (1)
jex 3 P
i = NSy -1 (2)
and for general 7 CK and : ¢ J o
Sj = l - e Z IJ\ €Sj - Z U}A]Sj (3)
jeTJ . i&T
B = oAS - I (4)

where
> I
MCK\i
gives the force of infection for strain :.
Some quantities of epidemic interest can be found by summation over the dynamic
equations. Thus we find that the dynamics of the force of infection for strain 2 is
determined by

A= (r,- Y oSy - 1) A (3)

JCK\i



and similarly that Raq the fraction of individuals who are immune to all strains in M
(irrespective of whether they are immune to other strains as well) is determined by

Ru=01-¢Y S L -eRu
iEM JIM\i

In practice the dynamics of Ry is determined by observing that the only way to leave

Ry is through deaths while one enters the class by recovering from one of the strains
in M and already being immune to all the other strains in M. In particular the total
proportion of the population that is immune to strain 2 is

Ri=(1-¢ % I}—eR,-z(—l——_i)A"—eR,-.
TCK\i Ti
Hence the relation between force of infection and seroprevalence at equilibrium is the
same as in the case of a single strain.
In the appendix we shall make use of another auxiliary quantity that can be derived
in a similar way, namely Ny the proportion of the population which has not been
exposed to any of the strains in M.

4 Linearization and threshold conditions

The equilibria of the model can be characterized by an implicit equation in the forces
of infection A = (Al,...,A") in a way similar to the characterization of equilibria
in subdivided populations, e.g. (Hethcote and Thieme, 1985). For simplicity the
equilibrium values will be denoted simply by the name of the corresponding variable.
If A is known, equations (1-2) give
e

Se(A) = T e AF (6)

i eA’
B EY

and equations (3-4) allow us to determine S7(A) and I%(A) by induction after the
cardinality of the index set J:

Ip(A)

(7)

(1—€)Tjes I}\j(A) (8)
e+ ZkQJ U§Ak
I(A) = o5A'Ss(4), (9)

S7(A) =

If all coordinates of A are non-negative, all values of S and I (including Sk) are
non-negative and sum to unity, so these values correspond to a feasible equilibrium
provided that A satisfies the equations

N=r Y L(A) =T > ahA Sy (A) 1€ K. (10)
TJCK\i JEK\:
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Thus A is an equilibrium provided that A is such that for all coordinates 2,

Ai=0 or 1l=r; Z U}SJ(A)- (11)
TCK\i

Thus the model may have many (boundary) equilibria, and we will not attempt to give
a complete characterization of its dynamics and possible equilibria.

In general the linearization around any equilibrium (S},I}) can be determined
explicitly as

S _ [—e=Tigoin, i T=M, (12)

58 1—e, if J=MU{i}and:¢M;

37;7 = -rio5Sy, f 1 ¢J; (13)
M 0, else,

or;  _ {O’JMAz, if J=M,; (14)

0Sm 0, if J#M,

oii ria}Sj -1, if =3 0=M;

3[? = {10557, if i=35 0 #M,; (15)
M 0, if 1#7,

where all expressions are evaluated at the equilibrium.

In particular, the stability of the disease-free equilibrium may easﬂy be determined
since at that equilibrium A* = 0 for all : and S; = 0 for J # @ while Sp = 1. Dividing
the variables into three types S7, Iy and Iy with M # ) yields a linearization with a

block matrix of the form
—el A B
0 r—1 C |.
0 0 -1

Here A, B, and C are non-zero matrices while 1 is the identity matrix and r is a
diagonal matrix with r; in the diagonal. Obviously the disease-free equilibrium changes
stability exactly when r; = 1 for the largest r;.

The ability of a rare strain to increase in numbers can be determined directly from
(5). Hence if the system is at an equilibrium (S}, I}) where strain 7 — and possibly
other strains — are absent, strain ¢ can invade exactly if

r Y abSh> 1. (16)
Ve 4

Condition (16) has the well known form of a threshold condition. In fact, in the
absence of all other strains, the basic reproductive rate of strain ¢ would be r;, and (16)
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shows that at (S}, I}) the reproduction rate r; should be multiplied by the proportions
of contacts that are made with individuals still susceptible to the disease taking into
account their relative susceptibility. The invasion condition can be obtained directly
from the linearization of the full model by observing that the entries in the Jacobian
corresponding to Sz with i € J and Ii, with i ¢ M form a block triangular matrix
_where the diagonal element corresponding to Sy is always stable while the diagonal

matrix-element of I}, changes stability depending on (16).
The bifurcation condition (16) suggests that (ST, I') changes stability by coalescence
with an equilibrium determined by (11) with A* # 0.

5 The uniform endemic equilibrium

To simplify the discussion we now focus on a symmetric model with n strains where
all strains are similar in the sense that r; = r for all ¢. In addition we assume that
the viral strains can be ordered along a one-dimensional axis indicating their degree
of relatedness. This mimics the pattern observed in nature where the phylogeny of
influenza at the molecular level looks like a tree with very short branches. Finally to
avoid boundary effects we close the axes by assuming that strain 1 and strain n are
neighbors so that the relatedness of strain ¢ and j can be determined by the distance
|i — 7] mod n.

We are now able to look for uniform endemic equilibria. That is we will focus on
equilibria where the force of infection A is the same for all types. Equations (6-9) now
simplify to implicit relations

e .
- eA e+ mgA
L(A) = —~ I(A) = o5ASs(A),

here my = ¥ ¢ a}. Thus ms measures the total susceptibility of individuals in Sz
and since 0% < o} for L CJ, we have L CJ = mg > my.

The values given above correspond to an endemic equilibrium provided that A > 0
is a fixed point of the function

F)=r ¥ LI =-% ¥ L) (17)

JCK\i €K TCK\

which by assumption is independent of <.

The following properties of F(A) hold and allow the determination of the number
of fixed points

1) F(0) =0 and F'(0) =r.

2) F'(A)>0

3) F is bounded as A — oo




4) F(A)/A is a strictly decreasing function of A.

