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ABSTRACT. We give a functional analytical definition of the Maslov index for continuous
paths in the Fredholm-Lagrangian Grassmannian without any assumptions at the endpoints
and crossings. Our definition naturally appears when studying families of Dirac operators
on a closed manifold partitioned by a hypersurface and the families of their Cauchy data
spaces. We also show the relation between our definition and the definition given by J.
Robbin and D. Salamon. We show by purely geometrical and functional analytical means
that the abstract Cauchy data spaces of a closed symmetric operator are closed and
Lagrangian and depend continuously on the operator. We define the spectral flow for
continuous paths of self-adjoint unbounded Fredholm operators and prove our main
theorem: its coincidence with the Maslov index of the corresponding family of abstract
Cauchy data spaces. '
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INTRODUCTION

In this paper we give a purely functional analytical proof of how the
spectral flow of a continuous curve of self-adjoint (unbounded) Fredholm
operators coincides with the Maslov index of the corresponding curve of
abstract Cauchy data. This is one instance of a widely exploited procedure
in differential geometry and mathematical physics, namely of identifying
two quantities as being the same invariants, although they are defined in a
completely different way. ‘

We have taken as model the coincidence of the (analytical) Fredholm in-
dex of an elliptic operator on a closed manifold, solely defined in terms of
the proper operator, with its topological index, solely defined in terms of
the principal symbol. But instead of the Fredholm index, we consider the
spectral flow of a family of Dirac operators over a closed manifold, and in-
stead of the topological index, we consider the Maslov index. It is obtained
by partitioning the manifold into two submanifolds with a common bound-
ary hypersurface ¥ and then counting the intersections of the corresponding
family of Lagrangian Fredholm pairs of Cauchy data spaces along .

This type of phenomena was first observed by Floer who examined in
[10] a concrete and interesting example arising from Lagrangian intersec-
tion. Then Yoshida, [31] established a formula for the coincidence of the
spectral flow with the Maslov index of a family of Dirac operators on a
3-dimensional closed manifold and applied it to the study of 3-dimensional
manifold topology. More recently Nicolaescu, [22], [23], [25] announced a
generalization of the Spectral Flow Formula (i.e. spectral flow = Maslov
index) to higher dimensions for families of Dirac operators under certain
assumptions and derived so-called splitting formulas for these quantities.
Now there are many papers discussing this kind of topic, see e.g. Bunke {7],
Furutani and Otsuki, [26], [11], Kirk and Klassen, [16], [17], [18], [19].

The purpose of this paper is to contribute to the understanding. of the
functional analytical aspect of cutting a manifold by a hypersurface and to
give an elementary, purely functional analytical framework for the Spectral
Flow Formula. To us, the functional analytical meaning of the geometric sit-
uation is to attain a closed symmetric operator with suitable properties from
a self-adjoint operator by the splitting process; i.e. an inverse procedure of
the classical von Neumann approach of seeking self-adjoint extensions. One
of our aims of ignoring all features solely connected with the geometric for-
mulation and keeping the arguments on the functional analytical level is to
select only those assumptions which are essential for proving the Spectral
Flow Formula. '

Our functional analytical approach requires a new definition of the Maslov
index. Ever since the pioneering work by Maslov and Arnold, (3], Leray, {20],
et al. and for the infinite-dimensional case by Swanson, [30] and Nicolaescu,
[22], [23], the Maslov index of cycles has been well studied. Recently Robbin
and Salamon, [29] (see also Cappell, Lee, and Miller, [8]) have achieved a
generalization for paths by deforming a continuous path into a smooth curve
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with only regular crossings with the Maslov cycle. We give a new definition
not only for the finite-dimensional case but also for the infinite-dimensional
case, which i1s meaningful for any continuous path without requiring any
deformation and without any assumptions at the endpoints and crossings.
Our definition was inspired by a recent reformulation of the spectral
flow in Phillips, [28] and is, in particular, based on the early study of the
Fredholm-Lagrangian Grassmannian in Swanson, [30]. For cycles, our def-
inition gives the usual Maslov index. For our definition, the additivity of
the Maslov index under catenation follows immediately; this-is the most
important property for proving our Spectral Flow Formula (Theorem 5.1).
As mentioned already, special forms of the Spectral Flow Formula were
obtained before, but in a way which
- requires differentiable curves of symmetric operators and Lagrangian
spaces; invertibility at the endpoints; and regular crossings for the original
curve, whereas our approach needs no assumptions other than continuity
of the original curve. We simply exploit the differentiability and regular
properties of the curve pieces linked up in a two-parameter construction.
- exploits special properties of Dirac operators on odd-dimensional mani-
folds, partly under strong assumptions about the metrics of the underlying
manifold and bundles close to the boundary (‘cylindrical ends’), whereas we
keep the calculations on the Hilbert space level and only assume symmetry
of the operator A; the existence of an extension with compact resolvent; and
the non-existence of inner solutions, i.e. properties which are automatically
fulfilled for all Dirac operators and operators of Dirac type.
- reduces the calculations to the case of one-dimensional intersections of
Lagrangian subspaces which are trivial in symplectic algebra (there are
no problems with sign changes) in return for a deformation of the curve,
whereas we embed the original curve in a simple two-parameter family and
then make the calculations for arbitrary finite- (not necessarily one-) di-
mensional intersections.
- requires calculation of the spectral flow and the Maslov index for the whole
unit interval in order to prove the coincidence, whereas for our approach it
suffices to prove the identity in arbitrarily small intervals, but for all kinds
of situations at the endpoints, and then to apply a catenation argument.
The essence of the present approach is the following: To avoid the deli-
cacies of the symplectic reduction to normal crossings and one-dimensional
intersections, we concentrate on small intervals of the parameter space and
small intervals of the spectrum.

We proceed as follows:

In Section 1 we explain all the technical notions of our use of the sym-
plectic functional analysis. They are not new except for the definition of
the Maslov index itself.

In Section 2 we review the definition by Robbin and Salamon and describe
the relation between their definition and ours.
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In Section 3 we give an example inspired by the Krein-Visik-Birman the-
ory of self-adjoint extensions. We equip the space of abstract boundary
values with a symplectic form and show that the (abstract) Cauchy data
spaces are Lagrangians and vary continuously for symmetric, closed oper-
ators which have a self-adjoint Fredholm extension and no inner solutions.
The example provides a general framework for dealing with families of self-
adjoint elliptic operators on closed partitioned manifolds. The example also
illustrates the need of establishing a purely functional analytical definition
of the Maslov index for infinite-dimensional settings.

In Section 4 we review the definition of the spectral flow of a continuous
family of bounded self-adjoint Fredholm operators by Phillips and adapt it
to continuous families of unbounded Fredholm operators. To that purpose
we discuss two different ways of assigning a continuous family of bounded .
Fredholm operators to the original family and show that they yield the same
spectral flow.

In Section 5 we prove our main theorem, the coincidence of the spectral
flow with the Maslov index of the corresponding family of (abstract) Cauchy
data. In the proof we make use of both definitions of the Maslov index, ours
and that of Robbin and Salamon.

In a subsequent paper we shall work out the application of our main
theorem to the concrete geometrical situation of a partitioned manifold and
the splitting formulas of spectral invariants.

We acknowledge the help we received from R. Nest for proving Proposition
4.4 and stimulating discussions with B. Fuglede, G. Grubb, B. @rsted, N.
Otsuki, and K.P. Wojciechowski.

1. THE GRASSMANNIAN OF LAGRANGIAN FREDHOLM PAIRS

In this section, we develop the real and complex functional analysis of
infinite-dimensional Lagrangians and obtain a well-defined complex sym-
metric generator Wj. The definition might seem artificial at first, and so
the exact mathematical meaning of the operator W, will be worked out,
namely its role as a spectral counter for a straight functional analytical
definition of the Maslov index.

1.1. Symplectic Functional Analysis. The basics of finite-dimensional
symplectic linear algebra can easily be transferred to infinite dimensions.
We fix the following notation:

Let (H,(.,.),w) be a fixed symplectic, separable real Hilbert space and let
J : H — H denote the corresponding almost complex structure defined by
w(z,y) = (Jz,y) with J? = -1d, J = —J, and (Jz,Jy) = (z,y). Here J
denotes the transpose of J with regard to the (real) inner product {(.,.). Let
L = L(H) denote the set of all Lagrangian subspaces of H (i.e. A = (JA)*Y).
It is naturally identified with the space C of self-adjoint involutions of H
which anti-commute with J, the correspondence being given by

L3A—C:=2P,—-1d€C and C3C— A:={z€ H|Cz ==z},
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where P, denotes the orthogonal projection onto A. We topologize £ by
the topology of C as a subset in the space B(H) of bounded operators on
H.

Topologically the space L itself is not interesting, since it is contractible.
To get something topologically meaningful we fix one Lagranglan subspace
Ao and investigate

e the Fredholm- Lagmngzan Grassmanman of H at Ao 7
FLa, :={A €L ]| (A, Ao) Fredholm pair}

(i.e. dimA N Ao < 00 and codim A + Ao < oo, hence A + Aorclosed)
and
e the Maslov cycle

My, = FLa, \ FLY,

where F ﬁ((? denotes the subset of Lagrangians intersecting Ao trans-
versally, i.e. AN Ay = {0}.

Arnold, [3] pointed out the interesting topological and geometric prop-
erties of the Maslov cycle in finite-dimensional symplectic vector space.
These properties are widely exploited for establishing the Maslov index by
topological means, but we proceed to the relevant operator spaces in an
infinite-dimensional symplectic Hilbert space. The underlying Fredholm-
Lagrangian Grassmannian was first considered in Swanson, [30].

