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Abstract

This book gives a self-contained account of the synthetic and an-
alytic developments of basic projective geometry. A chapter on ele-
mentary group theory provides the necessary background to study the
interplay of projectivities and collineations with the geometry of the
projective line and plane. A chapter on division rings and related ring
theory provides the background for generalizing our analytic develop-
ment over the field of real numbers to division rings, and then to co-
ordinatize the svnthetic projective plane having Desargues’ Theorem.
One theme of this text is the equivalence of geometric axioms for affine
and projective planes with algebraic axioms for the corresponding au-
tomorphism groups or division ring coordinates.

This is a draft of a forthcoming volume intended for undergraduates
who have a background in linear algebra and the calculus of several
variables and wish to major in mathematics. The volume is intended
for a one-semester geometry course, which will serve as an effective
complement and motivation for a course in modern algebra (on groups.
rings and fields). The book is composed of 11 chapters. 97 figures
and 162 exercises. A set of four appendices on additional topics is
designed to provide students with further reading for independent study
or accredited projects in geometry.

© 1994 by Lars Kadison. All rights reserved. This book may not be reproduced or
distributed in any form or by any means, without the prior written permission of
Lars Kadison.

This book was set in Computer Modern, using AAS-IATEX. Figures were pro-
grammed in PostScript, using psMath, a PostScript library developed by M.T.
Kromann.



Preface I
Preface

In this book we study the synthetic and analytic aspects of ba-
sic projective geometry. On the one hand, we develop a postulational
system, beginning with only four postulates. One of these is a par-
ticular departure from Euclid’s parallel postulate: two distinct lines of
a projective plane are assumed to always meet in one point. On the -
other hand we introduce and study our basic example, the real pro-
jective plane. The real projective plane is approached in either of two
equivalent ways. First, it is an extension by ideal points and the line-at-
infinity of the Euclidean plane. Second, it is a system of homogeneous
points, in which lines and higher degree algebraic curves, such as

X"+Y" =27, n >3,

intersect in the “right” number of points (see Bezout’s Theorem, ap-
pendix B).

In chapters 3, 5 and 6, we develop the analytic theorv of the real
projective plane. We prove Desargues’ Theorem and Fano's Theorem
by direct computation with homogeneous coordinates.. Then we prove
the Fundamental Theorem (FT) of one-dimensional projectivity by us-
ing linear fractional transformations. At the same time, we develop the
synthetic theory by the addition of three axioms, which correspond to
the three major theorems above: their statements are added as axioms
since they cannot be-proven by synthetic means. As axioms are added,
we define and study complete quadrangles. harmonic points, projec-
tivities, cross ratio, projective collineation and Pappus’ configuration
in chapters 5 and 6. Early in chapter 3, we establish the Principle of
Duality, which will imply that our theory correctly dualizes to a the-
ory of complete quadrilaterals, harmonic lines, etc. The dualization is
obtained very simply by exchanging pairs of words in definitions and
propositions: “point” and “line,” “on” and “through,” “collinear” and
“concurrent.” The Principle of Duality has been a marvel to new gen-
erations of mathematicians since its discovery in the early 19th century.

In chapter 8 we leave the analytic development of the projective
plane over the real numbers, and go to a greater generality — viz.,
projective planes over division rings. Having introduced division rings,
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fields, and many examples in the previous chapter, we replace the reals
with division ring elements in the homogeneous coordinate model. It
is at this stage that the reader will be enlightened to the meaning of
the somewhat exotic examples of the synthetic theory, the finite pro-
jectve planes: they are but projective planes over finite fields. Armed
with many new examples of projective planes, we then establish the
independence of the axioms of Desargues, Fano and FT — and a useful
redundancy in one case — with the help of quaternions and a skew field
of characteristic two. Pappus’ Theorem is shown to be equivalent to
commutativity of multiplication in the underlying division ring; Fano’s
Axiom to 1 + 1 # 0 in the symbols of division ring theory. Desar-
gues’ Theorem is shown to be valid in projective planes over division
rings. In chapter 9, the converse is established: a Desarguesian plane
is isomorphic to a projective plane over a division ring.

Throughout the book, a good deal of attention is focussed on the
automorphism groups of projective and affine planes. For the projec-
tive planes of order p, these are finite groups of order p*(p® — 1)(p* — 1).
For the projective plane over the reals, these are continuous groups of
3 x 3 nonsingular matrices of reals up to a scalar multiple: their geo-
metric classification into elations, homologies, etc.. leads us in chapter
11 to some interesting corollaries in linear algebra. In order to bet-
ter study these and other automorphism groups, we have provided in
chapter 4 the basics of group theory with many exercises. In chapter
8, we prove a fundamental theorem about the automorphism group of
a Desarguesian plane: it is generated by two subgroups. a subgroup
of linear automorphisms and a subgroup of automorphisms fixing four
points in general position. In a later chapter, we show the former sub-
group is generated by elations and homologies, which correspond to
translations and central dilatations (homotheties) of the affine plane,
y- The latter subgroup is isomorphic to the group of divi-
sion ring automorphisms. In chapter 9, we apply our knowledge of the
dilatation gronp of a Desarguesian plane in defining the operations of
addition and multiplication on the points of an arbitrary line — and
proving that these form a division ring. In chapter 11, the group of
linear automorphisms is shown to be identical with the group of pro-
jective collineations: then we apply that to prove Ceva’s Theorem in
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advanced Euclidean geometry.

This is a draft of a forthcoming volume. In writing this book, we
intended it to serve the student as a self-contained textbook for an
undergraduate course. However, it is equally suitable to the general
reader with a background in linear algebra and the calculus of several
variables. Our book does not presuppose any background in abstract
algebra. On the contrary, it is intended to provide both background
and motivation for a later study of groups, rings and fields. Based on
several experiences giving a university course on roughly the contents of
this book, we found that the students absorbed the necessary abstract
algebra with alacrity.

There are four appendices on additional topics: conics, algebraic
curves and Bezout’s Theorem, elliptic geometry and ternary rings.
They are partly intended to develop several themes in the book. For
the most part though, they are intended to lead the reader through
some independent study among the references, or to lead the student
through an accredited project. Each appendix proposes a central prob-
lem that the reader may take up on his own, or'pursue in the literature
of algebraic geometry, metric geometry or foundations of geometry.

The authors

Roskilde, Denmark
September 13, 1994

Acknowledgements. We thank R. Hartshorne. J. Gonzalo and B. Boofl-Bavnbek
for helpful discussions about our book.
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Historical Foreword

The motivation for the modern theory of projective geometry came
from the fine arts. By 1300 artists like Duccio and Giotto were no
longer content with the highly stylized medieval art and sought to re-
vive Graeco-Roman standards: they made the first experiments in fore-
shortening and the use of converging lines to give an impression of depth
in a scene painting. Their intuitive theory of perspective culminated in
the work of Lorenzetti in the 1340’s.

Figure 0.1. Drawing from Jan Vredeman de Vries, “Perspective” (1604).

At this stage, further progress in the realistic representation of
three-dimensional scenes on a two-dimensional canvas had to await
the development of a mathematical theory of perspective. - The Ital-
ian painter and architect Brunelleschi was teaching such a theory in
1425. In 1435, L. B. Alberti had written the first treatise of perspec-
tive. Later, the gifted mathematician and painter Piero della Francesca
(c. 1418-1492) considerately extended the work of Alberti. Still later,
both Leonardo da Vinci (1452-1519) and Albrecht Diirer (1471-1528)
wrote treatises which not only presented the mathematical theory of
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perspective but insisted on its fundamental importance in all of paint-
ing.

In a separate development pre-dating the theory of perspective by a
couple of millenia, Appollonius, Archimedes, Euclid and Menaechmus,
in the period from 400 until 200 B.C., had introduced and studied the
subject of conics. However, the first truly projective theorems were
discovered by Pappus in Alexandria around 250 A.D. (see chapter 6)
and proven by him using complicated Euclidean argumentation.

The German astronomer Johann Kepler (1571-1630) elevated the
ellipse of Apollonius to center stage in scientific history with his first law
of planetary motion. In 1639 the sixteen vear old Blaise Pascal wrote
Essai pour les Coniques', in which he deduced 400 propositions on
conics, including the work of Appollonius and others, from the theorem
that now bears his name.

The proof of Pascal's Theorem used the method of projection,
which he had learnt from Girard Desargues (1591-1661). The architect
and gifted mathematician Desargues added a great body of work to
projective geometry, including his two truly great theorems (in chapter
3 and appendix A). His work was not well received in his lifetime. which
perhaps was due to his obscure style: of seventy terms he introduced.
but one (involution) survives today. However. E.T. Bell, in his unfor-
gettable biographical style, notes the following irony of history and the
passage of time: Bell traces the mathematics of Einstein’s general the-
ory of relativity back to Desargues [Bell, p. 213], who was unknown to
Isaac Newton (1642-1728).

Newtonian mechanics and calculus had dominated mathematics,
physics and philosophy for a century, when a young engineering officer
J. V. Poncelet (1788-1867) was facing internment in a prisoner-of-war
camp for prisoners taken from Napoleon’s Grand Army. He had a
solid education in geometry from Monge and the elder Carnot, and
set about trying to recall what he had learnt from them. Finding
that he could recreate the general principles but could not recall the
barren details of the eighteenth century masters, he proceeded to invent
projective geometry as we know it today. Among many things, he

INow lost but apparently Leibniz had read it.
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is the first to have applied the principle of duality in a treatise on
projective geometry: his habit of writing about projective geometry in
two columned pages, one column for the new theory, the other for its
dual, continued into the twentieth century. '

Projective geometry came into its.own as a research field of math-
ematics after the publication of Poncelet’s work. K. G. C. von Staudt
(1798-1867) studied conics. polarities and emancipated the ideal points
from their special status. The Swiss Jakob Steiner (1796-1863) studied
conics from the point of view of one-dimensional projectivities. The
French M. Chasles (1793-1880) discovered facts about cross ratio and
conics, facts like those of von ‘Staudt and Steiner which had escaped
men for close to two thousand vears. Arthur Caylev derived in 1859
(perhaps with a hint from Laguerre’s earlier book) the three geometries
of Euclid, Bolyai and Lobatchevsky from cross ratio. a fixed conic and
region in the real projective plane. Matrix multiplication itself seems
to have grown out of Caylev’s investigations of the projective invari-
ants of A. F. Mobius (1790-1868). To M&bius -and Feuerbach we owe
homogeneous coordinates in 1827, but it was left to Felix Klein in 1871
to remove the last vestiges of Euclidean geometry and provide the al-
gebraic foundations of projective geometry that is evident in chapter 8
of the present book.

In 1899 David Hllbell (1862-1943) published his Grundlagen der
Geometrie in which the fruit of about twenty vears intellectual labor
of himself, Pasch and others were recorded. This book can be viewed
as the work that set Euclid straight after 2000 vears unquestioned in-
tellectual hegemony. Six primitive notions and twenty axioms were
given for three- dimensional Euclidean ermétr\' in an almost flawless
consistent as the authmétnc of real numbers (1n analog} with the rea-
soning in chapter 9). Later, Hilbert was emboldened to formulate his
doctrine of formalism. It is presumably at this time that insights into
the foundations of projective geometry were made as well.

As we come into the twentieth-century the present authors ap-
proach a tangle of events they are not able to sort through. So we
_quote a memorable phrase from Bell, writing in the 30’s, and note him

right about being wrong. b
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“The conspicuous beauty of projective geometry and the
supple elegance of its demonstrations made it a favorite
study with the geometers of the nineteenth century. Able
men swarmed into the new goldfield and quickly stripped it
of its more accessible treasures. Today the majority of ex-
perts seem to agree that the subject is worked out so far as
it is of interest to professional mathematicians. However, it
is conceivable that there mayv be something-in it as obvious
as the principle of duality which has been overlooked.” ?

Indeed Marshall Hall’'s 1943 article where he coordinatizes projec-
tive planes with ternary rings — and the subsequent charting of non-
Desarguesian geometry, finite or not —would probably qualify in Bell’s
own opinion as a brilliantly obvious development.

Béfore we leave the history of our subject, and take up its close
study. we would like to identify our text and its place in this large
mosaic. According to Philip Davis a course very similar to ours was
taught for many years at Harvard University by Oscar Zariski, a well-
known algebraic geometer who emphasized the role of commutative
rings in this subject. Robin Hartshorne gave a similar course at Harvard
in the 60°'s and wrote up his lecture notes in [Hartshorne]. We are
indebted to [Hartshorne], from which we learned the present subject
ourselves before teaching it in the same tradition. Our hearty thanks
to Gestur Olafsson for recommending these notes to us.

Lars Kadison Matthias T. Kromann
Roskilde University Roskilde University
DK-4000 Roskilde, Denmark DK-4000 Roskilde, Denmark

kadison@fatou.ruc.dk kromann@euler.ruc.dk

2 Bell continues encouragingly “In any event it is an easy subject to acquire and
one of fascinating delight to amateurs and even to professionals at some stage of
their careers.”
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Chapter 1

Affine Planes

Projective geometry developed from considerations of geometric prop-
erties invariant under central projection. Properties of incidence such
as “collinearity of points”. “concurrence of lines” and “triangle” are
invariants under central projection, while ordinaryv notions of distance,-
angle. and parallelism are noninvariants, as they are visibly distorted
under central projection. Thus in the axiomatic development of the
theory our focus is on properties of incidence without parallelism.

However, one of the most important examples of the theory is the
real projective plane. There we will use all techniques available to us
from Euclidean geometry and analytic geometry in order to see what
is true or not true.

Figure 1.1. Central and parallel projection.
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1.1 Affine Geometry

As the center of projection of one plane to another moves far enough
away we become concerned with invariants of figures under parallel
projection. In this limiting case, parallel lines project to parallel lines
as one may see by taking different sections of two parallel planes. Let
us then start out on our path toward projective geometry with some of
the most elementary facts of ordinary plane geometry, which we take
as axioms for our synthetic development.

DEFINITION. An affine plane is a set, whose elements are called
points, and a set of subsets, called lines, satisfying the following three
axioms, A1-A3. We will use the terminology “P lies on ¢” or “¢ passes
through P to mean the point P is an element of the line £.

A1l. Given two distinct points P and Q, there is one and
only one line containing both P and Q.

A2. Given a line £ and a point P, not on £, there is one
and only one line m, having no point in common
with £, and passing through P.

A3. There exist three non-collinear points.

A set of points Pi,... , P, is said to be collinear if there exists a
line ( containing them all. We say that two lines are parallel if they are
equal, or if theyv have no points in common.

Notation
P#Q P is not equal to @
Pel P lies on ¢ :
tnm. &m the intersection of ¢ and m
(] m ¢ is parallel to m
P@. PUQ@ line through P and @
#(S) number of elements in a finite set S
N-B the complement of B in X

'
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ExAMPLE. The ordinary plane, known to us from Euclidean geom--
etry, satisfies the axioms A1-A3, and therefore is an affine plane, the
real affine plane.

A convenient way of representing this plane is by introducing Carte-
sian coordinates, as in analytic geometry. Thus a point P is represented
as an ordered pair (z,y) of real numbers. A line is the solutions (x,y)
of linear equations y = mz'+ b or x = a.

y-axis
A
P=1(xy)
ypoommoes :
l
!
1
. >
x
o x-axis

Figure 1.2. The ordinary plane.
A

DEFINITION. A relation ~ on a set S = {a.b.c,...} is an equiva-
lence relation if it has the following three properties:

1) Reflezive: a ~ a
2) Symmetric-a~b = b~a
3) Transitive: a~bandb~c = a~c

The equivalence class [a] of a is the subset of elements equivalent
toarfa]={b€ S|b~a}.

PROPOSITION 1.1. Parallelism is an equivalence relation.

Proof. We must check the three properties
1) Any line is parallel to itself, by definition.
2) || m == m|| € by definition.

3) If £ || m and m || n, we wish to prove ¢ || n. If £ = n, there is
nothing to prove. If £ # n, and there is a point .P €.£Nn, then ¢, n are
both || m, and pass through P, which is impossible, by Axiom A2. We
conclude that £Nn =0, and so (|[n. O
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PrROPOSITION 1.2. Two distinct lines have at most one point in
common.

Proof. For if £ and m both pass through two distinct points P and
@, then £ = m by Axiom Al. O

EXAMPLE. There is an affine plane with four points.

P 4 S
m
Q R

Figure 1.3. The affine plane of 4 points.

Indeed. by A3 there are three non-collinear points. Call them P,
@, R. By A2 there is a line £ through P, parallel to the line @QR. which
exists by Al. Similarly, there is a line m || P@, passing through R.

Now, £ is not parallel to m (£ }f m). For if it were. then we would
have PQ || m || £ || @R and hence PQ || QR by Proposition 1.1. This
is impossible, however, because PQ # QR, and both contain Q.

