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Introduction

It is implicit in recent literature on quantum field theory that ys- and gauge-
invariance of a self-adjoint elliptic boundary condition P for the (massless) Dirac
operator P4 over the 4-ball coupled to a non-trivial gauge configuration A which is
pure gauge at the boundary lead to global chiral anomaly, i.e. the integers n; and n_
of the zero frequency modes of positive and negative chirality can not be expected -
to be identical and that their difference will depend on the winding number deg A
associated with the non-negligible external field of the gauge configuration and aris-
ing from local chiral symmetry breaking. The reason for this belief may be an undue
prominence of the spectral Atiyah-Patodi-Singer (APS) boundary condition Il for
the corresponding partial Dirac operator [Jf. As observed by M. Ninomiya and C.I.
Tan in {20], imposing APS boundary conditions does lead to global (strong) chiral
asymmetry. But the APS is far from being the only reasonable elhptlc self-adjoint,
¥s-invariant, and gauge—mvanant boundary condition.

In {17}, G. Morchio and F. Strocchi noticed the role played by boundary terms for
the discussion of spontaneous symmetry breaking. They saw no reason to question
the local chiral anomaly, i.e. the existence of the correction term which invalidates
the continuity equation for the chiral current (reconstructed through the Matthews-

* Working paper, January 19, 1996, expanding discussions with Gianni Morchio and Franco
Strocchi (Pisa), and Andrzej Trautman (Warsaw and Trieste)
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Salam formula for the fermion correlation functions and mathematically expressed
by the curvature of the underlying connection). Instead, they addressed the global
implications of this term, essentially the question whether its volume integral van-
ishes or not. That must depend on the boundary conditions chosen. In that con-
nection they questioned the belief in the necessity of imposing the APS boundary
condition leading to global (strong) chiral anomaly and put forward some arguments
supporting the view that

(a) the ellipticity and self-adjointness of the boundary condition, providing a nicely
spaced discrete real spectrum with only accumulation point at £o0;

(b) the ys-invariance of the boundary condition; and

(c) the invariance of the domain under any globally defined gauge transformation

might be compatible with
(d) global (strong) chiral symmetry, i.e. the vanishing of ny —n_.

The compatibility of the four properties would lead to considerable simplifications
in the calculations and a new understanding of the physical effects especially con-
nected with the 8 term in quantum chromodynamics. As explained in [17], Section
5.5, chiral symmetry would imply that the exponential

e@f}-‘“pd:: — ei&[(n+—n_)(A)] = lim m-—(n++n_)det mAm,O = fA(o)
m—=0
of the effective action would become independent of the fermion angle 6 of the
fermion mass term, and vice versa. On the mathematical level one could simplify
considerably the ¢ function regularization of the determinant bundle with

C'(s) = - Z In e’ In 1A

A€especha

= —[(ny +n)lnm+i(ny —n_)bn]le™’ Inm? _ Zln |A|2e_s In|AI2
A0

It follows that we must discuss the number of the zero modes. We shall show that the
Morchio-Strocchi conjecture is provable and that global (strong) chiral symmetry is
indeed compatible with the other requirements. It seems, moreover, that there are
no gauge-theoretic arguments for selecting the chiral anomaly generating Atiyah-
Patodi-Singer boundary conditions.

In Section 1 we give a review of the theory of elliptic boundary value problems
for any total Dirac operator D and, in case of even-dimensional manifolds, for the

half Dirac operator Dt arising from the chiral decomposition D = ’D0+ DO )

Our definition of the ellipticity is somewhat new, and we hope that it makes this
concept more accessible to non-specialists. The standard definition (see for instance
(6], Chapter 18) is clearly a special case of the concept we offer here, but we suspect
that actually both notions of the ellipticity of a boundary problem are equivalent.
We apply the classical concepts of Cauchy data spaces and of the Calderén projec-
tor P4(D*) in order to investigate the ellipticity condition. Then we review the
elliptic boundary problems used by physicists and mathematicians. At the end of
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the section we discuss the Grassmannian Gr(D*) of all generalized Atiyah-Patodi-
Singer conditions, i.e. the space of all pseudo-differential projections with the same
principal symbol as the Calderdn projector. It provides a natural space of elliptic
boundary conditions for the partial Dirac operator D¥.

In Section 2 we present a theory of vs-invariant self-adjoint ellxptlc boundary

0 D
D 0 ) We show that in a natural

way each P € Gr(D*) defines a projection P# € Gr} (D), the Grassmannian of
vs-invariant self-adjoint elliptic boundary problems for the total Dirac operator.

In Section 3 we discuss the twisted Dirac operator [P4 over a 4-ball V' (of large
radius) coupled to a vector potential A (a non-trivial gauge configuration which is
pure gauge at the boundary). We fix the notation, especially concerning the auxiliary
vector bundles and underlying metrics and connections. We exploit the product form
m = N(0- + @) of the twisted Dirac operator near the boundary and investigate
the effect of changes of the connection form A onto the corresponding field B over the
boundary entering into the definition of the boundary (tangential) Dirac operator @p.
We show that not only the spectral Atiyah-Patodi-Singer projection II(@p) defines
a gauge-invariant element of GrJ, ({4), but also the Calderén projector P (%)

~ Assume that the 4-ball V is equipped with the standard metric which makes
(according e.g. to J.R. Schmidt and A:M. Bincer [23]) the boundary Dirac operator
invertible and its spectrum symmetric. Assume also that the vector potential A is
pure gauge at the boundary. Then one obtains the well-known formula

problems for any total Dirac operator D = (

index Pan, = ny(ly) - n_(Iy) =deg(A) #0 (1)

derived by Ninomiya and Tan {20] from the Atxyah Patodi-Singer index theorem.
The proof will be discussed below.

Replacing the spectral projection I3 (#5) by the Calderon projector P, (%) we
get, contrary to (1)

index Pa.p, = n4(Py) —n_(Py) =0, (2)

since, by definition, n,(P4) and n_(P4) vanish. From (2) we get the main result of
this paper, namely that any twisting of the Euclidean Dirac operator over the 4-ball
by means of a connection in an auxiliary bundle of coefficients can be ‘lifted’ to a
suitable section in the Grassmannian providing global (strong) chiral symmetry:

Theorem 0.1 Let Conng(V x C2) denote the affine space of smooth connections
in the coefficients’ bundle V x C? over the 4-ball V which are pure gauge at the
boundary. Then there exists a smooth map

R : Conno(V.x C?)3 A~ R(A) € Gr(I)

which satisfies (a)-(d).

From a mathematical point of view, the preceding theorem provides the best
solution available for the compatibility problem of global (strong) chiral symmetry
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with local symmetry breaking when the section R of the Grassmannian is based on
the Calderén projector, since it provides

n+(R(4)) = 0 | )

for any connection A.

