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The cardiovascular system is considered. A Direct modelling of
the non-linear baroreflex-feedback mechanism, including time-delay,
is developed based on physiological theory and empirical facts. The
feedback model is then evaluated on an expanded, but simple, Wind-
kessel model of the cardiovascular system. The stability of the entire
model is analyzed and the effect of the value of the time-delay is in-
vestigated and discussed. The time-delay may cause oscillations. A
finite number of stability switches may occur dependent on the value
of the time-delay. The location of these stability switches turn out to
be sensitive to the value of the parameters in the model. We suggest
a simple experiment to determinate whether or not the time-delay is
responsible for the 10 second Mayer waves. Data from an ergometer

. bicycle test is used for evaluation of the model.
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We consider the systemic part of the cardiovascular system, consisting of the
left ventricle, the arteries, the capillaries, the veins, and the right ventricle,
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Abstract

The cardiovascular system is considered. A Direct modelling of
the non-linear baroreflex-feedback mechanism, including time-delay,
is developed based on physiological theory and empirical facts. The
feedback model is then evaluated on an expanded, but simple, Wind-
kessel model of the cardiovascular system. The stability of the entire
model is analyzed and the effect of the value of the time-delay is in-
vestigated and discussed. The time-delay may cause oscillations. A
finite number of stability switches may occur dependent on the value
of the time-delay. The location of these stability switches turn out to
be sensitive to the value of the parameters in the model. We suggest
a simple experiment to determinate whether or not the time-delay is
responsible for the 10 second Mayer waves. Data from an ergometer
bicycle test is used for evaluation of the model.

Introduction

together with the baroreflex-feedback mechanism.

The mathematical modeling of this system, without feedback, can be ap-

proached in several ways. One may derive partial differential equations,
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describing the blood as a Newtonian fluid, for this approach see for example
Sir Lighthill (1975), Peskin (1976), Pedley (1980), Berger (1993) and Olufsen
& Ottesen (1995). Rather than this, we make the model as rough as pos-
sible, focusing on simple and well-established physical principles, and make
as many simplifying physical assumptions as possible. Hereby, a system of
_ ordinary differential equations with only a few variables is obtained, for this
approach see Warner (1958), Grodins (1959), Warner & Cox (1962), Warner
(1962), Grodins (1963), Milhorn (1966), Taylor (1978), Noordergraaf (1978),
Usino (1995) and Cavalcanti et al. (1995). This part of the modeling is based
on theoretical physics (section 2-5). Having a model of the uncontrolled car-
diovascular system (that is, excluding feedback mechanisms) we extend the
model, by adding an explicit modelling of the chronotropic and inotropic ef-
fect of the baroreflex-feedback mechanism. There have been several attempt
to model the accumulated effect of the baroreflex-feedback mechanism as a
regulator by standard methods known from control theory. Noldus (1976)
used optimal control based on a principle of minimal energy consumption
whereas Ono et al. (1982) and Kappel & Peer (1993) used optimal control
based on a priciple of minimal deviation from a set-point. None of these
are based on well-established physiological knowledge. Rideout (1991) and
Tham (1988) used principles from linear control theory, even though the
feedback is not linear. We prefer to model the feedback mechanism directly.
Our approach is based on well-established physiological theory and empirical
facts, i.e. on physiological knowledge (section 6-7). This feedback mechanism
introduces some non-linearity in the model and includes time-delay. Special
attention is paid to the effect of the time-delay.

When such a feedback model is produced, we apply methods from non-linear
analysis, which are very useful in this connection. The various possible sce-
narios, coursed by different values of the time-delay, are discussed together
with a possible relation to the 10 second Mayer waves (section 8). Moreover
an ergometer bicycle test is simulated and compared to real data (section
9). However, it is not possible to solve all equations analytically, and we
therefore include numerical considerations.

Finally a discussion and an outlook is given (section 10) and the nominal
values of the parameter used is listed (appendix).

One may model the pulmonary part of the cardiovascular system in a similar
way as the systemic part. A model of the entire cardiovascular system does
not separate into two uncoupled submodels, even when pressure independent
stroke volumes are assumed, because of conservation of the total blood vol-
ume. However, such a model includes a submodel of the systemic part of
the cardiovascular system, which is independent of the rest of the system.
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Therefore, an analysis of the systemic part of the cardiovascular system is
sufficient for our considerations.

‘Finally gratitude is given to Professor F. Kappel and O. Peer for letting
us use their data, obtained from ergometer bicycle tests, which we use for
validation of the model.

2 Physical Model of the Uncontrolled
Cardiovascular System

First we consider the systemic part of the cardiovascular system, consisting
of the left ventricle, the arteries, the capillaries, the veins, and the right ven-
tricle, without feedback mechanisms. Later we add a model of the baroreflex-

feedback mechanism. ,
£

Since our goal is to analyze the baroreflex-feedback mechanism, the model
of the uncontrolled system must be as simple as possible, yet still has to
catch certain principal characteristics of the system. Hereby we can handle
the feedback model and understand the basic mechanism of the real system
being modeled.

We include the left ventricle in the model only to describe the inflow to the
aorta. Therefore, we describe it simply as a source term, i.e. the inflow is
given by a function of time. This function is chosen to agree with measure-
ments and depends on heart rate and contractility (or stroke volume).

The arteries are considered as a compartment characterized by a compliance.
The pressure in the arterial compartment is determined by the difference
between inflow to and outflow from the compartment, see figure 1.

From the arteries there is an outflow, through the capillaries, to the venous
part. Since the major drop in pressure occurs over the capillaries, Guyton
(1981), they are characterized by a resistance to the flow. Hence, the flow
through the capillaries 1s determined by the difference in pressure between
the arterial and the venous part.

Analogous to the arteries, the veins are considered as a compartment char-
acterized by another compliance.

The flow out of the veins is into the right ventricle, ignoring the right atrium.
The ventricle is simply described as a sink, characterized by a resistance to
the flow out.



Left Arterial Veneous Right
Ventricle Compartment Compartment Ventricle
Resistance
capillaries
Qi n Q Q at

] P, 7 Py =
(source) . (sink)

Ca, Va Cﬂ: Va.

Figure 1: A lumped uncontrolled model of the cardiovascular system.

The above idealizations, lumping the systems into compartments, as shown
on figure 1, are rough in some respects, e.g. one loose information about
spatial properties. However, it turns out that the model is adequate for the
following analysis of the baroreflex-feedback mechanism.