Hence ¢ must meet m in some point S. Since S lies on m. which is
parallel to PQ. and different from PQ, S does not lieon PQ.so S # P,
and S # @. Similarly S # R. Thus S is indeed a fourth point.

Now consider the lines PR and @S. It may happen that they meet
(for example in the Euclidean plane they will). On the other hand. it
is consistent with the axioms to assume that they do not meet.

In that case we have an affine plane consisting of four points P,
Q. R, S, and six lines PQ, PR, PS, QR, @S, RS, and one can verify
easily the axioms A1-A3. This is the smallest affine plane.

DEFINITION. A pencil of lines is either
1) the set of all lines passing through some point P,
or

2) the set of all lines parallel to some line ¢.
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In the second case we speak of a pencil of lines!of parallel lines.

DEFINITION. A one-to-one correspondence between two sets..X and.
Y is a mapping 7: X — Y (i.e. a rule T, which associates to each
element z of the set X one element T'(x) = y € Y) such that , # =,
implies that Ta; # Txs, and such that for all y € Y there exists x € X
such that T(x) = y. A one-to-one correspondence of a set X with itself
is called a permutation of X.

1.2 Transformations of the Affine Plane

Notice that any other labelling of the 4 points in Figure 1.3 with the
letters P, @, R, and S would induce a permutation of {P, @, R, S} that
sends lines to lines and preserves parallelismi. For example, exchanging:
P and @ sends lines PR and @S to lines @R and PS, respectively.
However, the resulting sets of points and lines is the same as before. In
addition, a new labelling of points in the real affine plane coming from
a change in coordinate axes is itself a permutation of R?, given by

()= (o o) (5)+ ()

where a,1a22 — @126, # 0; or in more compact matrix and vector nota-
tion we could write v = Av+ b where det A # 0. A is the transition -
matrix between old and new bases.

Now, true affine invariants should not depend on the labelling of
points in an affine plane. In the next definition we give the precise
meaning of “relabelling a geometry.” -

DEFINITION. Let A be an affine plane. An automorphism ¢ of A
is a permutation of A sending collinear points to collinear points.

CONVENTION. We will often say an automorphism ¢ transforms a
point P to P’, point @ to @', line € to €, i.e. &(P) = P, ¢(Q) = @',
@(€) = €', so priming a lettered point or line is used to denote the image
point or line under ¢. In addition, different notations stand for distinct
elements: P,Q € A will mean P # @ unless stated otherwise.
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REMARK. It follows from elementary considerations that given a
line { = PQ, ¢ is a one-to-one correspondence between the sets of
points £ and-{'.

We observe that an automorphism satisfies the two “algebraic” con-
ditions

1) ¢(PUQ)=¢(P)U¢(Q) (VP.Q)
2) o(€m) = ¢(£).0(m) (Ve&,m: €} m)

PROPOSITION 1.3. An automorphism transforms parallel lines to-
parallel lines.

Proof. Suppose PQ || RS in an affine plane A. If B’ € P'Q'NR'S’,
then by the remark B € PQNRS,s0 PQ = RS. Hence P'Q' = R'S". If
P'Q’ and R'S" had-no peint in common they would be parallel, leaving:
no more to prove.  J

PROPOSITION 1.4. The set of automorphisms Aut A is closed un-
der composition and inversion.

onof We would like see that ¢,9¥ € Aut A imply ¢ o € AutA
and 07! € Aut A. Now both ¢ o+ and ¢~! are permutations of A. We
check lines go to lines.

" If P, @, and R are collinear, then ¥(P). ¥(Q). and w(R) are col-
linear and so is ¢(v(P)). 3((Q)). and S(w(R)). Also, P = &(4),
Q = o(B), and R = o(C) for three points A, B,C € A and A, B,
and C are collinear (otherwise 4B # BC so PQ # QR as lines). But
A=06"YP), B=¢"YQ), and- C = ¢"!(R) so ¢! also takes lines to
lines. O

We now study some special automorphisms in affine geometry that
are needed later.

DEeFINITION. Let A be an affine plane. A dilatation is an auto-
morphism ¢: z — z’ of A such that for any two distinct points P,

Q,
PQ| P'Q.

In other words, ¢ takes each line into a parallel line.
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EXAMPLES. In the real affine plane A*(R) = {(z,y) | z,y € R},
a stretching in the ratio &, given by equations

x! =kz

(z,y) = (z".9'): {y, ~ ky

is a dilatation. Indeed, let O be the point (0,0) then ¢ stretches points
away from O k-times, and if P, Q are any two points, clearly PQ || P'Q’,
by similar triangles.

A

Y

Figure 1.4. Stretching.
Another example of a dilatation of A?(R) is given by a translation
¥'=z+a
. y=y+b

In this case, any point P is translated by the vector (a.b). so PQ || P'Q’
again, for any P, Q.

Figure 1.5. Translation.
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Without asking for the moment whether there are any non-trivial
dilatations in a given affine plane A, let us study some of their proper-
ties.

PRrROPOSITION 1.5. Let A be an affine plane. Then the set of di-
latations, Dil A, is closed under composition and inversion.

Proof. Indeed, we must see that the product of two dilatations is
a dilatation, and- that the inverse of a dilatation is a dilatation. This
follows immediately from the fact that parallelism is an equivalence
relation. [

ProprosITION 1.6. A dilatation which leaves two distinct points
fized is the identity.

Proof. Let ¢ be a dilatation, let P, @ be fixed, and let R be any
point not on PQ. Let ¢(R) = R'. Then we have PR || PR’ and
QR || @R’ since ¢ is a dilatation. Hence R’ € PR and R' € QR. But
PR # QR since R ¢ PQ. Hence PRQR =R, andso R= R, ie. R
is also fixed. But R was an arbitrary point not on PQ. Applying the
same argument to P and R, we see that every point of PQ is also fixed.
50 ¢ is the identity. [

COROLLARY 1.7. A dilatation is determined by the images of two
points, i.e. any two dilatations ¢, v, which behave the same way on two
distinct points P, @, are equal.

Proof. Indeed, ¥~'¢ leaves P,Q fixed, so is the identity. O

So we see that a dilatation different from the identity can have at
most one fixed point. We have a special name for those dilatations with
no fixed points:

DEFINITION. A translation is a dilatation with no fixed points, or
the identity.

PROPOSITION 1.8. If ¢ is a translation, different from the identity,
then for any two points P,Q, we have PP' || QQ', where ¢(P) = P’,
Q) =Q".
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P P’

Q Q

Figure 1.6. Translation.

Proof. Suppose PP' [f QQ'. Then these two lines intersect in a
point O. But the fact that ¢ is a dilatation implies that ¢ sends the
line PP’ into itself, and ¢ sends QQ' into itself. (For example, let
R € PP'. Then PR || P'R', but PR = PP'. so R' € PP'). Hence
#(0) = O, a contradiction. O A

PROPOSITION 1.9. The translations of A. form. a subset. Tran A of.
the set of dilatations of A, which is closed under composition and in-
version. Furthermore, for any 7 € Tran A, and o € DilA. o107l €
Tran A. :

Proof. First we must check that the product of two translations is
a translation, and the inverse of a translation is a translation. Let 11, 7
be translations, then 7,7, is a dilatation. Suppose it has a fixed point’
P. Then n{P) = P'. ,(P’) = P. If @ is any point not on PP’, then
let Q" = 15(Q). :

Q m Q&

Figure 1.7. Q' is the intersection of £ and m.

We have by the previous Proposition PQ || P'Q' and PP' || QQ'.
Hence @' is determined as the intersection of the line ¢ || PQ through
P', and the line m || PP’ through Q.

For a similar reason, 1(Q') = Q. Hence 117, leave P and @ fixed,
so by our proposition 7,7, = id. Hence 773 is a translation. Clearly
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the inverse of a translation is a translation, so the translations form a
subset of Dil A, which is closed under composition and inverse.

Now let 7 € Tran A, o € DilA. Then o7o~! is certainly a dilata-
tion. If it has no fixed points, it is a translation. If it has a fixed point
P, then oro~!(P) = P implies To"}(P) = ¢~!(P), so 7 has a fixed
point. Hence 7 = id, and g7~ =id. O

The question of existence of translations and central dilatations
between arbitrary pairs of points is taken up in chapter 9.

EXERCISES

EXERCISE 1.1. Given a 2 x 2 real matrix A with nonzero determi-
nant and 2 x 1 real column vector b, define an affine transformation
T to be the bijection of R? with itself given by T(z) = Az + b. Show
that T is an automorphism of the real affine plane.

EXERCISE 1.2. A shear T is an affine transformation taking @ to
R, fixing every point on another line parallel to QR. By translating and
changing basis, find a matrix A and vector b such that T(z) = Az+b.

EXERCISE 1.3. An affine reflection is an affine transformation T
that interchanges two points @ and R and fixes a third point P not on
QR. Show that T fixes every point on PM, where M is the midpoint
of the line segment QR.

EXERCISE 1.4. An isometry T of the Euclidean plane is a mapping
of R? onto itself that preserves distance: i.e. if d(P,Q) denotes the
Euclidean distance from P to Q, then

dT(P).T(Q) =d(P,Q) (VP.Q).
Show that T sends lines to lines.

EXERCISE 1.5. Show that any two pencils of parallel lines in an
affine plane have the same cardinality (i.e. that one can establish a
one-to-one correspondence between them). Show that this is also the
cardinality of the set of points on any line.
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EXERCISE 1.6. If there is a line with exactly n points, show that
the number of points in the whole affine plane is n?.

EXERCISE 1.7. Construct.an affine plane with 16. points.

Hint. We know from Exercise 1.5 that each pencil of parallel lines has
four lines in it. Let a,b,¢,d be one pencil of parallel lines, and let 1,2.3,4
be another. Then label the intersections 4, = anN 1, etc. To construct the
plane, you must choose other subsets of four points to be the lines in the
three other pencils of parallel lines. Write out each line explicitly, by naming
its four points, e.g. the line 2 = {4s. B, Cs. D1 }).

EXERCISE 1.8. Euler in 1782 posed the following problem: *A
meeting of 36 officers of six different ranks and from six different reg-
iments must. be arranged.in a square in such. a manner. that._each. row.
and each column contains 6 officers from different regiments. and of dif-
ferent ranks.” G. Tarry in 1901 confirmed Euler's prediction that this
problem has no solution. Deduce from Tarrv's fact that there is no
affine plane with 36 points.

EXERCISE 1.9. How many ways are there to label the points in
Figure 1.3 with the letters P, @, R, and 5?7 How many automorphisms
of this affine plane are there? .

EXERCISE 1.10. A partition of a set S is a set of subsets of S,
{X1.....X,....}. such that UX; = S and X; N X; = 0 whenever
a) Show that the set of equivalence classes of a set S is a partition
of S. .

h) Conversely, show that a partition of S naturally determines an
equivalence relation on S.

EXERCISE 1.11. Suppose 7 is a translation of an affine plane A
such that 7(P) = P’. Suppose @ is a point not on the line PP’
Show that @' := 7(Q) may be obtained by the following parallelogram
construction:

Let £ }] PP’ such that @ € ¢. Let m || PQ such that P’ € m. Then
Q' € tm.
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Projective Planes

There are two points of view as to why we should avoid parallel lines in
planar geometry. One is that lines and indeed higher degree polynomial
curves should intersect in the “right”™ number of points: two lines, for
instance, usually intersect in one point and should therefore do so at
all times. This leads to the introduction of a common “ideal point™ to
each line in a pencil of parallels.

The second point of view stems from the art of perspective which
holds that a two or three dimensional figure should be united with the
eve of the observer O hy lines to produce a “cone” over the figure. A
drawing of the figure corresponds to a planar cross section of this cone.
The cone over parallel lines is two planes intersecting in a line through
O, cross sections of which generally are two intersecting lines. This
point of view leads to homogeneous coordinates for the real projective
plane.

We will show in Proposition 2.2 that the two points of view on the
real projective plane are equivalent in a certain strictly defined sense.

2.1 Completion of the Afﬁhe Plane

We will now complete the affine plane by adding certain “points at
infinity” and thus arrive at the notion of the projective plane.

13
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Let A be the affine plane. For each line ¢ € A, we will denote by []
the pencil of lines parallel to ¢. To each pencil of parallels [¢] we add
to A am ideal point, or point at infinity:in the direction of ¢, which we
denote by Pg.

We define the completion S of A as follows. The points of S are the
points of A, plus all the ideal points of A. A line in S is either

a) An ordinary line ¢ of A, plus the ideal point Py of
¢, or

b) the “line at infinity”, consisting of all the ideal points
of A.

We will see shortly that S is a projective plane, in the sense of the
following definition.

DEFINITION. A projective plane S is a set, whose elements are-
called points, and a set of subsets, called lines, satisfying the following
four axioms.

P1. Two distinct points P,Q of S lie on one and only
one line.

P2. Two distinct lines meet in precisely one point.
P3. There exist three non-collinear points.

P4. Every line contains at least three points.

PRroPOSITION 2.1. The completion S of an affine plane A, as de-
scribed above, is a projective plane.

Proof. We must verify the four axioms P1-P4 of the definition.

P1. Let P,Q € S. 1) If P,Q are ordinary points of A, then P and
@ lie on only one line of A. They do not lie on the line at infinity of S,
hence they lie on only one line of S. 2} If @ is an ordinary point, and
Py is an ideal point, we can find by A2 a line m such that @ € m, and
m || ¢, i.e. m € [{], so that Py lies on the extension of m to S. This is
clearly the only line of S containing P and Q. 3) If P,Q are both ideal
points, then they both lie on the line “at infinity”, the only line of §
containing them.
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P2. Let £,m be lines. 1) If they are both ordinary lines, and ¢ }f m,
then they meet in a point of A. If £ || m, then the ideal point Py lies
on both ¢ and m in S. 2) if ¢ is an ordinary line, and m = ¢, is the
line at infinity, then Py lies on both ¢ and m.

P3. Follows immediately -from A3. One must check only that if
P, Q. R are non-collinear in A, then they are also non-collinear in S.
Indeed, the only new line is the line at infinity, which contains none of
them.

P4. It is easy to see that each line of A contains at least two points.
But in S it has also an ideal point, so any line has at least three points.
(It follows from Exercise 1.5 that ¢, has at least three points). [0

EXaMPLE 1. By completing the real affine plane of Euclidean ge-
ometry, we obtain the real projective plane.

EXAMPLE 2. By completing the affine plane of 4 points, we obtain
a projective plane with 7 points.

ExXAMPLE 3. Another example of a projective plane can be con-
structed as follows: let R® be ordinary Euclidean 3-space, and let O
be a point of R}, Let S be the set of lines through O. \We define a
point of S to be a line through O in R®. We define a line of S to be
the collection of lines through O which all lie in some plane through
O. Then § satisfies the axioms Pl P4 (Exercise 2.7), and so it is a
projective plane. )

2.2 Homogeneous Coordinates for the Real
Projective Plane | '

We can give an analytic definition of the real projective plane as follows.
We consider Example 3 given above of lines in R®. A point of S is a line
through the origin O. We will represent the point P of S corresponding
to ¢ by choosing any point (z,2,,z3) on ¢ different from the point
(0,0,0). The numbers z;,z9,2; are homogeneous coordinates of P. -
Any other point of ¢ has the coordinates (Az;, Aza, Az3), where A € R,
A # 0. Thus S is the collection of triples (z.22,23) of real numbers,
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not all zero, and two triples (z1,22,23) and (z},z}, 24) represent the
same point if and only if there exists A € R such that z; = Az; for
i=1,2,3. Since the equation of a plane in R® passing through O is of
the form

1Ty + QT + azzz =0 (not all a; = 0)

we see that this is also the equation of a line of §, in terms of the
homogeneous coordinates.

(x.y.2)

—

Figure 2.1. Homogeneous coordinates.

DEFINITION. Two projective planes S and S’ are isomorphic if
there exists a one-to-one correspondence T: S — S’ which takes col-
linear points into collinear points. T is referred to as an isomorphism;
or as an automorphismif §' = §.

PRrOPOSITION 2.2. The projective plane S defined by homogeneous
coordinates which are real numbers, as above, is isomorphic to the pro-
jective plane obtained by completing the ordinary affine plane of Eu-
clidean geometry.

Proof. On the one hand, we have S, whose points are given by
homogeneous coordinates (zi, 7, 23), ; € R, not all zero. On the other
hand, we have the Euclidean plane A, with Cartesian coordinates (z,y).
Let us call the completion S’. Thus the points of S’ are the points (z,y)
of A (with z,y € R), plus the ideal points. Now a pencil of parallel lines
is uniquely determined by its slope m, which may be any real number,
or co. Thus the ideal points are described by coordinate m.

