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ABSTRACT

The first part of this paper deals with the justification
of Bidssler s phenomenological "random walk model" for viscous
liquids [H. Bédssler, Phys. Rev. Lett. 58, 767 (1987)], which
considers the random walk of a particle (representing the liquid
state) on a d-dimensional infinite cubic lattice with site
energies randomly chosen according to a Gaussian. The random
walk model is derived from Newton 's laws by making a number of
simplifying assumptions. Thus, the significance of the model is
emphasized as a “canonical" phenomenological model for
relaxations in viscous liquids and at the glass transition. In
the second part of the paper an approximate low-temperature
description of energy fluctuations in the random walk model -
"the energy master equation" (EME) - is arrived at. The EME is
derived by arguing that percolation dominates the relaxational
properties of the random walk model at low temperatures. The
approximate EME description of the random walk model is expected
to be valid at low temperatures at long times in high dimensions.
However, computer simulations show that the EME works well
already in two dimensions. The EME is one-dimensional and
involves only energy; it has no randomness and is completely
specified from the density of states, the attempt frequency, and
the percolation energy of the random walk model. The EME allows
a calculation of the energy probability distribution for an
arbitrarily varying temperature as function of time at realistic
laboratory time scales; it is probably the only model with this
property that is also explicitly consistent with statistical
mechanics. The final part of the paper gives a comprehensive
discussion, comparing the EME to related work and listing the
EME ‘s qualitatively correct predictions, its new predictions, and
some '"wrong" predictions, most of which goes against the most
common pictures of viscous liquids and the glass transition
without necessarily violating experiments.






1. INTRODUCTION

The glass transition takes place when a liquid upon cooling
becomes more and more viscous and finally solidifies to form a
glassy solid [1-14]. Most, or perhaps all, liquids are able to
form glasses when cooled sufficiently fast to avoid
crystallization. Examples of glasses include the classical oxide
glasses [15], ionic glasses [16], polymers [6,17,18], metallic
glasses [19], and glasses made by cooling organic ligquids to low
temperatures [20,21]. Even simple 1liquids form glasses in
computer experiments, where extremely high cooling rates are
possible [12,22,23]. Spin glasses are examples of non-liquid
systems that exhibit glassy features [24,25].

The glass transition is still far from well-understood, but
the kinetic nature of the transition is not in doubt. Thus, the
glass transition is not a phase transition, though it 1is
thermodynamically similar to a second order phase transition.
This is evidenced by several facts universally observed: The
transition is not sharp, the glass transition temperature depends
on the cooling rate, and the transition is irreversible and
exhibits various hysteresis phenomena. The dynamic nature of the
glass transition complicates the problem considerably.

Viscous liquids close to the glass transition have common
features, a broad distribution of relaxation times and a stronger
than Arrhenius temperature-dependence of the viscosity. Close to
the glass transition there are further common characteristics
like the overshoot (hysteresis) of the specific heat upon

reheating [8,14], the cross-over effect [8] or the prepeak upon




the melting of a well-annealed glass [11]. The universal
character of viscous liguids and the glass transition motivates
a search for a phenomenological model valid for any viscous
liquia.

While phenomenological models of viscous liquids and the

glass transition have been studied for many years, the 1980'‘s
brought a new theory, the mode-coupling theory [26,27]. In a
number of well-defined steps this theory traces the wviscous
‘behavior and the glass transition back to Newton’s laws for the
[classical] motion.of the-molecules. Extenéive work has gone
into studying the mode-coupling theory and comparing it to
experiment. At present there seems to be a growing consensus
[28] that mode-coupling theory gives an accurate description of .
the onset of viscous behavior, when the reiaxation times are
shorter than about 1 nanosecond. However, the theory is not ablev:
to explain the more viscous'regime and the laboratory glass _
transition. This is because the activéted- "hopping" vtypeh
processes that dominate this regime are not accounted for [28- .
30]. Thus, the focus is now once again on attempts to formulate
~a phenomenoclogical model that captures the essentials of viscous

ligquids and the glass transition.

Since the glass transition is a kinetic "freezing" of the
viscous liquid, a phenomenological model should first of all
mimic the basic physics of viscous liquids in thermal

equilibrium. An important characteristic here is the average
relaxation time of the viscous liquid, T, which is a direct .

measure of the time needed for molecular rearrangements. The

average relaxation time may be determined, e. g., as the inverse
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dielectric, mechanical or specific heat loss peak frequency.

Alternatively, it may be calculated from the viscosity, 1, and

thérrinfinite frequency sheariimodulus, G,, by means of Wthe

expression

= ﬂ_ . ' 1
T G, (1)

These definitions do not give exactly identical T°‘s [13], but the"
difference is insignificant for the present discussion. Typical
values of T for glass forming ligquids lie in the millisecond,
second or even hour range. These times are to be compared to the
avefage vibration time, which is of order one picosecond.

- The basic thing one would like to understand about the
average relaxation time 1is its non-Arrhenius temperature
dependence; for almost all viscous liquids T has an apparent
activation energy that increases as the temperature decreases.
Since models assuming some distribution of energy barriers
usually lead to the opposite behavior, explaining 1(13 is a real
challenge, but also a 1likely key to understanding viscous
liquids.

The phenomenological models may be roughly classified into
two types (an alternative to the below classification has been
given by Scherer in an excellent review of relaxation in viscous
liquids [29]). One type of models, “type I", are models that
have a non-Arrhenius t( T) , but otherwise do not attempt to model
the liquid. These models are so simple that they can be analyzed

in detail [31]). Examples of "type I" models are Derrida’s random



-energy model [32], the kinetic Ising model [33], or the tiling
model of Stillinger and_ coworkers [34]). The other type of model,
“type II", attempt to model the physics of real viscous liquids .
In all "type II" models the liquid is assumed to be divided into
*cooperatively rearranging regions". The "type II" models can be

further classified according to which thermodynamical quantity
controls T, entropy, volume, or energy.

A well-known entropy-controlled model is the theory of
Gibbs and coworkers [35,36]. This model correlates the non-
Arrhenius behavior with the Kauzmann paradox [2,11], the fact

that the configurational entropy extrapolates to zero at a finite

temperature, TK: The model predicts that the -average relaxation

time follows the Vogel-Fulcher-Tammann (VFT) law [11,29], whereA

is a constant and the characteristic temperature T, is predicted

to be equal to T,.,

A

e 7% | (2)

The Vogel-Fulcher law gives a good fit to 1:( ’I) for many viscous

liquids and one also finds that T, in most cases is indeed close
to Ty [11].

The entropy model predicts that underlying the glass

transition there is a genuine second order phase transition at

T=To>0 to a state of zero configurational entropy. Still, there

are a number of problems with this approach. The original Gibbs-
DiMarzio model [35] was based on a mean-field theory for polymers

.



that later was sho&nrto be incorrect [374, and the Adams-Gibbs
[36] derivation of Eg. (2) is hard to understand in detail.
-‘Furthermore, the Verl—Fulcher law seldomly applies in the whole
temperature range of interest; usually'deViations occur close to
the glass transition where the average relaxation time is less
temperature dependent than predicted [8,20,29]. Finally, it
should be noted that the Kauzmann paradox does not have to be a
paradox. As shown by Angell and Rao many years ago [38], even a
system with only two energy levels has éﬁ entropy which, if only
known at high temperatures, extrapolates to zero at a positive
temperature. Though this model does not fit experiment, the
excess entropy data may be fitted with a model with only a finite
number of energy levels and thus a positive entropy at any
positive temperature 139]. 7 |

The standard example of a volume-controlled model is the
"free volume model" [40]. In this model, the average relaxation

time is determined by the volume freely available for cooperative

rearrangements of the molecules, V., according to the expression

T x exp(C/V,) . 1In the simplest version of the model the free

volume decreases linearly with decreasing temperature, leading to
a non-Arrhenius T(7T) of the VFT-type (Eg. (2)).

In energy-controlled models one formulates a master
equation [41] governing the dynamics of the cooperatively
rearranging regions. The relevance of energy [i. e., potential
energy] was emphasized already in 1969 by Goldstein [42]. More
recently, Brawer proposed a model where transitions between

different states occur via excitations to a common high lying



energy level [8,43]. This picture is based on ideas that go back
to Goldstein [39]. Brawer’s model was later simplified [44] to
a one-dimensional model where the only relevant parameter is the
energy .

Bdssler’s ‘“random-walk model" [45,46] 1is an energy-
controlled model, which is similar to those used in the
description of AC conduction.in disordered solids [47,48) and qf
energetic relaxation and diffusion of electronic excitations in
ranaom organic solids [49]. This model, which is the squect of

the present paper, considers the random walk of a “particle" on
a cubic, lattice in d dimensions, where each site has an energy

randomly chosen according to a Gaussian. The ‘“particle"

represents the state of a cooperatively rearranging region. For

the random walk model t(I)'is given [45,46] by

T =T, €xp (—7‘%) . (3)

This simple expression fits experiment surprisingly well

. [45,46,50,51]. An even better fit is obtained by using the

following generalization of Eq. (3): T=t_exp (A/T"”) [20,21,52].