To express the dimension of the intersection of an arbitrary A € FL,,
with A fixed by the kernel of a suitably associated operator, we embed
our Lagrangians in the naturally associated complez Fredholm-Lagrangian
Grassmannian and apply suitable groups of unitary operators.

Using the almost complex structure J we first consider the space H as a
complez Hilbert space. We denote it by H. The complex inner product of H
is given by

(z,9)c = (z,y) - V-1w(z,y).

In the following, however, we shall stick to the inner product (.,.) of the
real Hilbert space whenever we take an orthogonal complement.

Let U(H) denote the group of all unitary operators on H and U.(H) the
subgroup which preserves the Fredholm property, i.e. the operators of Z/(H)
of the form Id + K, where K is a compact operator. Then U.(H) acts
transitively on FLp, in a natural way. Let

p: UH) — FL,,
U = UAg)

denote the mapping defined by this action. It is the projection of the princi-
pal fibre bundle ¢, (H) onto its base space F L,, (see Swanson, [30], Lemma
3). This p-correspondence between unitary operators and Fredholm La-
grangians ensures that any curve A(t) can be lifted to a curve U;. But this
is not very suitable for defining the Maslov index, since the representation is
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not unique and, as a consequence, the spectrum of U; contains redundant in-
formation on the intersection behaviour of the curve with the Maslov cycle.
We show how to get around that problem by introducing a new conjugate
T, and then forming the operator U, TU,.

Since H can be considered the complexification Ao @ C = Ao+ JAog = H
of Ao, we attain a complez conjugation by

z=zQl+y®vV-1 —» z®@1-y®v/-1 =%

| |
z+Jy z—Jy

where z,y € Ag. Correspondingly, we denote by A and TA the bounded
operators on H given by A(z) := A(Z) resp. TA := A* for A € B(H). Notice
that in difference to the real transpose *A, the new conjugate 7A is taken in
the category of complex operators and with respect to the fixed A,.

We must distinguish the complezification HQC from H. The space HQC
splits into two subspaces H ® C = E_ @ E, where E. are the eigenspaces
of J ® Id for the eigenvalues £1/—1. We define the set LC of complez
Lagrangian subspaces of H @ C by

L+(J®I)L=H®C and (L,(J®Id)L)C =0,

where (-,-)€ denotes the inner product in H ® C, and obtain a natural
embedding of £ in L€ given by

L3A—1(A):=ARCeLE.

On LC acts the group G of unitary operators which commute with J®1d or,
equivalently, keep E. invariant, so that G is isomorphic to U(E-) x U(E,).
Correspondingly, the subgroup G. of G, consisting of operators of the form
Id + K with K compact operator on H ® C, splits into

G 2 U(E-) x Us(Ey).

It acts transitively on the complez Fredholm-Lagrangian Grassmannian
FLS oc which consists of all L € LE forming a Fredholm pair with A, ® C.
Let -

pC : gc —_— fﬂ[c\:o ®C
g — g(A; ®C)

denote the map defined by this action. We obtain a commutative diagram

UH) — G

l’ lpc

FLp, — FLS oc
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where 7 denotes the complexification U — U ® Id = (g 3 . Here we

identify U.(H) with U.(E1) by the (complex and anti-linear) isomorphisms

H = Ey
Z

2®1FJz0v —1
- #Cﬁ ,

“so that U operates on E_-and U on E, in the preceding matrix.-
- To get an isomorphism between U (H) and FL§ g¢, we use instead of 7
“the mapping - :

: UH) — Gg.
Id 0
U — <0 U) ,

where Id operates on E_ and U is considered an operator Ey — E, . Splitting

- {(3 10 D16 D).

we see that the range of ® and the second factor of G, intersect only in the

identity and that the right inverse of ® is given by (g 3) — VU1, where

U-! is considered an operator from E; to E, by successively identifying
E._ = HC = E+.
The preceding facts prove

Proposition 1.1. For any real symplectic, separable Hilbert space H with
fized Lagrangian Ao, we have a homeomorphism

pC 0 ® 1 U(H) =5 FLS oc -

Note that the inverse 8 : FL§ gc — U.(H) is given on the range of 7 by

A®C — UT ' = UTU, where U € U.(H) is chosen to express A in the
form U(Ag). That permits us to introduce our key operator for the direct
functional analytical definition of the Maslov index:

Definition 1.2. For any A € FL,, we define the complez symmetric gen-
erator of A (with regard to Ag) by

Wa = 8(AeC) My ¢ 1 (hy.

Note . As emphasized before, the operator U is not invariantly defined by
A, but Wy = UU is. This was already found by Leray, [20], Lemma 2.1, by
direct calculation in the real Grassmannian. In our context, the invariance of
W is just a geometric property of the complez Grassmannian, namely that
the principal fibre bundle given by the action of the group G. on F ‘Cg,@c
has a global section provided by 3. Moreover, the set of all such Wy is
exactly the subset of all W € U (H) with W = TW.
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Indeed, the operator Wy provides a basic counting device for defining the
Maslov index, since we have also in the infinite-dimensional case

kerWa4+Id 2 ANA+J(ANAY) Z(ANA)RC CA®CH,

as noticed before in Arnold, [3], and Leray, [20] in the finite-dimensional
case. We emphasize:

Lemma 1.3. For any A € FL,, we have
dimg (A N Ap) = dimg ker(W, + 1d).

1.2. A Proper Functional Analytical Definition of the Maslov In-
dex for Arbitrary Paths. Now let {A(¢)}:er,I = [0,1] be a continuous
path in FLs,. Then the family {Wj () }eer of unitary operators on H is also
a continuous family in the operator norm. To define the Maslov index we
now adapt an idea from Phillips, [28]. He applied it for defining the spec-
tral flow of a continuous path of self-adjoint, bounded Fredholm operators
directly without deforming the path in a ‘general’ position, i.e. without
demanding the operators at the endpoints to be invertible but admitting
singular operators, and without demanding strictly increasing or strictly
decreasing movement of the eigenvalues when passing zero but admitting
arbitrary movements for varying ¢.

Let an operator family be given, which is parametrized by the unit inter-
val [0,1], and assume that we want to count the net number of eigenvalues,
counted with multiplicities, which pass through a fixed gauge in the posi-
tive direction. Phillips’ spectral oscillations (entering into the definition of
the spectral flow) are on the real line around zero; ours (entering into the
definition of the Maslov index) on the unit circle around e'*. If one could
hedge the oscillations into an interval [~a, a] (or an arc €{"™*%)) so that no
eigenvalues could leak through the boundary +a when the parameter runs
from 0 to 1, then a reasonable definition of the number of crossings would be
the difference between the number of eigenvalues, counted with their mul-
tiplicities, lying between 0 and e at the right end of the interval, minus the
corresponding number of eigenvalues between 0 and a at the left end of the
interval. That definition does not require any assumptions about regularity
at the ends of the interval or of the crossings, and hence no deformations.

In general, such hedgings will not be possible, since ever new eigenvalues
will cross in or leak out no matter how large or small a otherwise is chosen.
But Phillips observed that the strategy works locally and can be patched
together in the following way (adapted to our situation): We choose a par-
tition {0 = to < t; < --- < ty = 1} of the interval and positive numbers
O0<egj<m, 3=1,...,N such that

(11) ker(WA(t) - Ci(risj)) = {0}

for t;., <t < t; (see Figure 1). Here we use the fact that Wy — e is
a Fredholm operator (since Wy(; is unitary with eigenvalues on the unit
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specWy(y

| 1 .
L1 t i

FIGURE 1. Horizontal and vertical spacing of the spectrum
of the complex symmetric generator Wy,

circle and Wy — Id is compact with discrete eigenvalues and the only
accumulation point 0). Moreover, we use the continuity of the eigenvalues
so that one ¢; satisfying (1.1) at a point ¢ will also satisfy the equation
in close neighbouring points and thus lead to the claimed finite interval
[ti1,ti]-

We can now define the Maslov index of a continuous path as the inter-
section number with the Maslov cycle M,, in the following way:

Definition 1.4. For any arbitrary continuous path A = {A(t)}:er in the
Fredholm-Lagrangian Grassmannian F Ly, of a real symplectic Hilbert space
H at a fixed Lagrangian Ao, we define the Maslov index by

p(A) = p(A; Ao) - ZI" tj,€;) — k(tj-1,¢€;)

with
k(t,ej) := Z dimker(Wy(y — e+ fort; , <t <,
0<8<s,
where the horizontal and vertical spacing (to, - -.,tn), (€1,-..,EN) Is chosen
as in (1.1).

By its very construction, our definition of the Maslov index does not
depend on the choice of the horizontal or vertical spacing. To see this, it
does not suffice to point to the continuity of the eigenvalues alone. We must
also explain the role of € by repeating the point of Phillips’ argument: the
function of ¢; chosen as in (1.1) is to lock the elgenva]ues for t € [tj—1,¢;] in
the interval [—¢,¢]. Choosing any other such ¢’ will also lock the eigenvalues
between ¢ and ¢, see Figure 2.
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’
- £ —_ — e e e — —
£ p— —

Theorem 1.5.

p(A; * Az)

(Ar % Aa)(t) o= {

(IIT) The Maslov index is natural

HUA; TAo) = u(

onek>0and allt € 1.

|
b

FIGURE 2. The locking of the eigenvalues between ¢ and ¢’

All the ‘axioms’ for the Maslov index derived in Robbin and Salamon,
[29], Theorem 2.3 (and given in similar form in Cappell, Lee, and Miller, [8])
follow at once from the construction of our Maslov index. We emphasize the
following properties (bypassing the ‘localization’ and ‘product’ properties
which go without saying for our functional analytical definition):

(I) The Maslov indez is well defined for homotopy classes of paths with
fized endpoints and distinguishes the homotopy classes. In particular,
the Maslov indez is invariant under re-parametrization of paths.