In Section 4 we discuss various alternative self-adjoint, elliptic, 7s- and gauge-
invariant boundary problems for the twisted Dirac operator J)4 with vanishing ny —
n_ to give a clear and complete picture of the variety of possibilities of obtaining
compatibility of global (strong) chiral symmetry with local chiral asymmetry.

In Section 5 we make some remarks on the construction of the Calderén pro-
jector and its relation to the spectral projection (Atiyah-Patodi-Singer boundary
condition).

In the Appendix we determine, based on a result by L. Nicolaescu, the adiabatic
limit of the Cauchy data spaces of the twisted Dirac operator for the radius of the
4-ball R — oo in terms of the eigenfunctions of the corresponding tangential Dirac
operator over the 3-sphere.

1. A Brief Review of the Theory of Elliptic Boundary Problems for Dirac
Operators

Let M be a compact smooth oriented Riemannian manifold with boundary Y, and
let S — M be a bundle of Clifford modules with compatible Hermitian structure
and connection (covariant derivative) D. The (total) Dirac operator

D : C®(M;S) — C*(M;5).

is obtained by suitably composing the connection D : C*(M;S) = C®(M;T*M ®
S) with the Clifford multiplication ¢ : C®(M;TM ® S) = C*(M; S).

Clearly D is an elliptic differential operator. It is formally self-adjoint and Green’s
formula holds for all spinors s and s':

(Ds, ') — (5, Ds") / (N (5)(slv ) 'l ), @)

where N := ¢(n) : Sly — S|y denotes the unitary bundle isomorphism given by
Clifford multiplication by the inward unit tangent vector.

To proceed further we assume that M is an even-dimensional manifold. Let s
denote the global section of Hom(S, S) defined locally by

vs := c(ey) ... c(ex),

where {e,} is any positively oriented orthonormal local frame of tangent vectors and
k denotes the dimension of the manifold M. Since & is even, S splits into subbundles
S* spanned by the eigensections of vs corresponding to the eigenvalue %1, if k is
divisible by 4, or i otherwise; the Clifford multiplication N switches between S*|y
and S¥|y; and the Dirac operator splits correspondingly into components

0 D-
2=(5 %)
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such that the right partial (half) Dirac operator DY : CS(M;S*) - C®(M;S™) is
formally adjoint to the left partial operator D~ : C®(M;S5~) = C®(M;S*).

To simplify the exposition we assume that the Riemannian metric and the Her-
mitian structure are product near the boundary. Let us point out that the results
presented here remain true also for non-product structures. Admitting non-product
structures, however, makes the analysis more complicated especially when one wants
to discuss the { regularized determinant and related asymptotic expansions.
~ Close to the boundary, the total Dirac operator splits into the following product

o =T(3, +B) = (1?, ‘[g—l> (a,+ (f)’ —1\?&1\’)) , (5)

where r denotes the inward oriented normal (radial) coordinate in a collar neighbour-
hood of the boundary and @ : C*®(Y;S*) = C®(Y;S*) denotes the (tangential)
Dirac operator over the boundary. Notice that in fact

T?=-1 and TB=-BT

as required by the formal self-adjointness of ’D
We also discuss the operator Dt alone. It has the following form on the collar

Dt = N (8, + ) ' (6)

The Dirac operator on an odd-dimensional manifold has the same form I'(8, + B)
on the collar. In this case the total operator D does not split, but the tangential
operator is a Dirac operator on an even-dimensional manifold and has therefore the

following form: .
_{ 0 B~
B= (B+ 0 )

Now we want to discuss the properties of a Dirac operator over a compact mani-
fold with boundary. In the beginning we shall not distinguish between the cases of
even- and odd-dimensional manifolds and whether we treat the total or the half Dirac
operator. So, let A € {D,D*} with 4: C®(M;E) = C®(M;F), E, F € {5, 5%},
and product form A = I'(8; + B) near the boundary Y.

Contrary to the case of a closed manifold, the space

H(A,0) = {s € C*(M;E)| As = 0}

of solutions of the operator A is an infinite-dimensional subspace of C®(M; E).
There is also a question of regularity of the solutions. Let s denote a solution of A,
which is an element of the space L?(M; E) (or more generally of H*(M; E) the k-th
Sobolev space). In general, it does not follow that s is a smooth section of S. This
leads us to the following general definition of the ellipticity.

Definition 1.1 Let 4 be a Dirac operator on M and let Az be a closed extension
of Ain L?(M,S) with domain R. We call Ag an elliptic boundary problem for the
operator A, if and only if the following two conditions are satisfied:
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(I) The extension Ag : R = L? of A is a Fredholm operator.

(IT) The spaces ker Az and coker Ar are (respectively in the case of the cokernel:
can be represented as) finite-dimensional subspaces of the spaces of smooth
sections.

Remark 1.2 Let #(A) denote the space of all L? solutions of the operator 4. Then
we may reformulate condition (II) in the definition as follows:

RNH(A) CC® and R*NHA*)CC™,
where R* denotes the domain of the adjoint operator.

It seems at first sight that the boundary Y does not appear in the definition, but
usually the domain R is defined by a condition posed on the spinors on the boundary:
Let 7o denote the restriction map yo(s)(y) := s(0,y). It gives a continuous map
Yo : HY(M;E) = L*(Y; Ely). The condition which determines R is usually given
in the form:

R={se€ H(M;E)|T(v(s)) =0},

where T : L%(Y; Ely) — L*(Y;G) is a 0-th order pseudo-differential operator. Of
course T has to satisfy certain additional assumptions to guarantee fulfilment of
conditions (I) and (II) from the definition. We have to introduce the Calderén
projection in order to explain those conditions.

The Calderén projector P4 (A) is defined as the (without loss of generality or-
thogonal) projection of L?(Y'; E) onto the Cauchy data space, also called Hardy space
in Clifford analysis:

Hi(A) = {sly | s€ C®(M;E)and As=0in M \ Y}L (ViBlv)

We discuss the construction of the Calderdn projector in the last section of this
paper. Let us only point out that the principal symbol py (y; ¢) of P+ (A) is equal to
the orthogonal projection onto the direct sum of the eigenspaces of the automorphism
b(y; ) corresponding to the positive eigenvalues. Here b denotes the principal symbol
of the tangential operator §. Now we are ready to formulate the conditions which
the operator T has to satisfy:

Definition 1.3 Let T : C*®°(Y; Ely) = C®(Y; E) be a pseudo-differential operator
of order 0. We call T an elliptic boundary condition for the operator A, if the
following conditions are satisfied:

(I') For any real r, the extension T7 : H"(Y; Ely) = H"(Y; E) of T has a closed

range.

(II') Let o(T) denote the principal symbol of T. Then

range(o(T)) = range(o(T) o p4).