In a recent paper by Arkhipov'and Bdssler [53] the random
walk model wés extended into a model that reduces to the original
model at high temperatures - the "real liquid“ regime - while at
low temperatures - the "supercooled melt" regime - the system is
described by the energy master equation. The idea [53] is that,
at high temperatures direct jumps between metastable states are

possible because the energy landscape itself fluctuates; these
jumps 'correspond to an elementary step on the d-dimensional
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lattice of the original random walk model. At low temperatures,
on the other hand, the landscape fluctuations are frozen on the
relevant time-scale and each jump leads to a totally new
configuration, the dynamics here being described by the energy
master equation.

The purpose of the present paper is to show that the energy
master equation, assumed by Arkhipov and Bidssler to describe the
different physics going on at low temperatures, in fact gives a
good description of the low-temperature behavior of the original
random-walk model. Thus, in a sense the Arkhipov-Badssler model
is contained in Bdssler ‘s original and simpler random-walk model.
The low-temperature approximate description via the energy master
equation contains no adjustable parameters. This approximation
is arrived at by arguing that percolation in the random-walk
model becomes important at low temperatures. The "transition
state energy" of the energy master equation is identified with
the highest energy met on a percolation path. In effect, one
arrives at a picture which is close to that recently proposed by
Hunt [13,54), where the low-temperature properties of viscous
liquids are dominated by percolation.

The paper has the following outline. In Sec. 2 a
justification of the random walk model is sketched, where the
model is traced back to Newton’s laws for the molecules of a
cooperatively rearranging region. This section supplements the
original arguments for the model given by Badssler [45,46]). 1In
Sec. 3 the approximate energy master equation is derived. 1In
Sec. 4 computer simulations are presented compﬁring the random

walk model and the energy master equation. Section 5 discusses
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-‘what to expect at the glass transition according to the energy
master equation. Section 6 gives a comprehensive discussion-
which includes a qualitative comparison to experiment. Finally,

Sec. 7 gives the conclusions.

2. THE RANDOM WALK MODEL AND ITS “DERIVATION" FROM NEWTON'’S

SECOND LAW.

The purpose of this section is to "derive" the random walk
model [45,46] from the equations of métion for the molecules of -
the viscous liquid. The "derivation', which proceeds in five -
steps, is not rigorous, but rather an attempt to make explicit .
the assumptions that needs to be made in order to juétify the . .
model from basic principles. The "derivation® indicates that the -
random walk model could be régarded as the canonical:
phenomenological model for viscous liquids and the glass
transition. The viewpoints presented below are similar to those
of Bédssler, but there are also some differences as will be
diséussed at the end of this section.

Before presenting the "derivation" of the random walk model

we recall the exact definition of the model. The model considers
the random walk of a "particle" in d dimensions on an infinite
cubic‘ lattice. The ‘"particle" represents ;he state of the
region, which is thus completely specified by d integer
coordinates. Each state has an energy, FE, which is chosen
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randomly according to a Gaussian with variance 0:

n(E) = —* exp(- Ez) . (4)
V2no? 20

The energies of adjacent states are uncorrelated. The dynamics
of the system is described by a master equation [41], specifying

the time development of the probability that the "particle" is in

state 1, P;. If I(i-j) is the transition rate for jumps from

state I to state j, the general master equation [41] is

dp, o L
= ;ru 7) P +§;ro )P, . (s)

The first term describes "particles' jumping away from statel

and the second term describes "particles" jumping into state 1.

In random walk models the transition rates are usually chosen to

be zero except for nearest neighbor jumps (i. e., where a single

coordinate changes plus or minus one). If B=1/ (kpT) and I'y is
the attempt frequency, the transition rate for nearest neighbor

jumps is in Bédssler’s random walk model given by Metropolis
dynamics,
, . ro ¥ Ei)Ej
ra-j) = B (5,50 (6)
-B (B4-E

It is physically realistic to assume that I') is of order10??

Hz, corresponding to a typical phonon frequency.
What kind of predictions can be made from the random walk

model? The model predicts how the average energy chénges in time
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for any externally controlled time-dependent temperaﬁure. This
includes monitoring how the energy relaxes to equilibrium from a
non-equilibrium state, or how the dynamic specific heat changes
through the glass transitionﬁ In particular, the average
relaxation time for energy relaxations close to equilibrium can
be calculated as a function of temperature. Also, the
equilibrium frequency-dependent specific heat may be obtained.
We now proceed to justify the random walk model from basic
principles in five steps, assuming the moleculeé of'the viscous
liquid are described by classical mechanics.
Step l: The Region Assumption. All type II models for the
dynamics of viscous liquids assume cooperatiye “flow events" that

-are localized to small "regions" of the liquid [6,8,36,39,42,55-

'60]. These regions have been called “cooperatively rearranging
subsystems" [29] or * - regions" [36] , "quasi-independent units"
[39], '"thermokinetic structures" [58], "molecular domains" [59],

or "dynamically correlated domains" [60]. The picture of viscous

flow, proceedihg via stfongly coope;ative motion of particles'
confined to small regions of the liquid, has been confirmed by
'computer simulations {61,62]). The "région-aSsumptioﬁ“, hbwever,

is not just the quite reasonable idea thét flow events are
strongly localized. The assﬁmption is the much stronger one that
the liquid may be regarded as an ensemble of non-interacting
regions. There are two potential problems with the region
assumptions. It ignores region-region interactions which may be
important because the regions are expected to be relatively small
(some 10-20 A [58]). Also, the picture is static and not easy to

relate to an actual flow that will deform the regions.
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Nevertheless, the region assumption is necessary to arrive at a
simple phenomenological model.

Step 2: Rebi%éiné Newton’s laws with Langevin dynamics. From
now on the attention is confined to a single region, the
molecules of which move according to Newton'’s laws. The motion

is deterministically determined by the potential energy as

function of the molecular coordinates, U(Q,,..,0Q, - The

importance of the potential energy "surface" for understanding
viscous liquids and the glass transition has been emphasized in
a number of papers [11,30,39,42,63,64]). Following the tradition
in polymer physics [65], we now replace Newton’'s equations of
motion by stochastic Langevin equations (similar non-
deterministic equations are used for the description of Brownian
particles suspended in liquids [66])). The Langevin equations of
motion [41,65] are

¢1=-u§gi-+ei<t> (i=1,...d) . (7)

where Ei(t) is a Gaussian stochastic white noise term:

<G (E)E5(EN)> = 2pk,T 8, ; 8 (-t . (8)

The crucial property of the Langevin equations of motion is
[41,65] that each state is visited with the correct "canonical®

probability of statistical mechanics,

PO(Ql'."Qd) = Const- e}(p[‘BU(Ql,..,Qd)] (9)
Physically, the assumption of Langevin dynamics is reasonable for

viscous liquids [67), because the molecules collectively vibrate
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in potential energy miﬁima for long times before occasionally
"“Jumping" to another potential.engrgy minimum. And the rate of
jumps between two energy minima is, for both Newtonian and
Langevin dynamics dominated by a factor o« exp(-P AU) [68],
where ALIis_the energy barrier to be overcome. |

Step 3: From Langevin dynamics to a hopping model. We now

proceed to discretize the spatial variables of the Langevin
equations. The resulting state space is a d-dimensional cubic

lattice. It is reasonable to assume that, since the underlying
Langevin dynamics has a continuous trajectory, only nearesﬁ
neighbor jumps are allowed on the lattice. For the jump rates
those given by Eq; (6) are an obvious choice: Unless infinitely
Steep potentials are allowed, the Langevin equation implieé that
it takes some definite time to travel the discretization length
downhill; in the discrete version this means there should be a

maximum Jjump rate. If, the discretization is to be self-

consistent, the jump rates must be uniquely determined from the

state energies. The simplest choice of jump rates is then the
Metropolis rates (Eg. (6)). Note that the jump rates must
satisfy the .principle of detailed balance [41), which ensures
consistency with statistical mechanics

%—%}% = exp([P(E;-E;))] . (10)
The jump rates of Eg. (6) ignore the possible existence of a
barrier to be overcome between two nearest neighbor discrete

states. The discretization ignores the possibility of

vibrational motion around a minimum; thus the term "energy" F is
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to be thought of as the potential energy U at a minimum, the

"configurational part" of the potential energy. Similarly, the
term *“specific heat" henceforth refers to the configurational
part of the measured specific heat, the socalled "excess specific
heat" (in excess of the phonon contribution to the specific
heat).