(II) The Maslov indez is additive under catenation, i.e.

.

= p(Ar) + p(A2),

where {A(t)},{A2(t)} are continuous paths with A,(1) = A»(0) and

A1(2t) 0<t<3;
Aa(2t = 1) 3<t<l.

under the action of the group Sp(H) of

symplectic automorphisms of H :

A; Ao) fOT A € fﬁ,\o .

(IV) The Maslov indez vanishes for paths which stay in one stratum fﬁf\?
of the stratified space FLa, = U, FLEY)  ice. if dimA(t)NAg = k for
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To define the Maslov index, we embedded the real Fredholm Grass-
~ mannian FL,, in the complex Grassmannian FLS ¢ with the inclusion
given by complexification. Clearly, there are many more Lagrangian curves

~in FLE gc than those coming from FL,,. Also the complez Maslov cycle
defined by )

Mugec = {L € FL gc | LN (Ao ® C) # {0}}

is substantially larger than the real Maslov cycle as defined before. Gen-
_ eralizing Lemma 1.3 we can characterize the complex Maslov cycle by the
property that for all its L, the operator B(L) has eigenvalue —1. This leads
to a genuinely complex version of Definition 1.4:

Definition 1.6. For any continuous family {L(t)} € FLS o we define the
- complez Maslov index by

/‘C({L(t)}) = Z k(tj,€5) — k(tj-1,€5) s

where we replace the operator Wy ;) by the operator S(L(t)) in the definition
of the multiplicities k(¢.,¢.).

Notice that Theorem 1.5 remains valid in the complex case. Furthermore,
we see at once that u€ is the intersection number of the family L(¢) with
the complex Maslov cycle, if {L(t)} is in ‘general position’. It is not difficult
to derive the following formula:

Proposition 1.7. Let {A(t)} € FLy, and {L(t)} € FLS oc be two con-
tinuous families which have the same endpoints. They are homotopic in

FLS oc, if and only if

p({A®}) = kC{LH)D).

Remark 1.8. For loops, i.e. for A(0) = A(1), and for finite-dimensional
H, we notice that p({A(¢)}) is the winding number of the closed curve
{det Wa(s)}ses. This is the original definition of the Maslov index as ex-
plained in Arnold, [3]. In a trivial way it can be transferred to infinite-
dimensional inductive limits and was then generalized by Swanson, [30] to
cycles in the full Fredholm-Lagrangian Grassmannian exploiting a homo-
topy argument by Palais, [27]. Similarly, we get for genuinely complex La-
grangian loops that u®({L(#)}) is the winding number of {det B(L(%))}:est-

2. THE RELATION BETWEEN THE DIFFERENTIAL AND FUNCTIONAL
ANALYTICAL DEFINITION OF THE MASLOV INDEX

In this section we first recall the definition of the Maslov index for paths
given in Robbin and Salamon, [29]; then we show the relation with our
definition given in the preceding section.
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2.1. Review of the Differential Definition. Here we assume that the
symplectic vector space H is finite-dimensional. Notice though, that the
definition of the Maslov index given by Robbin and Salamon can be ex-
tended immediately to the infinite-dimensional case following Swanson [30],
Theorem 1.2, where the differentiable structure for 7L, was achieved (see
also Nicolaescu [23]). In our proof of the Spectral Flow Formula (in Sec-
tion 5) we shall apply their definition in the infinite-dimensional form to a
trivial analytic family. Restricting ourselves to the finite-dimensional case
makes the presentation more easy, since we can then identify FL,, with
L and U.(H) with U(H). We still fix one Lagrangian subspace Ag. Then,
roughly speaking, Robbin and Salamon’s differential approach for defining
the Maslov index is based on three observations:
(i) Tangent vectors (A, A) € Tp(L) can be regarded as symmetric bilinear -
forms @, 4) on A in a natural way. :
(ii) Any continuous path of Lagrangian subspaces is homotopic to a C?
(or smooth) path {A(¢)}ier which has only regular crossings with the

Maslov cycle My,. Here regular crossing at ¢t € I means that the
symmetric bilinear form

Qi) la®nte 1 A®) DA x A(t)NAg — R

is non-singular.

(iii) Since the regular crossings are isolated, adding the signatures and pos-
sible corrections at the ends of the path defines a number, the Robbin-
Salamon (differential) Maslov index, which does not depend on the
chosen homotopic deformation.

To explain observation (i), we set for a (A, A) € Ta(£) and z,y € A:

d
(21) Q(A,A)(x’ y) = Ew(z) Bsy)|s=0 ’

where the family {B, : A = JA},j«1 of linear maps is chosen in such a way
that its graph A(s) := {z + B,z | ¢ € A} becomes a C'—-curve through A
at s = 0 with £A(s)}s=0 = A. ,

We shall not explain the deformation process underlying observation (ii),
but now assume that {A;}s¢r is a C'—curve with only regular crossings with
the Maslov cycle M,,. We recall from [29] Robbin and Salamon’s definition
of the (differential) Maslov index by

1
S .
(2.2) ﬂR (A; Ao) := 551811 Q(A(o),A(o))lA(O)nAo

) 1.
+ D sign Qu.aeyiamna + 25180 Q(a) A1)IA@)Ao
0<t<1
The independence of the various choices claimed in observation (iii) fol-
lows immediately from the relation between Robbin and Salamon’s differen-
tial and our functional analytical definition of the Maslov index for smooth
paths.
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2.2. The Relation between the Differential and Functional Ana-
lytical Definition for Smooth Paths. Let us assume that the curve
{A(#)}ter is of C?—class and has only regular crossings with the Maslov
cycle My,. We show that our functional analytical definition of the Maslov
index coincides with Robbin and Salamon’s differential definition except for
the corrections at the endpoints of the path, which by Robbin and Sala-
mon sometimes cause the Maslov index to become a half-integer whereas,

" our definitionalways provides an’integer (as*wanted for-Z-valued homotopy

invariants). More precisely we have:

Theorem 2.1. Under the preceding conditions of C*— differentiability and
regular crossings we have

kimo  kie
_ RS _ k= t=1
(2.3) e e

where k(t) denotes the crossing dimension dim A(¢) N Ao.

Proof. First we show that our definition and that of Robbin and Salamon
coincide in suitable small intervals by relating the eigenvalues of our sym-
metric unitary generator Wy(;) on both sides of e'™ with the positive and
negative eigenvalues of the quadratic form @ 5 aqy)la@na, - Later we shall
add over all small intervals and compare the eigenvalues at the endpoints
of the interval I.

1. step: We consider a small neighbourhood of a point £, 0 < ¢p < 1, where
A(to)NAg # {0}. Let U; € U(H) be a curve of unitary transformations such
that Uy(JAo) = A(t) for |t —to] <« 1. If we write U, = X; +/—1Y}, we can
express the quadratic form on the variable space A(t) of (2.1) as a quadratic
form on the fixed space Ag by substituting z = U,y Ju and y = Uy, Jv with
u,v € Ag. As observed already by Robbin and Salamon, the coordinate
change yields

(2.4) Q(A(to),[\(to))(UtoJu’ UpJv) = (Yto(u)ino(U» - <Xto (u), Yio(v)) -

2. step: Note that B(A(t) ® C) = U,TU, =: W, is our Wy of Definition
1.2. Writing U, = U; ¢4 and W, = W, e*> with self-adjoint A, and S; and
St, = 0 yields

(2:5) QAto)htto)) (T Yoot + I Xiou, =Yiov + T Xyyv) = (ag(u),v),
where A; = a; + ib;. Also we have the unitary equivalence

(2.6) U1y Sty = 284, TU,, .

Equations (2.5) and (2.6) imply that sign Q(A(to),z\(to))lA(fo)nAo coincides with
the signatures of a,, and S;, on corresponding subspaces of Ag. The reason
that b, disappears in the signature formula is the non-uniqueness of picking
U:.

3. step: Now we relate the signature of the quadratic form at t, with the
curve of eigenvalues of W, for |t — to| € 1. We assume that

dimg (A(to) N Ag) = dimker(W;, — &™) = k > 0.
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Now we lock the eigenvalues of W, at t = t, (‘vertically’) by € > 0 such that
ker(W;, — &™) = {0} for 0 < |f| < ¢
and (‘horizontally’) by § > 0 such that ker(W; — ¢'("*¢)) remains equal {0},
hence
> dimker(W, — ™) = k
161<e
for |t — to] < 6.
Let

0<A< <A and 0>pm 2>

denote the eigenvalues of Sy,| Alto)nAo - Since the crossing is assumed to be
regular we have no vanishing eigenvalues, hence p+ ¢ = k. By the assump-
tion that A(t) is of C®—class, the transformation W; has (for ¢ sufficiently
close to 1o, say in the interval [to — 8,t0 + 6]) eigenvalues {A,(¢)} and {u;(¢)}
which bifurcate from —1 at ¢, in the following form

/\Z(t) — ei(1r+)\zt+0(t2)) , £=1,...
i) = ez’(1r+u,'t+0(12)) j=1,...q.