In particular the restriction o(T)|range(p,) : range(p+) — range(o(T)) is an
isomorphism of vector bundles.
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Condition (I') implies that A7, the orthogonal projection onto the kernel of T, is
a pseudo-differential operator (see [6], Proposition 18.11). For the ease of notation
we shall denote the kernel of T' by the same letter Nr. Condition (II’) implies
that the couple (Nr,H4(A)) is a Fredholm pair of subspaces, i.e. a pair of closed
subspaces with finite-dimensional intersection and with sum of finite codimension
(then the difference of these two dimensions is called the indez of the pair; see [6]).
More precisely we have the following result:

Proposition 1.4 Let T be as in Definition 1.3. Then the couple (N7, H4+(A)) is a
Fredholm pair of subspaces in L*(Y; Ely) with

index (N1, H4(A)) = index {T o P4(A) : H4(A) — range(T)} = index Ar ,
where A denotes the realization of the operator A with the domain
{s € H'(M;E) | T(v(s)) = 0}.

Proof We show that index (N7, H4 (A)) = index {T'P4(A) : H4(A) — range(T)}
and refer to (6], Theorem 20.8 for the proof of the second equality.
Let us assume that z is an element of N7 N#H 4 (A). This implies that

Tz=0 and Pi(A)z =z, ' ()

which shows that z is an element of the kernel of the operator TP (A). Let us also
observe that the second equality of (7) shows that there exists a uniquely determined
s, such that As = 0 and y(s) = z. Therefore we have shown:

ker A7 = ker TP, (A) = Nr N H4(A).

Now let us assume that w is an element of (Mr + H4+(A4))* . It means that

w is perpendicular to #4(A), hence P, (A)w = 0 and that w is perpendicular to
the kernel of T. Therefore there exists ¢ such that w = T*¢, which provides the
identification of ker P, (A)T* with the orthogonal complement of the sum and thus
ends the proof of the proposition. : =

Now we review some examples of boundary value problems for Dirac operators.
We begin with the theoretically most obvious example:

Example 1.1 We put T := P, (A), the Calderén projector of A. This is an elliptic
boundary condition and in the case of the total Dirac operator A := D it provides
us with a self-adjoint, elliptic boundary problem for the operator D. In the case of
A = D* we obtain a closed (unbounded) Fredholm operator ’D$+(.D+) with index

equal to 0.

We have to choose different boundary conditions in order to obtain a non-trivial
index. '
Example 1.2 We still discuss the operator D+ . Then the tangential Dirac oper-
ator @ is a self-adjoint elliptic differential operator over the closed manifold Y and -
it has an orthogonal complete system of eigenspinors providing a spectral decom-
position of L>(Y;S*|y). Let T1»(#) and Tl<(#) denote the orthogonal projections
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of L2(Y;S*|y) onto its subspace spanned by the eigenspinors corresponding to the
non-negative, respectively negative eigenvalues of #. Those spectral projections are
pseudo-differential operators and the principal symbol of IIs (@) is equal to py .
Therefore 115 (#) is an elliptic boundary condition for the operator D¥ . The prob-
lem D*py, (5) was studied by Atiyah, Patodi and Singer in [2], where they gave the
famous index formula for the operator D%, (5. We will discuss this formula later.

Example 1.3 Let us discuss the Atiyah-Patodi-Singer problem for the total operator
D in the case of an odd-dimensional manifold M. In this case their index .formula
gives

index Dni,, (g) = dimker gt

i.e. for non-vanishing kernel of the tangential operator the Atiyah-Patodi-Singer
problem for the total, symmetric Dirac operator is not self-adjoint, and its index is
not stable under small deformations.

On the other hand, Green’s formula shows that in the case ker(d) = {0} the
operator Dry, (3) is a self-adjoint operator.

Example 1.4 For odd-dimensional M we have two natural local elliptic boundary
conditions w4 for the total Dirac operator defined by the chiral projection of S|y onto
(Sly)*. We then get index D,_ —index D,, = index#*. But index Dy, vanishes by
Green'’s formula so that we get the illustrious cobordism theorem from the preceding
equality, namely the vanishing of the index of any (half) Dirac operator over a
closed even-dimensional manifold Y, if the operator can be written as the (half)
tangential operator of a (total) Dirac operator over an odd-dimensional manifold M

with OM =Y.

Example 1.5 Also on any odd-dimensional manifold M we have the chiral bag
model: Let S be a bundle of Clifford modules and D : C®(M;S) = C®(M;S)
a compatible Dirac operator over M. For any natural n and any smooth map
g :Y — U{n) we get a self-adjoint elliptic operator Aq acting like

nD 0
Ag :=( 0 —n'D)
with
dom A, = {(2;) € HY(M;(S®C")®(S®C")) | s2ly = (I‘®g)31|Y}

where nD =D ® ld¢-.

Example 1.6 Now we return to the case of even-dimensional M and replace the
spectral projection (i.e. the Atiyah-Patodi-Singer boundary condition for the par-
tial Dirac operator Dt) by projections belonging to the Grassmannian Gr(D%) of
generalized Atiyah-Patodi-Singer boundary conditions for D*. The space Gr(Dt) is
defined as the space of pseudo-differential projections with principal symbol equal to
the orthogonal projection p, . Here ‘projection’ means ‘idempotent’ (i.e. P = P?).
The Grassmannian is locally pathwise connected and has countably many connected
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components; two projections Py, P, belong to the same component, if and only if
the virtual codimension

i(P, P1) := index { PPy : rangeP, — rangeP,} = index (Id — P2, Py) (8)

of P, in P, vanishes. Here index (Id — P, P;) denotes the index of the Fredholm
pair (of ranges of the projections). The higher homotopy groups of each connected
component are given by Bott periodicity. According to Proposition 1.4 we have
index D} = i(P, P, (D1)) for all P € Gr(D*).

Note: Important elements of Gr(D*) are the weighted spectral projections [1>4(d)
with a cut of the spectrum at an arbitrary real a. More precisely, they are defined as
the orthogonal projections onto the direct sum of the eigenspaces of the tangential
Dirac operator @ for eigenvalues > a.

Another important example is the Calderdn projector P4 (D*) discussed in Ex-
ample 1.1. Note that the Calderén projector is defined in global data whereas the
spectral projections are defined by the data of the tangential Dirac operator, i.e. by
data that live on the boundary. In any case, they have the same principal symbol
P+, but in general belong to different connected components of the Grassmannian.

Example 1.7 Let us now assume that M is an odd-dimensional manifold. In this
case we have also an important self-adjoint Grassmannian Gr*(D) of self-adjoint
boundary conditions of Atiyah-Patodi-Singer type. This is the subspace of Gr(D),
which consists of those (orthogonal) projections P, which satisfy the condition

-I'PT=Id- P.

Any element of Gr* (D) defines a self-adjoint elliptic boundary value problem for the
operator D.