Conditions 1)-4) give a threshold condition: There exists a unique positive, uni-
form equilibrium iff » > 1. If r < 1 the disease-free equilibrium is the only uniform
equilibrium.

It is straightforward to determine F(0) and to show that F'(A) is bounded. To find
F’ we compute I recursively on the number of elements in the index set J:

di; e?

dA ~ (e +nA)? >0

and

dly _ _oje o (L—cjoh ol

>

dh ~ e+mgAT T et mgA L7 dA
which by simple induction gives .
dI;
A >0
and hence F'(A) > 0. Similarly we find
dI%
—= =0 f
dA |a=0 .or J#0
which shows that F'(0) =
The final relation 4) may be written as
F(A) T
A nA XC: ¢Z
r
= — O'jASj
nA Jck jer
T
= =Y myS7,
nack

so that 4) says that the weighted proportions of susceptibles is a decreasing function
of A. This claim is proved in Appendix 1.

6 The dynamics of the model

The dynamics of the symmetric model can be quite complicated. We focus on the
special case where cross-protection is symmetric as in the previous section and where
in addition cross-immunity extends only to nearest neighbors

' 0 ifjeJ,
0’}={a ifj+l1€eJorj—1€Jandj¢Jd,
1 else.



For n = 2 (Castillo-Chavez et al., 1989) shoved that the two strain equilibrium is
always stable when it exists, and we have found by numerical investigations that the
same holds for n = 3. However, for n > 4 sustained oscillations can occur. We first
discuss in details the bifurcations in the case n = 4 and then return to n > 4.

The system is highly symmetric and degenerate so we make a partial unfolding in
that_we assume that strain 1 and 3 have the same reproduction ratio r, while strains

2 and 4 have the reproduction ratio ry. In itself this is a quite complicated model with
16 susceptible classes and 32 infectious classes.

The symmetrically opposite strains interact only through viral interference prohibit-
ing simultaneous infections with both strains so that the available susceptible pool for
one strain is reduced by the proportion of individuals that are infected by the other
strain. Since the infectious period is short for influenza only a small proportion of the
population is infected at any time. We will neglect the effects of viral interference and
find that the one-strain equilibria are always unstable to invasion by the symmetrically
opposite strain except for a small region in parameter space near r; = 1, for details
see (Dietz, 1979). The most interesting boundary equilibria are therefore the two
symmetric ones at (A,0,A,0) and (0,A,0,A). We focus attention on By = (A,0,A,0).

Since at B; immunity to strains 2 and 4 is not present, the force of infection for
strain 1 (or 3) at the equilibrium is characterized by

r1(Sa(A) + 51(A)) = 1,

where we have used the notation S; = S(13. It is possible to solve explicitly for A but
to simplify the discussion we assume that ¢ < 1 and retain only the leading terms in
e:
A = e(r; — 1) + O(€?).
Regarded as a model in strain 1 and 3 only, the equilibrium is stable for r; > 1 and
according to our remarks in section 4, strain 2 and 4 cannot invade if

ra (So(A) + 0S1(A) + 0 Ss(A) + oS g(A)) < 1.

To first order in e this gives the condition

27‘1—].
1+20’(7"1 - 1)

re < p(r1) =

Fig. 1 shows the bifurcation curve in the (r;,r;)-parameter space. In particular if
at 11 = 1 we have dp/dr; > 1, there will exist a region in parameter space where
both boundary equilibria B, and B; are stable. A simple computation shows that
this happens exactly when o < -;— The region with two stable boundary equilibria
is symmetric in 7, and r, and starts at r; = r, = 1 while the maximal r-value in
the region is 71 = r2 = 1/20. From the analysis of the uniform equilibria we know

that a uniform equilibrium exists everywhere on the half-line r; = r, > 1 and by an
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implicit function argument one sees that this equilibrium exists in a neighborhood of
the symmetry line. In the region where both boundary equilibria are stable, numerical
simulations show that the internal uniform equilibrium is a saddle separating the basin
of attraction for the two stable equilibria, see Fig. 1.

In the parameter region where the boundary equilibria are both unstable, we expect
that the system will have at least one internal equilibrium. For r; = r, we have seen
that exactly one internal symmetric equilibrium exist and by a continuation argument
this equilibrium must exist in a neighborhood of the symmetry line. We can determine
the spectrum of the equilibrium for specific parameter values by the following method.
First A is determined by numerically solving the equation F(A) = A. Then the lin-
earization is determined by computing the derivatives as indicated in (12-15). Finally
the eigenvalues of the linearized system are found by a QR-algorithm as described in
Press et al. (1992, p. 486ff).

Numerical determination of the spectrum shows that for o > 0.453, the internal
equilibrium is always stable when the two strain boundary equilibria are both unstable.
For o < 0.453, the internal equilibrium undergoes a Hopf bifurcation on a curve in
(r1,72)-space. Inside the curve the internal equilibrium is unstable and the system
exhibits sustained oscillations. As o is decreased for fixed (ry,r2), the amplitude of
the oscillations increase. Numerical simulations suggest that the limit cycle disappears
in a global bifurcation involving a homoclinic orbit through a two-strain boundary
equilibrium exactly for the same value of ¢ where the boundary equilibrium becomes
stable.

Fig. 2 shows the bifurcation diagram for the symmetric model where ry = r; = r.
Since the model is now symmetric, the homoclinic orbit is replaced by a heteroclinic
orbit through both boundary equilibria.

For n > 4 the qualitative behavior the uniform model appears to be similar. For
odd n, however, equilibria with a 2 fold symmetry do not exist and the behavior for
small o is determined by multiple boundary equilibria. Fig. 3 shows the bifurcation
curve for the Hopf bifurcation in the symmetric model for various n.

Fig. 4 shows an example of the sustained oscillations. Notice that the total preva-
lence of all strains as well as the prevalence of a specific strain varies. Due to the n-fold
symmetry the total prevalence I, oscillates with a period than is n times shorter than
that of a single strain I;. The population based cross-immunity structure plays a sig-
nificant role in these oscillations: While the fraction of the population that is immune
to a given strain R, varies by a factor of 2 over the oscillation, the total susceptibility
to that strain as measured by the threshold quantity R,, cf. (16) varies only about
10%.