It follows that the point to, at which dimgr(A(to) N Ao) > 0, is isolated and
that

Z dimker(W; — ™) = p and Z d:mker(W ey = 4

0<8<e —e<6<0
for tg <t < to+ 4 (and vice versa for ¢ — § < ¢ < o), hence

(2.7)  p({A(t) }o—s<t<tots; No) = k(to+ 6,¢) —k(to — 6,6) =p—¢q
= sign Q(A(to),A(to))|A(to)nAo = #RS({A(t)}to~6st5to+6; Ao).

4. step: We still have to compare the counting at the endpoints if the
crossings are not transversal. At the left endpoint ¢, = 0 we have k(0 +
d,e) = p and k(0,e) = dimA(0) N Ay = k = p + ¢; hence our definition
of the Maslov index contributes with p — (p + q) = —¢q, whereas Robbin
and Salamon’s definition contributes with B = % - q. Similarly, at the
right endpoint to = 1 we get k(1, e) k(1 — 5’ 'Y=k — ¢ = p/, whereas
Robbin and Salamon get 1’—"- = p'—£. That explains the error terms in the
formula (2.3) and we see our assertlon by the additivity under catenation

of paths.
O

3. AN EXAMPLE: THE FREDHOLM LAGRANGIAN OF ABSTRACT
CAuUcHY DATA SPACES

In this section we give an example of a continuous curve of Fredholm pairs
of Lagrangians. We introduce the space B of abstract boundary values of
a fixed closed, symmetric operator A in a real Hilbert space and endow B
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with a symplectic structure. We show that the naturally defined Cauchy
data space is closed and in fact Lagrangian; that it depends continuously on
A; and that it forms a Fredholm pair with a fixed Lagrangian. We obtain
the results under only two assumptions: that there exists a self-adjoint
extension with compact resolvent and that there are no inner solutions.

Our presentation is inspired by the Krein-Visik-Birman theory of self-
adjoint extensions for closed, symmetric semi-bounded operators developed
" in the late 40s and early 50s for characterizing the ellipticity of boundary -
- value problems for strongly elliptic differential operators. We refer to an ex-
pository article of 1980 by Alonso and Simon, [1], [2], and the detailed study
by Grubb, in [12] and a series of subsequent papers where she worked out the
theory also for general elliptic systems without semi-boundedness assump-
tion. It is worth mentioning that one of our results, namely the closedness
of the abstract Cauchy data space in the space of abstract boundary val-
ues, was already contained in the Krein-Visik-Birman theory, namely where
it showed the ‘soft extension’ to be self-adjoint. New in our presentation
is that we treat the space of abstract boundary values explicitly as factor
'space and equip it with a symplectic structure.

The usual way of introducing the Cauchy data space for a differential
operator over a compact manifold with boundary is to take the L,-closure
for traces at the boundary of sufficiently differentiable solutions. This is
theoretically not completely satisfactory. Instead, for elliptic operators one
can use delicate trace theorems and Poisson type arguments to establish the
Cauchy data space directly as a closed subspace of the L;-sections space
over the boundary, namely as the range of the Calderén projector, see e.g.
[6], Chapter 13 where all the necessary tools for such a proof are provided
and also the Lagrangian property is achieved for Dirac operators. For an
alternative, direct proof see Grubb, [13], where - equivalent to the closedness
of the Cauchy data space - the self-adjointness of the ‘soft extension’ is
established for elliptic differential operators of first order. Our argument
is more algebraic by deriving the Lagrangian property of the Cauchy data
spaces (which implies the closedness) and the continuity immediately from
the symplectic structure associated with any symmetric closed operator in
(real) Hilbert space.

3.1. The Symplectic Space of Abstract Boundary Values. We as-
sume that H is a real Hilbert space with inner product {.,.); that D,, is
a dense subspace of H; and that A is a closed symmetric operator in H
defined on D,,. Let Djs denote the domain of the adjoint operator A* of
A. We have

Dy D Dy, and A*|p, = A,

i.e. A" isa (closed) extension of A. Let D¥,; and D denote the correspond-
ing Hilbert spaces equipped with the inner product coming from the graph
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norm
g ‘ (z, y)g = <$ay> + (A*l"A*y> for z, y € Dy.

Then DY is a closed subspace of D§,. We denote by ||z|lg = 1/(z,z)g
= /(z,z) + (A*z, A*z). Set B := D%,;/DY with the canonical projection
v : D, — B and with the quotient norm

Iv(z)lle := inf |lz +allg  for 4(z) € B.

We call B the space of abstract boundary values and ~ the abstract trace
map. We have a short exact sequence of Hilbert spaces
(3.1) 0— DS DS B-—0

which splits with a right inverse j of 4. Then B:= j(B) is a closed subspace
of DY, characterized by

(3.2) B=B, DY =D%@B and DY 1B.
More precisely, we have

Lemma 3.1. (a) The realization B := §(B) of B in D%, can be determined
as

(3-3) § = {y € Dy | Ay € Dy and A*zy = -—y}.

(b) Let D C DY, be a subspace including D,,. Then D is closed in DY, if
and only if y(D) is closed in B. :

Proof. (a) Let b € B, say b= v(z) with z € D¥,. We split z = z 4 y, where
z € DY and y € D9'. Then y L DY means that (z,y) + (A*z, A*y) = 0.
By definition

(ATz, A%y) = (2, A"A™y),
hence y L DY, if and only if (z, A*A*y) = (z,—y) for all z € DY, i..

(A )Py =—-y.
(b) If D is closed, the factor space D/D¢ = (D) is a complete space, hence
it is closed in B. O

We introduce a symplectic structure on B by setting
(34) w([z], [y]) := (A"z,y) — (=, A"y)  for [z], [y] € B.

Note . To abbreviate our notation, we shall from time to time write [z] for
v(z) for denoting elements of B.

Proposition 3.2. The form w is a well-defined skew-symmetric bilinear
form on B x B with the following properties:

(1) w is bounded;

(i1) w is non-degenerate.
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Proof. (i) is proved as follows using the elementary algebraic inequality =~

VBec +VbC < b+ By/c+ C for non-negative reals:

(3.5) |w(lz], [w])] < (A", y)| + [{z, A"y}
< flA%z|| lyll + llzll 1Ayl < Vi=l? + | A*z]|2 /ly]|2 + [ A*y]|?
= |lzlig llyllg ,

where z,y'€ Dpr(= DS,). Hence

~ lw([z], Wl < lll=]llsli[v]lle-

To prove (ii) we lift w to the realization B of B in D%,. So, let & denote the
form &(z,y) := (A*z,y) — (z, A*y) restricted to B, i.e.

w(5([2]),5([v]) = w(lz], [v]) ~ for all [z],[y] € B.
Notice that

(3.6) A*B)cB and (A*)2=-Id onB, and
(3.7) w(z,y) = (A"z,y)g -
From (3.6) and (3.7) we obtain that the mapping

Tt B — B*

[z] = () :=w((z], [])
is an isomorphism of the Hilbert space B onto its dual B* = the space of
bounded linear functionals; hence (ii) is proved. O

We can characterize various types of extensions of the fixed symmetric,
closed operator A by corresponding properties of the domains and the ab-
stract boundary values:

Lemma 3.3. Let D be a subspace of Dy which contains D,,. Then the
extension Ap = A*|p

(a) is closed (as an operator in H), if and only if v(D) is closed (in B);
(b) the extension is self-adjoint, if and only if (D) is a Lagrangian subspace
of B; and

(¢) it has compact resolvent, if and only if the inclusion DY — H is compact,
where DY denotes the domain D equipped with the graph norm.

Proof. (a) is just a reformulation of Lemma 3.1b; (b) and (¢) are immediate
from the definition. O

3.2. Lagrangian Property of Cauchy Data Spaces. We define the
Cauchy data space v(S) and show that it is closed and isotropic and in
fact Lagrangian for fixed real Hilbert space H; closed, densely defined sym-
metric A with domain D,, and adjoint A* with domain D,

As first suggested by Bojarski, [5] the concept of Cauchy data spaces is a
fundamental tenet of any systematic study of splitting formulas for spectral
invariants. This motivates the following definition in our abstract setting:
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Definition 3.4. Let S := ker A* denote the solution space of A*. The space
S is closed in the graph norm in DY, and also in H. We call 4(S) the Cauchy
data space of A*.

All the arguments in this section will assume the following:

Assumption 1. There ezists a self-adjoint Fredholm extension
AD = A*|D

defined on a domain D with D,, C D C Dpy. So in particular v(D) is a
Lagrangian subspace in B.

Assuming the existence of a Fredholm extension in our abstract setting
corresponds to the ellipticity condition in the concrete setting. We shall
exploit the following list of Fredholm properties:
<1> By definition ker Ap = D NS is finite-dimensional;
<2> moreover, we have a short exact sequence

0 — DnNS=DNS™EF /(DNS) —s 0,

which yields DNS = D, NS@v(DNS);
<3> clearly v(D N'S) C v(D) N 4(S); in fact the spaces are equal since
¥(z) = v(s) for £ € D and s € S implies ¢ — s € D,,,, hence s € D;
<4> range Ap = A*(D) is closed in H and dim H/range Ap < +00, so
A*(Dp) is also closed in H;
<5> ker A= D,,NS = A*(Dpy)* (the orthogonal complement taken in H);
and
<6> ker Ap = (range Ap)* (the orthogonal complement taken in H).
Then Assumption 1 leads to the following proposition which is the main
result of this section.

Proposition 3.5. Under the preceding assumption (A closed symmetric
with fized self-adjoint Fredholm extension Ap) the Cauchy data space ¥(S) is
a closed, Lagrangian subspace of B and belongs to the Fredholm-Lagrangian
Grassmannian F Ly, at Ag := (D).