3 Mathematical Model of the Uncontrolled
Cardiovascular System

Now we turn to the mathematification of the physical model presented in
section 2. In the following considerations the blood is treated as an incom-
pressible Newtonian fluid. We further ignore the fluid exchange between the
blood circulation and the interstitial fluid space.

The outflow, Qji,, from the left ventricle may be described in an ad-hoc
manner, just to agree with measurements, as follows

_J0 , for t > t, modulo T
Qint) = { §-t;msin(n(l = £)°) , for t <t modulo T
Where T is the heart cycle, S the contractility of the heart, ¢, the duration
of systole and m describe how the stroke volume depends of the duration of
systole. For m = 1 there is no dependence, for m < 1 the stroke volume is
decreasing with t,, which describe the usual physiological situation, in fact,
Vie = S [7 Qin(t)dt o< S - #1=™. The fact that Qin, and then Vi, is linear
in the contractility, S, follows from a detailed analysis of the ventricle. To
relate t, and T one may use the empirical law, ¢, = xv/T, where « € [0.3,0.5]
when the time units is second, Kappel & Peer (1993). A detailed modelling
of the ventricle suggest that Vg, o< S - t5,1.e. m = 0.
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We use the above description of the left ventricle as a source to avoid a
complex model of the heart and to reduce the number of state variables.

Conservation of mass suggest that the time-derivative of the arterial volume

V. 1s given by '
Va(t) = Qun(t) — Q(2)
where @ is the outflow from the arteries (see figure 1).

To obtain a state equation relating arterial spatial mean pressure, F,, and
volume, V,, we choose the mathematical most simple one which agree pretty
well with measurements.

P =1y,

Ca
where ¢, i1s a constant, describing the compliance of the arterial system.

This constitutive equation is commonly used in the literature. Eliminating
the volume we get

Byt) = é(Qi,,(t) —Q(t)

Quite analogue the venous part is modeled, relating venous spatial pressure, .

P,, and volume, V,, giving the equation

B(t) = —(Q(t) ~ Qoue(£))

Cy

- where ¢, is a constant, describing the compliance of the venous system, and-

Qous is the outflow from the veins. However, in the venous case, the con-
stitutive equation P, = in do not agree as well with measurements as in
the arterial case. Another choice could be P, = EI;VV", with n > 1. This
choice agree better with measurements for suitable value of n, Warner &
Cox (1962). Nevertheless, we prefer the original choice for purely simplifying
reasons. For a further discussion of the venous part we refer to Noordergraaf
(1978).

We use a lumped parameter model to describe the flow, @, through the cap-
illaries. Conservation of momentum, assuming no friction, may be described
by the equation

) // pult)dV = /A p(t)dA

where p is the density of blood, u the time-dependent velocity-field, p the
time-dependent pressure-field, A the cross-section area, and V' the volume.
However, due to friction there is a resistance to flow and then a loss of mo-
mentum, which is assumed to bee proportional to the flow, corresponding to




laminar flow, and characterized by a resistance R. Then the above conser-
vation equation has to be modified as follows

&AWMW=LWWFRW@

_Then

pLoAQ(t) = (.(t) — P,(t))A— RAQ(2)

where the length of the compartment Ly is related to the cross-section area A

and the volume V as A- Ly = V. Furthermore, @ is the average of the flow,
Q(t) = % [, u(t)dA, in the length direction. Then, with L = pLo, describing
the inertia of the blood, we get the well-known equation (see Noordergraaf

(1978))

Q) = -7 + T(R(t) = A1)

Finally, we describe the outflow from the veins to the right ventricle during
diastole as a sink, characterized by a resistance, r, to the flow out. In analogy
with the capillary case we get

1

Qout(t) = _%Qout(t) + “‘(Pv(t) - 0)

where [ characterize the inertia of the blood, in analogy with L above.

[

Then the complete model of the pulsatile uncontrolled cardiovascular system
is given by the inflow function

0

,fort >t; mod T

Qin(t) = { S . t;’m sin(ﬂ'(l —_ %)3) s fort <t;modT

where t;, = kT and the following four differential equations

P(t) =

Qout(t) =
Qout(t) =

=(@n() - QW)

R 1
._EQ(t) + Z(Pa(t) — B,(t))
j—v(Q(t) - Qout(t))

-1
—§Qouc(t) + 'Z'Pu(t), fort >t, mod T
O,fort<t;modT

(1)

(2)
(3)

(3)
(6)

We emphasize that the pulmonary part of the cardiovascular system may
be described in a complete analogue manner. Then a model of the entire
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cardiovascular system is obtained if we, for each ventricle, remodel the sink
term such that it equal the source term, when integrated over a cycle. Fur-
thermore, we have to include conservation of the total blood volume.

Before studying the pulsatile model further, we discuss the non-pulsatile
model, which arrive from the pulsatile one by averaging over a heart cycle.
This is partly motivated by the fact, that it is the average arterial pres-
sure which, through the baroreflex-feedback mechanism, steer the change in
heart rate and contractility (or stroke volume). We return to these feedback
mechanisms in section 7.

4 Mathematical Model of the Non-pulsatile
System

The non-pulsatile model is obtained by beat-to-beat averring of the pulsatile
model, giving in equations (1)-(6), i.e. averaging over a cycle. Hereby one
obtain a system of equations as follows

1/3

Qun(t) = St;m+1% /0 sin(z)dz = HVs: )
A1) = —(@ul®) - Q) (®)
QM) = F(P.t)-R) ©)
Rt = —(Q) = Qoult) (10)
Quult) = >R (1)

where H = % is the heart rate, Vi, is the stroke volume, and all variables
are now average values over one cycle. The reason for equation (10) and
(12) is that the accelerations are small and that { and 7 both are large (a
stringent argument may be found in the theory of perturbations of differential
equations, see Murdock (1991).) Note that the system (7)-(11) may be
thought of as depending on the heart rate and the stroke volume, rather than
on @i, explicitly. Notice that the contractility doesn’t appear explicitly, but
is integrated in the stroke volume. Therefore we think of heart rate and stroke
volume as our control variable and the corresponding feedback mechanism
will be called the chronotropic effect and the inotropic effect, respectively.