2. vs-Invariant Elliptic Boundary Problems

In this section we discuss the bouhdary value problems related to the physical situ-
ation described in the Introduction. We now assume that the manifold M is even-
dimensional. We begin with two typical examples of elliptic boundary problems:

Examples 2.1 (a) The tangential Dirac operator § is a self-adjoint elliptic differen-
tial operator over the closed manifold Y. As in Section 1, IT> (#) and I1<(#) denote
the orthogonal projections of L2(Y; St|y) onto its subspace spanned by the eigen-
spinors corresponding to the non-negative, respectively negative eigenvalues of @.

Choosi
oosing . (Hz(é’) 0 ) (9)
T\ 0 NI (PN

as boundary condition we obtain an operator D_ which is a self-adjoint Fredholm

operator with smooth kernel and cokernel and nicely spaced spectrum, such that the
“invariants

1, 0. ¢, (©), and ¢ (0)
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are defined in exactly the same way as in the closed case. Here the product struc-
ture near the boundary is important. Actually it turns out that the spectrum is
symmetric due to ys-symmetry, hence the n-invariant vanishes, see Proposition 2.2b
below.

(b) If we set (following [14])

- %(th Nl“) | (10) .

we obtain a realization Dr with the same properties as listed for D in (a).

The reason why the listed properties are in line with each other in these two cases
is that P € {II, T} satisfy the same two basic conditions (for details see [5] and [6]):
—  The first condition is the ellipticity (well-posedness) of the projection P defining
the boundary condition explained in Definitions 1.1, 1.3 above.
— The second condition is the self-adjointness of the L2-extension. As discussed
in Example 1.7 this is a symmetry condition in the normal derivatives, more
precisely demanding Id — P = —T PT.

One decisive difference between the two boundary conditions I1 and T defined
in equations (9) and (10) lies in the ys-symmetry: In view of the chiral splitting
vs takes the form v5 = ((1) _?1) for dimension of M divisible by 4 (otherwise we
multiply by the imaginary unit i), hence ysllys = II, i.e. II ts vys-invariant, but
vsTvs =1d — T, i.e. T is not ys-invariant.

The main result of this section is the following proposition.

Proposition 2.2 (a) The mapping

Gi(D*)3 P P# .= (109 N(Id_OP)N_l) (11)

provides us with the ys-Grassmannian Gr} (D) of self-adjoint elliptic (well-posed)
boundary conditions for the total Dirac operator D which are all v5-tnvariant. In
particular we have a natural identification

o(Gr2, (D)) = mo(Gr(DH)) ~ Z. (12)

(b) For all P¥# ¢ Grl (D) the L? realization Dp« has a discrete real spectrum.
Each eigenvalue is of finite multiplicity and there are no finite accumulation points.
The spectrum is symmetric around the origin of the real azis (hence there is no 7
function).

(c) The null space

kerDps = {s € H*(M;S) | D(s) = 0 and P¥(s]y) = 0}
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consists solely of smooth spinors. It is finite-dimensional and splits naturally into
the direct sum of a space of spinors of positive chirality of dimension n, (P#) and
a space of spinors of negative chirality of dimension n_(P#) with

index D} = ny (P#) - n_(P#), ' (13)
where P# and P are related through (11).

Proof (a) and the main proposition of (b) follow at once from the general theory of
global elliptic boundary problems for the Dirac operator. To prove that the spectrum
of Dpg is A — —X symmetric we consider an eigenspinor § = :'*' € domDpx

with Ds = As. Because of the anti-diagonal form of D this means

D™ s_ = As; and Dtsy = As_ .

Then < 5+ ) also belongs to domDps and is an eigenspinor of Dpe with eigen-

value — ), since

(2 %) (2)= ()= (R )= ()
Dt 0 —s_ Dts, As_ —-s_
and, trivially, |

N(Id-P)N~Y(s_|y) = 0= N(Ild - P)N~}=s_ly) =0.
To see (c), we notice that by definition

ker Dps = ker ’D:; &) l-(erD;,(Id_P)}\,_l

with dimker D} = n,(P#) and dimker’D;,(Id_},w__l = n_(P#). Since (D})"

DN (d—pyn-1- it follows that index DF = ny (P#) — n_(P#). ‘ o
We close this section with a discussion of the global (strong) chiral anomaly

n4(P#) — n_(P#) for the vs-invariant boundary conditions induced by

- the Calderén projector Py (D7);

- the spectral projection I (#); and

- the weighted spectral projections II5,(@) for any real a.

For (c) of the preceding proposition it suffices to determine the index of the corre-

sponding problems for the partial (half) Dirac operator.

Examples 2.3 (a) As noticed before, from the definition of the Calderén projector
1t is immediate that ker ’D,+,+(,D_,_) = 0. From Green’s formula we get that

P(D7) = N(Id— Py (DH)N",

hence

ker ’D;,(Id_,,+(v+j)N_, = ker’D.;+(D_) =0,
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hence the index of the elliptic boundary value problem 'D,";+ (D+) vanishes: There is

no global (strong) chiral anomaly when imposing the Calderén projector as boundary
condition.

(b) Choosing the spectral projection IT>(#) as boundary condition we have the
Atlyah-Patodi-Singer index theorem which gives

index D) = /M o(z) - %(na(O) + dimker §) (14)

Here a(z) denotes the locally defined inder density of D which expresses the local
chiral anomaly, and

n(z) = ) Sign/\lz\l'zz'f(ﬁjfo T (ge ) dt (1)
2

Aespecg\{0}

denotes the 7n-function of the tangential Dirac operator @. It is

(1) well defined through absolute convergence for R(z) large;

(i) it extends to a meromorphic function in the complex plane with isolated

simple poles;

(ii1) its residues are given by a local formula; and

(iv) it has a finite value at z =0,

(see e.g. Gilkey [10]).

One can not expect global (strong) chiral symmetry for the Atiyah-Patodi-Singer
boundary problem; in general, none of the expressions in formula (14) will vanish.
For sufficiently elementary operators and under additional assumptions the error
terms 13(0) and dim ker @ will vanish (especially for symmetric spectrum and invert-
ible tangential operator), and fairly easy expressions for [,  a(z) are obtainable (see
below Section 3).

(c) For any real a we consider the weighted spectral projection II>,(#). From the
Agranovié-Dynin theorem (see [6], p.207) we get

index D} vald) = mdex'Dn (¢)+1(II>.,(;9) II> (@) (16)

with the virtual codimens:on defined in (8) as error term. For a > 0 the virtual
codimension of II (#) = II>o(#) in II>4(f) becomes EOQ« dim E, and fora < 0
it becomes — 3",y odimEy where Ex denotes the eigenspace of the tangential
operator @ corresponding to A. Hence, for suitable choice of a we can obtain global
(strong) chiral symmetry

: + —
index Dﬂga(?) =0,

even if the index of the Atiyah-Patodi-Singer problem does not vanish. If its index is
v # 0, say v > 0, the spectral cut a must be chosen in such a way that EOS aca B2 =
v.