An astonishing aspect of symplectic functional analysis is that the proof
of the preceding proposition can be kept completely elementary due to the
following geometric comparison lemma, which says that any isotropic space
intersecting a Lagrangian space transversally inherits the Lagrangian prop-
erty.

Lemma 3.6. Let (V,w) be a real symplectic Hilbert space with a fized La-
grangian subspace Ao and an isotropic subspace A, i.e. A C A°. Then A is
Lagrangian (i.e. A° =A) if

AoNA= {0} and Ag+ A =V.

Proof. Let z € A, say T = Zo + 3 with zo € Ag and z; € A C A, hence
Top = £ — 21 € Ao N A, which must vanish, so £ = z; € A. This proves
A=A
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To prove the Lagrangian property of A, we take z € A° and write it as
x = 2o + Z; as before. Since A C A°, we get

To=z—21 € AoNA° = AJNA° = (Ao + A)° = V° = {0},
hence z = z; € A. : O

Proof of Proposition 3.5. Step 1: Let [z ] [y] € 4(S). Then
w(lz],[y]) = (A2 y) (z,A™y) =0,
hence (S) isotropic.
Step 2: Now we consider the sequence of continuous mappings
D%, LN range A* — range A*/range Ap ,
hence
D+S={z€Dj | Az crange Ap} = kerm o A
must be closed and we have a Hilbert space isomorphism
(3.8) DY /(D +S) = range A*/range Ap .

Moreover v(D +5) is closed in B by Lemma 3.1b and coincides with (D) +
¥(S). From the closedness of v(D) + v(S) we get

(3.9) (YD) +7(5))° = (+(D) +1(5))° = 1(D)° N %(5)".

Step 3: Since «(S) is isotropic, we have also v(S) isotropic. Recall also that
v(D) is Lagrangian. This yields

¥(D)* N7(5)" 2 7(D) N ¥(5) > +(D) N¥(S),
hence, with (3.9)
(3.10) (¥y(D) +~+(5))° D (D) N ~4(S).

Step 4: Now we exploit the Fredholm properties and get

<2>,<3>
(3.11) D,NS & y(D)N~(S) = DNSE kerAp
g (range Ap)* = H/range Ap = H/range A* @ range A*/range Ap.

<5>
Since D,, NS 2 H/range A*, this yields

(3.8)
(3.12) (D) N ~(S) = range A*/range Ap = Dp/(D +S)

= B/¥(D +5) = B/(v(D) +1(5)).
Moreover, for any closed subspace L in B we have

B/L° = B*/r,(L) = B*/rg(L) = B/L*,
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where the isomorphisms 7g, 7, : B — B* are given by 7([z])[y] := ([z], [v])e
and 7,([z])[y] := w([z], [y]), hence

(3.13) dimB /(D) + 4(S) = dim(y(D) +v(5))°.
Combined with formulas (3.10) and (3.12) this yields

(3.14) (¥(D) +%(5))° = 7(D) N 1(S) = %(D) N (S)-

Step 5: Set p:= AN ~(S). Since y is finite-dimensional, it is closed. (3.14)
yields u C p® = y(D) + ¥(S), i.e. p is isotropic. Hence, in the reduced
symplectic vector space u°/u we have

(3.15) YD)/ 0 v(S)/p={0} and ¥(D)/u+~(S)/p=u/n.

Clearly v(D)/p is Lagrangian in the factor space; hence we can apply
Lemma 3.6 and get that (S)/u is Lagrangian in p°/u, hence v(S) La-

grangian in x° and in B. ‘
From Formula (3.13) we see that 4(S) forms a Fredholm pair with (D).
a

Corollary 3.7. Let A be a Lagmngiaﬁ subspace in B. Then (A,4(S)) is a
Fredholm pair, if and only if Ay-i(5) := A*|y-1(a) 1s a (self-adjoint) Fredholm
operator. We then have

index A,-1(a) = i(A,7(S)) = dimA N ¥(S) — codim (A + v(5)) = 0.

3.3. The Continuity of the Cauchy Data Spaces. We shall investigate
the Cauchy data spaces of operator families of the form {A* + C,},c; where
A is a closed symmetric, densely defined operator in a Hilbert space H
satisfying suitable additional assumptions. We assume that {C;}.; is a
continuous family (with respect to the operator norm) of bounded self-
adjoint operators. Here the parameter ¢ runs in the standard interval I =

[0,1].

Remark 3.8. On a compact manifold with or without boundary with fixed
Riemannian metric and a fixed bundle of Clifford modules, such families
arise naturally when investigating families of operators of Dirac type distin-
guished only by the connection of the Clifford modules. The operators of
such families have the same principal symbol and are distinguished only by
their zero-order parts which are bundle homomorphisms and can be consid-
ered in particular as a continuous family of bounded operators from L, to

L,.

We define the space of abstract boundary values and the abstract trace
map v : Dy — DY ¢:/DS% = B as before. Notice that even in the family
situation, the vector spaces B and the mapping v are fixed; but given by the
graph of A*+ C;, the inner product (.,.)¢ for D, and B varies with varying
parameter ¢, hence the splitting j; : B — Dg varies and the embedding of

B as subspace j;(B) = B, in Dy; yet all norms are equivalent, uniformly
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with respect to t € [0,1], to the norm defined just by A*. In the following
we fix the inner product defined by A*.

We sharpen our previous Assumption 1 by demanding the existence of
a D with D,, C D C Dp such that Ap := A*|p has compact resolvent,
hence, in particular, the operator Ap + C; is a Fredholm operator for that
fixed D and all t € I. ,

The solution spaces S; := ker A* + C; and the corresponding Cauchy data
“spaces ¥(S;) can vary considerably. For the ease of presentation we shall fix
“the dimension of the inner solution-spaces ker A + C; = D,; NS to 0: -

Assumption 2. We shall assume the non-ezistence of inner solutions for
all operators A* + C,, i.e.

D, NS, ={0} forallte]0,1].

Note . The non-existence of inner solutions (‘unique continuation property’)
is not generally valid for elliptic differential operators but established for
Dirac operators (see e.g. [6], Chapter 8).

Theorem 3.9. Under the preceding assumptions (ezistence of a self-adjoint
extension Ap with compact resolvent and non-ezistence of inner solutions),
the spaces ¥(S¢) of Cauchy data of a continuous family {A* + C,}ser vary
continuously.

Note . As usual, we define the continuous dependence of a family of sub-
spaces of a Hilbert space on a parameter by the continuity of the corre-
sponding orthogonal projections.

Proof. To prove the continuity, we need only to consider the local situation
at t = 0. We carry out the proof in two steps. First we show that {S;}er
is a continuous family of subspaces of D]gw; then we show that v(S;) is a
continuous family in B.

Step 1: We consider the bounded operator

F: D — H®So
z = ((A*+ C;)(z), Poz) ’

where Py : H — Sp denotes the orthogonal projection of H onto the sub-
space So which is closed in D,gw and in H.

Clearly Fp is injective: Fo(z) = 0 implies z € So and z = Pyr = 0.
The operator Fj is also surjective: Since A* + Cjp has no inner solutions,
we have ker A + Cyp = D,, NSy = coker A* + Cy which shows that the
operator A* 4+ Cp is surjective. Let y € H and z € Sy and choose z
with (A* + Co)z = y. Let w = Po(z) =z € So. Then Fo(z — w) =
((A* 4+ Co)(z — w) =y, Po(z — w) = z). This proves that Fj is an isomor-
phism.

Then all operators F; are isomorphisms for 0 < ¢t « 1, since F; is a
continuous family of operators. We define

er:=F'0F,:Df = DY  fortsmall
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We see that

(3.16) ©(So) = S,

since each z € ¢4(So) implies Fy(z) = 0 + Py(2), hence (A* + Cy)z = 0; vice
versa, each z € S; can be written in the form F; ' Fy(y) with y := Py(z2).
From (3.16) we get that

{P.:= o1 Pop;! : D§, — Si}

is a continuous family of projections onto the solution spaces S;. The projec-
tions are not necessarily orthogonal, but can be orthogonalized and remain
continuous in ¢ like in [6], Lemma 12.8.
Step 2: Now we must show that {7(5;)} is a continuous family in B. This
is not proved by the formula ¥(5:) = ¥(+(So)) alone. We must modify
the endomorphism ¢; of DM in such a way that it keeps the subspace D,,
invariant.

To do that we notice that D,,+Sg is closed n Dg We define a continuous
family of mappings by

V. : D% = Dn.+S, + (Dm + So)* — ngw
z4+s + y =zt els)+y

with 1o = Id, hence %, isomorphism for ¢ < 1, and 1,( Dp.) = Dy, for such
small £. Hence we obtain a continuous family of mappings {1/)t B — B} with

@bt( (So)) = v(S:). From that we obtain a continuous family of projections
as above. 0

Remark 3.10. From the preceding arguments it follows as well that the
Cauchy data spaces form a differentiable family, if {C,} is a differentiable
family.

4. THE SPECTRAL FLOW FOR FAMILIES OF SELF-ADJOINT
(UNBOUNDED) FREDHOLM OPERATORS

In this section we deal with continuous curves of self-adjoint Fredholm
operators in a real separable Hilbert space.

First we consider the space F of bounded self-adjoint Fredholm operators.
We recall its decomposition into three connected components and define
the spectral flow for any continuous path ¢ = A, € F for t € [0,1]. The
decomposition is treated in [4] and at length (in the very similar complex
case) in [6], Chapter 16. The non-trivial component F.is a classifying
space for the functor KR~7 in the real case and for the functor K1 in the
complex case.