11




7 Discussion

The presence of several cross-reacting strains affects the static as well as the dynamic
aspects of the epidemiology. In the static description the threshold condition for the
onset of an epidemic with an invading strain is a straightforward generalization of

_____the standard result in that the threshold is proportional to the number of susceptibles

weighted by their relative susceptibility to the challenging strain. Similarly, the concept
of the ‘force of infection’ generalizes nicely and turns out to be a powerful tool in the
characterization of the system. In particular we find in accordance with the theory for
diseases with one strain that at equilibrium the number of individuals that are immune
to a specific strain is proportional to the force of infection of that strain.

The effect of the cross-immunity on the dynamics of the epidemics may be more
surprising. Castillo-Chavez et al. (1989) showed that in the case where only two
strains interact, the two-strain endemic equilibrium is asymptotically stable when it
exists. However, cross-immunity destabilizes the system even in the two-strain case in
the sense that the introduction of a delay can cause the two-strain system to oscillate.
Andreasen (1989) demonstrates this in the case where the host population has a fixed
life span and Gupta et al. (1994) report that the introduction of a vector into the two
strain situation, also gives rise to oscillations.

Without introducing delays, we found that the co-occurrence of more strains can
give rise to oscillations in the prevalence of the individual strain as well as in the
total prevalence of the disease. In the paper we focussed on a symmetric situation
because this allowed us to obtain at least a partial characterization of the dynamics
and explicitly state the linearization around the symmetric endemic equilibrium.

Our numerical simulations suggest that oscillations occur for other cross-immunity
structures as well. In particular we have found that the essential ingredient causing
the oscillations is the presence of a long range interaction between two strains that are
not neighbors e.g. strains 1 and 3 in our cyclic model. Thus similar oscillations can
be found in a model with 3 strains where strains 1 and 3 have no cross-reaction while
strain 2 cross-immunizes partially with both of the other strains. We are currently
investigating this phenomenon as part of our work on simplifying the model (Lin et
al., in prep).

Throughout the paper we have assumed that cross-immunity acts by reducing the
susceptibility to related strains, however, cross-immunity may act in other ways. Our
general representation of the population based immune history allows us to explore
such alternatives.

The situation where cross-immunity induces complete protection to related strains
for some individuals while others do not acquire additional protection may be repre-
sented by a probability distribution 747 that gives the probability that an individual
with immune history J who recovers from infection with strain : will acquire complete
immunity to the strains in M. In our model this means that the flow out of the in-
fectious class I} is distributed among Sy according to TJ(',,J . Thus the flow into Sy is

12




determined by
| S
JcK, igT
while 0_7 1 for all 7 and 7.
Similarly if cross-immunity reduces infectivity during subsequent infections with
related strains, the expression for the force of infection can be determined by

N= T g1

T\

where 3% describes the infectivity of individuals who are infected with strain 7 and who
have immune history J.

In both these situations our principal analytical results hold, in that equilibria can
be determined by a recursion scheme on the cardinality of the index set combined with
non-linear equations in the forces of infection. In particular we can derive threshold
conditions for the invasion of a new mutant strain showing that a new strain can
invade only if the basic reproduction number multiplied by the average susceptibility
to the strain in the population exceeds unity. In the symmetric case, we can prove the
existence and uniqueness of a uniform endemic equilibrium in both situations provided
that cross-immunity reduces infectivity, that is provided respectively that 7;4‘7 = 0 for
M CJ U{i} and that 85 > Bi  for M D J. '

By modeling several co-occurring strains of influenza, we have obtained enough
flexibility in our description to allow for changes in the genetic composition of the viral
population. In this respect the model is a clear improvement over the previous ones;
also the model demonstrates how the population based immunity structure pla,ys_fa,
central role in influenza epidemiology.

On the other hand, the model misses several central aspects of influenza drift evo-
lution. First, in real influenza, drift evolution is caused by point mutations that would
correspond to a small flow between neighboring strains in the model. Such flow seems
to have a stabilizing effect on the endemic equilibrium. Second, the dynamics of in-
fluenza evolution are intrinsically transient in the sense that new types are introduced
while old types die out. In principle this could be described by the present model sim-
ply by modeling a linear immunity structure of sufficient length. However, the number
of state variables grows so fast with the number of strains that this is impractical. We
are currently investigating ways to simplify the description by excluding old strains and
introducing new ones. The simplest way to do this is by assuming that infection with a
given strain confers complete immunity to all "previous strains”, say to all strains with
lower index. With this cross-immunity structure we need not keep track of immunity
to all types in order to avoid reinfection of the same individuals with the same type.
In a model with this cross-immunity structure (and with strains lying on a continuous
axis) cross-immunity in combination with diffusion type drift mutation gives rise to a
traveling wave type solution (Andreasen et al., 1995). One would like to combine these
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Appendix 1 Uxilfiqueness of the uniform equilibriﬁm

Before proving that the function F'(A)/A is decreasing, we first show that Naq, the total
fraction of hosts who have been exposed only to (some of) the strains in a specified
subset M is a decreasing function of A. This will demonstrate the basic idea in a simple
case.

Let

Nm = Z S+ Z Z I}
, JTM TJCM igT

denote the fraction of hosts who are immune only to (some of) the strains in M, i.e.
Num denotes the fraction of the population that have not recovered from infections with
any of the strains in X \ M.