Now we will define a mapping 7: S — S’ which will exhibit the
isomorphism of S and S'. Let (x),x3,23) = P be a point of S.
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1) If 23 # 0, we define T'(P) to be the point of A with coordinates
2 = z1/r3, y = To/z3. Note that this is uniquely determined, because
if we replace (z, z2, 23) by (Azy, Aza, Az3), then = and y do not change.
Note also that every point of A can be obtained in this way. Indeed,
the point with coordinates (z,y) is the image of the point of S with
homogeneous coordinates (z,y.1).

2) If 23 = 0, then we define T(P) to be the ideal point of S’ with
slope m = ry/z;. Note that this makes sense if we set z5/0 = oo,
because x; and z, cannot both be zero. Again replacing (1, x9,0)
by (Axy, Azy,0) does not change m. Also each value of m occurs: If
m # oc, we take T(1,m,0), and if m = oo, we take 7(0,1,0).

Thus T is a one-to-one mapping of S into §’. We must check that
T takes collinear points into collinear points. A line £ in S is given by
an equation :
ayry + axrs +azry =0

1) Suppose that a; and a; are not both zero. Then for those points
with 23 = 0, namely the point given by 2, = Aas, 2 = —~Aay, T of this
point is the ideal point given by the slope m = —a;/a, which indeed
is on a line in S’ with the finite points. ' :

2) If a1 = a2 = 0, ( has the equation r3 = 0. Any point of S with
r3 = 0 goes to an ideal point of §', and these form a line. O

REMARK. From now on, we will not distinguish hetween the two
isomorphic planes of Proposition 2.2: we will call it the real projective
plane and denote it by P2(R). It will be the most important example
of the axiomatic theory we are going to develop, and we will often
check results of the axiomatic theory in this plane by way of example.
Similarly, theorems in the real projective plane can give motivation for
results in the axiomatic theory. However, to establish a theorem in our
theory, we must derive it from the axioms and from previous theorems.
If we find that it is true in the real projective plane, that is evidence in
favor of the theorem, but does not constitute a proof in our set-up.

Also note that if we remove any line from the real projective plane,

--- -—we-obtain the-Euclidean-plane. Here is a nice application of that idea.
Consider the conic in the real projective plane given by {(z,y,2) |
z*+y® — 22 = 0}. Removing the lines : =0, =0, or 2 —y = 0, we
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-obtain a circle, hyperbola, or parabola (respectively) in the Euclidean
plane: these are the “coniclsections” of the planes z = 1, y = 1, and
z —y = 1, respeectively.

THE SPHERE MODEL
Consider some basic facts about the standard sphere
52 = {(1'1,1152,;1?3) I ;l?? + ;lfg + gjg = 1}

Lines in R® through the origin intersect S? in antipodal points, and
planes through the origin intersect S? in the great circles. Conversely,
antipodal points-on S?, +(xy, 22, z3), lie on one line through the origin;
and a great circle on S? is coplanar with the origin.

Now define a projective plane §” as follows: a point is a pair of
antipodal points on 5%, and a line is a set of points lying on a great
circle on S2. We have just set up an isomorphism between the projective
plane of homogeneous coordinates S and S”. (What is it?) S§” is a third
model for the real projective plane.

NOTE. The sphere model 8" of the real projective plane is a topolog-
ical favorite. By considering a hemisphere and pinching antipodal points
together on the boundary. one can see how exotic the real projective plane
is topologically. It is a nonorientable surface. embeddable in R* but not in
R*. It is topologically equivalent to a M&bius strip with a disk attached
to its boundary: to see this, remove a cap around the pole of the upper
hemisphere, remove the image of cap under the antipode map v+ —v from
the lower hemisphere, and visualize the rest of $” as a circular hand with
antipodal points identified — now half of this circular band is a straight
band whose ends are placed together with the well-known Mébius twist.

EXERCISES

EXERCISE 2.1. Discuss the possible systems of points and lines
which satisfy P1, P2, P3, but not P4.
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EXERCISE 2.2. Let S be a projective plane, and let ¢ be a line of
~S. Define Sy to be the points of S not on ¢, and define lines in Sq to be
the restrictions of lines in S. Prove (using P1-P4) that Sy is an affine
plane. Prove also that S is isomorphic to the completion of the affine
plane Sg.

EXERCISE 2.3. a) Prove that the projective plane of 7 points, ob-
tained by completing the affine plane of four points, is the smallest
possible projective plane.

b) Show that two projective planes of 7 points are isomorphic.

EXERCISE 2.4. If one line in a projective plane has n points, find
the number of points in the projective plane.

EXERCISE 2.5. a) Give a proof that the axioms.P1l, P2, P3, and
P4 of a projective plane nnpl\ the statement

Q: “There are four points, no three of which are col-
linear™

b) Prove also that P1, P2, and Q imply P3 and P4.

EXERCISE 2.6. A) In the real projective plane, what is the equation
of the line

a) joining the points (1,0.1) and, (1,2,3)?

b) joining the points (0.3.9) and (0, 25,43)?

¢) joining the points (ay,as, az) and- (b;, by, b3)?
B) What is the point of intersection .

a) of the lines : _
Ty~ r2+203=0
3z + 2o +23=0 7
1) of the lines
I + 23 = 0
T+ 22+ 323=0 7
¢) of the lines

A1zy + Ayxa + Asz3 =0
Blll + BQ.LQ + 3313 =0 ?
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EXERCISE 2.7. Let S denote the set of lines through some point O
in- R®. Define points of S to be lines through O in R®, and define a line
of'S to be the set of lines through O which all lie in some plane through
0. Prove that S satisfies P1-P4.

EXERCISE 2.8. Let v denote a nonzero vector in R®, and think of
it as a column vector, or 3 X 1 matrix, with coordinates vy, U9, and
v3. Now v represents a point in P?(R) with homogeneous coordinates
(’Ul, U2, ‘L‘3).

a) Given a 3x 3 matrix A with real coefficients-ay,... ,a;;,... , as3,
and nonzero determinant, show that the linear transformation of R?,
v— Awv, determines a mapping T4 : PX(R) — P*(R) of points given by

3 3 3 v
(vi,v2,v3) = (Z 1Y, Z a2V, Z asivz)i .
i=1 =1

i=1

b) Show that if A € R—{0} then Ty = Th4.
c) Prove that T4 is an automorphism of the projective plane P?(R).

Hint. If £ denotes the solution set of ¢;z, + caxs + c3ry = 0, show
that T4(£) is the solution set of Y_i_, ciz} = 0 where ¢} = Z?zl b;ic; and

A7' = (b;;). In other words, T4 transforms points by @ — Az and lines by
¢~ (A™")T¢, where XT denotes the transpose of a matrix X.

EXERCISE 2.9. Refer to Exercise 2.2. Does every automorphism
of S that takes ¢ to € restrict to an automorphism of the affine plane
S¢? Conversely, does every automorphism of Sy extend to one of the
projective plane S?

EXERCISE 2.10. Let n be a projective plane of order n, i.e. it has
N :=n?+n+1 points.
a) Show that 7 has NV lines.

Label the points Py,...,Py and lines ¢,,...,¢y. Let a;; = 1 if
point P; is incident with £;, and a;; = 0 if P; ¢ £;. This will define an
N x N matrix A = (a;;) of 0’s and 1’s called the incidence matriz of .

b) Show that B = AAT is an N x N matrix with each diagonal
element b; = n + 1 and each off-diagonal element b;; = 1.
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c¢) Show the converse of b): Let n be an integer > 2, let N :=
n®+n+1,and.let A = (a;;) be a N x N matrix with a;; € Z, U {0}
for all 3,5 = 1,...,N. If A satisfies the equations AAT = ATA =B
(where B is the matrix defined in b)), then A is a matrix consisting of
0’s and 1's and the incidence matrix of a projective plane.
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Desargues’ Theorem

The first main result of projective geometry that we shall study is the
theorem of Desargues about triangles in perspective. A friangle in an
abstract projective plane is determined by three noncollinear points
(or equally well by three nonconcurrent lines) — Axiom P3 states the
existence of a triangle. Consider the truth value of the following simple
statement in an abstract projective plane.

Figure 3.1. Desargues’ Axiom.

P5. (DESARGUES’ AxIOM) Let ABC and A'B'C' be
two triangles such that the lines joining correspond-
ing vertices, namely AA’, BB' and CC’, meet at a

23
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point O. (We say the two triangles are perspec-
tive from O.) Then the three pairs of correspond-
ing sides intersect in three points P = AB.A'B’,
Q@ = AC.A'C’, and R = BC.B'C’ which lie on a
line. (We say that triangles ABC and A'B'C’ are
perspective from the line PQR.)

Now it would not be quite right for us to call this a theorem, because
it cannot be proved from our axioms P1-P4. However, we will show
that it is true in the real projective plane (and this is the content of
“Desargues’ Theorem”). Then we will take this statement as a further
axiom, P35, or Desargues’ Axiom, of our abstract projective geometry.
We will show by an example that P35 is not a consequence of P1-P4:
namely, we will exhibit a geometry that satisfies P1-P4 but not P5.
We will sometimes refer to projective planes satisfying Axiom P5 as
Desarguesian® planes. '

THEOREM 3.1 (DESARGUES). In the real projective plane two tri-
angles perspective from a point are perspective from a line.

Proof. A straightforward computation using homogeneous coordi-
nates follows.2 Let triangles ABC and A'B'C’ be perspective from
the point O, and define the points P = AB.A'B’, Q@ = AC.4'C’ and
R = BC.B'C' (see Figure 3.1). We must show that P. @ and R are
collinear.

Note that no three points of A, B, C and O are collinear; in other
words, the coordinates of three of these points will form a linearly
independent set of vectors in R?, while the fourth point has coordinates
a linear combination of these with no coefficient zero. A simple linear
change of coordinates followed by a scaling on the axes allows us with
no loss of generality to assume A = (1,0,0), B = (0,1,0), C =(0,0,1)
and O = (1.1,1). (This can equally well be said using an antomorphism
of the real projective plane: cf. Exercise 2.8.)

! Day-sargz-ian

2The student need not view triangles in perspective in the homogeneous coor-
dinate model. which involves visualizations in solid geometry: just take a planar
section away from the origin as done in Propesition 2.2. Section 3.2 provides a
second, synthetic proof based on viewing Figure 3.1 spatially.
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Now A’ € OA which has the parametric equation
AM1,0,0) + p(1,1,1) = (A + p, 1, 1)
which is equivalent to (1 + %, 1,1) or (¢’,1,1) in homogeneous coordi-

nates. Similarly, B’ = (1,b',1) and C' = (1,1,¢) for some V', ¢’ € R.

Now we determine coordinates for P. @ and R. The line AB has
equation 3 = 0, while 4'B’ has equation

T To 3

a1 1|=(1-=b)a+(1=a")rs+ (a'V = a3 =0.
1 ¥ 1}

1

P has homogeneous coordinates satisfving both equations: namely,.
! /
P=(1-d,0-1,0).

Similarly, we compute AC: z3 =0, and 4'C": (¢ ~Day+(1=d'c)ry+
(a' — 1)a3 = 0 with point of intersection

Q=(a'—1,0,1—c’).

Finally, BC: r; =0, and B'C": (b —1)a;+(1 - )ara+(1=b)r3 =0
) .
R = (0.1 .—b,,C(— 1)

We conclude by noting that P, @, and R collinear, since the three
representative vectors P, @, and R form a linearly dependent set: using
the particular coordinates given above, P+ Q@+ R = (0.0,0). Hence
P, Q, and R lie on a plane through the origin. O

DEFINITION. A configuration is a set, whose elements are called
points, and a collection of subsets, called lines, which satisfies the fol-
lowing axiom:

C1. Two distinct points lie on at most one life.
It follows that two distinct lines have at most one point in common.

. Note however that two points may have no line joining them. Projective
planes, affine planes, and the next example are configurations.
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EXAMPLE. Desargues’ configuration has a lot of symmetry: refer
to Figure 3.1. It consists of 10 points and 10 lines. Each point lies on
three lines, and each line contains 3 points. Thus it may be given the
symbol (10;). Also, the role of the various points is not fixed. Any
one of the ten points can be taken as the center of perspectivity of two
triangles (Exercise 3.7). In Exercises 4.10, 4.11, and 4.12, we will see
that the “antomorphism group” is the full group of permutations on
five letters, which is related to viewing Figure 3.1 spatially and noting
five plaues.

3.1 Moulton’s Example

We now give an example of a non-Desarguesian projective plane, that
is, a plane satisfying P1-P4, but not P5. This will show that P5 is not
a logical consequence of P1-P4.

A very simple idea for making Desargues’ Axiom fail in a projective
plane is to let the line @R in Desargues’ configuration (Figure 3.1) veer
away from P; and this simple idea can be made to work! At the level of
axioms P1-P4, lines are still, with few restrictions. the things we define
them to be, and need not look much like the “shortest path between
points.”

AY

A
-

Figure 3.2. A Moulton triangle.

M 4

We define on R? an alternative affine plane A'. Points, vertical lines,
and lines of negative slope are the same in A’ as in the Euclidean affine
plane. However, lines of positive slope are not admitted in A’. Rather
a line of slope m > 0 in the lower half-plane is pasted together at the
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z-axis with a line of slope m/2 in the upper half-plane. Analytically
these Moulton lines are given by

_Jm(z =) ifz < a0 i
'f(x)—{—';—‘(:c—zo) 2> o (Vzo € R).

It is easy to see that two points in A’ are joined by lines if they give
a negative slope or lie vertically; in Exercise 3.1 you will be asked to
check the existence of a Moulton line if the two points give a positive
slope. Axiom A2 is verified by taking any line £ of A, a point P off ¢,
and drawing a line m through P with the same slope as { in the upper
and lower halfplanes: so, clearly m || £ in A'. A3 is a triviality.

Now complete A’ to P, a projective plane (cf. Proposition 2.1).
Arrange Desargues’ configuration in R? so that all points but P lie
below the z-axis and so that QR has positive slope. By the ordinary
Desargues’ Theorem the Moulton line @R does not contain P.

¥

A’

Figure 3.3. The Desargues configuration in the Moulton plane.
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3.2 Axioms for Projective Space

DEFINITION. A projective 3-space is a set whose elements are called
points, together with certain subsets called lines, and certain other
subsets called planes, which satisfy the following axioms:

81. Two distinct points P,Q lie on one and only one
line €.

S2. Three non-collinear points P, @, R lie on a unique
plane.

S$3. A line meets a plane in at least one point.
S4. Two planes have at least a line in common.

'S5. There exist four non-coplanar points, no three of
-which are collinear.

- S6. Every line has at least three points.

EXAMPLE. By a process analogous to that of completing an affine
plane to a projective plane, the ordinary Euclidean 3-space can be
completed to a projective 3-space, which we call real projective 3-space
(Exercise 3.6). Alternatively, this same real projective 3-space can be
described by homogenous coordinates, as follows. A point is described
by a quadruple (z,.x5,z3,24) of real numbers, not all zero, where we
agree that (x;.xs.r3,24) and (Az), Axa, Ax3, Ary) represent the same
point, for any A € R—{0}. A plane is defined by a linear equation
i ,ax; = 0. notall ¢; = 0, a; € R, and a line is defined as the
intersection of two distinct planes. The details of verification of the
axioms are left to the reader in Exercise 3.7, and the reader should also
check that the lines and points contained in the plane z; = 0 form the
real projective plane defined in section 2.2.

The remarkable fact is that although P5 is not a consequence of P1-
P4 in the projective plane, it is a consequence of the seemingly equally
simple axioms for projective 3-space. In Exercise 3.5 you will be asked
to prove that a plane in projective 3-space is a projective plane. As a
consequence the next theorem provides a second proof that Desargues’
Axiom is true in the real projective plane.
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THEOREM 3.2. Desargues’ Aziom holds in projective 3-space, where
we do not necessarily assume that all the points lie in a plane. In par-
ticular, Desargues’ Aziom holds for any plane that lies in a projective
3-space.

Proof. We work with the points in Figure 3.1. There are two cases
to consider.

Case 1. Let us assume that the plane ¥ containing the points
A, B,C is different from the plane ¥’ containing the points 4' B',C".
The lines AB and A'B’ both lie in the plane determined by O, 4, B,
and so they meet in a point P. Similarly we see that AC and A'C’
meet, and that BC and B'C’ meet. Now the points P, @, R lie in the
plane X, and also in the plane ¥'. Hence they lie in the intersection

N Y, which is a line (Exercise 3.3c).

Case 2. Suppose that ¥ = T'. so that the whole configuration
lies in one plane (call it £). Pick a point X which does not lie in I.
Draw lines joining X to all the points in the diagram. Choose D on
X B, different from B, and let D' = OD.XB'. (Why do they meet?)
Then the triangles ADC and A'D'C’ are perspective from O, and do
not lie in the same plane. We conclude from Case 'l that the points
P = AD.A'D, Q = AC.AC', and R = DC.D'C"’ lie in a line. But
these points are projected from .X onto P, @, and R. hence P, Q. R are
collinear. O :

EXERCISES

EXERCISE 3.1. Establish the existence of a Moulton line through
two points giving positive slope.