The original definition of the spectral flow and its generalization for
smooth families of elliptic self-adjoint operators of positive order over a
closed Riemannian manifold was worked out in [6], Chapter 17, namely by
bringing the graph of the spectrum of the family in ‘general position’ by
deformation and counting intersection numbers with y = 0. That ‘pertur-
bation’ approach is meaningful only for loops (or loop defining curves, e.g.
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operator curves with periodic spectrum or operator curves with invertible
endpoints). But still it is very useful when carrying out concrete calculations
under the assumption of smoothness and regularity of the crossings.

To get a more general theoretical picture, we follow a recent paper by
Phillips, [28] who gives a purely functional analytical definition of the spec-
tral flow for continuous curves (not necessarily loops) in F without any
‘assumptions about the zero eigenvalues and without requiring any pertur-
bation of the family. o

Then we consider continuous families of (unbounded) self-adjoint Fred-
holm operators of the form ¢t — A, := Ap + C;, where Ap is a fixed self-
adjoint operator with compact resolvent and {C;}:cs a continuous family
of bounded self-adjoint operators (here ‘continuous’ refers to the operator
norm). As explained above, such families of unbounded operators arise
naturally in two situations. Firstly, the situation occurs when one consid-
ers a Dirac operator acting on sections in a fixed Clifford module bundle
E over a closed manifold M with fixed Riemannian structure, but varying
the connection in E. Then A; has the Sobolev space H!(M; F) as domain
and is considered a densely defined, closed operator in Ly(M; E); or, more
precisely, as a bounded Fredholm operator from H!(M; E) into Lo(M; E).
Secondly, the situation occurs when one considers the Dirac operator solely
on ‘half’ the manifold, say a codimension 0 submanifold M, with bound-
ary, and imposes globally elliptic boundary conditions specifying a domain
D C Ly(My; E|pm, ) and then vary the connection.

In both cases the operator A; is transformed into a bounded self-adjoint
Fredholm operator from Ly(M; E) into Lz(M; E) (resp. from Ly(My; E|p, )
into Ly(My; E|a, )) by the transformation

(4.1) A R(A;) = A/Id+ A2 .

Here /1d + A;"_l denotes the unique positive definite square root of the
positive definite operator (Id + A?) 1.

Recall that self-adjoint operators with compact resolvent like self-adjoint
elliptic differential operators of positive order acting on sections in a vector
bundle E over a closed manifold M have a discrete spectrum {A}rez of
finite multiplicity with +o0o0 as the only accumulation points. There exists
no essential spectrum, and the eigensections span the whole L,(E). Clearly
the spectrum will be compressed to {Az/+/1 + A2} under the transforma-
tion R, but the transformation does not change the signs of corresponding
eigenvalues.

For loops (or families with periodic spectrum or with invertible ends) of
unbounded operators of the form {A, = Ap + C;}, one can then proceed
as in [6] and count the eigenvalue crossings with the line y = 0, possibly
after a small deformation making the crossings regular; or one can equiv-
alently count the eigenvalue crossings of the transformed family, possibly
also after a small deformation. Under these assumptions (smooth, periodic
spectrum or invertible operators at the endpoints, and deformation into
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regular crossings) one need not look at the operators but only at the graph
of the spectrum; and the only continuity argument required for concrete
calculations in that case is the continuous dependence of the spectrum on
deformations of the operator.

To obtain a general picture, one can drop these assumptions and define
the spectral flow of the family {A,} directly on the operator level by the
spectral flow of the transformed family. To this purpose we exploit an
argument which R. Nest showed us and outline the seldom-mentioned proof
that the transformation R of (4.1) transforms a continuous path {A; =
Ap + C:} into a continuous path {R(A,)}. _

We shall also assign another continuous curve {t — A} in F. to our
curve {A;} by piecewise patching together spectral projections derived from
{A:}. The construction depends on horizontal and vertical spacing and
other choices. We show that in our case it leads to the same spectral flow

as the curve {R(A;)}.

4.1. Phillips’ Definition for Continuous Bounded Families. Let H
be a real separable Hilbert space and let F denote the space of bounded self-
adjoint Fredholm operators from H to H. It is well known that F consists
of three connected components (in the operator norm)

. f. = f— U ﬁ-}- U f* )
namely the contractible spaces of essentially negative and essentially posi-

tive operators and the topologically non-trivial component of operators with
essential spectrum on both sides of the real line.

Definition 4.1. [J. Phillips, 1995.] For any arbitrary continuous path A :
[0,1] > t = A, € F we define the spectral flow by

sf(A) —ZktﬁeJ) k(tj-1,€;5)

with
k(t,¢e;5) Z dimker(A; — 0) for ¢t;o; <t <y,
0<b<ey
where the horizontal and vertical spacing (tg,...,tn),(€1,--.,€N) s chosen
such that
(4.2) ker(A; —¢;) = {0} and dimker(4;—0) < o0

fort;o; <t<t;and 0 < |0] <e¢;.

It is possible to choose vertical and horizontal spacing satisfying (4.2)
since the spectrum of a self-adjoint bounded Fredholm operator changes
continuously with the operator and the zero eigenvalue is discrete and of
finite multiplicity. After Definition 1.4 we already referred Phillips’ argu-
ment why the definition does not depend on the choice of the horizontal
and vertical spacing.
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We list the following properties of the spectral flow to emphasize formal
similarities with the Maslov index (see Theorem 1.5):

Theorem 4.2.

(I’) The spectral flow is well defined for homotopy classes of paths with
fized endpoints and distinguishes the homotopy classes. In particular,
it is invartant under re-parametrization of paths.

(I") The spectral flow is additive under catenation, <.e.

sf(A * B) = sf(A) + sf(B),
where { A}, {B:} are continuous paths with A; = By and

Aw  0St<d
B2t—l %(tSI

(A* B), := {

(IIT’) The spectral flow is invariant under the adjoint action of the full or-
thogonal group O(H) of H.

(IV’) The spectral flow vanishes for paths which stay in one (connected) stra-
tum

.7?#(:) ={F € .7?# | dimker F =k}, # € {—,+,*}

of the stratified space 5-:# = Uz":()]?(k), i.e. if dimker A; = k for one
k>0andadltel.

We can discuss the relations with the spectral flow sf€ of the complex
case in exactly the same way as we did in Section 1 for the Maslov index:
First we embed the space F = F(H) of Fredholm operators defined on the
real Hilbert space H in the complex Fredholm operator space F(H @ C)
with the iEclusion given by complexification. glearly, there are many more
paths in F(H ® C) than those coming from F(H).

Theorem 4.2 remains valid in the complex case. It is not difficult to derive
the following formula:

Proposition 4.3. Let {A;} € F(H) and {B,} € F(H®C) be two continu-
ous paths which have the same endpoints. They are homotopic in F(H®C),
if and only if

sf({A:}) = sf({B:})-

In spite of formal similarities between the definition of the spectral flow
and of the Maslov index, it must be noted that the spectral flow of a path
in finite dimension depends only on the eigenvalues at the endpoints and
consequently vanishes for loops (and this remains true for paths resp. loops
in the components fi), whereas the Maslov index even in finite dimension
depends on the path and not only on the endpoints: Hence the spectral
flow (counting passages through 0 on the real line) is topologically only
interesting when we have an infinite number of eigenvalues (or essential
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spectrum) on both sides of the real line. The Maslov index (counting pas-
sages through e™ on the circle) is always topologically interesting. Our
understanding of the spectral flow as a quantum type invariant is nourished
also by the observation that the spectral flow is defined directly by opera-
tors and their eigenvalues and not by ‘classical’ quantities; that it demands
genuinely infinite-dimensional function spaces; and that in spite of its co-
incidence with the Maslov index (see below Section 5), it reflects the finer
distinction between the components f_, .7"+, and F..

4.2. The Construction of a Continuous Curve of Bounded Oper-
ators by the Transformation A — A(Id + A?)~"/2. Now we consider a
path {A; = Ap + Ci}ier of (unbounded) self-adjoint  Fredholm operators
in H, where Ap is a fixed (unbounded) self-adjoint operator with compact
resolvent and {C}scs is a continuous path of bounded self-adjoint operators
on H.

To define the spectral flow of the family {A; = Ap + C; }1e1 we apply the
transformation .

R: CF — F
A =  RA)=AVdTA ',

where CF denotes the space of (not necessarily bounded) self-adjoint Fred-
holm operators. We define convergence in CF by the gap metric, i.e. the
convergence of the orthogonal projection operators onto the graphs of the
- Fredholm operators. It was shown by Cordes and Labrousse, [9], Adden-
dum, Theorem 1, that on the subset of all bounded operators, the topology,
mduced by the gap metric for closed operators, is equlvalent to that given
by the operator norm.
R Clearly R maps the connf:cted component of CF which contains F. into
F. (and the same holds for F4). From the Spectral Decomposition Theorem
and the Weierstrass Approximation Theorem it follows that the mapping R
restricted to 7. (or fi) is continuous and homotopic to the identity map of
7 (or Fy), see Atiyah and Singer [4]. However, it seems unclear whether
the mapping R is continuous on the whole space CF or on the subspace 9
of self-adjoint operators with compact resolvent.

Instead of discussing the continuity of the map R, we shall show the
continuity of the composed map

C*—)AD\-E-CHR(AD-{-C)

from B to F , Where B denotes the space of bounded self-adjoint opei‘ators
on H.