By summing over the equations (1-4) we obtain

NM=8—-6NM—-(1——6) Z ZI_}]—

TCM igM
The loss terms reflect the fact that hosts can leave the Ny-class only through deaths or
by obtaining immunity to strains that are not in M. At a symmetric equilibrium with
A" = Afor all i, we have that all IZ(A) are increasing. This implies that at equilibrium
Npm must be decreasing showing that the total fractions of hosts with immunity only

to strains in M is a decreasing function of the force of infection. The total fraction of
susceptible hosts with immunity only to strains in M

=3 S,

TJCM

is decreasing as well since the functions I;(A) are increasing.
We can apply the same argument to

Pu= Z mg Sy + z ijl}

TJCM TJCM igT

giving the fraction of individuals who are immune only to some of the strains in M
weighted by their remaining susceptibility. Again we include hosts who are currently
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infected. Multiplying the dynamic equations for Sy and Ij by my = T;¢7 a} and
summing over J C M, we get

Py =ne—ePy—(1—c¢) > Z(mj\j_mj)l‘;-\j (1—e) > Zmylj.
TJCMjed TCM jgm

At equilibrium, we find that since my\; > my and I}(A) is increasing, Pu(A) is a
decreasing function of A. It now follows that

F(A)/A = Z mgSy =

JC}C

3]*3

(Be(r) = S ma L)

is decreasing.
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Figure 1. Bifurcation diagram for the 4 strain model with r; = r3 and r, = r4 and
symmetric immunity structure. Fig. la shows the diagram for ¢ = 0.42 and e = 0.02.
Between the solid curves the internal equilibrium is unstable and a stable limit cycle
exists. At the solid line the internal equilibrium undergoes a Hopf bifurcation and
in the region between the solid lines and the broken lines the internal equilibrium is

stable. Between the broken line and the axis, the corresponding two strain bounda,ryr o

equilibrium is stable. Near r; = 1 the two broken curves intersect. Hence near r = 1,
a region exists with two stable equilibria. Fig. 1b shows this phenomenon in detail for
o = 0.368. : -

Figure 2. Bifurcation diagram for the symmetric 4 strain model with r, = r;
and all other parameters as in Fig. 1. In the schematic phase portraits an open circle
indicates an unstable equilibrium while a filled circle indicates a stable equilibrium.
The internal symmetric equilibrium undergoes a Hopf bifurcation on the solid line.
The two strain boundary equilibria (A,0,A,0) and (0, A,0, A) are stable below the
broken line.

Figure 3. Bifurcation curve for the Hopf bifurcation of the symmetric equilibrium
with n = 4,...,9 strains, all other parameters the same as in Fig. 1. Below the line the
symmetric equilibrium is unstable and a stable limit cycle exist, for details see text.

Figure 4. Sustained oscillations in the model (1-4). The figure shows the preva-
lence I of strain 1, the total prevalence I,, the fraction of individuals immune to
strain 1, Ry = Y75, 57 + Tiz1751 15, and the fraction of individuals susceptible to
strain 1 weighted by their relative susceptibility Ry = 3> 7cx\1 0+S7. The values of the
I-variables are multiplied by a factor of 5. The parameters are n = 5, r; = 3, e = 0.02,
and cross-protection ¢ extending only to nearest neighbor where strains 1 and 5 are
considered to be neighbors (o = 0.2). Notice that the total prevalence I, oscillates 5
times as fast as I, due to the 5-fold symmetry.
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ANDREASEN, VIGGO; LEVIN, SIMON; LIN, JUAN

A model of influenza A drift evolution

The antigenic properties of the influenza A virus drift slowly due to point mutations in
the viral genome. The drift is enhanced by the partial immunity of the host population
to the new viral strains. Assuming a one dimensional azis of antigenic types we develop
a model for the drift and find that a traveling wave of disease prevalence moves along
the azis with a speed that depends on the immune surveillance in the population.

1. Influenza genetics

The influenza A virus evades the human immune system by rapid point mutations,
allowing for reinfection every two to four years. In addition to the point mutations,
known as virus drift, the influenza virus undergoes every few decades shift mutations,
where whole segments of the virus are changed giving rise to a new subtype often re-
placing the previous subtype. The ability to mutate enough to allow for reinfection
of individuals makes the influenza virus highly unusual among viruses infecting the
human population. In contrast, the viruses that cause childhood diseases infect each
person only once in a lifetime and rely on population turn-over to produce new suscep-
tible hosts through births; other viruses induce life-long infections, e. g. herpes. At the
other extreme, the causative agent of AIDS, the HIV virus, mutates so rapidly that
several distinct strains may co-circulate within the same patient [13]. The influenza
mutation rate may thus be seen as intermediate, allowing only one strain per infected
person, but permitting several strains to interact at the host population level. In this
paper, we propose a model that describes the dynamics of the drift process and in
particular focuses on how cross-immunity affects the amino-acid substitution rate.

The human immune system reacts to two antigenic structures, haemagglutinin
(HA) and neuraminidase (NA), of which HA seems to be the more important. It ap-
pears that these structures function in such a way that their antigenic properties can
vary without impairing their ability to facilitate the penetration of host cells. Molecu-
lar studies show that amino-acid substitutions in the genes coding for the HA surface
arise at a constant rate, and that virus specimens collected at the same time in different
areas differ only at few locations [4,12,19]. The amino-acid substitutions correspond to
a gradual change in antigenic properties in the sense that the probability of reinfection
grows with the number of amino acid locations at which the challenging strain differs
from the immunizing strain [6,7,18,20]. A new mutant drift strain therefore will be
subject to selective forces induced by the partial protection that is conferred to the
hosts by related viral types, and it has been documented that genes coding for the HA
surface structure are subject to Darwinian selection [9].
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Only a few studies have approached the dynamics of drift evolution. As part-of
a large-scale effort to simulate local spread of influenza using discrete stochastic sim-
ulations [1] and [8] investigated the effects of two closely related co-circulating strains
but found no statistically significant effect on disease prevalence, while {5] investigated
the long-term dynamics of two interacting strains of influenza. Pease [14] improved the.
description by showing how a slow change in the antigenic type of a single influenza
variant- affects the dynamics of influenza. Pease’s ‘evolutionary epidemiology’ thus ac-

explain what causes this drift. In his study of how pathogens evade immune surveil-
lance within an individual host, Sasaki {15] described how pathogens mutate into new
antigenic types, thus outrunning the activation of B-lymphocytes. This mechanism=is-

similar to the one we propose for influenza, but the dynamics of the individual host’s
response differ significantly from the response we introduce at the host population level.

2. The model

Following the ideas of Levin and Pimentel [11], we will keep track only of the number
of individuals infected with a given strain, rather than keeping track on the total
number of virus particles. Since the infection period for influenza is short compared
to the mutation rate, it seems reasonable to assume that all virus within one patient
is of the same type; for HIV the assumption would not hold as discussed above. This

observation allows us to base our model on standard epidemic methods.