Step 4: Reblacing complexity with randomness. The potential
energy is a very complex function with numerous minima

[30,42,63]. Therefore it is reasonable to replace the functionF

defined on the lattice with a function that is in some sense
random. The idea of replacing complexity with randomness is old.
In fact, this is the brilliant idea behind statistical mechanics:
Any system with many degrees of freedom is extremely complex; in
view of this one simply assumes that at a fixed energy any
randomly chosen state 1is as 1likely as any other (the
microcanonical ensemble). The basic idea is that some phenomena
occurring in a specific complex system are typical of those that
occur in most systems chosen randomly out of an ensemble of
possible systems. If this is so, the study of random systems
tells us what to expect for particular complex systems [69].
Motion in random potentials has been studied extensively in

various contexts [48,70,71). In discretizing such a model one
often chooses the discretization length a equal to the
correlation length of the random function and assumes that
correlations beyond a may be ignored [71]. When this is done
for the random walk model, the values of the potential are

assumed to be uncorrelated from point to point on the d-
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dimensional cubic lattice. 1In this approximation the model is

fully specified by the energy probability distribution, the
*density of states" n(E) .
Step 5: The assumption of cooperativity. A region contains many

molecules and thus d»l . Any system with many degrees of freedom
has a density of states that can be written n(E)=Ces(B’ where

the entropy as function of energy, S(E), at relevant energies

[72] obeys

) FSo . (11)

OE 0 OE?

The Gaussian Eqg. (4) obeys Eq. (11), but " only for negative

energies. At any temperature, however, negative énergies are

most likely for the Gaussian and therefore it is permissiblé,
The assumption of a Gaussian density of states concludes

the "derivation" of the random walk model. The model 1is

completely specified by the parameters Po , 0 and d. The first

two are “"trivial" scaling éarameters, so from a qualitative point
of view only the dimension d is of interest.

In thermal equilibrium the probability of wvisiting any
given site is given by the Boltzmann factor exp(-BE).
Combining this with the Gaussian density of states Eg. (4), one

finds for the equilibrium energy probability distribution

P,(E)xexp[-BE - E?/(20%)]. By ‘“completing the square" and

normalizing, this may be rewritten

17




PO(E) = _1__._ expi-

2102

M] , E=-0%p . (12)

202

Clearly E:is the average energy, which is also the most likely

energy. The equilibrium specific heat, c,, is given by

dE 02
c. = = . 13
°© dT  k,T? (13)

Equation (13) may be derived directly from Einstein’s expression,

c,=<(AE)2>/ (kgT?), since the Gaussian distribution Eq. (12)

implies < (AE)2>=02. The equilibrium specific heat increases

towards infinity as the temperature goes to zero. While this
cannot be true right down to zero temperature, there is for most
supercooled liquids a tendency for the configurational specific
heat to increase as the temperature decreases [2,38].

The random walk model was originally proposed by analogy to
transport and relaxation of charge excitations in random organic
solids [49]). Here the jump rates Eg. (6) are the well-known
Miller-Abrahams jump rates for electronic hopping [73]. There
are some differences between the above "derivation" of the random
walk model and Bédssler’s Jjustification of the model. In
Bdssler'’'s original picture, the experimental dependence of the
glass transition temperature on the sample history was understood
as an effect due to the density of states depending on the
preparation conditions ([45]. The above picture is much more
static; by confining attention to the multi-dimensional region,

the density of states reflects the discretization of the

18



potenvtial energy and does not depend on the conditions of sample
preparation. A further difference between the above approach and

that of Bidssler and coworkers is that cooperativity is emphasized
here, implying d»1, while the original random walk model
considered element;ary jump processes on a "molecular or w'eakliz
céoperatiye level" [49], implying that d is not much larger than

one.

3. DERIVING THE ENERGY MASTER EQUATION FROM THE RANDOM WALK

MODEL

In order to monitor the average energy during a cooling and

subsequent glass transition in the random walk model, there is

probably no other method than to solve the master eqﬁation.

numerically by taking time steps of order l/I‘o ~ 1ps. Clearly,

this procedure cannot be used for simulating realistic laboratory
time scales of ordgr minutes or hours. In this section an
approximation to the random walk model is derived, which makes it
possible to investigate the model on realistic time scales. The
approximate equation, the ‘'energy master equation", is an
equation for the time-evolution of the energy probability
distribution, P(E, t) , which ignores the spatial d-dimensional
structure of the random walk model.

Consider the random walk model in many dimensions (d»1) at
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low temperatures (kBT<o) and long times C€»7,. WheneverkBT<o

the most likely states have energies close to E=—02B<—0 (Eqg.
(12)), i. e., deep into the negative tail of the Gaussian. These
states are very rare, but the relaxation properties of the random
walk model are dominated by them at low temperatures. The
distance between two low-energy states is large, and a transition
between two such states consists of a long and complex path
joining neighboring states. It is hard to calculate the
transition rate, but it is physically obvious that the transition
rate depends mainly on the maximum energy encountered on the path
[74,75]. Thus, of all possible paths between two low-energy
states, the most likely paths are those that have the lowest
maximum energy. The value of this maximum energy is identified
by percolation theory [70,74-76]: Imagine the sites of the

lattice gradually being filled in order of increasing energy. At

a certain filling rate, the site percolation threshold p_., an

infinite "percolation" cluster of marked sites appears. In two

dimensions p_=0.593, while in three dimensions p.=0.312 [70].
In high dimensions one finds [76] p_e1/(2d-1). The highest
energy on the percolation cluster, the “percolation energy" E_,
is given by

[FnEYdE = P, . (14)

The percolation energy E_ gives a good estimate of the largest

energy met on an "optimal" path between two low-energy sites. We
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thus surmise [74,75] that the effective transition rate from a

low-energy site with energy E; to another low energy site with
energy Ej is given by the barrier AE=EC.~-E'1 :

I'(i-j) = exp[ -BPAE] . Note that this expression, despite being
independent of Ej, satisfies the principle of detailed balance
Eg. (10). There are many possible final states, but since each

Jump rate is given by the above expression, the total rate for

jumps away from a site with energy F, P(E) is (
T'(E) =T; e P&2 | (15)

To determine I we view the percolation cluster as a one-

dimensional path,‘ where each 'site has on the average two
neighbors belonging to the cluster. This naive point of view A
ignores the complicated fractal nature of the cluster, but it

‘does become realistic in high dimensions where it leads [76] to.

the correct percolation threshold. Since E_, is the largest

energy on the percolation cluster, sites with energy E_ will on

the .average have two neighbors with lower energy. Thus, the

total rate for jumps away from such a site is on the average ZPO,

plus some terms for jumps to the higher energy neighbors. These;
terms are unimportant at low temperatures, and thus the prefactor

of Eq. (15) is given by

(o}

r,=2rI_. ' (16)

To arrive at the simplest possible approximate description,
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the spatial structure of the lattice is completely 7ignored.
Consequently, all final states are regarded as equally likely.
In the region language this means that, once excited, a region
.has forgotten which state it came from. Thus, one arrives at the
picture of Fig. 1 which was first proposed by Goldstein [39] and
subsequently discussed in much more detail by Brawer [8,43].
The approximate master equation considers only one

variable, the energy. If the rate for jumps away from the state

with energy E; is denoted by I‘iEI‘(Ei) , the master equation is

dP, |
2 = -Tup v K (17)

Since all final states are assumed to be equally probably the
number K must be the same for all i. K may be calculated from

the requirement of conservation of probability:

dP. d
—d = = P. =0 (18)
implies that =-lEPij where N is the number of states.
N 3 _

Equation (17) thus becomes

dpP,

It is convenient to convert Eg. (19) into a continuous
description. Let P(E,t) denote the energy probability
distribution as function of time. The probability of jumping

into an energy around E is proportional to the density of
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states, n(E), and Eq. (17) becomes for a suitable number C

OP(E,t) _ _p(g)P(E,t) + Cn(E) . (20)

ot

C may be determined from the requirement of conservation of

probability: Since n(E) is normalized,

[ aP(E OP(E, t) ypi = (21)

implies that

C = f_’I‘(E’)P(‘E",' t)de' . (22)

In Egs. (21) and (22) all energies were counted, despite the fact

that the physical picture breaks down for E>E,. However,

including the energies above E_ gives the simplest description

and causes little change because these high energy states are
very unlikely. Now, Eg. (20) becomes an integro-differential

equation, "the energy master equation" (EME) [44],

OP(E, t) _

(23)
ot )

- T(E)P(E, t) + n(E) f_"r(E’)p(E/, t) d&’

The EME was first discussed as a model for the

thermalization of photoexcited charge carriers in amorphous

semiconductors [77,78]. In this case IICE) is the density of

trapping levels in the band gap and E_ is the mobility edge of

the conduction band. An equation similar to, but .more
complicated than Eq. (23), was used by Brawer in 1984 [43].

Brawer’'s equation contains an extra entropy factor enumerating
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the different paths from a particular state to the transition
state. A related approach towards relaxation in viscous liquids
was advocated by Robertson and coworkers [79]). Towards the end
of the 1980’'s the discrete version of Eq. (23), Eg. (17), was
studied as a model for the relaxation properties of Derrida’s
random energy model [32], and Eqg. (23) was proposed aé a model
for the dynamics of viscous liquids and it was studied
numerically through the glass transition [44]. Recently, Eq.
(23) was used by Arkhipov and Bédssler to describe the 1low-
temperature regime of viscous liquids, assuming that the high-

temperature regime is described by the random walk model [53].

The static equilibrium solution of the EME, P_(E), is

given by
P (E) = const. Z{EL (24)
T'(E)
From Eq. (15) it follows that this is 3just the canonical

probability, as required by statistical mechanics. The canonical
ensemble is realized in a very simple way: All states are

visited equally often, but the average time spent in a state with

energy E, 1/T'(E), is proportional to the Boltzmann factor

exp (-PE) , thus giving the canonical probabilities.