(4.3)

Proposition 4.4. Let S be a self-adjoint operator with spectral decompo-
sition S = [ MdE\ and set f.(z) := ze~(GHos(1+5) for 0 5 0. 1 Let
I' =T_UT denote the double cone around the z-axis with opening (—%, %)

!We fix the branch of log(1 + =2) for which —7 < arglog(l+z2) < =
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FIGURE 3. The integration path I' =T, UT_

turned off zero by passing inside i (see Figure 3). Then the ‘Cauchy inte-
gral’ converges and defines a bounded operator with

(9 /F L) = 8)dr = / " 1.(6)dEs = £.(5).

Proof. (By courtesy of R. Nest; see also [26] and [11].) Since the function
f. is bounded, the integral on the right side of (4.4) exists and defines a
bounded operator. From the estimate

(4.5) ful2)] ~ |—1|— as |z] = oo

it follows that also the integral on the left side of (4.4) is well defined and
defines a bounded operator. Therefore, to prove (4.4) it suffices to prove
the coincidence of the two operators on the dense subspace UnsoPn(H),
N

where Py := [_, dE;.

So.let z € H and N > 0. For R 3> N we replace the infinite integration
path T’ by the finite closed contour I'r as indicated in Figure 4. Then on
the ‘compact element’ Py(z), the operator f.(S) takes the form

(4.6) /_]: f.(6)dEs = / L / AG dAdE

=/N lim L fc(A)dx\dE /N 1. AL )d)\dE

R=vo0 271 Jp A — 8 N2mi JpA—-0
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Y

FIGURE 4. The integration path I'gr for R > N

The last equality is proved by applying the estimation (4.5). Clearly, the
last operator applied to Py(z) yields

(4.7) /fe (/ —L—o‘dEg)(PN(x)‘)d/\
| fm/fe (/ %c@) (Px(z)) d)

== ([ .00 =8)"'dr) (Pu(z))
(] )

which proves equation (4.4). a

Remark 4.5. If the Hilbert space H is real, the preceding proof must be
carried out after complexifying H. Nevertheless, the resulting operator
f<(S) remains real, so that f,(S) can be considered an operator on H.

A remarkable consequence of the preceding proposition is the following
lemma. '

Lemma‘ 4.6. Let S and C be self-adjoint operators with S unbounded and
C bounded. Then we have in the operator norm

[£e(S +C) = fe(S) < ellCl,

where the constant ¢ neither depends on S nor on C norone >0 .

Proof. By Proposition 4.4 we have
' (48) f(S+0)= ()= 5 [ LN (= (S+C)7 (=57

2,”/fe —(§+C) ' oCo(X=8)"td),
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hence

155 +0)= 16N < 5 [ 1M lmaliClior = el
O

Since for any self-adjoint operator S with compact resolvent the limit
lim,0 f.(S) exists in the strong sense and equals our transformed operator
- R(S) := S(Id +5?)/2 by Lebesgue’s Convergence Theorem and the Res-
~ onance Theorem, we can conclude the main result of this subsectlon from
Proposition 4.4 and Lemma 4.6.

Theorem 4.7. Let S be a self-adjoint operator with compact resolvent in a
real separable Hilbert space H. Then for any bounded self-adjoint operator
C, the sum S + C also has compact resolvent (hence is a closed Fredholm
operator; and we have
IR(S +C) = R(S)|| < <lICYl,
where the constant ¢ neither depends on S nor on C.
We shall apply the preceding theorem in the following form:

Corollary 4.8. Curves of self-adjoint (unbounded) Fredholm operators in
separable real Hilbert space of the form {Ap+C'}icr are mapped into contin-

uous curves in F by the transformation R when Ap has compact resolvent
and {Ci}ier is a continuous curve of bounded operators.
Remark 4.9. Let
Tap : B — Cf'
C = Ap+C

denote the translation by Ap, mapping bounded self-adjoint operators on H

into closed self-adjoint Fredholm operators in H. On CF , the gap topology
is defined by the metric

Al’ A2 \/”R/h RA2“2 + ”AIRAl - A2RA2”2 s

where Ry := (Id+A?%)~! (see Cordes and Labrousse, [9] and also Kato, [14]).
In Theorem 4.7 we proved that the composition R o T4, is continuous.

-~ 7:‘D

B 22, CcF
ROTAD lR
7

Further, we can prove that the translation operator 74, is a continuous

operator from B onto the subspace B+ Ap C CF. The proof can be
carried out along the same lines as the proof of Theorem 4.7 taking the
functions (1 + A?)"! and A(1 + A?)~! instead of f.()). Thus it needs not
take a limit ¢ — 0. It is not clear, however, whether the inverse operator
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7:,‘01 B+ Ap — Bis continuous, and hence whether the transformation R

is continuous on the space CF.

Here we do not discuss the continuity of 7,7 since the literature only
examines examples of families of self-adjoint Fredholm operators of our form
{Ap + C:} (see Floer, [10], Yoshida, [31], Nicolaescu, {22], [23], Kirk and
Klassen, [15], [16], etc.).

We define:

Definition 4.10. Let {A;}ics be a continuous curve of (unbounded) self-
adjoint Fredholm operators of the form A, = Ap + C; with the preceding
assumptions. Then the spectral flow of the continuous, unbounded' curve
{At}ter is defined by the spectral flow of the continuous, bounded curve

{R(At)}ter in F.

Remark 4.11. The properties listed in Theorem 4.2 for the spectral flow
of families of bounded operators remain valid for our class of unbounded
operators by the construction of the curve {R(A;)}¢er.

4.3. An Alternative Construction of a Continuous Curve of Bound-
ed Operators. Phillips’ idea was to define the spectral flow of a continu-
ous curve of bounded self-adjoint Fredholm operators by piecewise hedging
curves of eigenvalues. To construct a continuous curve {A,} of bounded self-
adjoint Fredholm operators solely from small intervals of the spectrum of
our curve {A; = Ap + Ci}ses and from the related eigenspaces, we sharpen
Phillips’ argument and hedge the branching of the zero eigenvalues only,
quite in the same way as when determining the relations between the func-
tional analytical and differential definition of the Maslov index in the proof
of Theorem 2.1 above.

Proposition 4.12. For any continuous family {A; = Ap + Ci}ier of self-
adjoint Fredholm operators there exists a partition ) =to < --- <ty =1 of
the interval and positive reals ay,...,an, such that we can construct con-
tinuous curves A?) in F. on each small interval [tj,t;+1] with the following
properties (for t; <t <t;41): :

1. spec(AgJ)) = {spec(Ap+C:)N(—aj,a;)}U{1, -1} with specess(Agj)) =

{1,-1}, and
2. ker AY) = ker(Ap + Cy).

Proof. Step 1: To construct the jump curve, we first consider the family
A; in a neighbourhood ¢t — §(t) < s < t + 6(t) of a point t € I, where
ker A; = {0}. Then none of the A, has eigenvalues at all in a small vertical
interval. Hence there is no contribution to the spectral flow and we can
define AY := T for s in the interval [t —4&(t),t + 6(¢)]. Here T : H —
H denotes an isomorphism which is equal Id on one infinite-dimensional
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subspace L(;) and equal —Id on the orthogonal, also infinite-dimensional
subspace L (+)> the polarization (Lggy, L t)) chosen arbitrarily.

Step 2: Now we consider the famlly A; close to a point ¢ where we have
dimker A; > 0. Let A; denote the smallest positive eigenvalue and u; the
- largest negative one. We choose a positive real number a(t) < 1 with
a(t) < Ay and a(t) < |p1] and a 6(¢) > 0 such that a(t), —a(t) ¢ specA, for

set—46(1),t+ 5(t)]. We define for s in this interval .
ﬂﬂ=-L (s — 21 d),

28 Jnj=a) '

hence ra.nsz(t) = dimker A;. Then the operator
APY:H — H
is bounded because P is of finite rank and A, keeps range P invariant
for t —4(t) < s <t+4(2).
Step 3: Ngw we can choose pomts to=0<t <--- <ty =11insuch
a way that 14, — 6(t tiv1) < 1 + 6(t ), and then choose pomts t; € (t; —
6(t )s ,_1+6(tJ_1)) with0=to=1fg <l <t <lg<-- <iny<ty=Ll.

We set a; := a(t;) for j =0,..., N.
Next we choose polarizations of the infinite-dimensional

(range P( ’))'L Li® Ly
with L; and Ly infinite-dimensional. We define an operator II; : H — H
with specegg = {—1,1} by

1 lrange p"J) =0, Ij|z; =1d, and II]-|LJ‘l = —Id.

Step 4: Finally we define the jump curve
(4.9) AY .= A, PO) 4 (0F)TLOF fort; <s<tjp

which satisfies the properties 1 and 2. Here the orthogonal projections are
chosen in such a way that

) — i pG) iy
Pl = O1F,7(07)
for t] S S S tj+1' O

Since the dimensions of the kernels do not jump at the discontinuities of

the curve and since the strata 7<) are connected, we can insert continuous
curve pieces at the discontinuities without changlng the spectral flow. This
yields a continuous curve ¢t — A, € F, with the following property:

Corollary 4.13. If each operator A, = Ap + C; has an infinite number
of eigenvalues on both sides of the real line, the curve {At} and the curve
{R(A,)} are homotopzc in F. in the sense of keeping the endpoints in two
fized strata of F..
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Note . Whereas the preceding construction leads to a continuous curve {Zt}
in F. for any continuous curve of self-adjoint Fredholm operators of the form
A; = Ap + C4, the transformation R leads only to a curve in f',. when the
operators of the original curve have an infinite number of eigenvalues on
both sides of the real line. Curves of positive or negative semi-bounded

operators are rnapped by R in .7-'+,.7-'., but by the preceding construction
invariably also in F..