Simple epidemic theory [2] assumes that in a host population of size N, the rate
at which susceptible individuals acquire the infection is proportional to the number of
infected individuals /. Neglecting the latency period and assuming a constant rate of
recovery v, the rate of change in I becomes

I=pIS—vl,

where S denotes the number of susceptibles. The constant 3 is known as the transmis-
sion coefficient; it depends on host infectivity and susceptibility as well as on population
structure and mixing patterns.

When one is describing the dynamics of an influenza strain, the rate of new in-
fections must be modified to allow for the fact that the susceptibility and hence
will vary among individual hosts depending on the immune status they have acquired
through past infections. To describe this multi strain immunity we assume that in-
fluenza strains can be ordered along a one-dimensional axis measuring the number of
changes in the amino acid composition of the surface genes — or maybe measuring a
more general ‘shape’ aspect, sensu Segel and Perelson [16]. Molecular studies show that
immunity to specific strains are long lasting (though maybe not perfect) and ideally
one would like to retain a full record of all past infections. To simplify the description
of viral drift we will assume that only the most recent infection is important in de-
termining the immune status of an individual but that infection with strain z implies
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protection against all strains of type w < z. This last assumption of immunity to all
‘previous’ strains is necessary to ensure that reinfections with the same strain are not
possible and thus exclude the possibility of circularities where the same individual gets
reinfected with the same few strains repeatly. From in vitro studies we know that
this asymmetrical immunity structure is not biologically correct, but in practice the
assumption may hold simply because the previous strains have died out. We shall
return to this problem in the discussion. Finally we assume that the immunity space
is isotropic in the sense that the probability of infection depends only on the distance
§ between the immunizing strain and the infecting strain, The partial cross-protection
now corresponds to assuming that the transmission coefficient is a function of 6, 8(4).

With these assumptions about the immunty structure, the susceptible population
now can be describe by a density function S(z,¢) on the z-axis summarizing the pop-
ulation’s immune status. Hence [ S((,t)d( denotes the number of individuals who
at time ¢ are susceptible and whose last infection was of a type located in the interval
[w; z]. Similarly infectious individuals are described by a density function I(z,%) on
the immunity axis. With this formulation, we are neglecting the introduction of new
completely susceptible hosts through births, but since reinfections in adult hosts occur
every few years, births seem to play a minor role.

The rate at which individuals of type z get infected at time ¢ can be determined
by integrating over all strains capable of infecting that type

S0 [ B¢ I,
while the rate at which new infections of type z are recruited is

I50) [ Bz =0S()de.

Finally the genetic drift induced by the point-mutations is modeled as diffusion in [/
along the z-axis in order to reflect the fact that reproducing, and hence mutating, vira
can exist only in the .

The full dynamics of the system now become:

al e
ot ”/5 S(Gt)dC - vI(z,t) + 0% 5=
% = ‘S(ZJ)/Z B(C — 2)I(¢, 1) d + v(z,1).

Since the model includes no vital dynamics, the total population size
N= [ (S + 1) &

is a constant independent of time. We shall not specify initial conditions as we will be
looking for traveling waves.
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Figure 1: Traveling wave of prevalence I of influenza virus type z and of the susceptibles
S whose most recent infection was z. The wave moves from the left to the right along
a one-dimensional axis representing the possible antigenic drift-variants and is shown
at three times, 30 time units apart. The parameter values are v = 1, 0% = 1, and
B(8) = 56%/(8% + 10%),4 > 0.

~ \7
First observe that the system may be expressed in non-dimensional variables by
measuring time 7 in units of »~! and aspect space a in units of y/o2/v while S and I

are replaced by the proportions of the total population, s = S/N and i = I/N. The
model now becomes

5 = 0 [ s adedda i)+ £
2 = (o) [~ pla—a)i(e) da+i(a)

with the constraint that [ (s + i)da = 1 and with the one remaining parameter
p = BN/v. Numerical solutions of the system show traveling waves (fig. 1).

By assuming that only a small proportion of the population is infected at any

given time,
o0 X o0
/ 1da € f sda,
-0 —o0

we can obtain the approximate wave speed ¢ by linearization at the wave front yielding,
e=2y/p(00) =1~ 2¢/(Ro — L)o*v.
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Here Ry = 3(o0)N/v resembles the threshold quantity ‘the basic reproduction number’
known from simple epidemic theory. However, numerical investigations suggest that
although c is of the right order of magnitude, the agreement is not very good and in
addition ¢ should not be independent of the intensity of the cross-immunity as mea-
sured by 8 near § = 0.

We are currently investigating the structure of the associated traveling wave so-
lutions.

3. Discussion

Although the model gives a simplistic view of influenza drift evolution, it reproduces a
central feature of viral drift in that a single pulse moves through the aspect space and we
can obtain at least numerical estimates of the speed. Empirical information about the
speed is available; Fitch et al [9] noticed that the mutation rate of the gene coding for
the HA1 segment of the HA-structure is 3 times faster than that of the NS gene coding
for a non-structural part of the influenza virus. However influenza evolution takes
place on a global scale and it is unclear if the standard disease model is appropriate at
that scale. Furthermore influenza has pronounced seasonal and geographical dynamics
which may play a role in the changes of the virus [10,17].