EXERCISE 3.2. Draw a figure for Theorem 3.2, case 2, and check
the details.

EXERCISE 3.3. Using the axioms $1-56 of projective 3-space, prove
the following statements. Be very careful not to.assume anything except
what is stated by the axioms. Refer to the axioms explicitly by number.
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a) If two distinct points P, Q lie in a plane ¥ then the line joining
them is contained in X.

b) A plane and a line not contained in the plane meet in exactly
one point.

¢) Two distinct planes meet in exactly one line.
d) A line and a point not on it lie in a unique plane.
EXERCISE 3.4. Given two lines ¢ and m intersecting “off the pa-

per’, and a point P not on either line, use Desargues’ Theorem to
construct a line through P and £nm.

Figure 3.4. Two lines intersecting “off the paper”.

EXERCISE 3.5. Prove that any plane ¥ in a projective 3-space is
a projective plane, i.e. satisfies the axioms P1-P4. (You may use the
results of Exercise 3.3).

EXERCISE 3.6. Propose axioms for affine 3-space and show how one
may complete this to obtain a projective 3-space. Check carefully that
axioms S1-S6 are satisfied. State and prove a 3-dimensional analog of
Proposition 2.2.

EXERCISE 3.7. Verify that the projective space P*(R) does indeed
satisfy Axioms S1-S6.

EXERCISE 3.8. Find the two triangles in Figure 3.1 which are in
perspective from center P. What is their azis (i.e. the line in which
their corresponding sides meet)?




Chapter 4

A Brief Introduction to
Groups

The sets of automorphisms with their compositions. Tran A and Dil A,
which we encountered when studying the affine plane A. are examples
of an important algebraic concept. the group. Groups got their real
start with Galois as finite invariants of polynomial equations. which
could resolve questions of solvability by radicals. In Galois theory,
difficult questions about polynomial equations are converted to easier
questions about groups, which can be answered with a small amount of
group theory. Group theory and projective geometry have a somewhat
similar relation. -

4.1 Elements of Group Theory

DEFINITION. A groupis aset GG, together with a function (or binary
operation) G x G — G, (a,b) — ab, such that -

G1. (ASSOCIATIVITY) For all a,b,¢ € G, (ab)ec = a(bc).

G2. There exists an element 1 € G such that a - 1 =
1-a=a forall a.

G3. Tor each a € G, there exists an element o~} € G
such that aa™' = a~la = 1.

31
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The element 1 is called the identity, unit, or neutral element. The
element a~! is called the inverse of a. (Both 1 and a~! are easily
shown to be unique.) The cancellation law holds in groups: az = ay
orza=ya => z =y (a,z,y € G). A set with binary operation
satisfying only G1 is called a semigroup.

Note that in general the product ab may be different from ba. How-
ever, we say the group G is abelian, or commutative if

G4. For all a,b € G, ab = ba.

The multiplicative notation for a group is often changed to an ad-
ditive notation for abelian groups: @ + b, 0 the neutral element, —a the
inverse of a. E.g. the common integers Z under addition is an abelian
group. Another example is a vector space; forgetting all about scalar
multiplication. one notes that the vectors form an abelian group under
addition.

ExaMmPLE 1. Let S be any set, and let G = Perm S be the set
of permutations of the set S. (Recall that a permutation is a one-to-
one mapping of S onto S.) If g;,92 € G are two permutations, define
9192 € G to be the permutation obtained by performing first g2, then
g1: 9192(x) = ga(ge(z)) for all z € S.

EXAMPLE 2. Let C be a configuration, and let G be the set of
automorphisms of C, i.e. the set of those permutations of C which send
lines onto lines. Again we define the product g, g2 of two automorphisms
91; g2, by performing g, first, and then g;. This group is written Aut C.

DEFINITION. A homomorphism ¢: G, — G5 of one group to an-
other, is a mapping of the set G; to the set G5 such that

¢(ab) = ¢(a)¢(b)

for each a,b € G.

An isomorphism of one group with another, is a homomorphism
which is one-to-one and onto. It follows easily that a homomorphism
sends unit to unit. Linear transformations of vector spaces provide
examples of homomorphisms between (abelian) groups.
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DEFINITION. Let G be a group. A subgroup of G is a nonempty
subset H C G, such that for any a,b € H,ab€ H, and a™' € H.

Note this condition implies 1 € H. Then H (with the binary oper-
ation restricted to H) is itself a group.

EXaMPLE 3. Let G be the group of permutations of a set S. Let .
r€S,and let H, = {g € G | g(x) =2 }. Then H, is a subgroup of
G, called the stabilizer subgroup of x. Check it! (Exercise 4.7)..

EXAMPLE 4. The even integers under addition form a subgroup
of Z. More generally, the multiples of n form a subgroup nZ under -
addition.

EXAMPLE 5. 3. AutC is a subgroup of Perm C, where C denotes -
both a configuration and its underlying set of points.

DEFINITION. Let G be a-group, and H a subgroup of G. The
left coset of H generated by g € G is the subset of G given by gH =
{gh | h € H}. The right coset Hg is similarly defined to be the subset
{hg|he H}..

LEMMA 4.1. Let H be a subgroup of G. and let gH be a left coset.
Then there is a oné-to-one correspondence between the elements of H
and the elements of gH. (In particular, if H is finite, they have the
same number of elements.) -

Proof. Map H — gH by h — gh. By definition of gH, this map is
onto. So suppose hi, hy € H have the same image. Then gh; = ghs.
Multiplying on the left by ¢g~!, we deduce hy = hy. O

THEOREM 4.2 (L.AGRANGE’S THEOREM). Let (i be a finite group,
and let H be a subgroup. Then :

#(G) = #(H) - (number of left cosets of H).

H &iH | gH o | 8dH

Figure 4.1. Division of G into 7 left cosets of equal size.
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Proof. Indeed, all the left cosets of H have the same number of
elements as H, by the lemma. If g € G, then g € gH, since g = g - 1,
and 1 € H. Thus G is the union of the left cosets of -H. Finally, if we
show that.two cosets-gH, and ¢'H are either equal, or disjoint, then we
have the set G partitioned into subsets of size #(H) each, which proves
the theorem.

Indeed, suppose gH and ¢'H have an element in common, namely
x. Then H C gH and zH C ¢g'H, but the lemma tells us that cosets
have the same cardinality. Hence gH = zH = ¢'H. O

Thus the subgroup H has order, i.e. number of elements, a divisor of
the order of G.! Let’s see a good application of Lagrange's Theorem to
the-first step towards classification of finite groups up to isomorphism.

In any group G an element g generates a subgroup (g) consisting
of the powers of g: g% = gg, ¢° = ¢%g, etc. (also 97!, ¢7% = ¢g7'g7!
if necessary). In a finite group the order of (g) is called the order of
g, and equals the least positive integer n such that g" = 1. Since a
_group (7 having prime order has no proper divisors, Lagrange informs
us that there are no nontrivial subgroups (different from {1} or G).
Hence, every nonunit in G generates all of G. Hence every group of
prime order is generated by one element (such groups are called cyclic
groups), and any cyclic groups of the same order are isomorphic (an
easy exercise, Exercise 4.8).

DEFINITION. Suppose G is a subgroup of some Perm S. The orbit
of z is the set of points

8. = {g(x): g € G}
COROLLARY 4.3. If G 1is a finite group in Perm S, then
#(G) = #(H:) - #(5s)-

Proof. In order to apply Lagrange’s Theorem we need only show
the orbit 3, in one-to-one correspondence with the number of distinct
left cosets of H, in G.

}Beware though that it is not necessarily true that every divisor of #(G) corre-
sponds to #(H) for some subgroup / in G: there is no eight element subgroup in
the 24 element group S, whose acquaintance we make below.
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Given y € (,, there exists ¢ € G such that y = g(z), so map
B: — {left cosets} with the function T': y — gH,.

We claim 7" is a one-to-one correspondence. T is well-defined: if
g'(z) =y = g(x), then g7¢'(z) = z,50 g~'¢g' € H,, 50 ¢'H, = gH,, ie.
T is one-valued at y. T is onto: given a coset gH,, T(g(z)) = gH,. T
is one-to-one: if T(yy) = gH, = T(yz), it follows that y; = g(x) = y,.
Hence, T is the desired one-to-one correspondence. []J

DEFINITION. A group G C Perm S of permutations of a set- S is
transitive if the orbit of some element is the whole of S. It follows that
the orbit of every element is all of S.

So in the above corollary, if G is transitive, #(G) = #(H.) - #(S5).

COROLLARY 4.4. Let S be a set with n elements, and let S, =
Perm S. Then #(S,) = nl. '

Proof on induction by n. If n = 1, there is only the identity permu-
tation, so #(S;) = 1. So let .S have n + 1 elements, and let 2. € S. Let"
H;, be the subgroup of permutations leaving & fixed. S, is transitive,
" since one can permute z with any other element of S. Hence

H(Sarr) = #(S)  #(H,) = (n +1) - (H).

But H, is just the group of permutations of the remaining n elements of
S different from x, so #(H,) = n! by the evident induction hypothesis.
Hence #(S,41)=(n+1)! O '

GENERATORS

A subset A of a group G is said to generate the subgroup H, denoted
by H = (A), if H is the smallest subgroup containing A. H is in fact
the subgroup {a7'...a}" | a1,...,a, € A; ny,...,ng € Z} of products
of powers of elements in A (Exercise 4.15).

Later in the course, we will have much to do with the group of
automorphisms of a projective plane, and certain of its subgroups. In
particular, we will show that the Axiom P5 of Desargues is equivalent

* to the statement that the group of automorphisms has enough (of the
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projective equivalents of) translations and stretchings. For the moment,
we will content ourselves with calculating the automorphisms of a few
simple configurations.

4.2 Automorphisms of the Projective
Plane of Seven Points
Call the plane 7 and name its seven points A, B,C,D,P,@Q, and R. =

may be obtained by completing the affine plane of four points A, B, C,
and D. Its lines are shown in Figure 4.2.

P

c D R
Figure 4.2. The projective plane of seven points.

PROPOSITION 4.5. G = Aut 7 is transitive.

Proof. We will write down some elements of G explicitly.
a=(AC)(BD)

for example. This notation means “interchange A and C, and inter-
change B and D”. More generally a symbol (A; A, ... A,) means “send
A1 to Ay, Ay to Az, ..., A1 t0o A, and A, to A,”, and is referred to as
an r-cycle. Multiplication of two such symbols is defined by performing
the one on the right first, then the next on the right and so on.

b= (AB)(CD)
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Thus we see already -that A can be sent to B or to C. We calcul;te
ab = (AC)(BD)(AB)(CD) = (AD)(BC),

and

ba = (ABYCD)ACYBD) = (ADYBC) = ab.
Thus we can also send A to D.
Another automorphism is

¢'= (BQ)(DR).

Since the orbit of 4 already contains B, C, D, we see that it also con-
tains  and R. Finally

d=(PA)YBQ)
shows that the orbit of 4 is all of , so G is transitive. 1

PROPOSITION 4.6. Let Hp C G be the subgroup of automorphisms
of 7 leaving P fired. Then Hp is transitive on thé set 7—{P}.

Proof. Note that a,b,c above are all in H, so that the orbit of A
under Hp is h

{4,B.C.D.Q.R} = n—{P}. | o

THEOREM 4.7. G has 168 elements.

Proof. We carry the above analysis a step farther as follows. Let
K C Hp be the subgroup leaving @ fixed. Therefore since elements
of K leave P and Q fixed, they also leave R fixed. K is transitive on
the set {4, B;C, D}, since a,b € K. On the other hand, an element of
K is uniquely determined by where it sends the point A, since lines go
to lines and two of the three points per line are determined. Since A
may only go to four points, I is just the group consisting of the four
elements 1, a, b, ab. We conclude from the previous discussion that

#(G) = #(Hp) - #(m) = 7- #(Hp)
#(Hp) = #(K) - #(n—{P})=4-6
whence #(G)=7-6-4=168. O
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COROLLARY 4.8. Given triangles A1 A2A; and A{AYAS in 7, there
is one, and only one, automorphism sending A; — A; (1 =1,2,3).

Proof. For each triangle AB;B;B; we show that there is an.auto-
morphism agp, p,s, sending P, Q, A onto By, By, By, respectively. Then
Qa, a4, ° a_;ll_ma proves the existence part of our statement.

Since G is transitive, we can find g € G such that g(P) = B;. Since
B, # B, it follows that g7'(B;) # P. But Hp is transitive on 7— P, so
there is an element h € Hp such that h(Q) = g~!(By). Then gh(P) =
B and gh(Q) = B,. Now (gh)™}(B3) € {P, @, R} since Bj is not on the
line B;B,. Hence there is k € K" such that k(A) = (gh)~'(B3). Then
(ghk)(P) = B, (ghk)(Q) = B,, and (ghk)(A) = B;. This completes
the existence argument.

For uniqueness of this element, let us count the number of triples of
non-collinear points in . The first can be chosen in 7 ways, the second
in 6 ways, and the last in 4 ways. Thus there are 168 such triples. Since
the order of G is 168, there must be exactly one automorphism sending
a given triangle into another triangle. O

EXERCISES

EXERCISE 4.1. Show that the identity of a group & is unique.
Next, show that inverses are unique: if b and ¢ satisfy ab = ba = 1,
ac=ca=1, then b =c.

EXERCISE 4.2. Given a semigroup G, a left identity is an element
e satisfying ea = a (for all a € G). Given a € G, a left inverse b
satisfies ba = e. Show that a semigroup with left identity, in which
each element has a left inverse, is a group. Is something similar true
where right replaces left?

EXERCISE 4.3. Let G be a group. If a® = 1 for all a € G, prove
that G is abelian.
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EXERCISE 4.4. Let n be a positive integer > 1. Consider the ad-
ditive group Z of integers, and subgroup nZ. Show that the left cosets
{x+nZ|z=0,...,n— 1} form a group under +, call it Z,.

EXERCISE 4.5. If ¢: G — H is a homomorphism, prove that the
kernel of ¢, Ker(¢) = {g € G | ¢(g) =1}, is a subgroup of G.

EXERCISE 4.6. Show that the natural map ¢: Z — Z, given by
r + 1 + nZ is a homomorphism with kernel nZ.

- EXERCISE 4.7. If G = Perm S, prove that H, = {g € G | g(2) =
" x} is a subgroup of G for every x € S. If z = g(y) for some g € G and
x,y € S, show that H, = gH,g™!; whence H, and H, are isomorphic.

EXERCISE 4.8. Show that Z, is a cyclic group, i.e. generated by
one element. Prove that cyclic groups of same order n are isomorphic,
whence all are isomorphic to Z,,.

EXERCISE 4.9. Prove in a manner similar to Corollary 4.8 that the
affine plane of 9 points has automorphism group of order 9-8-6 = 432,
and any three nomn-collinear points can be taken into any three non-
collinear points by a unique element of the group.

Figure 4.3. The affine plane of 9 points.

EXERCISES 4.10-4.12. We will consider the Desargues configura-
“tion, which is a set of 10 elements,

E = {OaA)BZCIAI’BI’CI7P’Q’R}’
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and 10 lines, which are the subsets {O, A, A'}, {0,B,B'}, {0,C,C'},
{A,B, P}, {A,B', P}, {A,C.Q}, {A,C'.Q}, {B,C,R}, {B',C', R},
and {P,Q,R}. Let G = AutZ be the set of automorphisms of ¥ in
Exercise-4.10, 4.11, and 4.12.

Figure 4.4. The Desargues configuration.

EXERCISE 4.10. Show that G is transitive on X,

EXERCISE 4.11. a) Show that the subgroup of G-leaving a point
fixed is transitive on a set of six letters.

b) Show that the subgroup of G leaving two collinear points fixed
hias order 2.

c) Deduce the order of G from the previous results.

Now we consider some further subsets of £, which we will call
planes, namely

1={0,A,B,A' B P}
2={0,A,C, A", C",Q}
3={0,B,C,B',C", R}
41={A,B,C,P,Q,R}

1

5={4,B,C"P,Q R}

EXERCISE 4.12. Show that each element of G induces a permuta-
tion of the set of five planes {1,2,3,4,5}, and that the resulting map-
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ping ¢: G — Perm{1,2,3,4,5} is an isomorphism of groups. Thus G
is isomorphic to the permutation group on five letters.

EXERCISE 4.13. Let S; be the group of permutations of the four
symbols 1,2, 3, 4. i

a) Let G C S; be the subgroup generated by the permutation
(1234). What is the order of G?

b) Let H C S; be the subgroup generated by the permutations (12)
and (34). What is the order of H?

c) Is there an isomorphism (of abstract groups) ¢: G — H? If so,
write it explicitly. If not, explain why not.