At anyAfixed temperature an initial non-equilibrium energy
probability distribution will approach the equilibrium
distribution. This is also the case if the temperature changes
in time: At any given time the distribution approaches the
equilibrium distribution corresponding to the temperature at that

time. Upon continued cooling the system freezes [44], because
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the time it takes to reach equilibrium becomes toc large.

The numerical solution of the EME is based on a calculation

of the relaxation of P(E,t) towards the equilibrium solution

P, (E) at a fixed temperature. The arbitrary thermal history

problem is solved by stepping ahead in time sufficiently small

time steps, changing the temperature at each time step to mimic

the changing temperature. As always in numerical work, one
starts by discretizing the problem. The energy axis is '
discretized into N evenly spaced energies, E,<...<E,. At low

temperatures it is important to include large negative energies

into the set of discrete energies, despite these lying far out

into the Gaussian tail.. If one defines P;=P(E,, t) /Cp,

I',=I'(E;) , and n,=n(E,) /C, ., where the normalization constantsCj

and C, are determined so that

v N N ' -

=

the EME becomes upon discretization

dp, | al _
—2 = - TP, + o, ;rj,P,« (i=1,..,NM) . (28)

At any temperature this equation may be solved by Laplace

transformation [43,80-83] (detailed in the Appendix).
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4. COMPUTER SIMULATIONS

This section reports computer simulations of the random
walk model and compares them to the EME predictions. Results for
a continuous cooling and reheating are given, as well as a study
of the time evolution of the energy probability distribution for
relaxation towai:ds equilibrium at a fixed temperature.
Unfortunately, it is impossible to check the validity of the EME
description where it is expected to apply best: at low
temperatures and long times in many dimensions; this would
require enormous computer capacity. All simulations were
performed in two dimensions, and in experiments monitoring

relaxation towards equilibrium the lowest temperature studied was

0.25 o/ky.

A numerical solution of the random walk model may be
obtained by monitoring the motion of a single "particle" in time,
the analog of a Monte Carlo simulation. However, this introduces
considerably noise and it is much more efficient to solve the

master equation Eg. (5) directly. At any given time the state of

the systems is represented by the probabilities, P;. In two

dimensions any site has 4 neighbors so the maximum transition

rate is 4I', (Eq. (6)). In the simulations a time step of lengthl/ (4T)

was chosen, and for each pair of neighboring sites, A and B, the
probabilities were <changed in the following way: If

AE=EA-EB>O , the probabilities are upgraded according to
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1 1l __ga
Ap, = -=p, + —ePAEp

Each site is upgraded four times according to Eq. (27) and each

time the non-upgraded probabilities are used as P, and Py. This

time-discretization of the differential master equation is quite
crude, but at long times it is sufficiently accurate. The
important thing is to ensure probability conservation in each
time step. All the simulations reported below were in two
dimensions with periodic boundary copditions.

Figure 2 shows the glass transition monitored via the
*dynamic" specific heat during a_cooling to zero temperature at

a constant rate and a subseqguent reheating at the same rate. The

dynamic specific heat, €, is defined by

0
it

The full curves give the results of the simulations of the random
walk model, the dashed curves the EME predictions, and the dots

indicate the thermal equilibrium specific heat (Eg. (13)). The

subfigures (a) and (b) show cooling and reheating fromT=20/kB

to T=0 in the time 100/T, while (c) and (d) shows the same in

time 10,000/I;. As expected, the EME predictions work better

in the latter case.

Figure 3 shows the frozen-in energy for the cooling, i. e.,
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the energy at zero temperature, as function of the cooling rate.
Again the full curve gives the results of the simulations and the
dashed curve gives the EME prediction.

The figures 4 and 5 show the energy probability
distribution during relaxation towards thermal equilibrium,
starting in equilibrium at one temperature and suddenly changing
the temperature. In figure 4 the temperature was suddenly
lowered. Four snapshots are shown giving the simulation results
(full curve) and the EME predictions (dashed curve). The dots
indicate the equilibrium energy probability distribution which is

approached as t—-«. There is a sliding approach towards this

equilibrium distribution. This is not the case for a sudden
change from a low temperature to a higher temperature (Fig. 5).
Here a two-bump distribution occurs, a phenomenon that was
predicted within the EME some time ago [82].

In Figs. 4 and 5 what happens is that most states with

energy below a characteristic energy, E,, are frozen, while those

with E>E,; almost immediately thermalize. The energy E,, which

is marked by the vertical line, is the "demarcation energy" that
was first introduced by Arkhipov and coworkers in the theory for

excited charge carrier thermalization in amorphous semiconductors

[77]. At any time t, E,; is found by putting the EME relaxation

rate I'(E) equal to 1/t (below T is the temperature during the

relaxation process):

Ey(t) = E, - kgT 1n(Tet) . (29)
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5. THE GLASS TRANSITION ACCORDING TO THE ENERGY MASTER EQUATION

The experimental glass transition takes place when the
liquid upon cooling falls out of equilibrium because the average
relaxation time becomes large compared to the cooling time. The
same thing happens in the random walk model, as illustrated in
Fig. 2. The previous section showed that the EME gives a good
fit to the random walk model. The glass transition was studied
in the EME some time ago [44). This section reviews the findings
of Ref. 44 to discuss what to expect at the glass transition‘iﬁ
the random walk model. A closer study of the glass transition in
the random walk model is planned for another publication.

In the EME the system is completely characterized by the

energy probability distribution, P(E,t). At the glass

transitiqn temperature, 7}, P(E,t) freezes and stop changing

upon further cooling. Only in some cases is the frozen-in energy
distribution equal to the equilibrium energy probability

distribution at Tb. To understand this phenomenon it is

convenient again to refer to the demarcation energy, E,; [44].

Here, E,; acquires a meahing slightly different than in Sec. 4:

Suppose the 1liquid 1is cooled at a constant rate to zero

temperature in a time t_, starting at equilibrium at some high

temperature where the average relaxation time is much smaller

than t_ . At any time during the cooling, the demarcation eﬁergy

is the energy separating non-frozen states from the states that -
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are frozen from that time on. If tL is the time left before zero

temperature is reached, E, is given by
E (t)=E_-kgT(t)1n(Tet,) . In realistic cases the glass
transition takes place at a t; which is of the same order of

magnitude as t_ and much larger than l/F;. Since t; in the

expression for the demarcation energy enters only in a logarithm,

t, may to a good approximation be replaced by the total cooling

time, t.:

E (t) = E_~kgT(t)1n(Ty t.) . (30)

Note that E,(t) increases with time during the cooling, whereas

in Sec. 4 it decreased with time. In thermal equilibrium the

energy probability distribution is a Gaussian centered around

E( T) . As the temperature is lowered, the Gaussian is displaced

towards lower energies while at the same time Ed(t) increases.
When the Gaussian meets E4(t) the glass transition takes place
[44]. This happens when E=Ed. For the system with constant
specific heat Cka studied in Ref. 44, corresponding to

n(E)xE°c?, 0<E<®, one has E(T) =kgcT and the glass transition

temperature is given by
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E
kpT, = °_ : (31)
c + 1In(lG t,)

A linear relationship between 1/Tg and the logarithm of the

cooling time is often observed in experiment [84].
For the freezing of the energy probability distribution

there are two different scenarios, depending on the rate of

change with temperature of E, and E respectively. In the model
studied in Ref. 44 dE/dT=Ck‘19 and dE;/dT=-kgln (I‘;tc) . The case

when E,; changes much faster than E was referred to as a "slow"

)

glass transition, since it requires 1long cooling times:

In(Te t)>»c.. In this case the equilibrium Gaussian almost

doesn’'t move at all when the demarcation energy passes it and

R

freezes-in the energies. Thus, the frozen-in energy ~

distribution, P;(E), is close to that corresponding to thermal

equilibrium at T= T,:

P;(E) = ’ (32)

1 [ (E-E,)? ]
exp |-—Z—
V2n<(AE) %> 2<(AE)®

where E_=ckgT, and < (AE)2>=CI<§T;. The other limiting case is

that of a "fast" glass transition when'ln(I'; t.)«c. Here, the

demarcation energy moves very slowly compared to the Gaussian,

and is almost constant during the glass transition. To determineP.(E) .

31




consider the energy fluctuations of a single region. As long as
its energy is above the demarcation energy, the region "jumps"

many times between the high-energy common states . Sooner or

later, however, the region ends up in a state below E4, or just

above E,, being subsequently frozen when E, passes. As for all
other jumps, this last jump hits an energy with a probability
proportional to the density of states. Around E% the density of

states is proportional to exp [E/(kBTg)] , so the normalized

P.(E) is roughly given by

1 (E-E,) |
KpT, xp[ KT, ] '

Pf(E).
0 ,E)Eg .