The main shortcoming of the present model is its crude representation of the host
immunity structure that is assumed by introducing an asymmetric cross-immunity 3
among types. However with a symmetric cross-immunity one must keep track of more
details of the host population’s history of infections in order to avoid the situation
that individuals are subject to frequent reinfections with the same viral type. We have
developed a model of a finite set of interacting strains where the full immunity history
of the host population is included [3]. Although the model’s complexity explodes as
the number of strains increases, it can be shown that significant cross-correlations
among the prevalences of neighboring strains will arise and that the cross-immunity
structure under some circumstances will cause sustained oscillations in the prevalence
of individual strains as well as in total disease prevalence. The main challenge for
developing the theory of drift evolution is thus to obtain a sufficiently detailed, yet
manageable, representation of the population based-immunity structure.
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OVERFLADESTRUKTUR 0G POREUDVIKLINGAAF KOKS

- Modul 3 fysik projekt -

af: Thomas Jessen
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INTRODUKTION TIL KVANTE
HALL EFFEKTEN '

af: Anja ﬁoisen, Peter Beggild

Vejleder: Peder Voetmann Christiansen
Erland Brun Hansen

’

STROMSSAMMENBRUD AF KVANTE
HALL EFFEKTEN

af: Anja Boisen,; Peter Beggild

Vejleder: Peder Voetmann Christiansen

Erland Brun Hansen
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241,93
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246/93

247,93

248/93

249/93

UNIVERSAL LOW TEMPERATURE AC CON-
DUCTIVITY OF MACROSCOPICALLY
DISORDERED NON-METALS -

by: Jeppe C. Dyre

DIRAC OPERATORS AND MANIFOLDS WITH
BOUNDARY

by: B. Booss-Bavnbek,_K.P.Wojciechowski

e L}
Perspectives on Teichmuller and the

Jahresbericht Addendum to Schappacher,
Scholz, et_al.. _ . _ .. . e

The Wedde;bﬁfh pfincipallfﬁgof;h and
Shukla cohomology

af: Lars Kadison

SEMIOTIK OG SYSTEMEGENSKABER (2)
Vektorbdnd og teénsorer

af: Peder Voetmann Christiansen

Valgsystemer - Modelbygning og analyse

Matematik 2.
af: Charlotte Gjerrild,

Maria Hermannsson,
Ragna Clauson-Kaas,

modul

Jane Hansen,
Allan Jergensen,
Poul Lutzen

Vejleder: Mogens Niss

Patologiske eksempler.
Om s®@re matematiske fisks betydning for
den matematiske udvikling

af: Claus Draby, Skov Hansen,
Ulsee Johansen, Peter Meibom,

Kristoffer Nielsen

Jern

Runa
Johannes

Vejleder: Mogens Niss

FOTOVOLTAISK STATUSNOTAT 1
af: Bent Serensen

Brovedligeholdelse - bevar mig vel

Analyse af Vejdirektoratets model for
optimering af broreparationer

af: Linda Kyndlev,
Tulinius, Ivar Zeck

Kare Fundal, Kamma

Vejleder: Jesper Larsen

TANKEEKSPERIMENTER I .FYSIKKEN

Et l.modul fysikprojekt

af: Karen Birkelund, Stine Sofia Korremann
Vejleder: Dorthe Posselt

RADONTRANSFORMATIONEN oq dens anvendelse
i CT-scanning

Projektrapport

af: Trine Andreasen, Tine Guldager Christiansen,

Nina Skov Hansen og Christine Iversen

Vejledere: Gestur Olafsson og Jesper Larsen

Time-Of-Flight mdlinger p& krystallinske
halvledere
Specialerapport

af: Linda Szkotak Jensen og Lise Odgaard Gade
Vejledere: Petr Viscor og Niels Boye Olsen
HVERDAGSVIDEN - 0G MATEMATIK

- LEREPROCESSER I SKOLEN

af: Lena Lindenskov, Statens Humanistiske
Forskningsr&d, RUC, IMFUFA
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255/93

256/93

257/93

258/93
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by: B. Booss-Bavnbek -

With comments by W.Abikoff, L.Ahlfors,
J.Cerf, P.J.Davis, W.Fuchs, F.P.Gardiner,
.Jost, J.-P.Kahane, R.Lohan, L.Lorch,
.Radkau and T.Soderqgvist
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EULER 0G BOLZANO - MATEMATISK ANALYSE SET T ET
VIDENSKABSTEORETTSK PERSPEKTIV

Progjektrapport af: Anja Juul, Lone Michelsen,
Tomas Hejgdrd Jensen

Vejleder: Stig Andur Pedersen

Genotypic Proportions in Eybrid Zones

by: Freddy Bugge Christiansen, Viggo Andreasen
and Ebbe Thue Poulsen

MODELLERING AF TILFELDIGE FANOMENER

Projektrapport af: Birthe Friis, Lisbeth Helmgaard
Kristina Charlotte Jakobsen, Marina Mosbek
Johannessen, Lotte Ludvigsen, Meiie Hass Nielsen

Kuglepakning

Tbo}i og model

af: Lise Arleth, Kdre Fundal, Nils Kruse
Vejleder: Mogens Niss

Regressionsanalyse
Materiale til et statistikkursus
af': Jergen Larsen

TID & BETINGET UAFHANGIGHED

af: Peter Harremoes

Determination of the Frequency Dependent
Bulk Modulus of Liquide Using a Piezo-
electriec Spherical Shell (Preprint)

by: T. Christensen and N.B.Olsen

Modellering af dispersion i piezoelektriske
keramikker

af: Pernille Postgaard, Jannik Rasmussen,
Christina Specht, Mikko @stergdrd

Vejleder: Tage Christensen -

Supplerende kursusmateriale til

"Linewre strukturer fra algebra og analyse"’®
af: Mogens Brun Heefelt

STUDIES OF AC HOPPING CONDUCTION AT LOW
TEMPERATURES

by: dJeppe C. Dyre

PARTITIONED MANIFOLDS ARND INVARIANTS IN
DIMENSIONS 2, 3, AND 4

by: B. Booss—-Bavnbek, K.P.Wojciechowski
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26493

265/94

266/94

267/94

268/94

269/94

270/94

271/94

OPGAVESAMLING
Bredde~kursus i Pysik
Eksamensopgaver fra 1976-93

Separability and the Jones
Polynomial

by: Lars Kadison

Supplerende kursusmateriale til
"Lineare strukturer fra algebra
og analyse" II

af: Mogens Brun Heefelt

FOTOVOLTAISK STATUSNOTAT 2
af: Bent Serensen

SPHERICAL FUNCTIONS ON ORDERED
SYMMETRIC SPACES

To Sigurdur Helgason on his
sixtyfifth birthday

by: Jacques Faraut, Joachim Hilgert
and Gestur Olafsson

Kommensurabilitets-oscillationer i
laterale supergitre
Fysikspeciale af: Anja Boisen,