To exploit the rich structure of the vy5-Grassmannian and to investigate the pass-
ing from one connected component (sector) to another under change of boundary
conditions we shall now apply the preceding theory to a specific 4-dimensional prob-
lem of gauge theoretic physics, the problem of global (strong) chiral symmetry in
the presence of local (weak) chiral symmetry breaking for gauge-invariant boundary
conditions.



GRASSMANNIAN AND CHIRAL ANOMALY 13

3. Twisted Dirac Operators over the 4-Ball

Now we address the physics situation. As manifold M we take a ‘volume' V in
R We think of V as a ball of large radius R. Actually, we are interested in the
asymptotic situation with R = oo. As the bundle of Clifford modules we take

Vx(S®C)=S50C?, (17)

the Clifford bundle of Euclidean spinors with coefficients in the trivial bundle V x C2
with Clifford action c(a) ® 1. As the full Dirac operator D we take a twisted Dirac

operator defined by a connection A for V x C? which is pure gauge on the boundary

of V.
To make all definitions precise, to fix the notation, and to check the parity and
the signs we recall that the (free) Fuclidean Dirac operator

p= (g ‘é) . C®(V; S) —s C®(V; 5)

)
o9
is canonically defined over R* with

6 .0 . 0 d 0 '
57" 5 T e T (18

and '
a . 0 ) 3] o)

— =l = j——k— 4+ — 19

dq tazl '76::2 O0z3 + Ozg’ (19)
where the bundle S of Euclidean spinors in 4 dimensions splits into a pair of quater-
nions S = V x (H@ H) with Clifford multiplication ¢ : C¢y — Homc(S, S) given by
the four complex 4 x 4 matrices

C(C“) =T = <O'O” 0(')#> for B= 11213 and C(C4) =% = <? —01>

with {0} denoting the Pauli matrices and {e;,...e4} a basis of R*. The connection

defining the Euclidean Dirac operator is just the standard connection d for S.
Then any connection A for the trivial bundle V x C? defines in a natural way a

twisted Dirac operator D4 = P®4 Idc2. It is characterized by the property

Pa(s ® f)(z) = (Ks) ® f)(z)

whenever (Af)(z) = 0. It is a true (total) Dirac operator with regard to the induced
Clifford multiplication c(a) ® 1 and the induced connection d ® A.

Now we must discuss the choice of the connection A. From a physical point of
view it does not suffice to consider only the trivial choice, namely the standard con-
nection d in V x C? given by exterior differentiation S uu = 3, @u8y. Roughly
speaking, the standard connection would correspond to the description of two non-
interacting fermions. When these fermions are not considered independently, their
interaction on the surface 8V of the volume V can be described in a canonical

S
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oV

Fig. 1. The collar [0,¢) x 3V

way, but expressed in different ways, although it is very much the same thing over
the contractible n-ball V (for details see e.g. B.A. Dubrovin, A.T. Fomenko, and
S.P. Novikov [7]): One way is to introduce a smooth family A of SU(2) matrices
parametrized over dV; this is equivalent to introducing a smooth connection V over
the whole ball which is pure gauge at the boundary with regard to h; or, equiva-
lently, to introduce a vector-valued field {A,} which is pure gauge at the boundary
with regard to h providing V. f = gazi“- + A f — fA, for any f € C®(V;V x C?)
and e, the uth basis vector in R*.

The geometrical idea behind demanding the interaction boundary term to behave
as pure gauge is to get a non-trivial curvature form Qv = ), ., Fudz, Adz,
corresponding to an action [ F2, dz < oo with

F[ll/ = [VC“)VC;,] = Ve“ veu - VQVVC"
= a,,A., - ayA” + [A”, AU] e I/2

and F,,(z) = 0 for |z|] = oco. This is equivalent to writing the connection V =
d+3, Ay with A,(z) = hg,h™! for |z| — co.
The different mathematical descriptions are formalized in the following definition.

Definition 3.1 Let Conn(V x C2) denote the affine space of smooth connections
for the bundle V x C2. A connection A € Conn(V x C?) is called pure gauge at the
boundary 8V = S3, if in a collar [0,¢) x §V (see Figure 3):
— A does not depend on the normal (radial) coordinate r; and
— there exists a smooth h : 8V ~ S — SU(2) ~ S® such that A = hodo
h=! in the collar, where d denotes the standard connection given by exterior
differentiation. '

We write Conng(V x C?) for the subspace of connections which are pure gauge
at the boundary.

Proposition 3.2 (a) A connection A for V x C? is pure gauge at the boundary if
it can be written in the form A = d — (dh)h™! in a collar of the boundary.
(b) If A is pure gauge at the boundary, then the tangential Dirac operator B over
9V corresponding to the partial Dirac operator m over V takes the form

B = P53 ® (anyr- Id = (Id®4) (#@Idce) Id®@h™H) (20)

with @ Idc: = @@ §. Here @ = Pss denotes the tangential operator over S8
corresponding to the Euclidean Dirac operator It.



GRASSMANNIAN AND CHIRAL ANOMALY ) 15

Proof To prove (a) we find
Af = (hdh™Y)f = hd(h™'f) = h(h™Ydf + d(h™1)f) = df — (dR)h™'f (21)

since d(hh~!) vanishes. :

To prove (b) we notice that the restriction of A to the boundary takes the form
—(dh)h~?, therefore we get such a simple form for lifting @ to the auxiliary bundle.
For details of the calculation see e.g. [21] and [30]. 0

We shall discuss the Atiyah-Patodi-Singer index formula for the operator P4

index (%), = / a(z) - %(qB(O) + dimker B) .

From the preceding propositioln we have
n8(0) = 21n4_,(0) and dimker B = 2dimker @ss .

We find deg(h) for the value of the integral of the index density. This result is
actually independent of the choice of the metric. Then

index (wg)n> = deg(h) — n,, (0) — dimker fss - (22)

The two numbers on the right were found to vanish for the standard metric of
R4, slightly modified close to 8V in a calculation done by J.R. Schmidt and A.M.
Bincer in [23], see also Schmidt [22]. In that metric the tangential Dirac operator
on the 3-sphere @ss has a spectrum symmetric about A = 0 and is invertible. More
precisely: N

Lemma 3.3 [J. R. Schmidt and A. M. Bincer, 1987] The tangential Dirac operator

@ over 8V corresponding to the (free) Euclidean Dirac operator over a ball V C R4

of radius R in a spherical metric has eigenvalues A with multiplz'pity M()) ezpressed
as

AR=%(s+x) M) =k(s+1), £=12.. . (23)

Proof To explain the metric chosen in [23] we must repeat parts of the proof. First
rewrite the operators Pt = -%. and - = "aiq defined above in (18) and (19) as

2 x 2 matrices
0 =( 04 + 103 32+i61>

3_6 —02+10, 04—103
and
i _ [ 04—103 =0, —1i0,
dq RN - 0y 044103 )
Then parametrize V by
z, = rsinfsin g, T, = rsinfcos ¢y ,
z3 = rcosfdsin g9, T4 = rcosfcos py,

0<p2<2r, 0<6<% O0<r<R
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and notice
g }
05 +i03 = et¥? (cosoa, - — a¢,> ,
r rcosf
9 ]
By 40, = et® (sin 00, + " B + — aq,,) _
r rsinf
To cast

A
]
N

o ©
|
g
~——

into the required product form
P=T(0- +B)
close to the boundary, the partial Dirac operators a% and a% are replaced by

5 o 09 per >~ _ _p0

with

—sinf cos@ 0 e

R = (T‘SSinﬁcosH)%< cos§ sin€> (e“"-"- '0 ) ,
1 —iyp
Q := (r®sinfcosh)* (e 0 + eig+) ,

1
oz = z(p1Epa).