Hence, the differential equations describing the mathematical model of the
non-pulsatile system becomes

Bt) = cl—aH%n—-CalR(Pa(t)—Pv(t)) (12)
R() = —pR()- (5 + )R LY

Notice that this is almost the equations first derived by Grodins (1959),
except for the outflow part. In the next section we are going to analyze this
two-dimensional dynamical system.

5 Analysis of the Non-pulsatile model

Consider the state equation given by

(70)= (5 i) (50)ama(i) oo

1+ 2,

1 is
a uniquely determine stationary point: Since it is uniquely determine by the
heart rate, the stroke volume and the two resistances to flow, the stationary
point may be used to estimate r and R independently of ¢, and ¢,. The
characteristic polynomial becomes

The determinant is -c-al—Rc:—r # 0 and it easily follows that HV,r

P = - (Ll D)y

cr Re,

1 1

c.Reyr

and the characteristic roots are both real and negative

1/1,1 1 1 1/1,1 1 1\> 1 1
M= =(—+ =)+ — L4/ =(—+ =)+ — ] - ——
* 2 (R(ca +cv)+cur) \/4 (R(ca +cv)+cv'r) c.Re,r

(15)
Notice that the system is asymptotically stable. The transient, which is
determined by the characteristic roots, depends on the resistances, as well
as the capacities. With the nominal values for the parameters, given in
appendix, A, = —0.0283 and A\_ = —0.615 seconds™!, and the corresponding
eigenvectors are (—0.72,—0.69) and (—1.00,0.003), respectively. Then the
characteristic times of the system becomes 35.4 and 1.63 seconds. So the




arterial part shows a fast transient whereas the venous part shows a relative
slow transient.

Moreover, when H is considered as a control variable, the system given in
equation (15) is completely linear controllable, since the controllability ma-
trix has full rank (see for example Russel (1979) or Lee & Markus (1967))

1] —1
rank < ol ) =2
0 cu R

This mens that there exist a control H = H(t), defined over a finite interval
[to, 1], which transfers the dynamical system from any initial state to any
desired final state in the defined time interval. Hence, we can steer the state
in any desirable way by choosing H(?) suitable. Notice that one could as well
have chosen V. or HV,; as control variable.

When dealing with the question of observability one have to specify the
observable quantity. In our case it seems naturally to choose the arterial
blood pressure as observable, 1.e. the observable y is given by

=00 (F)=rw (16)

Then the system in equation (15) with observable given in equation (17) is
completely linear observable, since the observability matrix has rank 2

rank( 11 9 >=2
TR R

This means that every initial state can be determined from the knowledge
of the observable y = P,(¢) over the considered time interval. Hence, mea-
suring the arterial blood pressure completely determine the state. However
investigations (see section 7) show that the physiological control mechanism
is non-linear. Therefore linear control theory does not suffice and non-linear
control theory is needed. Alternatively one may turn the system into a
close-loop control system, by modeling the non-linear feedback mechanisms

H = H(P,) and Vi, = Vi, (F,) directly.

6 Control Mechanisms of the Cardiovascular
System

In this section we briefly discuss the control mechanisms of the cardiovascular
system and, in particular, the baroreflex-feedback mechanism.
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Blood pressure is controlled by a large number of control mechanisms. The
entire control system is very complex and the individual parts normally in-
teract in a complicate manner, Guyton (1981). However, the system may
be divided into at least two categories, autoregulation, which is due to the
hemodynamic properties of the cardiovascular system, and nervous control.
The baroreflex-feedback mechanism, which we consider here, belongs to the
latter category, and is a short-term blood pressure control mechanism.

Common
Carotid
Arteries cqrotid Central Nervous System
Carotid Sinus Barorecptor (CNS)
- __\Nerves
Sinus Afferents

Medulla Oblongata

/ Buffer Nerves

/

) / Parasympathetic § § Sympathetic
'Aortlc (vagus) Efferents| | Efferents
Baroreceptoxf ! Nerve J /i\ .
" \_ Sympathetic
i F{I Y7 Ganglions
Aortic Arch d E
P - i Vasomotor
Sino-atrial Node .- N - AN Nerves
CI}-lIeart tra,t;e ’Capacxtance
ro;f’ ropic Post capillary Resistance
eitect and capillary Arterioles

Contractility vessels
Inotropic effect

Figure 2: The baroreceptor feedback system.

The baroreceptors are tension-sensitive nerve fiber endings located at various
places in the circulatory system. It is believed that those located in the aortic
arch and in the carotid sinus are the most important ones, see figure 2.
The baroreceptors sense the local pressure and cause a frequency in nerve
activity. This nerve activity is transmitted, through the afferent nerve fibers,
to the vegal center and the vasomotor center at medula oblongata in the
central nervous system. The heart rate, the contractility and then the stroke
volume of the ventricles, the peripheral resistances, and the arterial and
venous capacities and unstressed volumes are controlled from the central
nervous system, through the sympathetic and the parasympathetic nerve
activity (see figure 2). All these control mechanisms serve to control the
arterial pressure, i.e. to steer the pressure toward some “normal” set—point.
Here, and throughout this paper, the term set-point denote a steady-state,
determinated by physiological parameters of the model, toward which the
pressure converge.

10



In the following we will only consider the system consisting of the arterial
pressure, the baroreceptors, the nerve fibers going to the central nervous
system, the central nervous system, the sympathetic and the parasympa-
thetic nerve fibers going to the heart, the change in heart rate caused by the
activity in these nerves (through the hormonal transmitters, norepinephine
and acetylcholine) and in stroke volume (through contractility) caused by
the activity in the sympathetic nerves. Moreover, we reserve the phrase “the
baroreflex-feedback mechanism” to mean exactly this subsystem. In figure 3
we have sketched the cardiovascular system, as modeled earlier, together with
this baroreflex-feedback mechanism.

Feedback System

— - = - T

| Time delay |

| [ . |

l M Medula |
‘ \\ _ oblongata

l i T

— i _ - = — =

I (source) (sink) |

L‘__Caava_ CaaVa____J

“Cardio Vascular S?ste;

Figure 3: The controlled cardiovascular system.