In Ref. 44 the predicted exponential increase of Pf(E) belowE%

was confirmed in the numerical solution of the master equation;

however above Eb P.(E) was not seen to drop discontinuously to

zero, but rather to follow a Gaussian decay.
The conclusion from the above is that, in general, one

cannot expect at glass merely to have the structure of the

equilibrium ligquid at T=7;. The average frozen-in energy is
equal to the average energy of the equilibrium liquid at T,, but

the distribution of energies in the glass may be quite different
from that corresponding to the equilibrium ligquid. Any physical

property which is a function of the region energy will in the
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glass, if it depends linearly on E for the relevant energies,
depending on the cooling rate be distribuﬁed'according to a
Gaussian or an exponential. Along these lines it has been argued
that amorphous semiconductors prepared by a fast glass transition
are likely to have exponential band tails of localized states
[85] . |

It is convenient to define a number that distinguishes
between the two types of glass transitions. This number, denoted
by the greek letter iota 1, is the absolute'value‘of the ratio
between the change in the average energy and the change in the
demarcation energy at the glass transition:

dE

L= ; . 34
1 IdEd | (T,) | (34)

"Slow" glass transitions correspond to- having 1«1 while "fast"
glass transitions correspond to 1»1. . :

We now proceed to calculate the l-parameter for the random .

walk model from the approximate EME description. In the random

walk _model the average energy 1is given by Eq. (12},
E=—02/(kBT) . The equatibn determining .Tg, Ed=E,. is -

E~kpTAn(Tg t.) =-0%/ (kpT,) , or

In(Ty t.) (kgTg)? - E (kgT,) -~ @2 = 0 (35)

The positive solution of this equation is




E. + {EZ + 4021n (T} t.) (36)

KTy 2 In(T% t_) '
Since dE/dT=0?/(kgT?) and dE,/dT=-k, In(I; t,) the iota-
parameter is via Egs. (34) and (35) given by
V= o
(ky T2 In(TG t,) 37)
Ec

=1 -
(ks T,) 1n(Tq t.)

If the dimension d>2, the percolation energy E_. is negative;

thus Eg. (36) implies

o E, _ _ 2 1n(Te t,) .
kgTg o2 N (38)
Jl +4 = In(Tot) -1
Ec

When Eg. (38) is substituted into Eqg. (37) one gets

d>2: 1=1 + 2 .
2 (39
\l1+4-‘-’—1n(l‘;tc)-1 )
E:

In the case d=2 E_ is positive and it is straightforward to show

that the iota-parameter is given by

d=2: 1=1 - 2 .
2 40
1+4 < 1n(T5t) +1 (49)
Ec .

Figure 6 gives the iota-parameter as function of the cooling

times for d=2,10,100,1000.
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The terminology of Ref. 44 referring to "slow" and “faét"
glass transitions is not appropriaite for the random walk model.

For this model, as the cooling time goes to infinity, one finds

1=#1 in all dimensions; thus there are no ‘"slow" glass

transitions for slow cooling rates. On the other hand whenever d> 2
the glass transition is "fast" for sufficiently small cooling
times; the case d=2 is peculiar in that the glass transition is
"slow" for fast coolings! | In view of this it is better tvo refer
to glass transitions with 1»1 | as "reléxational" glass
transitions: These are the interesting cases where relaxation

processes right at Tg result in a frozen-in energy distribution

quite different from the equilibrium distribution. The cases
when 1«1 may be referred to as ‘'simple freezing" glass
transitions; here the equilibrium energy distribution is simply

frozen-in at Tg .

6. DISCUSSION

In this paper Bédssler’'s’ random walk model for viscous
liquids and the glass transition was re"derived" in Sec. 2. In
Secs. 3 and 4, it was argued physically and illustrated by
computer simulations that the energy master eguation (EME) gives

a good fit to the random walk model. Thereby, two at first sight
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quite different approaches to the glass transition problem, that
were proposed in the very same 1987 issue of Physical Review
Letters [44,45], are unified. The below discussion is sectioned
into parts, the first four a)-d) discuss the random walk model
and its connection to the EME, while the last four e)-h) deal
with the EME itself as a model for viscous liquids and the glass
transition.

a) The random walk model in the present paper.

The physical justification of the random energy model was
discussed in detail in Sec. 2. The most serious approximation
made [29] is the partitioning of the liquid into non-interacting
regions, an approximation that must be made to arrive at a
tractable model. Replacing the deterministic equations of
classical physics with stéchastic equations seems more
acceptable, though not without pitfalls [67,86]. A further
approximation is the replacing of "complexity" by "randomness"
[69]. This, in conjunction with the discretization of state
space lead to the model of a random walk on a lattice with random
energies. Models involving random walks in random environments
("rugged" energy landscapes) have been used in many contexts
[48,70,75,86-91], and this type of models is becoming a paradigm
for describing non-crystalline materials. In formulating a model
of this type one is lead to ask whether the energy minima or the
energy maxima should vary randomly, or both. The random walk
model gives a simple and beautiful solution to this dilemma: No
states are appointed "maxima" or ‘minima". All states are equal,
but the higher-energy states become part of the paths between the

populated, but rare, low-energy states. The aésumption of
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Gaussianly random energies is the simplest choice,'and it also
leads to an equilibrium specific heat which increases with
decreasing  temperature, as seen in experiment. The above
mentioned properties of Bdssler s random walk model indicate thaﬁ
it should be regarded as the "canonical" phenomenological model
for viscous liquids and the glass transition.

Following the ideas of Derrida’s "random energy model" [32]
it is possible to build the Kauzmann paradox into the model by
assuming that the Gaussian energy distribution is truncated at
some low energy ([92]. This, however, has not been attempﬁed
here, because such a "truncated" random walk model does not

reproduce the experimental correlation between the Kauzmann

temperature and the T, of the VFT-law Eq. (2).

The random walk model contains three parameters. There are

two scaling parameters, the width of the Gaussian O and the

microscopic time T_,. The third parameter is the dimensionless

state space dimension, d. For a qualitative discussion of the

model there is thus only'one relevant parameter, d; in this -

sense the model is also very simple.

b) A ‘comparison to the original approach of Bédssler and
coworkers.

Bissler and coworkers [45,46]) justified the Gaussian density of
states by reference to the central-limit theorem, assuming that .
the region energy is a sum of a large number of independent
contributions.} However, one might similarly argue that any
macroscopic system has a Gaussian density of states, implyiﬁg

that any such system has a specific heat varying with temperature
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as «T72, which is clearly incorrect. In the present paper the

Gaussian is 5n ad hoc assumption that is not sought justified
:ﬁeyonda the fact th;t it ’gives :a "thérmodyﬂamic“ Vaensity of
states. A further difference is that Bissler and coworkers
assumed that the density of states fluctuates in time. This
justified the use of Metropolis dynamics, since the "particle"
awaits a favorable time for jumping where the barrier to be
overcome is negligible. Here, the density of states is assumed
constant and time-independent. This difference in the two

approaches means that the present work cannot maintain the

original interpretation of the fact that Tb depends on sample

history. This fact was explained [45] as a logical consequence
of the fact that the density of states depends on preparation
conditions. Even for a constant density of states, however, does
the glass transition temperature depend on sample history, so
this is not a serious objection to the present approach.

The most elaborate version of the Bidssler model was given
in a recent paper by Arkhipov and Bédssler [53]. They distinguish
between a high-temperature regime described by the random walk
model and a low-temperature regime described by the EME. The
present work fully confirms this picture. Here, however, the
random walk model is assumed to be the underlying model at all
temperatures.

c) From the random walk model to the EME.
A number of models for the glass transition have previously
emphasized the importance of percolation [13,40,94-96), but in

different contexts than the present. At low temperatures the
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populated states of the random wélk model are rare low-energy
states, and the transitions between states far apart foliow the
optimal paths, the ones that have the lowest maximum energy. . The
distance betweeh two low-energy states is large and the maximum
- barrier of an optimal path is the percolation energy defined in
terms of the site percolation threshold (Eq. (14)). 1In effect,
the random walk moael is at 1low temperatures regarded as
consisting of states (=the deep minima) separated by barriers of
the same height. The random walk model effectively reduces to a
model of the “"trapping" type (used, e. g., in the aescription.of
the trapping of -electrons iﬁ amorphous semiconductors).
Interestingly, it has previously been noted that the predictions
~of the trapping type random walk models are almost
indistinguishable from the predictions of the EME [97,98].

The percolation energy makes it possible to distinguish two

temperature regimes for the random walk model, a high-temperature

regime opposed to the low-temperature regime where E(T)((Ec'.

In the high-temperature regime the most likely states usually
have one or more neighbors with a lowef energy and these states
thus have a very short "lifetime". 1In the low—temperature.regime
typical populated states are surrounded by states all of which
have a higher energy. Only well into the low-temperature regimé

does the approximate EME description apply. This picture, which
applies only for d>2 (for d=2 there is no high-temperature

regime), is close to that recently advocated in general terms by
Hunt [13,95]. He predicts that viscous liquids have a high-

temperature regime described by effective-medium type theories
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and a low-temperature regime where percolation effects dominate.
A two regimérpicture also comes out of the mode-coupling theory
[26), but in a different context.