Figure 4.5. The Pappus configuration.

a) What is the order of the group of automorphisms of £7

b} Explain briefly how you arrived at the answer to a).

EXERCISE 4.15. Let A be a subset of a group G.

a) Show that the set K = {a7'...ap¢ | al,...‘, ag € A; n1,...,ng €
Z} is a subgroup of G.

b) Show that K" = (A), the subgroup generated by A.

EXERCISE 4.16. Show that the numbr of right cosets of a subgroup
in a finite group is equal to the number-of left cosets:
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Elementary Synthetic
Projective Geometry

We will now define what we mean by central p;d jection or perspectivity

in our axiomatic development, and meet some of the basic invariants of -
projective geometry like cross ratio. But first we cut in half our labors

by noting the principle of duality.

[

5.1 Principle of Duality

Before reading the next proposition it will be helpful to recall that a
projective plane is a set where elements are called “points” together
with a set of subsets of those “points”, each of which is called a “line”:
the “points” and “lines”, though, must satisfy P1-P4. To facilitate
understanding we write point and line in different script from time to
time in our discussion of duality.

PROPOSITION 5.1. Let 7 be a projective plane. Let ©* be the set of .

lines in 7, and define a line in 7 to be a pencil of lines in . Then 7*
18 a projective plane. Furthermore, if m satisfies P5, so does w*.

REMARK. We call 7* the dual projective plane of 7.

43
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Proof. We must verify the axioms P1-P4 for n*. These translate
into statements D1, D2, D3, and D4, respectively, which we show to be
simple consequences of P1-P4. We also show P5 = D5.

P1. If p, ¢ are two distinct points of =*; then there is a unique line
of 7* containing p and q. If we translate this into a statement for =, it
says

D1. If p,q are two distinct lines of m, then there is a
unique pencil of lines containing p, q.

Le. p, g have a unique point in common. Thus D1 is equivalent to P2.

P2. If L and M are two lines in 7*, they-have exactly one point in
common. In =, this says that

D2. Two pencils of lines have exactly one line in com-
mon.

This is equivalent to P1.

P3. There are three non-collinear points in 7*.
D3. There are three non-concurrent lines in .

(We say three or more lines are concurrent if they all pass through
some point, i.e. if they are contained in a pencil of lines.) By P3 there
are three non-collinear points A4, B,C. Then one sees easily that the
lines AB, AC, BC are not concurrent: these correspond to three non-
collinear points in #*. (Conversely, three non-concurrent lines implies
the existence of three non-collinear points.)

P4. Every line in 7* has at least three points. This says that
D4. Every pencil in 7 has at least three lines.

Let the pencil be centered at P, and let £ be some line not passing
through P. Then by P4, £ has at least three points A, B,C. Hence
the pencil of lines through P has at least three lines a = PA, b = PB,
¢ = PC. (Conversely, assuming D4 we easily show P4.)
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Now we will assume P5, Desargues’ Axiom, is true in 7 and prove
it in 7*.

P5. Let o0,a,b,¢,a',b, ¢ be seven distinct points of 7*, such that
oaa’, obb', occ' are collinear, and abc, a'b'c’ are triangles. Then the
points p = ab.a't', ¢ = ac.a’c/, and p = be.b'c’ are collinear.

Translated into m, this says the following

D5. Leto,a,b,c,a',¥, ¢ be seven lines, such that 0, a, a';
0,b,b'; 0,¢,c are concurrent and such that abc and
a't'c’ form two triangles. Then the lines p = (a.b)U
(a'.b'), g = (a.c)u(a’.d), and 7 = (b.c) U (¥.¢') are
concurrent.

Figure 5.1. Proof of the converse of Desargues’ Axiom.

To prove this statement, we will label the points of the diagram in
such a way as to be able to apply P5. So let O = o.a.a’, A = 0.b.0',
A =o0cd, B=ab B =ac C=2dl,and C' = a'.c. Then
0,A,B,C, A", B',C" satisfy the hypothesis of P5, so we conclude that
P=ABA'B =bc,Q=ACAC =V.¢,and R= BC.B'C' = p.q are
collinear. But PQ = r, so p, q, and r are concurrent at R. O

We have in fact nearly proven that 7 is a projective plane if and
only if (iff) 7* is a projective plane: indeed, m Desarguesian iff 7*
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Desarguesian (Exercise 5.15).

The converse of Desargues’ Theorem. Notice that statement D5
is in fact the converse of Desargues’ Theorem: two axially perspec-
tive triangles are centrally perspective. What we have proved then is
that if Desargues’ Theorem holds in a projective plane then so does its
converse.! [

METATHEOREM 5.2 (PRINCIPLE OF DUALITY). LetS be any state-
ment about a projective plane w, which can be proved from the azioms
P1-P4 (respectively P1-P5). Then the “dual” statement D, obtained
from S by interchanging the words

point «—— line

lies on ~— passes through
collinear «~—— concurrent
intersection «—— join

etc.

15 a true statement as well about projective planes (resp. Desarguesian
planes).

Metaproof. The statement S is true for projective planes, so it holds
in particular for the dual projective planes, which are themselves pro-
jective planes as we have just seen. Now if S is true for #*, then D is
true for 7, since D is just the application to'S of the definition of point,
line, point on line, etc. in 7*. 7 being arbitrary, D is a true statement
about projective planes. [J

REMARK. Consider the dual of the dual projective plane 7*; denote
it by #**. Is it something new? There is a natural map 7 — #** given
by sending a point P of 7 into the pencil of lines through P, which is a
point of 7**. This turns out to be an isomorphism of the two projective
planes 7 and 7 (Exercise 5.4). Hence 7** is not anything new.

1That the dual of statement P5 is its converse is by no means usual for statements
about projective planes.
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For the real projective plane 7 the dual projective plane 7* is iso-
morphic with 7 (in notation, 7 = 7*). Given a line ¢ through the origin
O, send this to the plane through O perpendicular to ¢: check that this
defines an isomorphism. It is also true that = = 7* for the finite pro-
jective planes 7 of p?™ + p™ + 1 points (p a prime, n a positive integer).
Isomorphisms between m and «* are called polarities in the literature.
However, there are non-Desarguesian projective planes where.-m 2 7*.

5.2 Fano’s Axiom

DEFINITION. Suppose A, B, C, and D are four points in a projec-
tive plane such that no three of these points are collinear. Then the
complete quadrangle ABCD is the configuration of seven points and
six lines obtained by taking all six lines determined by 4, B, C, and
D, and then taking the intersection of opposite sides: P = AB.CD,
@ = AC.BD, and R = AD.BC. The points P,Q, R are called diagonal-

. points of the complete quadrangle.

Figure 5.2. Complete quadrangle.

It may happen that the diagonal points P, @, R of a complete quad-
rangle are collinear (as for example in the projective plane of seven
points). However, this never happens in the real projective plane (as
we will see below), and in general, it is to be regarded as a pathologi-
cal phenomenon, hence we will make an axiom saying this should not.
happen.
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P6. (Fano’s Axiom). The diagonal points of a com-
plete quadrangle are not collinear.

PROPOSITION 5.3. The real projective plane satisfies PG.

Proof. Given a complete quadrangle ABC D, no three of A, B,C, D
are collinear, so in the homogeneous coordinate model any three rep-
resentative vectors (representing A, B,--- = lines through the origin)
are linearly independent. Choosing these as a basis and rescaling, we
may assume A, B, C, D to be the points (1,0,0), (0,1,0), (0,0,1), and
(1,1, 1) respectively. You are asked to compute that the diagonal points
of this complete quadrangle are (1,1,0), (1,0,1), and (0,1,1) in Exer-
cise 5.1b. To see if they are collinear, we calculate the determinant:

(=]

= -2

O e =

1
0-
1

—

Hence the rows are linearly independent, so the lines they represent are
not coplanar, and we conclude that the points are not collinear. O

Let’s temporarily call a projective plane satisfying P6 a Fano plane.
In a later chapter we shall see P6 independent of P1-P4 and P3, so we
had better consider the question of whether a Fano plane 7 has dual
plane 7* also a Fano plane. We will obviously need to dualize the notion
of complete quadrangle.

Figure 5.3. Complete quadrilateral.
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DEFINITION. A complete quadrilateral abed is the configuration of
seven lines and six points, obtained by taking four lines a,b,c¢,d, of
which we require that no three are concurrent, their six points-of-in=—————-
tersection, and the three lines p = (a.b) U (c.d), ¢ = (a.c) U (b.d),
T = (a.d) U (b.c) joining opposite pairs of points. The lines p, ¢, and r
are called the diagonal lines of the complete quadrilateral. '

PROPOSITION 5.4. [f w satisfies Ariom PG, then so does 7*.

Proof. Clearly, the negation of the dual of P6 states: there exists a .
complete quadrilateral abcd such that the three diagonal lines p, g, r are
concurrent. Then this implies that the diagonal points of the complete
quadrangle ABCD, where A = bd, B =c¢d, C = a.b, and D = a.c,
are collinear, which contradicts P6. (O

REMARK. The reader is urged to construct the duals of definitions,
theorems, and proofs. For example, in the next section try developing
the theory of harmonic lines, dual to harmonic points.

5.3 Harmonic Points

Figure 5.4. Harmonic points.

DEFINITION. An ordered quadruple of distinct points A, B,C, D
on a line is called a harmonic quadruple if there is a complete quad-
rangle XY ZW such that A and B are diagonal points of the complete
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quadrangle (say A = XY.ZW and B = XZ.YW), and C, D lie on the
remaining two sides of the quadrangle (say C € XW and D € Y Z).

In symbols, we write H(A, B;C, D) if A, B,C, D form a harmonic
quadruple. Note that we equally well have H(B, 4; C, D), H(A, B; D, C),
and H(B, A; D, C).

Note that if 4, B, C, D is a harmonic quadruple, then the fact that
A,B,C, D are distinct implies that the diagonal points of a defining
quadrangle XY ZW are not collinear. In fact, the notion of four har-
monic points does not make much sense unless Fano’s Axiom P6 is
satisfied, hence we will always assume this axiom when we speak of
harmonic points.

PROPOSITION 5.5. Let A, B,C be three distinct points on a line.
Then (assuming P6) there is a point D such that H(A, B;C,D). Fur-
thermore, if P5 is assumed, this point is unigue. (D is called the fourth
harmonic point of A, B,C, or the harmonic conjugate of C with respect
to A and B.)

Proof. We construct a complete quadrangle having A and B as
diagonal points and with C on one of the two remaining lines.

Figure 5.5. Harmonic conjugate.

By D3 we find two lines £ and m through A, different from the line
ABC. Find a line n through C, different from ABC. ‘

Then let r denote B U (4.n), and let s denote B U (m.n). Then r.m
and s.¢ join to form a line, call it t. Let ¢ intersect ABC at D. By P6
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we see that D is distinct from ‘A, B,C. Then by construction we have
H(A, B;C; D).

Now we assume P35, and will prove the uniqueness of the fourth
- harmonic point. Given A, B, C construct D as above. Suppose D' is
another point such that H(A, B;C, D’). Then by definition, there is a
complete quadrangle XY ZW such that A = XY.ZW, B = XZYW,
CeXW,DeYZ Call ¢ = AX,m' = AZ, and n' = CX. Then we
see that the above construction, applied to ¢, m',n’, will give D'.

~ "Thus it is sufficient to show that our construction of D is indepen-
dent of the choice of £, m,n. We do this in three steps, by showing that
if we vary one of ¢, m,n, the point D remains the same.

Step 1. If we replace ¢ by a line ¢, we get the same D.

Let D be defined by ¢,m,n as above, and label the resuiting com-
plete qudrangle XY ZW. Let ¢ be another line through A, distinct
from m, and label the quadrangle obtained from &, m,n, X'Y'Z'W.
(Note the point W = m.n belongs to both quadrangles).

. X

Figure 5.6. Harmonic points, £ varies.

We must show that the line Y’ Z' passes through D, i.e. that Y'Z'. AB
= D. Indeed, observe that the two triangles XY Z and X'Y'Z’ are per-
spective from W. Two pairs of corresponding sides meet in A and B
respectively: A = XY . X'Y' and B= XZ X'Z'.
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Hence by P5, the third -pair of corresponding sides, namely ¥ Z.and
Y'Z’, must meet on AB, so that Y'Z'.AB = D.

Step 2. If we replace m by m/, we get the same D. The proof in
this case is identical with that of Step 1, interchanging the roles of ¢
and m.

Step 3. If we replace n by n’' we get the same D.

The proof in this case is more difficult, since all four points of
the corresponding complete quadrangle change. So let XY ZW be the
quadrangle formed by ¢,m,n, which defines D. Let X'Y'Z'W’ be the
quadrangle formed by ¢,m,n’. We must show that Y'Z’ also meets
ABC at D.

X

Figure 5.7. Harmonic points, n varies.

Consider the triangles XYW and W'Z'X’'. Corresponding sides
meet in the collinear points A, B, and C, respectively. By D5 the two
triangles must be perspective from a point O. In other words, the lines
XW' YZ'. and WX' meet in a point O.

Similarly, by considering the ordered triangles ZW X and Y'X'W',
and applyving D5 once more, we deduce that the lines ZY’, WX', and
XW' are concurrent. Since two of these lines are among the three
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above, and XW' # X'W, we.conclude that their point of intersection
is also O.

In other words, the quadrangles XY ZW and W'Z'Y'X' are per-
spective from O, in that order. In particular, the triangles XY Z and
W'Z'Y" are perspective from O. Two pairs of corresponding sides meet
in A and B, respectively. Hence the third pair of sides, YZ and Z'Y’,
must meet on the line AB, i.e. D€ Z'Y'". O

PROPOSITION 5.6. Let AB,CD be four harmonic points. Then
(assuming P5) also CD, AB are four harmonic points. Combining with .
an earlier observation (p. 50), we find therefore

H(A, B;C,D) & H(B,4:C,D)  H(A,B:D,C) & H(B,A;D,C)
; ; (
H(C,D; A, B) & H(D,C; A, B) & H(C,D;B,A) & HD,C;B, A).

Proof. We assume H(A, B;C, D), and let XY ZIV" be a complete
quadrangle as in the definition of harmonic quadruple.

Figure 5.8. Proof of H(C, D; A, B).

Draw DX and CZ, and let them meet in U. Let XW.YZ = T.
Then XTUZ is a complete quadrangle with C, D as two of its diagonal
points: B lies on X Z, so it will be sufficient to prove that TU passes

. through A. For then we will have H(C, D; A, B).

Consider the two triangles XUZ and YTW. Their corresponding
sides meet in D, B, C respectively, which are collinear. Hence by D5,
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the lines joining corresponding vertices, namely XY, TU, WZ, are.
concurrent, which is what we wanted to prove. O

EXAMPLES: 1) In the projective plane of thirteen points, there are
four points on any line: These four points always form a.harmonic
quadruple, in any order.

To prove this; it will be sufficient to show that P6 holds in this
plane. For then there will always be a fourth harmonic point to any
three points; and it must be the fourth point on-the line. We will prove
this later: The plane of 13 points is the projective plane over the field
of three elements, which is of characteristic 3. But P6 holds-in the
projective plane over any field of characteristic # 2.

2) In the real Euclidean plane, three-collinear points A, B, C may
be assigned-the following simple invariant under parallel projection:
AC
A B;C)= —,
( )= 5o
the ratio of signed segment lengths that C is said to divide AB. For
example, C is the midpoint of line segment AB if and only if (4, B;C) =
—1. Now midpoint is clearly not an invariant under central projection,
but it turns out that cross ratio of four collinear points is such an
invariant.

Four collinear points A, B,C, D are assigned a cross ratio defined
by
AC [/ BC
Ru(A,B;C, D) = 0/ BD
Then A4, B, C and D form a harmonic quadruple if and only if Rx(A, B;C, D) =
—1 (Exercise 5.2).
3) The cross ratio of four concurrent lines ¢, m,n, o in the Euclidean
plane is best dualized as follows:

sin Z¢n  sin Zmo
“ sinZfo sin Zmn’

Rx(¢, m;n,0)

In this way the cross ratio of 4 lines equals the cross ratio of four points
of intersection with any transversal (Exercise 5.8). Z{¢n denotes the
signed angle between ¢ and n.
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5.4 Perspectivities and Projectivities

DEFINITION. A perspectivity is a mapping of one line £ into another
line ¢' (both considered as sets of points in any projective plane), which
can be obtained in the following way. Let O be a point not on either
£ or . For each point A € ¢, let OA meet ¢ in A’. Then map
A — A'. This is a perspectivity. In symbols we write £ ¢ ¢ and
" we say “Cis mapped into ¢ by a perspectivity with center at O”, or
ABC ... 2 A'B'C'..., which says “the points A, B,C (of the line ¢)
are mapped via a perspectivity with center O into the points A’, B, C’,
respectively (of the line ¢')”.