To model the chronotropic effect of the baroreflex-feedback mechanism ex-
plicitly, we divide this system into two parts. The first part is described by
the firing rate (nerve activity) of the nerve fibers, called the tones, at the
nerve fiber endings going to the heart. The tones are functions of the arterial
blood pressure. The second part is described by the change in heart rate
as a function of the sympathetic and the parasympathetic tones. Measure-
ments shows that there is a time-delay of the order of 10 seconds for the
peak response (maximal effect) to appear in the sympathetic nervous system
and of the order of less than 1 second in the parasympathetic nervous sys-
tem, see Guyton & Harris (1951), Warner (1958), Warner & Russel (1969)

i
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Korner (1971) Milhorn (1966) and Borst & Karemaker (1983). Hence the
actual time-delay, assuming a simple one, is, in accordance with the mea-
surements, a factor 10 times larger in the sympathetic system than in the
parasympathetic system. This is because of the quick hydrolysis of the acetyl-
choline released by parasympathetic stimulation as compared with the slow
_reuptake and washout of the sympathetically released norepinephine in the
heart. Therefore, we include the time-delay in the sympathetic nervous sys-
tem and ignore that of the parasympathetic nervous system.In the litterature
Warner (1958) and Warner & Russel (1969) estimate the time-delay to be in
the range [2, 4] seconds, Cavalcanti et al. (1995) use 7 = 2.5 seconds, Rideout
(1991) has 7 &~ 3 seconds (in Rideout it is an average value of a continuous
delay), and Guyton & Harris (1951) estimate it to 13 seconds. Each of the
above two parts is fairly well-known qualitatively, but quantitatively they
are only roughtly known.

Less is known about how the inotropic effect of the baroreflex-feedback mech-
anism works. But it seems that the stroke volume increase slightly with the
arterial mean pressure, through the sympathetic nerve system, in the physi-
ological range under consideration.

7 Mathematical Model of the Baroreflex-
Feedback Mechanism

In this section a mathematical model for the baroreflex-feedback mechanism,
described in section 6, will be developed.

First we consider the chronotropic effect. As mentioned earlier we divide this
feedback system into two parts.

The model describing the first part of this feedback mechanism is based on
measurements of the sympathetic and the parasympathetic tones as functions
of the arterial mean pressure, see Korner (1971) and references thererin.
Graphs of the qualitative behavior of these functions are both sigmoidal in
shape. It follows that the sympathetic tone T and the parasympathetic tone
T, is decreasing and increasing as functions of the arterial mean pressure,
respectively, i.e.

T ZQS(P:) 7g;(PaT) <0,

T, = gp(Fa) , and g,(Fa) >0
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and
gs = 1 for P7 small, g~ 0 for P large,

gp = 0 for P, small, and g, ~ 1 for P, large

where P] and P, denotes the arterial mean pressure with and without time-
delay, respectively, T characterize the time-delay. Otherwise g; and g, are
unspecified functions.

Ezample. As ad-hoc model one may choose

1

(P =
gs(P;) T (&)

and
1

P8
T+ (&)

where the parameters a5, oy, 3s and 8, are all positive and characterize loca-
tion and steepness of the curves, i.e. '

Qp(Pa) =

_1 — _ 1 —
g9s =3 for Pl =a,, g,=3for P, =ay,
' = L for P =q,, and g =22 for P, =a
gs 4o a S gp 4o, a P

Nominal values is o5 = o, = 93 mmHg and B; = 8, = 7 for a person at rest.

We emphasize that the phrase “mean pressure” in the pulsatile case may not .
mean the ordinary average value over a cycle, as in the non- pulsatlle case,
but rather a weighted average.

The model describing the second part of the chronotropic effect of the
baroreflex-feedback mechanism is based on measurements of the change in
heart rate as a function the tones, which may be found in a paper by Levy &
Zieske (1969). From these measurements one may conclude that, the change
in heart rate is an increasing function of the sympathetic tone and a decreas-
ing function of the parasympathetic tone, and furthermore an increase in the
parasympathetic tone will reduces the effect of the sympathetic tone on the
change in heart rate. We write

H(t) = MT,, T)

where oh oh
7. —(Ts,T,) > 0 and o, —(Ts,T,) < 0
and oh
3T —(T5,T,) decrease wrt T,

13



Moreover, h = H < 0for T, ~ 0 and T, = 1, corresponding to high pressures,
and h = H > 0 for T; = 1 and T}, = 0, corresponding to low pressures.
Otherwise is h unspecified.

Ezample. As ad-hoc model one may choose

aHTs

- - H@t)= ———
. () 1*7HTP

- BT, —

where the parameters agy and By express the strength with which the sympa-
thetic tone and the parasympathetic tone, respectively, influence the change
in heart rate, and vy express the damping from the parasympathetic ner-
vous system on the strength with which the sympathetic nervous system
influence the change in heart rate. All parameters are positive. Notice that,
H =~ —By < 0 for high pressure and that H ~ ay > 0 for low pressure.
Nominal values is ag = 0.84 sec™? and By = 1.17 sec™2. This values reflect

0.5+

(=]
L

~0.54

Change in heart rate

|
b [
o -
v L

250 250

Del ressure
Instant pressure ayed p

Figure 4: The Change in heart rate as a function of the delayed pressure P,
and the instant pressure P,.

the fact that at normal heart rate, the parasympathetic stimulation is more
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dominant than the sympathetic stimulation, so the normal heart rate is lower
than the intrinsic rate of the denervated heart. It turn out that A is little
sensitive in g, and one may choose vy = 0 to simplify the analysis.

Putting the above two submodels together in one model of the chronotropic
effect of the baroreflex-feedback mechanism we obtain a non-linear differential
equation with time-delay

H(t) = f(Pu(t), Palt = 7))

where it is used that the time-delay, in the non-pulsatile case, is given by
P7(t) =P,(t—7)and f = hog. Hence, H is negative for high pressures and
H is positive for low pressures. Furthermore, H is monotonic decreasing in
each variable, i.e. 3P 2L < 0and 881;’, < 0. A typical behavior of the function f
is shown in figure 4.