The low-energy states could be thought of as éffectively
including a number of relatively low-energy neighboring states,
thus forming rather complex low energy "basins" in agreement with
the ideas of Stillinger and Weber [63,64] and Angell ([11,30].
The complexity of the basins implies that considerable entropy
resides inside each basin [11,93]. Note that this picture of
complex minima deri&es from a model where neighboring energies
are completely uncorrelated.

A transition between two low-energy states is a complex
sequence of steps. Such a transition involves an elemeht of
cooperativitj [8,29] in the sense that an optimal sequence of
events have to be successfully traversed in order to have a
transition. Thus, at low temperatures the random walk model
contains both cooperativity and heterogeneity, the two factors
identified by Scherer [29] as being important for any realistic
model of viscous liguids. The random walk model also conforms to
the thoughts of Goldstein in 1969, expressing a firm belief that,
"when all is said and done, the existence of potential energy
barriers large compared to the thermal energy are intrinsic to
the occurrence of the glassy state, and dominate flow, at least
at low temperatures" [42].

The approximate EME description of the random walk model

ignores the spatial structure of the state space, the only trace

left being the d-dependence of the percolation energy. In the

limit of large d this is not unrealistic, since there are many
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deep energy minima available not too far from a given minimum.
Consequently, transitions to all states were allowed with equal
probability in the EME.

d) Computer simulations: Comparing the random walk model to the
EME predictions.

The approximate EME description makes it possible to find the
predictions of the random walk model for realistic long'times.
This involves a numerical implementation of the analytic EME
solutipn valid for the approach to thermal 'equilibr,ium at a fixed
temperature (Appendix). .In order to check the validity of the
EME approximation computer simulations were carried out (Sec. 4).

The EME is expected only to be valid in many dimensions at low

temperatures and long times, a regime that unfortunately cannot -

be studied by even the fastest computers because of two pfoblems;

At low temperatures the most likely states are very rare so ~
enormous lattices are needed; also the relaxation times are -

extremely long. Instead, the simulations were carried out in two =

diménsions only and at modérate temperatures. Despite this, the
computér simulations revealed a rather good agreement with the
EME predictions. A numerical study of thermalization in the
random walk model was previgusly performed by Bdadssler and
coworkers, starting in equilibrium at infinite temperature [99].
In Figs. 4 and 5 of the present paper, the thermalization was
studied going from oﬁg finite to another finite temperature. A
surprising thing happens in the more exotic case goihg from a low
to a high temperature (Fig. 5) where a two-bump”structure apﬁears
at intermediate times, a phenomenon that is reproduced by the

EME. Thus, if the random walk model is realistic, one may induce
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a "dynamically geénerated phase separation" in a glass by the
following procedure: Anneal the glass for a very long time at a
relatively low temperature to approach equilibrium, then increase
the temperature and finally quench the glass after the right
amount of time in order ﬁo catch the glass 1in a state
corresponding to Fig. 5c.

The rest of this section deals with the on its own right.
e) The EME as the simplest possible truly cooperative master
equation, "derived" from the non-Arrhenius temperature dependence
of the average relaxation time.

Since most simple models involving a distribution of energy
barriers give an average relaxation time 1.'( ZI) with an apparent
activation energy that decreases with decreasing temperature, the

observed non-Arrhenius 1( T) must contain an important clue to

the construction of a phenomenological model. Assuming that the

activation entropy plays little role we write

AE(T)
kT (41)

= (T) = t, e .

(o]

Experiments imply that AE(T) increases as the temperature
decreases. The simplest way to explain this is as follows:
AE(T) is the difference between the barrier to be overcome and

the most likely region energy. If a region contains many

molecules ("cooperativity") the most likely energy is by general

thermodynamic principles close to the average energy E(T). 1f

furthermore the barrier is assumed to be constant, =Ec, one has
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- E(T) . | (42)

In the random walk model one thus finds AE(T)=E_+02%/(kgT),
leading to (T =1, explo?/(k,T)2+E, /(kyT)] - a minox

modification of Bidssler’s expression (Eg. (3)). SinceE(T)

decreases with decreasing temperature the barrier increases.
This simple idea is the physical backgfound for the EME: Eq.
(42) motivates Eg. (15) and to derive the EME one just needs the
further assumption - again the simplest possible - that, once
excited into the transition state, a region may end up in any
randomly chosen other state. This assumption means that an
excitation must be a complete reordering of the region molecules,
and thus the EME is truly éooperative.

f) The EME as the simplest master eqguation conforming to the
Goldstein-Brawer picture (Fig. 1).

In an interesting paper from 1972 [39] Goldstein proposed a
picture of viscous flow where the transition state is the "high-
temperature, more-fluid, ;iquid usually studied by theorists".
Once excited into this common transition state - being totally
different from the potential energy minimum which the region was.
excited from - the only reasonable assumption is that any other
lower energy state can be reached. In the EME these other states
are all reached with equal probability. Thus, from Goldstein'’s
ideas [39,42] one is lead almost automatically to the EME.
Goldstein, however, did not formulate any master equatioh; a
master equation in the spirit of his ideas was fi;st set up by

Brawer in 1984 [8,43]. His model is more detailed than
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Goldstein’s and the master equation is therefore also more

complex than the EME. 1In the 1985 version of Brawer’'s model [8]
a region has K volume elements, each of which has two states: a

low-density (and high-energy) state and a high-density (and low-

energy) state. The energy is a function of the average region
density. If a certain fraction of the K volume elements are

excited into the low-density state, a transition is allowed. 1In
the model a transition is not just a simple jump, but a complex
sequence of successful density changes involving a number of the
volume elements, somewhat like a transition between two low-
energy states in the random walk model.

g) The EME interpretation versus the standard interpretation of
the activation energy.

Figure 7 sketches typical experimental results for the average
relaxation time using an Arrhenius plot (full curves): There is
a non-Arrhenius high-temperature regime for the equilibrium
viscous 1liquid and an Arrhenius low-temperature regime (the
glass). In the standard interpretation (Fig. 7a) the activation
energy is the slope of the tangent (dashed line), which changes

abruptly at the glass transition. The abrupt change is explained

as being due to the fact that below Tb relaxation takes place in

an essentially fixed structure, while above 7} the activation

energy has an additional contribution from structural changes.
Figure 7b gives the EME interpretation of data which follows

directly from Egs. (41) and (42). Here, the activation energy is

the slope of the secant from T(T) to T,. Thus, at T=T, the

activation energy simply stops changing, because glassy
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relaxation takes place in an essentially fixed structure.

h) A qualitative comparison of the EME and experiments.

'The random walk model has been quantitatively_ successfully
compared to experiments on a number of glass fc_orming liquids
[45,46,53]. We here proceed to argue that the EME itself,
despite being very simplé, qualitatively‘ reproduces a large
number of experimental observations, yields éomé new predictions,
and also some "wrong" predictions. Most of the properties of the
EME listed below will not be detailed here, but are
straightforward to derive [82].

A. Qualitatively correct predictions of the EME:

1) The EME gives a qualitatively correct [8,43] temperature-

dependence of the average relaxation time above and belong

(Fig. 7);
2) The preexponential of t( T) for glassy relaxation is predicted

to be close T,, i.e., a phonon time [8,43];

3) A true Arrhenius behavior of ‘r(T) implies a zero region'
specific heat and thus no distributions of relaxation times
[7,5’1,1001 . If the region size is universal, as conjectured by -
Nemilov [101,102]), there is a correlation between the magnitude
of the ‘'excess" spec{fic heat (vt;.hé configurational specific
heat), the degree of non-Arrhenius behavior of 1(T) and the
relaxation time distribution width [7,103,104);

4) If the region specific heat is regafded as roughly constant

close to Tg, the EME predicts a proportionality between 1/ Tg and

the logarithm of the cooling time [84,105];




5) In thergléééy state energy relaxation proceeds accordihg to
the EME with a logarithmic time dependence (compare Eq. (29)),
"ln(t)-kinetiés“ [81,106,107], with a slower than logarithmic
time dependence at both the initial and final stages. The
logarithmic relaxation law is conventionally explained as being
due to a ‘"relaxation" of the relaxation rate itself
[8,29,43,81,82,108), and the EME fully conforms to this picture.
6) For relaxation upon a sudden change in temperature an
asymmetry isibredicted between the two possible cases, a Qell-
known phenomenon referred to as "nonlinearity" [8,29];

7) If one assumes a correlation between the region energy and its
volume, which is necessary because the viscous liquid has a
larger therm&i expansion coefficient than the glass or crystal,

the EME also gives predictions regarding the pressure dependence
of the average relaxation time. Wwritingt(p) = exp [p AU D]

experiments imply that the activation volume increases as the

pressure increases [109]). If AV(p)=Vc-'X7(p) just as for the

activation energy this observation is explained, since the region
average volume must decrease with increasing pressure. Assuming
a linear relation between region volume and energy, the
normalized frequency-dependent isothermal compressibility must be
equal to the normalized frequency-dependent specific heat, as
predicted by Zwanzig [110]; there are some indications that this
is obeyed in experiment [111]. Furthermore, for quantities
uncorrelated with the region energy, it can be shown that the EME
predicts a slight "decoupling" of their average relaxation time

from that of the frequency-dependent specific heat, where the
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average .relaxation time for the latter becomes somewhat larger
(Fig. 8). This is also the case experimentally {[111].