5. THE SPECT‘RAL FLow FORMULA

In this section we shall prove our main result, the equality of the spectral
flow and the Maslov index: :

Theorem 5.1. [Spectral Flow Formula]. Let A be a closed symmetric op-
erator in a real Hilbert space H with domain D,, and let {Cy}ier be a con-
tinuous family of bounded self-adjoint operators on H. We assume that

1. the operator A has a self-adjoint extension Ap with compact resolvent;
2. there exists a positive constant a such that

D, Nker(A* + C; — s) = {0}
for any s with |s| < a and any t € [0,1].
Then we have
(5.1) sf({Ap + Ci}) = u({y(ker(A™ + C1)},v(D)),

where v denotes the projection of the domain Dy of A* onto the symplectic
space B = Dpr/ Dy, of abstract boundary values.

A

We notice that conditions 1 and 2 are naturally satisfied for operators of
Dirac type (i.e. for first-order differential operators with principal symbol of
A? defining the Riemannian metric) both over a closed manifold and over
a manifold with boundary subject to global elliptic boundary conditions.
Clearly, a perturbation by adding a real multiplum of the identity preserves
the Dirac type and hence the non-existence of inner solutions (‘unique con-
tinuation property’). This might, however, not be true for general first-order
elliptic differential operators.

We recall that the left side of Formula (5.1) was defined in Definition
4.10 by associating a continuous curve of bounded self-adjoint Fredholm
operators with the curve {Ap + C;}ier (Theorem 4.7). For the right side
of Formula (5.1) we recall that {y(ker(A* 4 C;))},¢; is a continuous family
of Lagrangian subspaces of B by the assumptions made and by Theorem
3.9, and that (y(ker(A* + C.)),v(D)) is a Fredholm pair by Proposition
3.5. Hence we have a continuous curve t — A(t) € FLy, in the Fredholm-
Lagrangian Grassmannian with A(¢) := ~y(ker(A* + C;)) and A := (D)
and a family of unitary operators {W, : H — H} defining the Maslov index
of the curve (see Definition 1.4).
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Proof. We prove the theorem in three steps. First we construct a suitably
fine horizontal spacing {0 =ty < t; < --- <ty = 1} and a vertical spacing
{ai,...,an}. Then we show

(5.2) sf({’R(AD+C¢,‘+,)-—s}0$sS 051 )

2
14aly,

~ for that spacing. This is the main part of the proof. It consists, so to speak,
of establishing the coincidence of the spectral flow and the Maslov index
for segments of analytic families. This will be done by explicit calculation
identifying the two invariants with the integer — Zogs <aiy, dimker(Ap +

Ci:yy — s). Finally, we show how the general case follows from the special
case.

First step: To construct a suitable horizontal and vertical spacing, we choose
at € [0,1]. We denote the smallest positive eigenvalue of Ap + C; by A;(#)
and the largest negative one by p;(t). We distinguish two cases:

(I.) ker(Ap + C;) = {0}. For the vertical spacing we choose a positive

b(t) < min{Au(2), I ()], a}.

For the horizontal spacing we take a §(t) > 0 such that the small box is
kept free of eigenvalues (see Figure 5), namely

spec(Ap + Cy) N (=b(2),b(t)) =0 fort' € (t —5(t),t+ 8(2)).
(II.) ker(Ap + C;) # {0}. In this case we choose a positive

) <min {20,110 1

For the horizontal spacing we take a §(t) > 0 such that the eigenvalues in a
small box are confined by two strips (see Figure 6a), namely

spec(Ap + Cy) N (b(t),2b(t)) = 0
and
spec(Ap + Cu) N (=2b(t),=b()) =0
for t' € (t —6(t),t + 6(t)). _
Second step: In the first case, the regular case, we have for each § < §(t)

sf ({'R(AD + C")}t—é'st'sw?) =0,

since Ap + Cy is invertible for ¢t — §(¢). < t' <t + 4(t). We also have

7 ({'y(ker(A* + Ct')}t-gg,gg,v(l))) =0,
since y(ker(A* + Cy) Ny(D) = {0} for t — §(¢) < ¢’ <t 4+ 8(¢).



———f

(
FUNCTIONAL ANALYTICAL DEFINITXON OF THE MASLOV INDEX 33
wectan + G | cpec(Ap + )
|
‘ M|
|
| bt}
///
7 ,
- 6(0) /// L+ 8(1)
)
1
L mld)
» l
FIGURE 9. Vertical and horizontal spacing for ker(Ap +
G = {0}
e eigenvalues of the operator

ngular
e of the form

A
\/1+)\2

eigenvalue of the operator A
t

(R(Ap +Cr) ~ Shosss 7w

For the second, s

R(AD + Ct’\) — g al

S,

where X is an
of the family

o<s<\7_'z,ﬂ,l——__,
== i4elt)

(see also Figure 6b)- We
of the family {A(s,t’) :
Ag »= (D) for each fixe

dimker(R(AD + Cg\) — 5) =

shall sh
= +(ker(A”
dt' € (t-

0,b(t)}. Byou

¢ spec(AD-\-Cu)ﬂ{
finite numbe

contains only 2
{A(S»t')}ogsgb(t)
hese points aré £
Clearly,

if s
[0, (1)}
the curve
points; and t
p< AL b(t).

case, We recall that th

p+ Ce-
equals

—

ow that this integer equ
+Cu— &) Jogsrtt}
5(1),t +6(t)

Als,tY N Ao = {0},

r assumption
¢ of elements,
with (D) is 0
he eigenvalues
the family {A(S,tl)}ossgb(t)

Hence the spectral flow

z dimker(Ap + Co — )

0<s<h(t)

als the Maslov index
at the Lagrangian

). We have

1, the set spec(AD+Cg)ﬂ
hence the intersection ©
on-trivial only at finitely many

AD + Cg‘ W'lth

) of the operator
:s a smooth curve.

e



34 B. BOOSS-BAVNBEK AND K. FURUTANI

spec(R(Ap + Ce)=b(1))
A 4

/ : ) -
| spec(Ap + Ci) {
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5""\ . |

spec(Ap + Cr)

2A(1
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FIGURE 6. a) Vertical and horizontal spacing for ker(Ap +
C:) # {0} b) The spectral flow of the linear family

{R(Ap + Cv) = s} epozop b(1) = b(£)(1 + b(2)*)~"7

We determine the quadratic form Qx40 for all such eigenvalues
A and fixed t':

Q(A(,\,t'),A(,\,z'))(M» [2]) == %w([x], By[z])|e=0 for [z] = v(z) € B,

where B := Dj;/D,, denotes our symplectic space of boundary values and
By : A(M\, ') = A(A,¢)* is chosen in such a way that {{z] + Bs[z] | [z] €
AN )} = A(A+6,1") for 6 close to 0, hence By = 0.

Let z € ker(Ap + Cy — A) or equivalently v(z) € A(A,t) N Ag, and 6
sufficiently small. Then we can choose a smooth family {u; € ker(A* +
Cy — A —0)} such that

v(z) + Be(v(z)) = v(ug) and wo ==,
hence

(5.3) w(v(x), Bolv(x))) = (A"x,up — ) — (2, A™(ug — 7))
= (A" + Cv — Nz,up — ) — (2, (A" + Cp — X)(ug — z)) = —(z, Ouy).
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Differentiating yields

d
dé

for = # 0; hence Q(x(5.00,4() A #)7(D) 18 negative definite.
This implies (i) that the crossings are all regular at s = X eigenvalue of
Ap+ Cy so that we can apply Theorem 2.1 and determine the Maslov index

by adding the signatures of the crossing forms; and (ii) that this signature
is just the dimension of the kernel of Ap + Cy — A. Hence

(54) p({A(s, ) ogegs, V(D)) = D sign Q x (o Aoy |A#INA0
0<s<b(t)

== Y dimA(s,t)Ny(D)=—= Y dimker(Ap+Cu —s).

_ 0<s<h(t) 0<s<b(t)

— (z,0ug)|o=0 = —(z,up) = —(z,2) <0

Based on these considerations we can choose the desired horizontal spacing
{0 =ty < t; <--- <ty = 1} and vertical spacing {a; := b(t1),...,an =
b(tn)}- ‘

Third step: Now we have at each small interval [¢;,;41] a loop of the two-
parameter family {R(Ap + C;) ~ s} which is contractible in F, hence

(5.5)

sf ({'R(AD + C’)}tiststi+1> + sf ({'R(AD +Ciyy) — S}OSSSJH——>

2
4ol

—sf ({R(AD + Cy;) — 5}0535——+—"" 1 ) =0,

m
and
(5:6) w ({1(kex(4" + C)}ygugry, » (D))
+ 1 ({r(ker(A" + Copy = 9)}ogocan,, 7(D))
— 1 ({rker( A" + Co, = 9)}ogugass, »7(D)) = 0.

By the preceding step, the spectral flow and the Maslov index coincide for
linear families, hence for each small interval [¢;, ¢; 4] :

sf ({R(AD + Ct)}t,-StSt;.“) =H ({")’(ker(A* + Ct)}fiStSt-'H ,’)’(D)) ,

which proves our theorem by additivity under catenation. ]

Remark 5.2. Note that the left side of Formula (5.1) is also well defined for
complex operators; the right side, however, is ambiguous in usual symplectic
algebra for complez spaces, but well defined in our setting, see Definition
1.6; then our preceding theorem translates immediately to the complex case.
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