Combining the two ad-hoc submodels above it follows that the physiological
parameters ag, B, o, Bs, ap, and B, determine the set-point for the steady
state, see section 8. This function f(F,, P]) for the nomma.l value of the
parameters is shown in figure 4. :

The inotropic effect of the baroreflex-feedback mechanism is less known than
the chronotropic effect. From Suga et al. (1974) and Wesseling et al. (1982)
it follows that the contractility S increase when P, decrease, but at the same
time ¢, decrease. Following Allison et al. (1969), Suga et al. (1976) and Cav- -
alcanti et al. (1995), V. is approximately constant in the physiological range -
under consideration and is increasing with P, for low pressure. However, we

emphasize that this may variate very much, dependent of the athletic state of

the considered person (for an athlete the contractility increase first and the

heart rate secondly when exposed to exercise). It turn out that the following

analysis do not change qualitatively whether V. is constant or variate, as

long as P, is in the physiological range under consideration. But in case of

variable V. the analysis become more technical complicated. For simplicity

we keep Vi, fixed in what follows. Furthermore, it is not in general clear how

the “set-point” for V4, behave qualitatively when the system is disturbed, but

in some situations it is known. In agreement with this knowledge we assume

that this “set-point” change similar to how the set-point for the heart rate

change. In fact, we will only consider the case where the peripheral resis-

tant increase exponentially, corresponding to a change from rest to exercise

(a short term submaximal workload). In this case it is expected that the

set-points behave similar. We return to this question in section 9.

We are now able to analyze the model of the close-loop control system of the
cardiovascular system, which we will call the baroreflex-feedback model, given
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by the model for the uncontrolled non-pulsatile cardiovascular system, de-
scribed by equation (15), together with the model of the baroreflex-feedback
mechanism just derived. This analysis will be carried out in the next section.

8 Analysis of the Baroreflex-Feedback Model -

In this section we will analyse the baroreflex-feedback model given by the
following system of non-linear differential equation with time-delay. Allowing
variable stroke volume it follows from above

Fu(t) = —7ZpPa(t) + ZgPu(t) + SVeul PL(1) H(t)

B(t) = ZpR(t)=(Zg+ H)R() (17)

CyT

H(t) = f(Pu(t), Pu(t — 7))

Notice that the non-linearity and the time-delay do only appear through the
feedback equations. Due to a well-known theorem (see for example El’sgol’ts
& Norkin (1973)), continuity of f,g and ¢, where ¢ is the initial condition
in [to — 7,%0), guarantee existence of solution to equation (17). Moreover,
if the right hand side of equation (17) is Lipschitz, uniqueness also follows.
However, these general results are not needed here.

In the following we make the physiologically realistic assumptions on f, which
are justified in section 7,

f>0for P, and P small,
f <0 for P, and P large,
f is differentiable, and

BBT{, < 0 and :Pfg <0

(18)

We notice that when P] = P, these assumption implies that

f >0 for P, small,
f <0 for P, large, and (19)
f is monotonic decreasing and continuous

In fact, it is the weaker assumptions (19) we are going to use, when we
investigate the questions of existence and uniqueness of equilibria, in the
following.
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Theorem 1
Under the assumption (19) the system given by equation (17) has a uniquely
determined equilibria.

Proof

We first notice that if the system is in an equilibria, then P] = P,. In this
case we simply write H = f (P,). By the assumptions, it follows that there
exist a uniquely determined “set—point” value P, = P,, such that f(P,) = 0.
Then the system, given by equation (17), uniquely determinate P, and H as

1
P,(t) = P, 20
0=z (20)
and

Ht)=——_1 p (21)

R‘/str(Po) 1 + % °
where at equilibria Vi (P,(t)) = Veer(P,) = g(P,). Hereby, the existence and
uniqueness of an equilibria is shown. O

We emphasize that the proof for existence and uniqueness of an equilibria::
only use assumption (19) and the fact that the arterial pressure determine-

all the other state variables uniquely under equilibria.

Notice, that it follows from the proof that the ratio between the arterialm_j
mean pressure and the venous mean pressure is given by 1 + % ~ 16.4 and"
that the ratio between the arterial mean pressure and the inflow is given by

R(1+ %) ~ 1.12 mmHg sec/ml at the equilibria, i.e. in steady state.

FEzample. Continuing with the examples given in section 7 the so-called set-

point becommes
of, L

E{—)ﬁo

for a, = a; = o, and B, = B; = B, as in the case of the nominal values given

P°=a°(

in appendix. In the physiological estimated range (%ﬁ-)ﬂ;—o is between 0.8 and
1.2 and P, ~ «. '

We will now investigat the stability of the determinated equilibria and es-
pecially how this depends on the value of the time-delay and the feedback.
But as mentioned the analysis is quite technical due to number of uncertain
parameters when linearizing equation (17). However, it turns out that the
qualitative behavior of the system agree with that where Vj;, is assumed con-
stant. So for simplicity we will consider this case here and return to the full
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feedback system in the discussion and when simulating data, obtained by an

ergometer bicycle test, in section 9. Hence we consider the feedback system
/

P(t) = —ZzPu(t)+ Z2gP.(t) + EViu H(2)

Bt) = ZxPult) - (Zr+ 2P (@

CH(t) = f(Pu(t), Pu(t —7))
with the unique equilibria P, = P,, P,(t) = g Fe, and H(t) = Aotz Por
- sir 1+ 5

Before examine the question of stability of the equilibria, it is appropriate to
transform the system into dimensionless form. Consider the transformation
(P,, P,,H,t) = (24, %y, Th, s), given by

Pa = .’L‘aPo
Pv = Cl?,,Po
[& Po
H = Tp 2
‘/strtﬂ
t = Sto

where P, (=~ 100 mmHg) is the arterial equilibria pressure and tp = c,R (=
1.6 sec) is a characteristic time, whereby the number of parameters reduces.
Then equation (17) transform into

Lo = —ZTa+ Tyt Th
Ty = 0Ta— BTy (23)
T, = f(l‘a’ ‘TZ)

where & = & 23.0-107%, 8 = 2(1+2) ~ 16.40 ~ 4.9-107% and f(z,,2]) =

%%’ f(zoPo, 2. Py). Notice that f and f share the same monotonic and sign

properties. Hence, the equilibria of the system in equation (23) becomes

1 1
1+ 8714 %

)

(xay Ty, xh) = (1a

Linearizing equation (23) in terms of the deviation from equilibria (2., T, Ts),
under assumption (18), gives

?a = —Ty+ Ty + Ty
T, = az,— Pz, (24)
Tn = —YT, — 5'3_3;;
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where v = —%(1, 1) and é = _a%é(l’ 1). Notice that all the appearing pa-

rameters are positive and that « onfy depend on the ratio of the compliances,
and that 3 depend on this ratio as well as the ratio of the resistances. In case
of the example above one get v =~ 20y and § ~ 2oy assuming that P, =
(the relative error made by this assumption is less than 10%).