This transformation is equivalent to a slight modification of the metric of V near
the boundary. One obtains

Pr=06.+9, P =-06+9,
with

9= 1 3 +18,, +18,, 8s +icot 88, — itan80,, ) (24)
r \ —0s +1icotb0,, —itanéd,, -.i; — 10, — 10y, )

Setting r := R in (24) we get an explicit form of the tangential Dirac operator. For
details of the eigenvalue determination of @ we refer to [23], 3996-3997. o

Remarks 3.4 (a) We also refer to T. Kori [15] which ensures the same result,
namely a symmetric spectrum, not containing zero, for a particular metric set-up
coming from a metric over the 4-ball which is product near the boundary. Actually,
for Kori’s metric the Calderén projector P, and the Atiyah-Patodi-Singer projection
II> coincide. Clearly the Calderén projector and the Atiyah-Patodi-Singer projec-
tion coincide for the standard metric in two dimensions, but not in four dimensions;
see also Section 5 and the Appendix below.

(b) Also from Hitchin [12] it follows directly that the tangential Dirac operator over
the 3-sphere in standard metric is non-singular with symmetric spectrum. Explicit
calculations of its eigenfunctions were given by Sudbery [27] and Sommen (26].
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Recall that Conng(V x C?) denotes the subspace of connections which are pure
gauge at the boundary.

Proposition 3.5 [M. Ninomiya and C.I. Tan, 1985) For a suitablé metric we have

index (ﬂ"x)n2 = deg(h) (25)

for any A € Conng(V x C?) with A = hodoh~! in a collar of OV and suitable
smooth h : 8V — SU(2).

Proof The proposition follows at once from the Atiyah-Patodi-Singer Index Theo-
rem (14) and Lemma 3.3. , a

In the same article [20] Ninomiya and Tan pointed out that the Atiyah-Patodi-
Singer boundary condition is natural or physical in the following sense:

Corollary 3.6 Let
Conno(V X Cz) 3A - I = Hz(ﬁ@, Idcz) € GI’(W ®a Idcc)
— TI(h) := (1;)* € Gris(P®a4 ldc2)
denote the mapping provided by the Atiyah-Patodi-Singer boundary condition

_ (T»(P®s ldes) 0
1I(h) '—( 2 NH<({9®hIdcz)N'l>’ (26)

where h : 3V — SU(2) denotes the mapping corresponding to the connection A
which is supposed to be pure gauge at the boundary. Then the family of operators
{@A,n(h)}Aeconno(ch,) which act like $®A Idca with

dom D n(a)

= {s € H\(V;S® C?) | TI(h)(s) = <If.)" N(Id-%,,)zv—l) (2) - o}

. satisfies the following three fundamental conditions:
(a8) Pans) is self-adjoint;

(b) TI(k) is vs-invariant; and

(c) the domain dom P4 n(n) is gauge-invariant.

We recall the meaning of (¢): Let U : V — SU(2) define the gauge transformations
flz) = U@V (),
ou
Au(z) = U(z)Au(2)U(2) - 3z

U (=),

u

then the connection A transforms as follows:

Ae,flz — U(:z:)(Ae“f|,,)U_l(:l:),
A +— UAU™}, and
Qs UQAU'l—(dU)U_l.

This motivates the following definition:
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Definition 3.7 A smooth family
Conn(V x C*)3 A4 w P(A)€Gr (Pa) =Gr(Pf)
is gauge-invariant, if we have
P(4) = U*P(A)(U#)~! (27)
for all A, A’ € Conn(V x C2) where A1 = UAU! with arbltrary U:V = SU((2)
and U# := Id®czU ) R

Remarks 3.8 (1) Clearly, for any A, A1 € Conn(V x CZ) with 4; = UAU-! we
have pointwise (see Palais [21])

Pay = Poa,1d = UH(PR4Id)(U*)™! = U¥Pa(U#)71.
Therefore property (c) - gauge-invariance as defined in (27) - means

Pa, piay) = U¥Papay(U#*)7?

and, especially,
dom (Pa,,p(a,)) = U#(dom P4 p(a)) ; (28)

1.e. we require that the boundary condition transforms in a correct way under

variation of the background operator resp. of the connection.
(2) The change of the number

E(Pa;s) == ('lh (s) + dimker 34)

for arbitrary change of the connection A, here considered solely as a connection over
the closed manifold 8V, was addressed already in [2] and further investigated in [30].
It turns out that

f(an ; 0) - E(ﬁA; 0) = index {aA, }tE[D,l] mod Z.

Here t — A, is a smooth family of connections connecting
A=A, with A, =UAU"!

and {P4,}:e(o,1] denotes the corresponding family of Dirac operators parametrized
over S! or, put differently, the elliptic differential operator of first order over the
torus S x OV defined by that family.

Proof of the Corollary
The first two properties are obvious from the choices. The gauge invariance
follows from the corresponding transformation law for the tangential operator

P @, ldc: = U¥(p @4 Idc2)(U#) 71, (29)

where the smooth families h, hy := Ulav h(Ulav)~! : 8V — SU(2) correspond to the
connections A, A; which are supposed to be pure gauge at the boundary. Equation
(29) implies that the eigenvalues do not change under gauge transformation and that
the eigenspaces transform like Ey(fn,) = UEx(#n). Hence II(h) satisfies (a), (b),
and (c). O
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Note: 1. One should keep in mind that from a geometrical point of view there is no
particular reason to choose the Atiyah-Patodi-Singer boundary conditions among all
the other boundary problems which, as we shall see, equally satisfy (a)-(c); in other
words, it is hard to see what kind of special gauge invariance of the domain should
be required to select that particular boundary condition.