B. New predictions of the EME:

1) At low temperatures the average relaxation time of the

equilibrium viscous liquid is predicted to become Arrhenius with

a preexponential equal to T, (of order 1 ps). Thus a change in

sign of the curvature of the Arrhenius-plotd?1ln(t(T)]/d(T™1)?2

is predicted. Similarly, a change in sign ofd?1ln([t(p)]/dp?

at large pressure is predicted: This follows from the fact that

a region must have a lowest energy state or a minimum volume.

Such behavior has never been observed, although close to Tg the

average relaxation time does become "Arrhenius", i.e., a straight
line in the Arrhenius plot; -

2\) The EME gives detailed predictions regarding the nature of the
asymmetry of relaxation upon sudden changes in temperature: For
a sudden cooling from thermal equ.ilibrium relaxation is predicted
to proceed. cé:ntinuously (Fig. 4), while relaxatipn upon a sudden
increase in temperature. is peculiar, resulting in a two—bﬁmp
energy probability distribution at intermediate times (Fig. 5).
In the latter case, if the relaxation is interrupted by quenching
to low temperatures, onehends up with a strange glass in which
some regions -have low energy and some have high eneérgy, a
*dynamically generated phase separation". Because of the energy-
volume_.- correlation such ‘a glass would give an anomalous X-ray
scattering signal. Nemilov has predicted a similar phenomenén on
purely thermodynamic grounds [112];

3)‘ The EME predicts that there are two different glass
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transitions, ‘"relaxational" (previously called “fast") glass
transitions and ‘simple freezing" (previously called "slow")

glass transitions. The latter type freezes-in the region energy

probability distribution at I} and the glass simply inherits the

structure of the equilibrium liquid at this temperature. At a

"*relaxational" glass transition, relaxation processes right at?}

result in an frozen-in region energy distribution quite different
from the equilibrium distribution. (Of course, glasses may be
produced by a third kind of process, a “quench" to low
temperatures in a time much shorter than the average relaxation
time at the starting temperature - this process clearly results
in a frozen-in region energy distribution that is equal to the
equilibrium distribution at the starting temperature.)

C. ‘“Wrong" predictions of the EME:

1) The Vogel-Fulcher law Eg. (2) is inconsistent with the EME
which predicts a finite average relaxation time at all
temperatures. Experimentally, however, deviations from this law
occur for large viscosities where the date always exhibit a less
dramatic temperature-dependence than predicted [20,29,51];

2) The Kauzmann paradox is also inconsistent with the EME which
at all temperatures predicts a positive specific heat and thus no
singularity. However, a suitably chosen region density of states
(e.g., a truncated Gaussian [32,92]) easily reproduces the

experimental configurational entropy:;
3) The phenomenon P-relaxation is not predicted by the EME;

4) The Kohlrausch-Williams-Watts law (stretched exponentials) for

the time-dependence of the energy relaxation is not féproduced,by
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the model. However, the EME does predict broad distributions of
relaxation times. -

.These four points are places where the EME on the one hand
does not reproduce the conventional picture of viscous -liquids
and glassy relaxation, but on the other hand is not inconsistent
with experiment. The final point to be mentioned here is a more

serious objection to the EME: If the correct non-Arrhenius

behavior of T(I) is to be reproduced by choosing a suitable

n(E) (possibly a non-Gaussian), the model predicts a peak of the

imaginary part of the linear frequency-dependent specific heat
[113] that is too broad. This conclusion seems to hold, despité
the fact that only few measurements of this quantity havé been
published and that there is a considerable diéagreement between
the results of Christensen [114] and those of Birge and Nagel
-[115]). This disagreement between the EME and experiment means
that the EME is too simple to be realistic. Preliminary work
[116]) indicates that it is poséible solve this problem and still-
retain the region assumption and the assumption that the only
important parameter is the region energy. This is done by the
following extension of the EME. One introduces two densities of
states, one numbering the minima and gnother essentially giving
the entropy of each minimum. Thus, each minimum is a cluster of

states that may be reached from each other by not exciting all

the way to the energy E_, [117]. Besides giving greater

flexibility to the EME-model, making it able to fit. the

frequency-dependent specific heat experiments, this approach also

allows for the existence of [-relaxation as " the process
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associated with inter-minima transitions {117].

7. CONCLUSIONS

A ‘'"derivation" of Bidssler’s random walk model has been
sketched, which emphasizes the potential importance of this model
as a "canonical" or prototype phenomenological model for viscous
liquids and the glass transition. The random walk model views
relaxation as a consequence of activated transport within a
multidimensional configuration space wirth a rugged energy
la;xdscaper. It is probably the simplest model of this type. The
*derivation" of Sec. 2 traces the random walk model back to
Newton’'s equations for the molecules of one liquid region.
However, the "derivation" is in no way exact, which is clear just
from the fact that the crystalline state of much lower energy
than the supercooled liquid states is absent from the model.

It has been shown that the EME gives a good approximate
description of the energy fluctuations of the random walk model.
The EME is solvable by a combination of analytical and numerical
techniques (Appendix). This makes it possible to predict the
behavior of the random walk model for an arbitrary temperature
time wvariation at very 1long times. Independently of its
justification from the random walk model, the EME may have a
value of its own as a phenomenological model for viscous liquids

and the glass transition. It incorporates true cooperativity and

50



is consistent with statistical mechanics, while still being
simple and solvable for realistic laboratory time scales. It is
noteworthy that even such a simple model 1leads to new
éredictions, like that there are two different types of glass
transitions or that a well-annealed glass upon heating gives an
anomalously large X-ray scattering at intermediate times before

eduilibrium is reached.
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APPENDIX: SOLVING THE ENERGY MASTER EQUATION

We first caléulate how an initial non-equilibrium energy
probability distribution at a fixed temperature converges to the
canonical equilibrium distribution [43,79-82]. Working with the '

discrete version of the master equation, the Laplace transform of

the function P,(t) appearing in Eq. (26), 131.(5) , is as usual
defined [82] by

B, (s) = (R AR (A.1)

Since the Laplace transform of the time derivative of a function

f(t) is sF(s)-f(0), Eq. (26) becomes upon Laplace transforming

Sﬁi(s)- Pi(O) = —I‘i 131(5) +ni X(S) ’ (A'Z)

N
where X(s) =Z Fjﬁj(s) . These equations determine 131(8) from
= :

a knowledge of the initial probabilities, P;(0). The

probabilities at a later time are then calculated by the inverse

Laplace transformation [82],

+Jeo
1 P
P = = DP,(s)eStds . (A.3)
1(t) 2mi _-L 1(8) -

Isolating 131(5) from Eq. (A.2) leads to




B,(s) = py(0)  ny

X(s) . (A.4)
s+I; s+I; (s)

From this expression an equation for X(s) is found by

multiplying with I‘i on each side and summing, leading to

X I'.p, (0
X(s) =;___i_(_) X(s) ;‘: , (A.5)
S W Ly :
or
Y TP, (0)
= s+I;
X(s) = . (A.6)
~ 1l
1 -—
X 5T,
N
Since n;=1 (Eq. (25)) the denominator may be rewritten
=1
N N
-y n;(Li+s-s) _ ni (A.7)
=1 = s+T;

When substituted into Egs. (A.6) and (A.4) this gives (changing

the summation index from I to Jj)

Y, I';P,;(0)
_ P;(0) n, § s+T;
B,(s) = T, + ST+ T . (A.8)

;;1 s+

From Eq. (A.8) P,(t) may be calculated via Eg. (A.3), where the

integration contour in the complex plane lies to the right of all

poles of P'i(s) . The integral is evaluated by including an
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infinitely large semicircle surrounding the left half-plane of

the complex plane. This closes the integration contour and the
residue theorem may be applied. There are N poles for eachlil

which , due to the structure of the energy master equation, are

the same for all f&(s) (i=1,..,N) . There is one pole at S=0.