We now write equation (24) as
t+Az+Bz" =0 (25)

where z and z7 denotes the transposed of (Z,,Z,,Zs) and (Z7,Z,, T} ), respec-

tively, and o
1 -1 -1 00
A=| —a [ 0 and B= 0
0

~ 0 0

S O
oo o

The associated characteristic equation is then given by
AN, 7) = det(AI+ A +Be ") = P(A) + Q(N)e™™ =0 (26)

where

PA) =X+ B+ +(v+8—-a)A+18
and

Q(A) = (A +B8)é

Notice that all coefficients in P and @ are positive, since § > ¢, that P
and @ are polynomials of degree 3 and 1, respectively, and that the only
root, A\g = —f, in @ is negative and is not a root in P, since P(Ag) =
268(8B—5+7) >2B(y—a+4) > 0. Moreover, P(0) + Q(0) = B(y+ ) # 0.
Hence one may use the method outlined in the elegant paper of Cooke &
van den Driessche (1986) to investigate stability of the equilibria. Notice
first that the equilibria is stable for vanishing time-delay, i.e. 7 = 0, by the
Rough-Hurwitz criteria. The characteristic polynomial is

N+ (B+1)N+(v+5+B8-a)A+(v+6)B

where all coefficients are positive and (84 1)(y+d+8—-a)— (v +94)8 =
v+ 38+ (8 +1)(B — ) is positive. Secondly we seek positive roots y to

Fy) = |P(iy) — Q)

and afterward we solve equation (26) with respect to 7 for these values of y,
if any. Hereby we get a, possible infinite, sequence 7,,n = 1,2, ..., at which
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there may appear stability switches (Hopf bifucations). Calculating F(y) one
get

F(y)=y°+ Ay* + By*+ C
where
= (B+1)*-2(y+f-aq)
= (146~ ~298(8+1) ~ &
= (v -8 , ,

2

Notice that this is a polynomial of third degree F(z) in z = g% So we
are looking for positive roots of F (z), corresponding to positive roots y =
vz of F(y), and especially is the number of such of interest. The roots of
F(z) depends continuously on the four parameters (o, 3,7, d). We divide the
parameter space R% into regions by hypersurfaces, such that the points of
each region correspond to polynomials F (z) with the same number of positive
roots. In general there is four regions, which we denote O, I, I] and I1]
corresponding to none, one, two and three positive roots, respectively. Since
o and B are fairly well estimated, & = 3.0- 1072 and 8 = 4.9 - 1072, we will
consider these as known in the following typical scenario. Then the discussion
reduces to the 2-dimensional (v, §)-parameter space R?, where the regions
are separated by curves. The parameter space is divided naturally into two
subspaces, C' < 0 and C > 0, corresponding to § > v and § < 7, respectively.
By Descartes’ theorem, Descartes (1954 (originally 1637)), it follows that the
regions of one and three positive roots are located in the subspace § > +,
and those of none and two positive roots are located in the subspace é < 7.
Moreover, by Descartes’ theorem, three positive roots demand that A < 0,
B > 0 and C < 0. These demands are inconsistent with the expressions for
A, B and C. Therefore, there is one positive root if and only if § > v. The
boundary between regions O and I is characterized by that there is one
non-positive root and one positive double root. Simulations show that these
curves and regions are low sensitive to the exact values of a and 3. However,
below it is shown that the specific value of the solutions to equation (26) are
indeed sensitive to the exact values of o and 3. Figure 5 shows the numerical
computed regions for the estimated values of & and S.

Qe

A first rough estimate for v and ¢ is v = 2.34 and é = 1.67. However, these
estimates are with some uncertainty, and we may only expect that v € [1, 6]
and 6 € [1,6]. Hence, none of the possibilities none, one, and two positive
roots can, at present, be excluded. Therefore we briefly sketch what happen
in each of these regions:

O) If there are no positive roots of F(z), the equilibria stay stable for all
values of 7 > 0, since it is stable for 7 = 0, and no stability switches can
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Figure 5: The regions of different numbers of positive roots in the (v, 4)-
parameter space.

occur. However, the physiologically realistic range has no intersection with
region O.

Ezample o) v = 2.3 and ¢ = 1.4 In this case there are no positive roots,
in fact there is only one real root of F(z), z = —0.024. So in this case the
equilibria is stable for all values of 7 > 0.

I) If there is precisely one positive simple root, say z;, of F(z), then there
exist an infinite sequence, {7.}%2q, 7 = 70 +nZ, n € N, with y; = /z,
such that the pairs (y;,7,) solves equation (26). When 7, considered as a
parameter, runs from zero to infinity, there may appear stability switches
for 7 = 7,. Since the equilibria is stable for 7 = 0 it follows that it loose
its stability at 7 = 70 and stay unstable for = > 75. Then there is only one
stability window, {0, 79[, in this case. Numerical considerations shows that in
the case of one positive simple root, 7o < 0.5 second, for v, € [1,6], as in
example i) below. Therefore, this case seems to be excluded as physiologically
realistic, since T experimentally is estimated to be in the range [1, 4] seconds.
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Ezample i) v = 4.36 and § = 4.84. In this case there is one positive root,
7, = 8.24, of F(z), corresponding to y; = 2.87. Then equation (26) gives
70 = 0.35 seconds. So in this case the equilibria is stable only for 7 € [0,0.35]
and unstable else. The frequency for 7 = 0.35 seconds is 0.3 Hz.

IT) If there are precisely two positive simple roots of F (z), say z; and z,, with
z1 > 7, there exist two infinite sequences {7, }52, and {72}, 74 = 73 +n2E
and 72 = 72 + nz—:, n € N, with y; = \/z1 and y2sqrtz;, such that the pairs
(y1,7}) and (ya, 72) solves equation (26). Since y; > y» the equilibria becomes
unstable at 7 = 7, stable again at 7 = ¢ (if 7§ < 7¢), and so on, alternating
between stable and unstable, until 7 = 7* = 7} for some finite n. This is a
consequence of the fact that 2= < 2I 5o destabilization switches occur, on

average, more frequently than stabilization switches. In fact, there appear

stability windows and n* windows of instability (here the square brackets
denote the smallest integer larger than the number in the brackets). The
length of the first stability window [0, 72[ is 74, the length of the (n + 1)’th
stability window is

27 1 1
=124+ —+4n 2(———
° 0 B (yl yz)
forn=1,2,...,n* — 1, and the length of the n’th window of instability 1s
1 1
2—ri4(n-1)-27(— - —
G-t (=) 2n(- - )
forn=1,2,...,n* — 1 The last window of instability is [7*, oo[, where 7 =

7l.. As shown in the examples below two stability windows are likely (within
the physiologically parameter range v, 6 € [1,6]), one with possible values of
7 less than 0.5 seconds, and the other with window included in (3, 7] seconds.