Figure 5.9. A perspectivity between £ and ('.

A perspectivity is always one-to-one and onto, and its inverse is
also a perspectivity. Note that if X = £, then X as a point of ¢ is
sent to itself as a point of ¢'.

One can see easily that a composition of two or more perspectivities
need not be a perspectivity. For example, in Figure 5.10 we have ¢ £
¢ % ¢ and ABCY 2 ABCY %( A"B"C"Y". Now if the composed
map from £ to ¢” were a perspectivity, it would have to send £.¢" =Y
to itself. However, Y goes into Y. Therefore we make the following

DEFINITION. A projectivity is a mapping of one line ¢ into another
¢’ (which may be equal to £), which can be expressed as a composition
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of a finite number of perspectivities:

O1 Oz o

£’=€1=

1_1_—1
A A A

We abbreviate this to ¢ 5 ¢, and write A;Ay... A, A A1A; ... A7, if
the projectivity takes points A, Ag, ... , A, into A}, A}, ... , A, respec-
tively.

Figure 5.10. A projectivity that is not a perspectivity.

Note that a projectivity also is always one-to-one and onto.

PROPOSITION 5.7. Let ¢ be a line. Then the set of projectivities of
¢ into itself forms a group, which we will call PJ(¢).

Proof. The composition of two projectivities is a projectivity, be-
cause the result of performing one chain of perspectivities followed by
another is still a chain of perspectivities. The identity map of ¢ into
itself is a projectivity (in fact a perspectivity), and acts as the identity
element in PJ(¢). The inverse of a projectivity is a projectivity, since
we need only reverse the chain of perspectivities. O



5.4. Perspectivities and Projectivities . 57

Naturally, we would like to study this group, and in particular, we
would like to know how many times transitive it is: it is clearly 2-
_transitive, i.e. there exists a group element, a projectivity, sending two
arbitrary points A and B into two arbitrary points A’ and B’ (Exercise
5.5). We will see in the next proposition that it is three times transitive,
and in the proposition after, that it cannot be four times transitive.-

PROPOSITION 5.8. In a projective plane w, let A, B,C and A’, B',C’
be two triples of collinear points. Then there is a projectivity of ¢ into
itself which sends A, B,C into A", B',C".

Proof. If all six points lie on a line ¢, we can start arguing as follows.
Let ¢ be a line different from ¢, which does not pass through 4 or A’.
Let O be any point not on ¢,¢, and project A, B',C’ from ¢ to ¢,
giving A", B", C”, so we have .

‘4IBlcl .AHB”C”,

>0

and A ¢ ¢', A" ¢ €. Now it is sufficient to construct a projectivity
from ( to €, taking ABC into A"B"C" (why?). Drop double primes,
and forget the original points .4’, B',C’ € {. What remains is to do the
following problem:

Let €, ¢ be two distinct lines, let 4, B, C be three distinct points on
¢, and let A’, B',C’ be three distinct points on €; assume furthermore
that A ¢ €', and A’ g ¢. Construct a projectivity from ¢ to ¢ which
carries A, B,C into A’, B'.C", respectively.

B

" Figure 5.11. A projectivity sending ABC' into A'B'C".
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Consider lines AA', AB', AC', A'B, A'C, and let B" = AB".A'B
andl C" = AC'.A'C. Let ¢" denote B"C" and meet AA" at A”. Then
€% ¢" 2 ¢ sends

£

A”B"C” AIBICI .

>

ABC

>H

Thus we have found the required projectivity as a composition of two
perspectivities.

~ The case where one or both of 4 and A’ is the point £.¢' is disposed
of by relabelling points. O

REMARK. In the presence of Axiom P7, introduced in the next
chapter, the line ¢” is called the cross azis of the projectivity ABC R
A'B'C’'. In fact, it does not depend on which three points A, B,C are
chosen in the domain of the projectivity (Exercise 6.12).

PROPOSITION 5.9. A projectivity takes harmonic quadruples into
harmonic quadruples (assuming P5).

D’
Figure 5.12. Harmonic points under perspectivity.

Proof. Since a projectivity is a composition of perspectivities, it will
be sufficient to show that a perspectivity takes harmonic quadruples
into harmonic quadruples.
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So suppose £ 2 ¢, and H(A, B;C, D), where A,B,C,D € ¢. Let
A',B',C', D' be their images. Let ¢/ = AB'. Then ¢ £ ¢' £ ¢ is
the same mapping, so it is sufficient to consider ¢ £ ¢’ and ¢" ¢ ¢
separately. Here one has the advantage that the intersection of the two
lines is one of the four points considered. By relabeling, we may assume
it is A in each case. Hence it is sufficient to solve the following problem:

Let € € ¢ and let A = ¢.¢', B,C, D be four points on ¢ such that
H(A, B;C,D). Prove that H(A,B';C’, D'), where B',C', D' are the
images of B,C, D. )

Let X denote BC'.OA. Consider the complete quadrangle O.X B'C’.
Two of its diagonal points are A, B; C lies on the side OC’. Hence the
intersection of X B’ with ¢ must be the fourth harmonic. point of ABC;
‘i.e. XB'.¢ = D. (Here we use the uniqueness of the fourth harmonic
point). .

Now consider the complete quadrangle OX BD. Two of its diagonal
points are A and B'; The other two sides meet ¢’ in C’ and D’. Hence
H(A, B';C', D'), as we wished to prove. [

- So we see that the group PJ({) is three times transitive, but it is
not four times transitive, because it must take quadruples of harmonic
points into quadruples of harmonic points.

EXERCISES

EXERCISE 5.1. Find the diagonal points of the complete quadran-
gle

a) on the four points (+1,+1,1),

b) and on the four points (1,0,0), (0,1,0), (0,0,1), and (1,1,1).

EXERCISE 5.2. Let 7 be the real projective plane, and let A =
(a,0,1), B = (b,0,1), C = (¢,0,1), D = (d,0,1), a,b,¢,d € R, be four
points on the “z;-axis”. Prove that AB,CD are four harmonic points
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if and only if the product

2
o~
Q.

b -

- C

Ry(A4, B;C, D) =

S
Q.
o

is equal to —1. You may use methods of Euclidean geometry in the
affine plane z3 # 0.

EXERrciIsE 5.3. If P and @ are points in the real projective plane
represented by the vectors v and w, respectively, in R?, find an expres-
sion for the harmonic conjugate with respect to P and @ of the point
R represented by av+ Sw.

EXERCISE 5.4. Prove that the map T': © — 7 defined by T'(P) =
[P] (= pencil of lines through P) is an isomorphism of projective planes.

- EXERCISE 5.5. Give a simple demonstration that PJ(€) is 2-tran-
sitive on the set of points constituting ¢. I.e. given A, B and A’, B’ on
¢ find a projectivity £ x ¢ taking A— A, B— B’

EXERCISE 5.6. Consider the hyperbola zy = 1 in R?: its tangent
lines give a means of associating points on the z-axis with points on the
y-axis. Show that this mapping sends z on the z-axis to 4/x on the y-
axis, and is naturally extended to the projectivity in the real projective
plane given by

where Z is the ideal point on all lines with slope 0. If we denote this
projectivity by ABC x A'B'C’, show that the cross-joins AB’ and A'B
are parallel.?

EXERCISE 5.7. Pick a line £ in the seven point plane and compute
PJ(¢). You should arrive at a subgroup of Ss.

It is in general true that conics (of which the hyperbola in the exercise is a
special affine case) determine a projectivity between each pair of its tangent lines.
See the appendix for more information.
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EXERCISE 5.8. Refer to Figure 5.13.

Figure 5.13. Cross ratio is invariant under central projection.

a) Apply the Law of Sines in the Euclidean plane.to show that

sinZ1 _ sinZ3
sinZ2 ~ sinZ4’

Rx(A, B;C, D) =

b) Show that Ry(A, B;C, D) = Ry(0A,0B; OC,0D) = Ry(A', B';C", D).

c) Deduce that cross ratio is invariant under central projection. Cf.
Example 3, p. 54.

EXERCISE 5.9. In the Euclidean plane define the cross ratio of four
. points on a circle as the cross ratio of the four lines determined by these
and concurrent in a fifth point on the circle. Which well-known theorem
of Euclidean geometry assures us that this definition is independent of |
the choice of fifth point? Apply Exercise 5.8 to obtain a good definition
of the cross ratio of four points on any conic section. (You may use this
exercise to demonstrate Pascal’s Theorem in Exercise 6.17.)

EXERCISE 5.10. Let ¢, ¢ be two distinct lines in a projective plane
m. Let X = £.0'. Let A, B be two distinct points on ¢, different from
X. Let C, D be two distinct points on ¢, different from X. Construct
a projectivity ¢: ¢ — ¢ which sends A, X, B into X,C, D, respectively.

EXERCISE 5.11. Establish the following: given two harmonic quad-
ruples A, B,C, D and A', B',C', D', there exists a projectivity ABCD A
A'B'C'D'. 1dentify the propositions used in your proof.
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EXERCISE 5:12. In the ordinary Euclidean plane (considered- as be-
ing contained in the real projective plane), let C be a circle with center
O; let P be-a point outside C, and-let ¢; and ¢, be the tangents from
P to C, meeting. C at A; and A,. Draw A;A; to meet OP at B, and
let OP meet C at X and Y. '

c

Ay
Figure 5.14. Construction of harmonic points using a circle.

a) Prove (by any method) that X, Y, B, P are four harmonic points.

b) What is the harmonic conjugate of the midpoint of a line segment
with respect to its endpoints?

-EXERCISE 5.13. Given a complete quadrangle ABCD with diag-
onal points P, @, and R, choose any three points of A, B,C, D, say
ABC. Show that the harmonic conjugates of P, @, and R with respect
to AB, AC, and BC lie on a line.?

EXERCISE 5.14. Use Exercise 5.13 to prove the following Euclidean
theorem: the medians of a triangle are concurrent.

EXERCISE 5.15. Show that the Desargues’ Axiom!converse implies
Desargues’ Axiom.

EXERCISE 5.16. Refer to Proposition 5.6. What are the permuta-
tions in Sy under which an ordered 4-tuple of harmonic points remains
harmonic? Do they form a group?

3Poncelet called this line the trilinear polar of D. Much of the theory in this
chapter is due to him.




5.4. Perspectivities and Projectivities 63

EXERCISE 5.17. Suppose? that there exist points A, B, C, D, and

E on a line such that ,
Rx(A,B;C,D) =Rx(A,B;C,E).

Show that D = E.

EXERCISE 5.18. Convince yourself that statements D1-D4 in Propo-
sition 5.1 are an alternative and equivalent set of axioms for a projective
plane.

EXERCISE 5.19. In the Euclidean plane one can define X to be
between A and B if d(A, B) = d(A, X)+d(X, B). This corresponds to
our intuitive idea about betweenness. Suppose AXB A A'X'B". Is X’
between A' and B'?

4This exercise extends Proposition 5.5 in the case of the real projective plane.
In addition, you should obtain a simpler proof.
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Chapter 6

The Fundamental Theorem
for Projectivities on a Line

In Proposition 5.8 we saw that, having specified three collinear points
A, B,C, and another three collinear points A4’, B’,C’, we can find at
least one projectivity ABC x A'B'C’. In this chapter, we come to the
“Fundamental Theorem”, which states that there is only one projectiv-
ity ABC & A'B'C’. Hence the image of a fourth point on ABC may
be constructed by drawing a line through A, 4’ and a line through A
and the point of intersection on the cross axis as in Proposition 5.8.

It turns out that the Fundamental Theorem cannot be proven from
P1-P6, so we introduce it as an additional axiom P7, on the grounds
that it is true in the real projective plane (Theorem 6.5). Then we
examine the key role P7 plays in projective geometry: we prove both
Pappus’ Theorem and Desargues’ Theorem in the presence of P7.

- P7. FUNDAMENTAL THEOREM FOR PROJECTIVITIES
ON A LINE. Let £ be a line in a projective plane.
Let A, B,C and A’, B, C' be two triples of three dis-
tinct points on ¢. Then there is one and only one
projectivity of ¢ into ¢ such that ABC x A'B'C’.

Since two lines are in one-to-one correspondence by some. perspec-
tivity, P7 holds on every line if it holds on a single line. As a simple

65
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consequence of P7, ABC A ABC must be the identity. Then a pro-
jectivity not equal to the identity has at most 2 fixed points. Next we
consider how P7 may be reformulated in several ways.

PROPOSITION 6.1. P7 s equivalent to:

P7. Let € and ¢ be two distinct lines in a projective
plane, Let A,B,C € ¢ and A", B",C' € ¢'. Then
there is one and only one projectivity of ¢ onto ¢
such that ABC x A'B/C".

P7”. Let £ and ¢ be distinct lines in a projective plane
and X = (.¢'. Then every projectivity £ X £ sending.
X to itself is a perspectivity.

Proof. PT == P7'. Suppose two distinct projectivities ¢: ABC A
A'B'C" and ¢¥: ABC A A'B'C’ exist mapping £ onto ¢'. Then there is
X € € such that ¢(X) # ¥(X). Let O be a point not on either ¢
or £. Denote the perspectivity with center O between ¢ and ¢ by
7: AB'C' 2 A"B"C" where A" = OA'.{, etc. Then 7¢ and 7 are two
projectivities ABC A A”B"C" of ¢ onto itself, but 7(¢(X)) # 7(¥(X))
since 7 is a one-to-one correspondence. This contradicts P7.

P7 == PT7". Let A, B be two points on { different from X = £.£,
and A’, B’ their images under a projectivity ¢, which sends X to itself.
Let O = AA.BB'. Then ¢ must equal the perspectivity ABX £ A'B'X
by P7.

P7" = PT7. Suppose we have two projectivities on a line £’ with
* the same effect on a triple of points: ¥;,%5: PQR A P'Q'R'. Given
distinct lines ¢ and ¢ we construct projectivities ¢,: PQR A XAB
and ¢o: P'Q'R xR XA'B' where X =00, A,B € ¢{and A,B € (.
Then @107 and ¢ythéy* both send XAB x XA'B', so by P7",
Gyt Pt = B212¢7 . Multiplying by @5 from the left and ¢, from the
right it follows that ¢, = ¥».! O

1With the same sort of argument one establishes the following principle: if in
a projective plane w there exist collinear points A, B,C and A', B',C’' such that
P1,¥9: ABC 5 A'B'C' = 1 = », then 7 satisfies P7 (Exercise 6.3). In other

words, the Fundamental Theorem is equivalent to any of its special cases.
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In chapter five the Principle of Duality would-naturally provide
us with perspectivities between pencils of lines via a line as axis. We
extend the Principle of Duality with the next proposition.

PROPOSITION 6.2. P7 implies its dual statement:

D7. Let P be a point in a projective plane. Let a,b,c and
a',\ b, ¢ be two triples of lines through P. Then there
erists one and only one projectivity abe A a'b'c.

Proof. An elementary correspondence 7 gives a one-to-one corre-
spondence from a pencil of lines through @, to the set of points, or
range of points, on a line ¢ not passing through @ by associating a line
m through P with the point {.m. (77! is the same elementary corre-
spondence, but the inverse mapping, from_a range. of points to a pencii
of lines. Then a perspectivity is the application of two elementary
correspondences. )

Now let P be the point in the hypothesis with ¢ a line not passing
through P. Consider the elementary correspondence 7 from the pencil
of lines at P to the range of points on ¢. Denote straightforwardly
(a)=A, 7(b) =B,... ,7() = C". If ¢y,%,: abc A a'b'c’ are two pro-
jectivities, then v, 771, 77l ABC A A’B'C’ are two projectivities
between ranges of points. (Why are 7,77 projectivities? Exercise
6.9). We have r177} = 7,7~ ! by P7, whence ¥, = ¢» as mappings,
which establishes D7. O -

The next theorem says that the Fundamental Theorem implies De-
sargues’ Theorem.

THEOREM 6.3. If P7 holds in a projective plane w, then P35 holds
m .

Proof. Given lines OAA', OBB', 0CC', ABP, ACQ, BCR, A'B'P,
A'C'Q, B'C’'R, we have to show that PQR is aline. So we should prove
Pison QR.

Let S = CP.QR, T = AB'.C'S, X = AB.OC, Y = OC.QR, and
Z = OC’ . A'B'. We consider first the projectivity ABXP 2 A'B'ZP.
Second, consider the projectivity ABXP £ QRYS & A'B'ZT.

A
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Figure 6.1. Proof of Desargues’ Theorem: P =T = §.