2. Moreover, for our purpose it is an unfortunate aspect of the prominent Atiyah-
Patodi-Singer boundary condition that its index

index m,n,. =n4(IIy) — n_(Is)

does not vanish as seen above in Proposition 3.5 stating index {Dﬁ( = deg(h) under

suitable conditions about the metric. But there are other quite natural boundary
conditions R 4 instead of II4 which fulfil the conditions (a)-(c) of the Corollary and
additionally provide global (strong) chiral symmetry, namely

(d) the vanishing of index M,RA =n4(Ra) —n_(Ra)-

As announced in the Introduction:

Theorem 3.9 There exists a smooth map
' R : Conng(V x C?) 3 A R4 € Gr(PY)
which satisfies (a)-(d).. |
Proof It is immediate that

Am Ry =P (P ©4ldcs)
satisfies é.ll conditions, where P, (* ® 4 Idcs) denotes the Calderén projector of the
partial Dirac operator * ®4 Idca. o

Note: 1. A nice feature of the Calderdn projector is that it is by definition invariant
under parity, i.e. :

No(ld - Po(P* @4 ldca)) o N~ =Py (- ®4 ldca),

whereas the Atiyah-Patodi-Singer boundary condition is invariant under parity only
if the tangential operator is invertible.
2. One must expect the existence of a lot of sections of the Grassmannian which

lead to families satisfying (a)-(d) (see also Section 4). From a theoretical point of

view, the Calderén family is the best solution available for the global (strong) chiral
symmetry problems, since it does not only give global (strong) chiral symmetry but
also the following proposition. It simplifies radically e.g. the calculation of {’'(s)
mentioned in the Introduction.

Proposition 3.10 For the Calderén family the dimensions of the zero frequency
modes of positive and negative chirality vanish; i.e. we have

nt (P4 (P @4 lde2)) = 0.

fn
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4. Alternatives and Further Ramifications

There are various ways of obtaining global (strong) chiral symmetry by imposing
elliptic, self-adjoint, y5-symmetric, and gauge-invariant boundary conditions in the
presence of local (weak) chiral anomaly (i.e. non-vanishing deg h for connections
which are pure gauge at the boundary). One way is the Calderén projector. It
removes all solutions such that kernel and cokernel become trivial. This makes
many calculations easy. But since the Calderdén projector depends on the gauge
configuration also inside the region and not only on the boundary, this must have
consequences in, for example, the derivation of identities by variation of the gauge
field configuration in a subregion.}

Instead of removing all solutions by imposing the Calderén projector one can add
further solutions to the original Dirac equation with APS boundary condition until
one gets global (strong) chiral symmetry. There are three ways to do that.

Let us begin with a given connection A in the auxiliary bundle V x C? which is
pure gauge at the boundary. Hence it can be expressed in a collar of the boundary
by a mapping h : S — SU(2) which has a degree (topological number) degh. If
deg h = k is non-trivial, the dimensions ny and n_ of the zero modes (subject to
the APS boundary condition II;) do not coincide as seen in Proposition 3.5. Then,
to get global (strong) chiral symmetry we enlarge the solution spaces until n; and
n. become equal. More precisely:

Alternative 4.1 The easiest, but physically hardly very meaningful way of doing
the equalization of the solution spaces is to take a second copy of the coefficients
bundle V x C? and to choose a connection A’ which is pure gauge at the boundary
AV with a unitary mapping g of opposite degree —k.

Then, instead of tensoring the original Euclidean Dirac operator D+ solely with
the h-connection, we do two twistings: first with h, then with g. The resulting
twisted Dirac operator

D't =Dt ®4 Idcs ®4 Ide: = 'DI Qa4 Idc2

with coefficients in C2 @ C? = C* admits again an APS boundary condition IT’
which is gauge invariant such that

ny —n_ = indexD'* v = deg(h® g)
= deghg =degh+degg=k—-k=0.

To get global (strong) chiral symmetry one can also apply a less trivial mirror
process:

Alternative 4.2 Instead of twisting the global Dirac operator D} over the full
4-ball V it suffices to twist the transversal (tangential) Dirac operator B, with a
connection of opposite degree over the 3-sphere. We get a new operator B;. Then we
apply the APS spectral projection IT/, corresponding to the twisted operator B} to
the original operator ’Dj. It follows that IT} is an admissible boundary value problem

' These calculations will be presented separately.
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for ’Dj. It belongs to the same Grassmannian as the standard APS projection I,
and all the nice properties (a)-(c) are guaranteed, but II} belongs to a different
connected component. In fact, the index jumps by the winding number yielding
global (strong) chiral symmetry.

To see this we recall from equation (20) the formula

My = (1d ® h)(IT» (§) ® 1d)(Id @ h™Y) (30)

where II>(#) denotes the APS spectral projection belonging to D¥. We recall

mdex’DI“-I = ny(APS) — n_(APS) = degh. Here one can prove that II; be-

longs to the same Grassmannian as M5 (P) (more precisely as I (@) ® Id), but with

the virtual codimension i(Il;, 1> (#)) = deg h. '
Then we go one tensoring further, namely from B} to

By =(1d®g)(By ®Id)(Id®¢™")

with deg g = —deg h. We generalize formula (30) and get a similar formula express-
ing IT},, the APS projection belonging to the operator B}, in terms of [T, and a new
jump formula for the virtual index: : '

i(Th, ) = i(Id@ ¢)(Tx @ Id)(Id ® g™'), (TTx @ Id))
index ((Id -(Meold)eld® ¢)(ITy @ Id)(Id® 9—1) o(Ilx ® Id))
= degy, '

hence

index D1, = i(lly (Ba), P4 (D)) +i(Ily (B4), (DY)
= degh +degg=0.

Note: An attractive feature of Alternative 4.2 is that in fact the (non-free) operator
D4 is not changed; only the boundary condition is changed. ‘

Alternative 4.3 One more alternative is provided by a suitable spectral cut (weigh-
ted spectral projection), see above Example 2.3c and, more generally for the problem
of uniform choice of the spéctral cut, Melrose and Piazza [16].

5. Some Remarks on the Calderén Projector

We begin with the construction of the Calderén projection. Let M be a compact
smooth oriented Riemannian manifold with boundary like in Section 1. Let M =
M Uy (- M) denote the double of M and §* = S* Ux S~ the corresponding spinor
bundle over M. We denote by Dt the invertible double of the operator D+ on M.
This is an invertible Dirac operator on M extending D*. The invertibility means
that there exists an elliptic pseudo-differential operator G of order —1, such that

D*G =1d and ¢D* =1d
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For any f € C®(Y;S*|y) we denote by § ® f the distribution:
6@ fish:= [ (Finledy  for s € C=(B: 5.
Y .

In fact, the map f — §Qf is the adjoint map to the map v . Given f € C®(Y;S*|y)
we denote by F(f) the distribution over M defined as

) () =G(6 & TS).

Now we can give the formula for the Calderén projection:
P4 (D¥)f = lim F(f)luxy = 0F(f).