FEzample i) v = 5.22 and § = 4.80. In this case there are two positive roots,
z1 = 4.4 and z, = 84, of F(2), corresponding to y; = 2.1 and y» = 9.2,
respectively. Then equation (26) gives 7} = 0.36 and 7¢ = 7.02 seconds.
Therefore there appear two destability switches, at 7§ = 0.36 and at 7} = 3.71
seconds, before any stability switches (the first one at 7¢ = 7.02), So in this
case there is only one stability window, [0,0.36[. Asin example ¢) we conclude
that this case seems to be physiologically unrealistic.

Ezample #°) v = 5.56 and § = 4.24. In this case there are two positive
roots, z; = 8.4 and z, = 1.44, of F(z), corresponding to y; = 2.9 and

22



yo = 1.2, respectively. Then equation (26) gives 7} = 0.42 and 7¢ = 3.7
seconds. So in this case there is two stability windows [0, 0.42[ and [3.7,3.8]
seconds, and two windows of instability [0.42,3.7[ and [3.8, oo[ (qualitatively
the system is equivalent to that shown in figure 6). The frequency is 2 Hz
for 7 = 0.42 seconds and 5 Hz for 7 = 3.7 seconds. We conclude that this
case is physiologically unrealistic due to the large frequency.

Ezample ii”) v = 2.34 and é = 1.67. In this case there are two positive roots,
zy = 2.67 and z, = 1.00, of F(z), corresponding to y; = 1.64 and y, = 1.00,
respectively. Then equation (26) gives 7§ = 1.34 and 7¢ = 4.00 seconds. So
in this case there is two stability windows [0, 1.34] and [4.00, 7.49[ seconds,
and two windows of instability [1.34,4.00[ and [7.49, co[, see figure 6. The
oscillation frequency for 7 = 4.00 seconds is 0.1 Hz. We conclude that this
case seems to be physiologically realistic.

From these stability considerations we conclude that v > ¢, since otherwise
we are in case I), which gives physiologically unrealistic results for v, €

[1,6].

At this point we emphasize that the solutions of the characteristic equa-
tion (26) depends on the parameters, i.e. the compliances and the resistances. .
It turn out that the system may be unstable (oscillatory) for some values of
the time-delay 7 and then become stable for the same time-delay by, for ex-
ample, a decrease in the peripheral resistance, see figure 7. The reason for
this is the exact location of the stability and instability windows are sensitive
to the parameters. The windows moves continuously with the values of the
parameters.

It is known, Wesseling et al. (1982), Koepchen (1984) and Cavalcanti et al.
(1995), that the arterial mean pressure is in fact not in a steady state but
rather is oscillatory, approximately with a frequency of 0.1 Hz and an am-
plitude less than 10 mmHg. In the literature these oscillations are known
as the 10 seconds Mayer waves, Seidel & Herzel (1995). In the litterature it
is suggested that such 10 seconds Mayer waves may be caused by the time-
delay. If we demand the bifucation frequency, the frequency at the stability
switches, to be 0.1 Hz (Mayer waves), then equation (26) gives

and
v = 1.0 — cot(7)

From this it follows that the physiological range of 7, demanding a bifucation
frequency of 0.1 Hz, is ] %, 7[~]1.26,5.03( seconds. For 7 = 4 seconds one get
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Figure 6: The arterial pressure P,(t) in mmHg vs. time in seconds for six
different values of the time-delay. Upper left: 7 = 1.0 seconds, upper right:
T = 1.4 seconds, middle left: 7 = 3.9 seconds, middle right: 7 = 5.0 seconds,
lower left: 7 = 7.5 seconds, lower right: 7 = 10.0 seconds. For 7 = 3.9 seconds
one observe oscilations with a frequency of 0.1 Hz and an amplitude of 7 mmHg,
as in the case of Mayer waves. The values of the parameters are ay = 0.84
seconds™2, By = 1.17 seconds™?, a; = o, = 93 mmHg and 3, = 3, = 7.

8 = 1.67 and v = 2.34 or correspondingly ay ~ 0.84 sec”? and By =
1.17 sec™2, as were chosen as our first rought estimates. The system is
oscillatory corresponding to the value of 7 belongs to an instability window,
see figure 6. However our simulations shows that the oscillations are sensitive
to change in the parameters, for example the peripheral resistance. In fact,
if we decrease the peripheral resistance by 20% then the oscillations may
disappear, corresponding to the window of instability, which 7 belongs to,
moves away such that 7 then belongs to a window of stability, this is shown
in figure 7. Hence we suggest an experiment which shows the sensitivity of
the 10 seconds Mayer waves on the parameters, especially on the peripheral
resistance. Such an experiment could determinate whether or not the 10
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Figure 7: Oscillations in the heart rate H(¢) in seconds™" (upper) and in arterial
pressure P,(t) in mmHg (lower), vs. time in seconds, are sensitive to the value
of the peripheral resistance. At time t = 600 seconds the peripheral resitance
decrease exponentially by 20%. Before t = 600 seconds one observe oscilations
with a frequency of 0.1 Hz and an amplitude of 5 mmHg, as in the case of Mayer
waves. After ¢ = 600 the oscillations vanish. The values of the parameters
are ag = 0.84 seconds™2, By = 1.17 seconds™?, a; = a, = 93 mmHg and
Bs = B, = 7 and the time-delay is 7 = 4.0 seconds.

second Mayer waves is due to time-delay.

When considering the full feedback system, including the stroke volume as a
non-constant function, the coefficients A, B and C in the six order polynomial
F(y) becomes

A= (B+1)?-2ny+B—a)=¢

B = (ny+p8~a)—2myB(8+1) - 5% —n*6”

C = (vy"=8&m*p
where n and £ are two parameters characterizing the inotropic effect. Nu-
merical analysis shows that there appear regions in typical planes parallel to

25




two axis in the 4-dimensional (7, 6,7, £)-parameter space R similar to those
described for the (v, §)-parameter space above (figure 5).