By the Fundamental Theorem, the two projéctivities must be iden-
tical, hence T = P. This implies that P € C'S. Since 5 € CP, we get
S e C'PCP. So S = P, which implies that P € QR. O

6.1 Geometry of Complex Numbers

In this section we wish to check P7 in the real projective plane. In
order to do this we introduce Mdbius transformations of the complex
numbers and prove a lemma, all of which will be useful also in later
chapters. )

Recall that R? may be identified with C via the mapping (a, b) —
a+bi, thereby giving R? multiplication and division operations (a, b)(c, d)
= (ac — bd,bc + ad) and (a,b) + (c,d) = (%E4,%5%) so long as
¢+ d® # 0. These formulas are usually remembered by using the

complex number notation and the relation i = —1.

DEFINITION. Let C, denote the extended complex numbers C U
{oco}. Define for all a,b,c,d € C such that ad — bc # 0 a mapping

f5(coo—’Coob)’xHZ;IZ,OOH{ZQC’f:(;),and —~dfc—ooifc#0. f

is called a Mébius transformation, or fractional linear transformation.
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LEMMA 6.4. The set of Mébius transformations form a group un-
der composition; tn particular, each Mdbius transformatidn s a one-
to-one correspondence of Co, with itself. Furthermore, a Mdbius trans-
formation is determined by its value on three elements n Co -

az-+b
cx+d?

Proof Given a Mobius transformation denoted by f(z) =

_ a'z4b

and another g(z) = X5, their composite is

(aa' + bc')z + (ab' + bd')
(ca’ 4 dc' )z + (cb' + dd')

SJeglz) =

as can be obtained by direct computation. Note that the coefficients
in the composite correspond from left to right, up to down, with the
coefficients in the matrix product

a b\ fa ¥\ _fad +b ab' +bd
c. dj\c d) \ca'+dc cb'+dd')’
while the condition ad — b¢ # 0 is equivalent to det (2 %) # 0. Since
determinant of square matrices A, B satisfies det AB = det Adet B, it
follows that f ¢ g is a Mobius transformation.
The identity f(z) = x is obtained when a = d=1b=c=0.
Moreover, a Mobius transformation "”" has inverse function d;'fa

corresponding to the adjugate matrix: whence it is a one- -to-one corre-
- spondence of C,, with itself.

To prove the last statement in the lemma it suffices to check that
there is one and only one Mébius transformation f, 4, taking 0,1,00 "
to an arbitrary triple o, 8,7 in C,. For then fy g, ° fa"ﬁ7 is clearly
the- umque Mébbius transformation sendmv an arbxtrary triple a, £, ’y to
o, 0,4 in Cy. ’

First suppose a,ﬁ,'y € C and f(z) = =2 Then

cz:+d
(1) f(0) =bjd=a,
a+b
(2) ﬂn=c+d=aam
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Clearly, one parameter of a Mobius transformation is freely chosen,
so take d = 1. This forces b = a, a = ¢y, and § = &£ 50 g = 2=

o1’ e+l
forcing ¢ = % and a = ’y%—:—g. Then
ad — be = la=plr-a) ‘ﬂﬁ)(’Y — ) #0;
-7

after multiplication through by the factor § — v, we get

e +a(B-7)
&) = R B =7

to be the Mobius transformation determined by equations’(1), (2), and
(3). If one of @, 3,7 = oo, a similar computation determines a unique
Mébius transformation (Exercise 6.13). [

| THEOREM 6.5. The Fundamental Theorem (Aziom P7) holds in
| the real projective plane.

Proof. We first show that a perspectivity € 2 ¢ is given by a Mobius
transformation if the ideal points on ¢ and ¢ are both identified with
00. Suppose ¢ is parametrized by (a + ib)t + ¢ + id = ut + v, € by
(a' +it)s+ ¢ +id = u's+ v, and O has coordinates (p, q).

Figure 6.2.
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We claim that ¢ £ ¢ is the Mobius transformation M, M3 My M, (t)
of Cs, where M, Mg, M; and M, are given by

Mi(z) =u 'z —ulv, M) = gt
Ms(z) = %ﬁ» My(z) =v'z+ 0.

Note that M M; ' My M, (ut + v) = ' M3 My(t) + v' so we must show
that ut+v, p+iq, and w My ' My(t)+v' are collinear. Let M = M3 ' M,.
We must show that the slope of the line through points ut+v and p+iq
equals the slope of the line through the points u'M(¢) + ¢' and p +ig:
i.e. show that

bt+d—q bWM@E)+d ~gq

at+c—p aM{t)+c —p
Now, the left hand side is equal to 1/M>(t), the right hand side equal.
to

1- 1 1
Ma(M(t)) ~ Mzo MyleMy(t)  My(t)
This proves the identity.

Thus a perspectivity ¢ £ ¢ with center O in R? is a Mébius trans-
formation of the line ¢ in (Coo onto ¢ in C,. It is left as an easy
exercise to check the same if O is an ideal point (giving parallel pro-
jection of £ onto ¢ — this implies M; ' My(t) = kt for some stretching
constant k). It follows that any projectivity € x ¢ is similarly a complex
Mobius transformation restricted to U {oc}. By Lemma 6.4, a Mobius
transformation is determined by its effect on three points. Hence, any
projectivity is uniquely determined by its values on three points, which
is the Fundamental Theorem. O

6.2 Pappus’ Theorem

We now come to one of the oldest of projective theorems, which states
that if six vertices of a hexagon lie alternately on two lines, then the
three pairs of opposite sides meet in collinear points. The theorem was
discovered by Pappus of Alexandria, living in the fourth century A.D.,
and demonstrated with laborious Euclidean methods.



Figure 6.3. Pappus’ Theorem: if hexagon AB'CA'BC' is inscribed on two lines,
then the pairs of opposite sides meet in three collinear points.

THEOREM 6.6 (Paprus’ THEOREM). Let { and €' be two distinct
lines. Let A, B,C be three distinct points on £, different from'Y = £.€.
Let A'. B',C' be three distinct points on €, different from Y. Define
P=AB A'B, Q = AC'"A'C, and R = BC'.B'C. Then P, @, and R
are collinear.

Figure 6.4. Proof of Pappus’ Theorem.

Proof. Refer to Figure 6.4. We will construct a projectivity from
line AB' into line B'C. Let o be the elementary correspondence from
AP into the pencil of lines through A’, and 7 the elementary correspon-
dence from the pencil of lines through C' into the range of points on
B'C'. Finally let 7 be the perspectivity from the pencil of lines through
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A’ into the pencil of lines through C’ having ¢ as ah axis:
n AX = C'X (VX €O.
Consider the projectivity ¢,: AB' 7 B'C defined as
o: AXB' A ZCB'.

Since B’ is fixed ¢ is a perspectivity by Axiom P7: indeed ¢ is the
perspectivity with center @.
Clearly ¢(P) = 7(BC’) = R, whence P, @ and R are collinear. O

In a Desarguesian plane, Pappus’ Theorem is in fact equivalent to
~ statement P7, or any one of its variants. You may work out the impli-
cation Pappus == P7 in Exercises 6.14-6.16 below. For this reason
we will follow tradition and occasionally refer to projective planes that
satisfy P7 as Pappian planes. )

EXERCISES

EXERCISE 6.1. If A, B,C and 4A’, B', ("' are two'triples on the same
line, construct the image X' of a fourth collinear point X under the
projectivity ABC A A’B'C’ (assuming the Fundamental Theorem).

EXERCISE 6.2. Let 7 be a finite Pappian plane having p? +p + 1
points in all. If £ is a line in 7, then what is the order of the group
PJ(£)? .

EXERCISE 6.3. Suppose that the following statement is true in
there exist collinear triples A, B,C and A’, B',C’ such that if ¥,
both send ABC A A’B'C’, then ¥; = 1, as mappings. Show that
Axiom P7 holds in #: i.e. if P,Q, R and P', @', R’ are any two triples of
points on a line ¢, then there is a unique projectivity PQR A P'Q'R'".

EXERCISE 6.4. If A, B,C and A’, B’,C' are triples of points on a
line ¢ in a projective plane 7, show that if there are two different pro-
jectivities ABC A A'B'C’, then there exist two-different projectivities
ABC » A"B"C" between distinct lines of 7.
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EXERCISE 6.5. (Together with Exercises 5.8 and 5.17, this exercise
will provide an alternative proof that P7 holds in the real projective
plane.) Suppose ¥, and v, are projectivities on a real projective line
both sending ABC x A'B'C’. Choose a fourth point X, different from
A, B, or C and show that ,(X) = ¢2(X) by using cross ratios.

EXERCISE 6.6. For each of the following projective planes, state
which of the axioms P5, P6, P7 holds in it, and explain why each
axiom does or does not hold. (Please refer to results proved earlier,
and give brief outlines of their proofs.)

a) The projective plane of seven points.
b) The real projective plane.
c) The Moulton plane.
EXERCISE 6.7. Let 7 be a projective plane satisfying P5, P6, and
P7, and let ¢ be a line in 7.

a) Prove that if ¢ is a projectivity of £ onto ¢ which interchanges
two distinct points A, B of £ (i.e. ¢(A) = B and ¢(B) = A), then ¢? is
the identity.?

b) Conclude that A'B'C'D' A B'A'D'C’ for any 4 points 4', B', C’
and D' on a line.

A B’ C D

Figure 6.5. Existence of involution ABCD x BADC.

2 A projectivity ¢: £ & € such that ¢* = id, is called an involution. You are asked
to prove that a projectivity interchanging a pair of points is an involution.
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Hint. Let C be another point of ¢ and let ¢(C) = D. Construct a
projectivity ¢': £ — € which interchanges A and B, and interchanges C and
D, using Figure 6.5; justify. Then apply the Fundamental Theorem..

EXERCISE 6.8 (G. HESSENBERG, 1905). Prove that Pappus’ The-
orem implies Desargues’ Theorem.

Hint. Using the labelling in Figure 3.1, define S = A'C'.AB and apply
Pappus’ Theorem to the triad (§ € ¢'), label the new points, and apply
Pappus’ Theorem again to the triad (2 % g’ ). Label the new point and
apply Pappus’ Theorem again to conclude that P, @, R are collinear.

EXERCISE 6.9. Suppose 7 is the elementary correspondence be-
tween the pencil [P] of lines through P and range of points-on ¢. Show.

that if ¢ is a projectivity between the pencil of lines, [P] 2 (P E
- 2 [P), then 7677} is a projectivity between the range of points
LE0 20z x50

>N

EXERCISE 6.10. Let T be a complex Mobius transformation send-
ing three points Z, Z;, Z, on a line ¢ in R? into three points Z, W, Wy,
respectively, on a line m. Notice that £.m = Z.

a) Is T restricted to ¢ a perspectivity from ¢ to m?
b) If so, where does the center lie?

¢) How many fixed points does T have?

EXERCISE 6.11. Establish by direct means Pappus’ Theorem in the
real projective plane: Let ¢,¢', A, B,C, A', B',C' be as in the statement
of Pappus’ Theorem, and take ¢ to be the line at infinity. Then prove
by Euclidean methods that P = A'B.AB', Q = A'C.AC’, and R =
B'C.BC’ are collinear. :

EXERCISE 6.12. Prove that the cross axis does not depend on which
three points A, B, C are chosen in the domain of the projectivity.

EXERCISE 6.13. Prove the existence and uniqueness of a Mobius
transformation sending 0,1,00 to a,8,7 in each case where one of
a,fB,7 is oo.
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Suppose 7 is-a projective plane where Desargues’ Theorem and Pap-
pus’ Theorem are true. The next three exercises will guide you through
to a proof that 7 satisfies P7. Thus Pappus’ Theorem is equivalent to
the Fundamental Theorem.

As pointed out in the text it will suffice to show that any pro-
jectivity between- distinct lines, 7: ¢ — ¢, which fixes X = £.7, i.e.
7(X) = X, is a perspectivity.

EXERCISE 6.14. Suppose £;, {2, and ¢5 are distinct concurrent lines.
Suppose the projectivity 7 is given by ¢, %’ 2 [,:*f 3. Let the effect of 7
on points be given by A; X, 2 A X, ';—f A3 X3. Use Desargues’ Theorem

A

to prove that ¢'is the perspectivity ¢, (,=‘: O3 where Q@ = A1 AP Ps.

EXERCISE 6:15. Suppose 7 is the projectivity given by £ 2o 2

2 ';if’ ¢, where ¢,¢,, 05, ¢ are distinct lines, no three being concurrent.
Consider the line m joining £.¢; and ¢;.¢'. Aside from the case where
Py € m, 0.0y, 7 is equal to the projectivity, ¢ 2 ¢, 2 m Z ¢, 5oy
a) Show that points @ and R may be found such that 7 is the
projectivity £ £ m £ ¢.
b) Show that the chain of perspectivities defining 7 may also be
shortened by one perspectivity in the exceptional case where P; € m.

c) Assume that ¢, ¢}, and £ are concurrent. By inserting a line
through ¢;.¢; and avoiding P;, reduce to the case we started with (four
lines, no three concurrent).

d) Conclude that any projectivity between distinct lines may be
given as a chain of only two perspectivities.

EXERCISE 6.16. By Exercise 6.15, we may find points P, P, € 7
and line m, such that 7 is the projectivity £ 2 m '%2 ¢. Ifmis
concurrent with ¢ and €', we are done by Exercise 6.14. Suppose m is
not concurrent with ¢ and ¢'. Recall that X = £.¢ and 7(X) = X. Let
tm=V,{!m=U,and XPbm=T.

a) Show that P,, Pp, and X are collinear.
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Figure 6.6.

b) Let 7 map A; — A — Aj as pictured. Applying Pappus, show
that A4, A3 passes through the point @ = PU.P,V for all 4, € ¢ with
image A; € ¢ under 7. Conclude that 7: ¢ 2 ¢, and that 7 satisfies -
Axiom P7. '

EXERCISE 6.17. Prove PascaL's THEOREM in P%(R): If hezagon
ABCDEF is inscribed in a conic section, then the three pairs of oppo-
site sides meet in three collinear points.

y C R Y

E! axz+by?=r2

y2_x2 =1
Figure 6.7. Pascal’s Theorem.

Hint. Apply cross ratio of 4 points on a conic section (defined in Ex-
ercise 5.9) and uniqueness of the fourth point in fixed cross ratio (Exercise
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5.17 and its dual). You should set out to prove that lines PR and QR are
equal by drawing some helping lines and projecting cross ratio about the
figure.

EXERCISE 6.18. Show that complex Mobius transformations map
circles and lines into circles and lines.

EXERCISE 6.19. Answer Castillon’s Problem: given a circle I' in
the Euclidean plane and points A, B, C ¢ I', is there a triangle inscribed
on I whose sides pass through A, B, and C?



Chapter 7

A Brief Introduction to
Division Rings

In this chapter we introduce the notions of ring, division ring and field.
We give basic examples of each: polynomial and Laurent series rings,
quaternions and the finite fields of integers modulo p.- Replacing R in
P?(R) with general division rings will provide us with many examples
of projective planes in Chapter 8.

DEFINITION. A ringis a set R together with two binary operations
+ and -on R, denoted by (a;b) — a + b and (a,b) — ab, such that

R1: (R,+) is an abelian group, whose neutral element
we denote by 0.

R2. (R,-) is a semigroup' possessing a unit element 1.

R3. - is left and right distributive over +: a(b +¢) =
ab+ ac, and (a + b)c = ac + be (for all a,b,c € R).

A diwvision ring is a ring R such that

DR1. (R—-{0},,1) is a group.

1'We have followed tradition and dropped the dot in a - b.

79
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Le. every nonzero element has a multiplicative inverse. A field is a
division ring F’ such that

F1. ab=ba (for all a,b € F)

T.e. multiplication is a commutative operation.

ExXAMPLE 1. The set of integers Z under addition and multiplica-
tion is clearly a ring. Since multiplication is a commutative operation,
we can express this by saying Z is a commutative ring.

ExXAMPLE 2. The set of all n x n matrices (n > 1) with real coef-
ficients, M,(R), is a ring under the usual matrix addition and matrix
multiplication. In this example multiplication is noncommutative, and
not every nonzero matrix has an inverse. Other examples of rings are
obtained by replacing R in M,(R) with Q, C, any field or indeed any
ring (Exereise 7.17).

EXAMPLE 3. Familiar examples of fields are the rationals Q, R, C
under ordinary addition and multiplication.

A subfield is straightforwardly defined as a subset of a field closed
under addition and multiplication, containing 0.and 1, and itself a field.
For example, Q is a subfield of R, which in turn is a subfield of C.

EXAMPLE 4. THE INTEGERS MODULO n. Let n be an integer
greater than 1. We say integers a and b are congruent modulo n, writing
a = b (mod n), if a — b is a multiple of n. Check that this is an
equivalence relation on Z (Exercise 7.18).

Denote the equivalence class of a by [a], le. [a] = (b €Z |b=a
(mod n)}, and the set of all equivalence classes by Z, (={[0],[1],...,
[n—1]}). Note that [a] is the left coset a + nZ of the subgroup nZ of Z
under addition; according to Exercise 4.4, Z,, is a group with addition
given by

[a] + [b] = [a + b].