The apparent singularities at s=-Iy, however, are all

“removable", i.e., not real singularities. If j=i this follows

from the fact that

1ims_,_rj (S+I‘i)pi(s)
' (A.9)
n I'.P,(0)
= P.(0)+ i iF1 =0 ,
1 ) (—I‘i) ni '
while for j#i_it follows from
) - I',P,(0) '
lim, p (s+T;)B;(s) = 0 + o131 - =0 . (a.10)

=
Besides the §=0 pole there are poles whenever S obeys

N ' :
;, n.;‘ =0 . (A.11)

This equation has N-1 solutions, each of which is a negative

real number. The solutions are cohveniently denoted bys=-w,
and numbered such that
Pk < wk < I‘k+1 (k=1, [} lN—l) . (Atlz)

The 's are defined by
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Il .
;: i_ =0 (k=1,..,N-1) . (a.13)
=1

We next proceed to find the residues. At the pole §=0 the

residue is given by

N
n
j,_\jpj(o) T
lim,_, s B,(s) =0 + & 1= = i, (a.19)
Iy &n Y n
3 J
=T = I

Since the quantity n,/I'; « n, exp(-BE,) is proportional to the

canonical equilibrium probability for the system being in state
i, the pole at 8=0 is simply the normalized equilibrium

probability, P, 4:

lim,_, sB;(s) = P, ; . (A.15)

B"O

Using the rule that the residue of a function of the form

£(z)/g(z) at a simple zero for g(z) at z=z_ is f(z,)/g'(z,) .

one finds for the residues at S=-W,

. P,(0)
lim, ., (s+w,) P, (s) = Ori_mk
I,P,(0)
ny I‘ W,
A.l6
" T Mo & (-mp) Ao
=1 (I‘j_mk)z

ny
_ A
mk(ri-wk) k

where
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Y, T';p;(0)

= T.-w
A = 21X (k=1,..,N-1) . (A.17)
Y
=1 (rj—wk)z

Having determined the residues the integral Eg. (A.3) is now

easily calculated by the residue theorem:

N-1

n.
P,(t) = + Yy == A, e °x | (A.18)
* o1 £ 0, (Ti-0y) k

Clearly, the solution converges to the equilibrium solution as

ol The w,’'s play the role of characteristic relaxation

rates. Note that conservation of probability is ensured at all
times by virtue of Eg. (A.13).
The equations (A.13), (A.17) and (A.18) give the solution

of the energy'master equation at a fixed temperature. In the
numerical implementation the W 's are determined from Eq. (A.13)

by the bisection method. Depending on the numerical precision

large numerical errors may arise from the term 1/(I}r1ok) in Egs.
(A.17) and (A.18) at low energies where W, is extremely close to

Pk; in this case one may use Eq. (A.13) to approximate as follows

N
1 «-1 - B (A.19)
Lo, P P APl )

Another problem that may arise is overflow. In the present work
both these numerical problems were avoided by using the 80 bit
floating point "extended" data type of Turbo Pascal that utilizes

a remarkable capacity of the 486 Intel processor. If this
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possibility is not available, overflow problems may be avoided by

the following procedure: The numbers Pj,Pj(O) ,nj,l‘ , W, are

each represented by their logarithm. Each sum appearing in Egs.
(A.13), (A.17) and (A.18) is evaluated by first identifying the
leading term and then factorizing it. There remains a sum of
terms less than one, each term being a product which is evaluated
as, e.g., ab=exp[ln(a) +1n(b)].

The master equation may be solved accurately numerically at
arbitrary long times at a fixed temperature. If the temperature
changes in time, the above method is applied for time steps small
enough that the témperature may be considered constant. In the

solutions of the master equation plotted in Figs. 2-5 the energy

axis was discretized into energies spaced 0.10 apart spanning

an energy interval of 10 O, suitably placed on the energy axis

depending on the problem. The solutions plotted in Fig. 2 were
obtained from 200 time steps where the temperature is changed in

each step. In two dimensions the percolation energy (Eg. (14))

is given by E_=0.23450.
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FIGURE CAPTIONS

PFig. 1: The Goldstein-Brawer picture of a "flow-event"lin a
viscous liquid [8,39,43]. The‘figure illustrates the excitation
from one "state", i. e., a potential energy minimum for the
molecules in a region of the 1liquid, to another state, the
vertical axis being the energy axis. In Goldstein’s model the
transition state (black) is identified with ﬁhe high-temperature,
more-£fluid, liquid [39]); Brawer identifies it with a low-density
state giving room for the molecules to rearrange [(8,43). In the
‘ approximate energy master equation (EME) description of Bissler’s
random walk model, the energy of the transition state is
identified with the energy at the percolation threshold (Eqg.
(14)). The Goldstein-Brawer picture leads directly to the EME
(Eq. (23)) if it 1is ‘assumed that, once‘.excited into the :
transition state, the region has forgotten which state it came .
from and ends up iﬁ a randomly chosen state.

Fig. 2: The glass transition in the random walk model in two
dimensions (full curves) monitored via the specific heat during
a cooling at constant rate to’ zero temperature, and the
subsequent "melting" uponlreheating at the same rate. The dashed
curves give the EME predictions, and the dots mark the thefmal
equilibrium specific heat (Eq. (13)). (a) shows the specific

heat [kg] as function of temperature T [O/kB] for cooling in

the time t=100 [1/Po] starting frbm equilibrium at T=2 ;. (b)

gives the reheating data. The subfigures (c¢) and (d) are similar




but with cooling and reheating time t=10000. The random walk

model data were obtained by averaging over 10 simulations of a
SOXEO:lattice. The EME was sorlrvéfd by the method detailed 1n the
Appendix. Clearly, the EME works better for the slower cooling

rate.

Fig. 3: The average frozen-in energy [0] at zero temperature
as function of the logarithm (base 10) of the cooling time

[1/T,] for coolings starting from equilibrium at T=2 [0/ kg].

The full curve gives the results from simulations of the random
walk model (10 averages of a 50X50 lattice), and the dashed curve

gives the EME predictions which are best at long cooling times.

FPig. 4: Relaxation towards thermal equilibrium of the energy
probability distribution, P(E, t), upon a sudden lowering of the
temperature starting at equilibrium. The figure shows 4

snapshots of P(E, t) (full curves: simulations of the random walk
model, dashed curves: the EME predictions) starting atT=2

[of kgl lowering the temperature at t=0 to T=0.357 at the
following times [l/Po]: (a) t=5, (b) t=184, (c) t=5953, (d4)
t=80752. The vertical line marks the “demarcation energy"E,

defined at time t in the EME by Eq. (29). In the approximate

EME description most states with E<E,; have not jumped since

t=0. As t-« E +-o and thermal equilibrium is reached. For
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- the subfigures (a)—(c) the full curves give results for averages
of 10 simulations of a 1000X1000 lattice, while for (d) only one

simulation was possible.

Fig. 5: Relaxation towards thermal equilibrium of the energy
probability distribution, P(E, t), upon a sudden raising of the
temperature starting at equilibrium. The figure shows 4

snapshots of P(E, t) (full curves: simulations of the random walk
model, dashed curves: the EME predictions) starting atT=0.25

[O/kB] at time t=0 and subsequently annealing at the

temperature T=1.0. The snapshots are taken at the (following

times [1/T,1: (a) t=2, (b) t=8, (c) t=25, (d) t=126. The
vertical line marks the "demarcation energy" E, defined at timet

in the EME by Eq. (29). In the approximate EME description most -

states with E<E, have not jumped since t=0. As t=e E ~-® and=

thermal equilibrium is reached. The full curves give results for
averages of 20 simulations of a lOOOXlVOOO lattice. In Figs. 4 and
5 very large .lattices are needed to minimize the statistical
fluctuations and to be able to move deep into the Gaussian tail.
The noise seen at low energies is statistical noise due to the
fact that there are very few states in the deep Gaussian tail.
'i‘he two-bump distribution that appears at intermediate times
during the annealing reflects that, once a populated state has
jumped away from its low energy, it ﬁlmost immediétely
thermalizes. This is because there are many high energy states

which are easy to find. Since the region energy correlates with
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the volume (the liquids has a thermal expansion coefficient which
isrlarger than that of the glass), the model predicts that there
is %ﬁ,anomalously large x-ray;$cattering at the intermediate

times during the annealing, corresponding to subfigure (c).

Pig. 6: The iota-parameter 1 (Egs. (39) and (40))

characterizing the glass transition in the random walk model for

different dimensions (d=2,10,100,1000) as function of cooling
time according to the EME. If 1€l the transition is a “simple
freezing" glass transition, where the energy probability

distribution of the glass is the equilibrium distribution atlb

frozen-in almost unmodified. In the other 1limit, 1»1, the

transition is a ‘'relaxational" glass transition, where
relaxations right at the transition considerably deforms the
equilibrium energy probability; as a result the glass does not

acquire a structure corresponding to the equilibrium liquid at

Tg. As t—-o one ends up in the mixed case 1=1 where there is
some relaxation at Tg. The difference between d=2 andd>2

arises from the fact that only in two dimensions is the

percolation energy positive.

Pig. 7: Standard interpretation of the activation energy (a)
compared to the interpretation underlying the random walk model
and the EME (b). Both figures show an Arrhenius plot of the same

typical average relaxation time data for the supercooled liquid

(non-Arrhenius part, T>7}) and for the glass (Arrhenius part,
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T<I}); In the Fig. 7a the activation energy is the slope of the

tangent, which changes discontinuously at Tb. In Fig. 7b the

activation energy is instead the slope of the secant drawn to the
microscopic time. In both cases one also finds that the
activation energy increases as the temperature decreases; but in
(b) what happens at the glass transition is simply that the

activation energy stops increasing and becomes constant.

Fig. 8: Decoupling of thermal relaxation times from other

relaxation times accordiﬁg to the EME.(putting here E_=0). The

full curve gives the loss peak frequency calculated from the
auto-correlation function for a quantity that is uncorrelated to
the energy. The dashed curve is the specific heat loss peak
frequency [113,116]. The figure shows that there is a slight
slowing down of thermal relaxation compared to other relaxations,"

an effect that has been seen in experiment [111]. . -
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