We finally end this section by notice that the approximation r = 0 in equa-
tion (5) reduces the equations (13)-(14), describing the uncontrolled non-
pulsatile systemic part of the cardiovascular system, to the well-known equa-
tion from the classical Windkessel model

Pu(t) = —- =P+ —c—t—H

Together with the feedback mechanism described in section 7 one get an
analytically more manageble system. Then theorem 1 and the proof takes
over, with equilibria given by P, = P,, for some set-point value F,, and
H=H,= ﬁmPo (which is equation (22) in the limit r — 0). Then direct
calculations gives that the (v,d)-parameter space are divided into region
quite similar to what is shown in figure 5. The curves dividing the regions
then become v = § and the part of the parabola v = §% +  where v > 3.
However, the resulting stability windows and the discussion thereof become
similar to what we got without the approximation r = 0.

In next section we turn to simulations and verification by use of experimental
data.

9 Simulation and Verification

In this section we show how the model respond to a decrease in peripheral
resistance. In Kappel & Peer (1993) simulations, obtained by use of their
model, was compared to data obtained in a bicycle ergometer test. Such a
short term submaximal workload is assumed to affect the peripheral resis-
tance only. Simulations shows that the peripheral resistance respond to a
sudden step increase in workload by decreasing exponentially with a time-
constant of approximately 30 seconds. Figure 8 shows the respond of the
model, presented in this paper, to such a 20% decrease in peripheral resis-
tance. The simulation obtained by use of our model agree, to a satisfactory
degree, with the experimental data given, despite the choice of a very simple
model for the uncontrolled cardiovascular system. Furthermore the venous
pressure and the stroke volume behave as expected. Taken into account the
large individual variation, for example due to the athletic state of the person
used in the experiment, we conclude that the model provides a satisfactory
decription.
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Figure 8: How the model of the cardiovascular system respond to an exponential
decrease in peripheral resistance, by 20% from 1.05 mmHg sec/ml to 0.84 mmHg
sec/ml. In this simulation we have used 7 = 5.0 seconds only to avoid oscilations
in steady state. Solid curves represent simulations and dots represent data,
obtained by Kappel & Peer (1993) (with permission). Upper left shows heart
rate H(t) in seconds™! vs. time t in seconds, upper right shows arterial pressure
P,(t) in mmHg vs. time ¢ in seconds, lower left shows the venous pressure P,
in mmHg vs. time ¢ in seconds, and lower right shows the stroke volume V.. ()
in ml vs. time t in seconds. The parameter values are ay = 0.84 seconds™?,

By = 1.17 seconds™?, a; = a, = 93 mmHg and 3, = 3, = 7.

10 Discussion, Summary and Outlook

We present a direct modelling of the chronotropic and inotropic parts of the
non-linear baroreflex-feedback mechanism. The modelling include a descrip-
tion of both the sympathetic and parasympathetic nerve system, including
time-delay. This modelling is based on physiological theory and empirical
facts, to our knowledge for the first time.
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The model of the feedback mechanism is evaluated on an expanded, but
simple, Windkessel model of the cardiovascular system. Stability, with spe-
cial attention to the effect of the value of the time-delay, is analyzed. The
analysis show that it is likely that there appear several windows of stabil-
ity separated by windows of instability wrt. the time-delay 7. Moreover, the

_exact location of these windows are sensitive to the value of the other param-
eters in the model. It is shown that a 20% decrease in peripheral resistance,
as is likely when a person is going from rest to exercise (with a workload
of approximately 50 Watt), might change the pattern and location of these
stability and instability windows. Then the state of the system may change
from being instable, i.e. oscilatory, to be stable, or vice versa. At the stabil-
ity switches a Hopf bifucation takes place. Near to the stability switches in
one direction the system is in or approach a stable steady state and in the
opposite direction the state perform oscilations. For physiological realistic
time-delays, for example 7 = 4 seconds, the system perform oscilations with
a frequency of 0.1 Hz and an amplitude less than 10 mmHg, as in the case
of Mayer waves. However, these oscilations are sensitive to variations in the
parameters, as described above. Hereby a simple clinical experiment is sug-
gested to decide whether or not the Mayer waves originate from time-delay.
Finally we simulate data obtained in a bicycle ergometer test. This shows a
satisfactory agreement between data and simulation results concerning the
heart rate and the mean arterial pressure. Also the simulation shows the
expected behavior of the venous pressure and the stroke volume.

Based on our investigation we conclude that our model of the baroreflex-
feedback mechanism catch on to the major effect of the real physiological
mechanism being modelled. Hereby we get the possibility of improve our
knowledge of real system being modelled.

In near future at least three aspects will be investigated. How does a limit
in the work performed by the heart affect the analysis and the conclusions ?
How do the ignored effects of the baroreflex-feedback mechanism, i.e. the
effect on the peripheral resistance and on the venous pool, influence both the
model and the results ? How will a pulsatile system behave when imposed our
feedback model 7 In fact a major point is that with our choice of approach
these and other question is able not only to be stated but also answered.

Appendix

Below we bring two lists, one of the various nominal values of the parameter
used in the uncontrolled model and the other of the various nominal values
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of the parameters used in the feedback model. When a parameter differ in
value between rest phase and exercise phase the first value denote the value
‘at the rest phase and the second value typed in brackets denote the value at
the exercise phase. The values for the peripheral resistance and the stroke
volume approach their value at the exercise phase asymptotically. The data
given in the list of parameters used in the uncontrolled model agree with
those in the literature and with physiological estimated values.

Nominal values of parameters in the uncontrolled model:

Arterial conpliance ¢, = 1.55 ml/mmHg

Venous compliance ¢, = 519 ml/mmHg

Peripheral resistance R = 1.05(0.84) mmHg sec/ml
Venous outflow resistance r = 0.068 mmHg sec/ml
Stroke volume Vi = 67.9(77.9) ml

Typical mean heart rate H = 1.24 sec™?

Typical mean arterial pressure P, = 100 mmHg
Typical mean venous pressure P,, = 7 mmHg

Nominal values of parameters in the feedback model:

a=2=30-10"
B=2(1+%)=49-10""

oo = a; = ap = 93(121) mmHg
/60 = ﬁs = ﬂp =7

oy = 0.84 sec™?

By = 1.17 sec™?

yu =0
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