Peter Bwggild, Karen Birkelund

Vejledere: Rafael Taboryski, Poul Erik

Lindelof, Peder Voetmann Christiansen

"Kom til kort med matematik pa

Eksperimentarium - Et‘forslag til eﬁ
opstilling

af: Charlotte Gjerrild, Jane Hansen
Vejleder: Bernhelm Booss-Bavnbek

Life is like . a sewer

Et projekt om modellering af aorta via
en model for strgmning i kloakrer

af: Anders Marcussen, Anne C. Nilsson,
Lone Michelsen, Per M. Hansen

Vejleder: Jesper Larsen

Dimensionsanalyse en introduktion
metaprojekt, fysik

af: Tine Guldager Christiansen,
Ken Andersen, Nikolaj Hermann,
Jannik Rasmussen

Vejleder: Jens Hoejgaard Jensen

THE IMAGE OF THE ENVELOPING ALGEBRA
AND IRREDUCIBILITY OF INDUCED REPRE-
SENTATIONS OF EXPONENTIAL LIE GROUPS

by: Jacob Jacobsen

Matematikken i Fysikken.
Opdaget eller opfundet
NAT~-BAS~projekt

vejleder: Jens Hpjgaard Jensen
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273/94

274/94

275/94

276/94

277/94

278/94

279/94

280/94

281/94

282/94

Tradition og fornyelse

Det praktiéke elevarbejde i gymnasiets
fysikundervisning, 1907-1988

af: Kristian Hoppe og Jeppe Guldager
Vejledning: Karin Beyer og Nils Hybel

Model for kort- og mellemdistanceleb
Verifikation af model

af: Lise Fabricius Christensen, Helle Pilemann,
Bettina Serensen

Vejleder: Mette QOlufsen

MODEL 10 - en matematisk model af intravensse
anastetikas farmakokinetik

3. modul matematik, fordr 1994

af: Trine Andreasen, Bjern Christensen, Christine

Green, Anja Skjoldborg Hansen. Lisbeth
Helmgaard

Vejledere: Viggo Andreasen & Jesper Larsen

Perspectives on Teichmuller and the Jahresbericht

2nd Edition

by: Bernhelm Booss-Bavnbek

Dispersionsmodellering
Projektrapport 1. modul

af: Gitte Andersen, Rehannah Borup, Lisbeth Friis,

Per Gregersen, Kristina Vejre

Vejleder: Bernhelm Booss-Bavnbek

PROJEKTARBEJDSPEDAGOGIK ~ Om tre tolkninger af
problemorienteret projektarbejde :

af: Claus Flensted Behrens, Frederik Voetmann
Christiansen, Jern Skov Hansen, Thomas
Thingstrup

Vejleder: Jens Hejgaard Jensen

The Models Underlying the Anaesthesia
Simulator Sophus

by: Mette Olufsen(Math-Tech), Finn Nielsen
(RIS@ National Laboratory), Per Fege Jensen
(Herlev University Hospital), Stig Andur
Pedersen (Roskilde University)

Description of a method of measuring the shear
modulus of supercooled liquids and a comparison
of their thermal and mechanical response
functions.

af: Tage Christensen

A Course in Projective Geometry

by Lars Kadison and Matthias T. Kromann

. Modellering af Det Cardiovaskulare System med

Neural Pulskontrol

Projektrapporﬁ udarbejdet af:

Stefan Frello, Runa Ulsee Johansen,
Michael Poul Curt Hansen, Klaus Dahl Jensen

Vejleder: Viggo Ahdreasen
Parallelle algoritmer

af: Erwin Dan Nielsen, Jan Danielsen,

Niels Bo Johansen



283/94 Granser for tilfaldighed

(en kaotisk talgenerator)

af: Erwin Dan Nielsen og Niels Bo Johansen

284/94 Det er ikke til at se det, hvis man ikke
lige ve' det!

Gymnasiematematikkens begrundelsesproblem -

_ . 298/95

En specialerapport af Peter Hauge Jensen

og Linda Kyndlev

Ve.ileder: Mogens Niss

.. 296/95 RETIKULER den klassiske mekanik

297/95

285/94 Slow coevolution of a viral pathogen and
its diploid host

by: Viggo Andreasen and
Freddy B. Christiansen

286/94 The energy master equation: A low~temperature
approximation to Bassler's random walk model

by: Jeppe C. Dyre

287/94 A Statistical Mechanical Approximation for the
Calculation of Time Auto-Correlation Functions

by: Jeppe C. Dyre

288/95 PROGRESS IN WIND ENERGY UTILIZATION

by: Bent Serensen

289/95 Universal Time-Dependence of the Mean-Square =
Displacement in Extremely Rugged Energy
Landscapes with Equal Minima

by: Jeppe C. Dyre and Jacob Jacobsen

290/95 Modellering af uregelmassige belger
Et 3.modul matematik projekt

af: Anders Marcussen, Anne Charlotte Nilsson,
Lone Michelsen, Per Morkegaard Hansen

Vejleder: Jesper Larsen

291/95 1st Annual Report from the project

LIFE-CYCLE ANALYSIS OF THE TOTAL DANISH
ENERGY SYSTEM

an example of using methods developed for the
OECD/IEA and the US/EU fuel cycle externality study

"by: Bent Serensen

292/95 Fotovoltaisk Statusnotat 3

af: Bent Serensen

293/95 Geometridiskussionen - hvor blev den af?
af: Lotte Ludvigsen & Jens Frandsen

Vejleder: Anders Madsen

294/95 Universets udvidelse -
et metaprojekt
Af: Jesper Duelund og Birthe Friis
Vejleder: Ib Lundgaard Rasmussen

295/95 A Review of Mathematical Modeling of the

Controled Cardiovascular System
By: Johnny T. Ottesen

299/95

300/95

301/95

302/95

303/95

. -._ _Christina_Specht__ . _.