Though this formula is abstract one can see that basically it depends only on the
Green’s function of the operator D¥. The definition extends to f € L*(Y;S*|y)
by continuity defining a pseudo-differential operator and yielding the Cauchy data
space H (D) for the range of P, (D*), and it turns out that L2(Y;S*|y) splits
into the direct sum

LY(Y;S*ly) = H4 (DY) @ N(H+(D7)),

where N denotes Clifford multiplication by the inward unit tangent vector (as above),
D~ = (D*)*, and N(H+(D™)) = #_ (D), the outer or right Cauchy data space of
the invertible double D*.

Next we want to explain the relation of the Calderén projection to the spectral
projection of the tangential operator.

Proposition 5.1 Let D} denote the Euclidean Dirac operator over the 4-ball twisted
by a connection A which is pure gauge at the boundary with degh different than 0.
Then its Calderén projection ’F’,,.(ED and the spectral projection Il50(@n) of the cor-
responding tangential (‘spherical’) Dirac operator @y, belong to different components
of the Grassmannian.

Proof Let ' ® Idc: denote the untwisted operator. The operator m = Pt Qa
Idc: has the same principal symbol, hence tm + (1 = t)(P* ® Idc2) is a path of
Dirac operators. It follows from the construction of the Calderén projection that it
changes in a continuous way (see Nicolaescu [19] for details). Therefore P4 () and
P, (Pt ® Idc:) belong to the same connected component of the Grassmannian.
The index of (P* ® Idc2)n,, is equal to 0 (the standard connection has degree
0). This index is equal to i(IIso(@ ® Id), P+ (P* ® Idc:)), hence those projections
are in the same connected component of the Grassmannian. On the other hand:

deg h = i(Tl5o(@®4 Id), P+ (P})) # 0,

and we see that the spectral projection and the Calderén projection of the twisted
operator belong to different connected components of the Grassmannian. 8]
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6. Appendix. Adiabatic Limit of the Cauchy Data Space

We showed that usually the Calderdn projection and the Atiyah-Patodi-Singer con-
dition (the spectral projection) belong to different connected components of the
Grassmannian. There is, however, a more precise description of the difference be-
tween those two boundary conditions. We give a brief review of some results of
the beautiful work of Liviu Nicolaescu (18], [19] which are valid in great general-
ity. For explicit calculations characterizing the Cauchy data space Hy (") of the
Euclidean, untwisted Dirac operator on the 4-ball in terms of the eigenfunctions of
the tangential (‘spherical’) Dirac operator on the 3-sphere see Sudbery, [27], and
Sommen, {26]. '

We have to point out that in his work Nicolaescu considered the case of an odd-
dimensional manifold with boundary, but the result holds also in the case of the
total Dirac operator D on an even-dimensional manifold with boundary.

For real, positive R we define the manifold Mg as

Mg = ([-R,0]x Y)U M.

The operator D extends to Mp in a natural way. We study the Calderdn projection .
PR(D) and the Cauchy data space HF (D) of the operator D on Mg . We introduce
the notion of the resonance set for the operator D on Mp:

Nr(D) := {t | He:(p) N HE(D) = {0}}.

Here H<:(§) denotes the subspace of LZ(M;S) spanned by eigensections of @ cor-
responding to eigenvalues smaller than ¢. Nicolaescu proved that there exists a real ~
number E(D) := sup{Nr(D)} < 0. One of the main technical results of his work is "
the following theorem: ‘

Theorem 6.1 There erists a positive number a and a Lagrangian subspace L of
Hi_s,q)(@) such that:

lim (D) = Hs.(3) & L. (31)

R—=oo

It was pointed out by Nicolaescu that the convergence in the formula (31) is not
uniform. There is a more precise result in the socalled non-resonance case.

Definition 6.2 The operator D is called non-resonant, if E(D) = {0}.
In this case the convergence is uniform and we have the following result:

Theorem 6.3
lim HR(D) = Hyo(f) @ L7,

Ro oo

where £? denotes the space of the limiting values of socalled extended LZ-solutions
of the operator D.

Now we can reprove the result of the previous section:
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Corollary 6.4 The Euclidean Dirac operator [D4 on the {-ball V coupled to any
connection A which is pure gauge at the boundary is a resonant operator.

Proof Assume that the operator J)4 is non-resonant. We know that in our case
the tangential operator is invertible, and therefore
ki R =H
| A HI(DL) ?0(%)’ ) |
which means that the Calderén projection P (%) and the spectral projection II (#x)

onto Hso(Pr) belong to the same connected component of the Grassmannian and
hence by [6], Theorem 20.8 index(ﬂ)j)n = 0, but we know that it is equal to
>

deg h # 0. o

7. Addendum. Elementary Proof of the Ninomiya/Tan Result (sketch,
unfinished)

We offer a second proof of the Ninomiya/Tan result (Proposition 3.5) based on results
from [6], where the authors have shown that the index of any elliptic boundary
problem for operators of Dirac type is equal to the index of a suitable Toeplitz
operator which lives on the boundary (see [6], Theorem 20.1). In fact, instead
of applying the Atiyah-Patodi-Singer Index Theorem we apply the general index
formula for global elliptic boundary problems of Proposition 1.4 yielding

index (le)n> =i(Tl5, P4) = deg(h).

To derive the right equality we recall from (30) the explicit description of the Atiyah-
Patodi-Singer projection of the tangential Dirac operator @ for the twisted Dirac
operator P4 coupled to a vector potential A € Conng(V x C?)

Iy (Ph) = (Id ® A)(T»(P) @ d)(ld @ h~1). (32)

Then the virtual codimension can be written as the index of an elliptic pseudo-
differential operator over the closed manifold Y and the Ninomiya/Tan formula
follows from the (classical) Atiyah-Singer Index Theorem.

More precisely,

index (1)) i(IT (9), P4 (PR)) = i(TT5 (§ ®n 1), P+ (PB4 Id))

= (I (# @4 Id), P+ (P ®¢ 1d)) = i(IT5 (§ ®4 1d), nP+ (D))
i(IT5 (P ®n 1d), T (§ ®4 1d)) +i(1T (§ ®q 1d), nP+ (D))
= i(I15 (@ ®x 1d), [T, (§ ®4 Id)) + ni(IL5 (F), P+ (D))

Note that P (P ®q1d) = Pr(P) ® Idce = nP.(P) and n = 2 in our application.
The third equality follows from the continuity of taking the Calderén projector:
since P®4 Id and P®4 Id = np are connected by a smooth path, the Calderén
projectors P4 (P®4 Id) and P4 (P®, Id) belong to the same connected component
of the Grassmannian and the virtual codimensions coincide.

o5 (Bn)
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Now we determine the last 'sum in the preceding array of equations. The left
term does not provide any problems:

i(I1> (P @4 1d), > (P @ 1d)) = i((ld @ h)T> (@4 1d)(Id @ h™Y), > (# ® 1))
degh

by elementary index theory.

The vanishing of i(IT5 (), P4 (D)) is trivial when one uses Kori’s result (see Re-
mark 3.4a). For general metrics it follows when one shows that ) on the ball is
non-resonant (must be worked out).
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