af: Peder Voetmann Christiansen

A fluid-dynamical model of the aorta with
bifurcations

by: Mette Olufsen and Johnny Ottesen
Mordet pd Schrodingers kat - et metaprojekt om. _

to fortolkninger af kvantemekanikken

af: Maria Hermannsson, Sebastian Horst,

Vejledere: Jeppe Dyre og Peder Voetmann Christiansen’

ADAM under figenbladet - et kig pd en samfunds-

videnskabelig matematisk model

Et matematisk modelprojekt

af: Claus Draby, Michael Hansen, Tomas Hejgdrd Jensen

Vejleder: Jergen Larsen

Scenarios for Greenhouse Warming Mitigation

by: Bent Serensen -

TOK Modellering af trazers vakst under pdvirkning
af ozon

af: Glenn Meller-Holst, Marina Johannessen, Birthe

Nielsen og Bettina Serensen

Vejleder: Jesper Larsen

KOMPRESSORER ~ Analyse af en matematisk model for

aksialkompressorer

Projektrapport sf: Stine Beggild, Jakob Hilmer, -

Pernille Postgaard

Vejleder: Viggo Andreasen

Masterlignings-modeller af Glasovergangen
Termisk-Mekanisk Relaksation

Specialerapport udarbejdet af:

Johannes K. Nielsen, Klaus Dahl Jensen

Vejledere: Jeppe C. Dyre, Jergen Larsen

304a/95 STATISTIKNOTER Simple binomialfordelingsmodeller

af: Jergen Larsen

304b/95 STATISTIKNOTER Simple normalfordelingsmodeller
af: Jergen Larsen
304¢/95 STATISTIKNOTER Simple Poissonfordelingsmodeller
af: Jeorgen Larsen ’ .
304d/95 STATISTIKNOTER Simple multinomialfordelingsmodeller
af: Jorgen Larsen
304e/95 STATISTIKNOTER Mindre matematisk-statistisk opslagsva

indeholdende bl.a. ordforklaringer, resuméer

tabeller

og

af: Jergen Larsen
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316/96 Plasmaoscillation i natriumklynger
305/95 The Maslov Index:

A Functional Analytical Definition Specialerapport af: Peter Meibom, Mikko @sterglrd
And The Spectral Flow Formula Vejledere: Jeppe Dyre & Jern Borggreen
By: B. Booss-Bavnbek, K. Furutani

317/96 Poincaré og symplektiske algoritmer

306/95 Goals of mathematics teaching af: Ulla Rasmussen

Vejleder: d
Preprint of a chapter for the forth- ejleder: Anders Madsen

comming International Handbook of

Mathematics Education (Alan J.Bishop, ed) 318/96 Modelling the Respiratory System

By: Mogens Niss by: Tine Guldager Christiansen, Claus Drzby

Supervisors: Viggo Andreasen, Michael Danielsen
307/95 Habit Formation and the Thirdness of Signs
Presented at the semiotic symposium

. 319/96 Externality Estimation of Greenhouse Warming
The Emergence of Codes and Intensions as

a Basis of Sign Processes Impacts

By: Peder Voetmann Christiansen by: Bent Serensen
308/95' Metaforer i Fysikken

3 R . .
af: Marianne Wilcken Bjerregaard, 20/96 Grassmannian and Boundary Contribution to the

Frederik Voetmann Christiansen, -Determinant
Jern Skov Hansen, Klaus Dahl Jensen .. .
: K.P.W .
Ole Schmidt by: K.P.Wojciechowski et al
Vejledere: Peder Voetmann Christiansen og
Petr Viscor 321/96 Modelkompetencer - udvikling og afprevning
af et begrebsapparat
309/95 Tiden og Tanken & PP

En undersegelse af begrebsverdenen Matematik .’

; - - Specialerapport af: Nina Skov Hansen,
udfert ved hjzlp af en analogi med tid

Christine Iversen, Kristin Troels-Smith
af: Anita Stark og Randi Petersen

Vejleder: Bernhelm Booss-Bavnbek Vejleder: Morten Blomhej

310/96 Kursusmateriale til "Linezre strukturer fra 322/96 OPGAVESAMLING

algebra og analyse" (E1) Bredde-Kursus i Fysik 1976 — 1996

af: Mogens Brun Heefelt

323/96 Structure and Dynamics of Symmetric Diblock
311/96 2nd Annual Report from the project
Copolymers
LIFE~-CYCLE ANALYSIS OF THE TOTAL DANISH
PhD Thesis

ENERGY SYSTEM .
by: Christine Maria Papadakis
by: Héléne Connor-Lajambe, Bernd Kuemmel,

Stefan Kruger Nielsen, Bent Sorensen 324/96 Non-linearity of Baroreceptor Nerves

by: Johnny T. Ottesen
312/96 Grassmannian and Chiral Anomaly

by: B. Booss-Bavnbek, K.P.Wojciechowski 325/96 Retorik eller realitet ?
Anvendelser af matematik i det danske
313796 THE IRREDUCIBILITY OF CHANCE AND Gymnasiums matematikundervisning i
THE OPENNESS OF THE FUTURE perioden 1903 - 88

The Logical Function of Idealism in Peirce's Specialerapport af Helle Pilemann

Philosophy of Nature Vejleder: Mogens Niss
By: Helmut Pape, University of Hannover

326/96 Bevisteori
314/96 Feedback Regulation of Mammalian Eksemplificeret ved Gentzens bevis for

konsistensen af teorien om de naturlige tal
Cardiovascular System

af: Gitte Andersen, Lise Mariane Jeppesen,

By: Johnny T. Ottesen » Klaus Frovin Jergensen, Ivar Peter Zeck
Vejledere: Bernhelm Booss-Bavnbek og
315/96 'Rejsen til tidens indre" - Udarbejdelse af Stig Andur Pedersen
a+b

et manuskript til en fjernsynsudsendelse 327/96 NON-LINEAR MODELLING OF INTEGRATED ENERGY
+ manuskript SUPPLY AND DEMAND MATCHING SYSTEMS

af: Gunhild Hune og Karina Goyle by: Bent Serensen

Vejledere: Peder Voetmann Christiansen og

Bruno Ingemann