By Exercise 4.6 the map 7: a ~ [a] is a surjective group homomor-
phism. Define a ring homomorphism to be a mapping between rings

f1 Ry — Ry satisfying f(z +y) = f(z) + f(y) and f(zy) = f(2)f(y)
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(for all z,y € Ry). Now you might guess that decreeing 7 a ring homo-.
morphism would carry over to Z, the multiplication making it a ring,
and you would be right. Indeed, define a multiplication in Z,, by

[a]{b] = [ab].

This definition is independent of the representatives a and b of their
respective equivalence classes, since

(a+ kn)(b+rn) =ab+ (kb+ra + krn)n.

It is a rather simple exercise (Exercise 7.19) to check distributivity of
multiplication over addition in Z,. Then Z, is a commutative ring P.
Let n = 6: observe that [2][3] = [0] in Zs, so clearly Z¢ is not a field.
(In a general ring R, a is called a zero divisor if a # ( and there exists
b€ R — {0} such that ab = 0). ‘
Suppose n is a prime p. We claim that Z, is a field. Le. if [a] # (0],
then [a] is invertible. Here is why: since a and p are relatively prime,
there exist integers b-and k such that ab+ pk = 1 (Exercise 7.20). Then
[a][b] = [1], so [a] has an inverse as claimed.

Note that in Z,, adding [1] together p times gives 0: p[1] = [0].
We say that Z, is a field of characteristic p, and make the following
definition.

DEFINITION. Let F be a division ring. The characteristic of F is
the smallest integer p > 2 such that

1+---+1=0
‘ﬁ’_/
p times
or, if there is no such integer, the characteristic of F is defined to be 0.
PROPOSITION 7.1. The characteristic p of a division ring F' 1s al-
ways 0 or a prime number. '
Proof. If p # 0, suppose p = m - n where m,n > 1. Then
(ml)(n)=(1+--+1)(1+---+1)=pl =0.

~ ]
— ~

m times n times

Hence one of m1 or nl must be 0, which contradicts the choice of p.
Hence, p is prime. O
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EXAMPLES OF CHARACTERISTIC. The fields @, R, and C have
characteristic 0. We have seen that there exists a field of each prime
characteristic. The quaternions described below form.a noncommuta-
tive division ring of characteristic 0. Later we-construct a skew Laurent
series ring over Z,(z), providing lots of examples of polynomials and
an example of a noncommutative division ring of characteristic p.

7.1 The Quaternions H

We define on R?, the set of ordered 4-tuples of reals, an addition and
multiplication- that yields a division ring we denote? by H. Addition is
just coordinatewise addition familiar from linear algebra:

(1, 29. 23, Za) + (Y1, 2, Y3, Ya) = (21 + Y1, T2 + Yo, T3 + Y3, Ta + Ys).

Multiplication is given by the complicated but interesting formula,;

(7.1) (r1.72,73,24) - (Y1,Y2,93,Va) =
(T34 — Toys — T3Y3 — Tals, TrYa + Loty + Tays — Tys,
T1Ys + T3y1 + TalY2 — Tola, T1Vs + T4y + Tays — T3la).

The formula does lend itself to four quick insights.
1) (1.0,0,0) is the unit element.
2) Multiplication is distributive over addition.
3) We have

(czy,crg, cz3,¢84) - (Y1, 12, Y3, Ya) =
(%1, 22,23, %4) - (CUr, Y2, Y3, ¢ys) (Ve €R).

Using ordinary scalar multiplication of R in R*, we write at times
¢(zy, g, T3, 24) in place of (czy, cxs, cx3, CZ4).

41

(21, 2, 3, T)|| = \/2} + 23 + 23 + 23

2 After their discoverer, W. R. Hamilton (1805-1865)
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denotes the Euclidean norm on R*, then

(%1,%2,73,24) - (T2, — T2, —T3, —Tq) = (”(931,932,1?3,'$4)||2,0,0,0)

= (1‘1, —T3,—T3,—T4) " (931,182,183,354)

so each nonzero 4-tuple is invertible.

Define H to be R* equipped with + and - as above and call its-ele-
ments quaternions. We must only check associativity to see that His a’
division ring. There are two approaches that avoid direct computation.
First, we assign certain key quaternions their standard notations: i =
(0,1,0,0), j = (0,0,1,0), k = (0,0,0,1), and the unit 1 = (1,0,0,0).
Since {1,1, j,k} is a basis of R, any quaternion is a linear combination
of these: ¢ = 711 + 29t + 235 + z4k. Note that G = {1, i, £j, +k}
is closed under multiplication: i = —1 = j2 = k%, ij = k = —ji,
Jjk=1i=—kj, ik = —j = —ki. We could check somewhat laboriously
that G is a group and deduce an associative multiplication on H from
this (Exercise 7.11).

REMARK. If we identify the space of pure quaternions {a,i + aqsj +
ask | a1, aq, a3 € R} with the space of 3-vectors R® = {v | v = vji+voj+
v3k} equipped with dot product and Cross product, the multiplication
of quaternions is given by

(7.2)

(z114+v) - (hl+w) = (i —vwlfyv+nwtvXxw
Check this formula against Formula 7.1 above using your knowledge of
vector analysis (Exercise 7.10).

A second method for establishing associativity on the quaternions
uses 2 X 2 matrices of complex numbers. We define a mapping 7: H —
M,(C): first break down a quaternion ¢ = 2,1 + ,i + 73j + x4k into
two complex numbers o = 2, + £3v/—1 and § = 3 + 24/—1. Define

T _ $1+IE2\/——1 T3+ T4/ —1 _ (44 /6
((I)— —I3+.'134\/—_1 Il_x2\/—_1 - ——B ajl’

We note that:

SHistorically, the quaternions led to the cross product on vectors.
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T is an injective mapping clearly since ¢; # ¢z => T(q1) # T(q2).

T is multiplicative, i.e. T(qw) = T(q)T(w) (for all ¢, w € H), since
taking g above and letting w = 111 + ¥t + y3J + yak, v = 11 + ¥2vV—1,
and 6 = y3 + y4/—1, we compute

v fa B[~ & _[ay-p5 ob+p37
()T (w) = (—ﬁ a) (—5 5) = (—57 ~as -Bs+av)"
Now page back to Formula 7.1 where the quaternion product quw is
given. Break the quaternion qw into two complex numbers p and o,

i.e. T(qw) = (% 7). It is easily checked by hand that p = ay— it and
o = ab + 37 (cf. Exercise 7.12). Hence T is multiplicative.

(7.3)

We must show (q192)g5. = q1(qags) (for all ¢, ¢,¢93 € H). Since
matrix multiplication is associative, it follows that

T((q192)g3) = T(q192)T(g3) = (T(01)(T(92))T (g3)
=T(q1)(T(q2)T(g3)) = T(q1)T(g293) = T(91(q293)),

50 (q192)g3 = q1(g293) by injectivity of T'.*

Certain elements ¢ in H commute with all other quaternions: ¢¢' =
¢'q (for all ¢’ € H). For example (z1)g = ¢(x1) (for all z € R by using
one of Equations 7.1, 7.2, or 7.3). You will be asked to provide a proof
that {z1 | z € R} is the full set of quaternions that commute with all
quaternions (Exercise 7.14).

DEFINITION. Let F be a division ring. Let Z(F) be the set of a € F
such that ab = ba for all b € F. Z(F') is called the center of F.

PROPOSITION 7.2. The center Z(F') of a division ring is a field.

Proof. Suppose a,b € Z(F). Then for all c € F

(a+b)e=ac+bc=ca+chb=cla+b)

4There is a principle involved here that could be formulated as follows for sets A
and B with one or more binary operations: If T': A — B is a one-to-one correspon-
dence preserving the binary operations, then whatever laws that hold on A must
also hold on B.
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and . -

(ab)e = a(be) = a(ch) = --- = ¢(ab)
(fill in the missing steps). It follows that Z(F’) is closed under addition
and multiplication. Also, (—a)c = —(ac) = —(ca) = ¢(—a), so —a €

Z(F). Moreover, ab = ba, so Z(F) is a commutative ring. Finally, if
b € Z(F)—-{0} '

eb™t = bbb = b7 eb)h = b7 e (Ve EF).
Hence b~! € Z(F). This completes the proof. O

We will find both center and automorphism of division rings crucial
- to our analytic development.of projective geometry in the next chapter.

DEFINITION. An automorphism of a division ring F' is a one-to-one
correspondence o: F — F such that

o(a+b)=o(a)+ o(b)

o(ab) = a(a)o(b) (Va,b € F).

It follows that ¢(0) = 0 and o(1) = 1. Note that the automorphisms
of F' form a group under composition, which we denote by Aut F.

ExaMPLE. In Exercise 7.7 you are invited to show that o,(z) =
AzA~! defines an automorphism of F for any A # 0, called an inner
automorphism. If A € Z(F’), then o) = idp. If F = H, it can be shown
that every automorphism is an inner automorphism.

7.2 A Noncommutative Division Ring with
Characteristic p

PROPOSITION 7.3. There ezists a noncommutative division ring
with arbitrary characteristic p.

Proof. We sketch the construction of an example due to Hllbert
Certain details will be left to the exercises.
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Given a field F' with automorphism o we show how to form the skew
Laurent series ring in one indeterminate F((z;0)), or D. Elements in
D are formal sums with possibly infinitely many nonzero coefficients
a; € F having a lower bound in index:

Z—’m’l %1—1+-~+9;—1+aoz°+a1z+~-+anz"+---

or equivalently °5°  a;z'. The lower bound —m will vary from ele-
ment to element, and might be any integer. We can of course write the
element Y2 a;z' as 132 _ a;2' by assigning a; = 0 to each ¢ < —m.
Define an additioii on D by

0o ) 00 ] 00 )
Z a;z' + Z bzt = Z (a,‘ + b,‘)ll.
i=-00 i=—00 i=—o0
Define multiplication on D by
oo ) ) )
Yooazt Y b= Y crzt
i=—n j=-m k=~n-m

where c. = 4=k aia"(bj). Note that multiplication is arrived at in
three steps:

1) Enforcing the distributive law.

2) z'b = o'(b)2* (i is zero, positive or negative, so o
stands for i successive applications of ¢ or its in-
verse, while 00 = id).

3) 2iz7 = 2.

Multiplication is associative since

(0iz'bj2%)ep2* = a;0%(b;)z M cp 2" = a;0*(b;)o* ()2 HIHF

= a;0'(b;o7 (1)) 2 27 = a;2*(bj 2 i 2¥)

It is now rather easy to see that D is a ring (Exercise 7.15).

The extraordinary fact is that D is a division ring. Since the unit
element is =0, each z' is invertible. By Exercise 4.2 it will suffice to show
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that an arbitrary nonzero Laurent.series S2_, a;2' = fi (@-m # 0)
has a right inverse. Since z™ is invertible, it will suffice to show how to
' find aright inverse of f = fiz™ = Y22, b;z* where b; = a;_m. Suppose
g =2, crz® satisfies fg = 1, then

boCo =1
bld(Co) 4+ boc; =0
b20’2(C0) + bIO'(Cl) + boC2 =0

Taking cp = by', 1 = —by byo(by!), and defining ¢, inductively in
terms of the first n — 1 coefficients of £, it is clear that g above satisfies
fg=1. (For example the student might recall the formula for the sum
of a geometric series T~ = Y52, z%.)

So far we have bullt a division ring D for each field F and auto-
morphism o: F — F. D will only be noncommutative if we can find a
o #id. In Exercise 7.7 you will show that taking F' = Z, won’t do for
completing the proof since Z, has no nontrivial automorphisms. We
must therefore build a bigger ﬁeld over Z,. One idea is to let ¢ = id
and F' = Z, in our general construction F‘((:,ld)) Z,((z)), which is
called the Laurent series ring in one indeterminate over Z,,

Now within the ring Z,((z)) restrict attention to the subring Z,[z] of
‘polynomials, elements of the form -7 a;z*, having no negative powers
of 2z and whose nonnegative coefficients end at a power n of z (called
the degree of the polynomial). Now each nonzero polmomial has an
inverse in Z,((2)), so we might consider the set Z,(z) = {fg~' | f,g €
Zylz],g # 0}. Indeed Z,(z) is a subfield of Z (( )), called the field
of rational functions in one indeterminate over Z,. (See Exercise '7.14
for another, equivalent construction of any field of rational functions
in one indeterminate.) On the field Z,(z) induce an automorphism
by sending z — 27!, Thus 22 — 272 p(z) = &h a2t — p(z7!) =
ap + Y1, a;27¢. Since 0% = id, o is a bijection; it is clear that o is
linear and multiplicative, whence an automorphism.

Now consider F((z;o)) where F is the field Z,(z), and o is the

automorphism induced by 2 ~— z~'. Written side by side Z,(2)((z;0))
is a two variable skew Laurent series, but this needn’t bother us. We
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have shown that Z,(z)((z; o)) is a noncommutative division ring. Note
(carefully) that
1+ +1=0
LS
p times
in this ring. Hence we have constructed a noncommutative division
ring with characteristic p. O

EXERCISES

EXERCISE 7.1. Let R be a ring. Show that
a) a0 =0a=0 (for all a € R).
b) (—a)c = —(ac) = a{—c) (for all a,c € R).

EXERCISE 7.2. Suppose R is a ring with no zero divisors,i.e. ab=0
=> a=0o0r b=0 (for all a,b € R). Then multiplication satisfies left
(and right) cancellation: z # 0 and zy; = zy2 = ¥ = y2. Prove.

EXERCISE 7.3. Show that conjugation is an automorphism of C.
Why is it not an inner automorphism?

EXERCISE 7.4. Define an operation on H called conjugation (or
tnvolution): this is a mapping H — H defined by ¢ — ¢* = 2,1 — 31 —
23] — x4k where ¢ = 111 + 297 + 237 + 24k Show that

a) ¢l = L.

fgll®
b) (¢ + @2)* = ¢ + g5
¢) (g2)" = g341.
d) EULERS’ FORMULA (apply a)-c) to establish it):

(B4l +ai+2) + 9 +us +0i) =
(2191 — Tay2 — T3ys — Taya)? + (T1Y2 + Toy1 + T3Ya — Tays)’
+ (z1y3 + Toy + Talz — Toys)” + (219 + Ta1 + Toys — T3y)”.
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EXERCISE 7.5. An isomorphism of rings R; and R, is a one-to-one
correspondence ¥: R; — R, that satisfies

1) ¥(z +y) = ¥(z) + ¥(v),
2) Y(zy) = Y(z)Y(y) (for all z,y € Ry).

Show that
a) y(1) = 1.
b) If u € R, is invertible, then ¥(u) is invertible in R,.
c) H is not isomorphic with M,(R).

EXERCISE 7.6. Show that the subset {1+ yi | z,y € R} of H
forms a subring isomorphic with C. Note the same for {z1 | 2 € R}
and R. This is why the quaternions are considered to be an extension.
of the complex numbers and the reals.

EXERCISE 7.7. a) Let F be a division ring, and let A be a fixed
nonzero element of F. Prove that the map ¢: FF — F, defined by
é(z) = AzA~! for all z € F; is an automorphism of F.

b) Let p be a prime number. Prove that the field Z, of p elements
has no automorphisms other than the identity.

EXERCISE 7.8. Let k = {0,1,2} be the field of 3 elements, with
addition and multiplication modulo 3. Let F = {a +bj | a, b €k},
where j is a symbol.

a) Define addition and multiplication in F, using the relation j2 =
2. Check that F is then a field.

b) Prove that the multiplicative group F* of non-zero elements of

F is cyclic of order 8.

c) Find a nontrivial automorphism of F.
EXERCISE 7.9. A commutative ring R with no zero divisors is called

an integral domain. Define its field of fractions F and embed R in F/
as follows.

a) On R x (R— {0}) introduce the relation (a,b) ~ (¢, d) if ad = be.
Show that ~ is an equivalence relation. Let ¢ denote the equivalence
class of (a,b).
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b) Define addition by & + § = 24X, Check that this formula is
not dependent on choice of representative § or §. Show that F' = { |

a € R,b € R—{0}} is an abelian group under +

¢) Define multiplication by § - £ = 5 and check that (F,+,-) is a
field. If R is the ring of integers, which field is ' (up to isomorphism).

d) Show that the mapping R — F' given by z ~ { is a ring homo-
morphism. .

e) If : R — F} is a ring homomorphism of K into a field A}

and ¢ is the map in d), show that there is a uniquely determined ring
homomorphism a: F' — Fj such that ¢ = = ¢.

EXERCISE 7.10. Define on R x R® = {(z,v) |z € R, v € R*} an
addition (z,v) + (y, w) = (z + y, v+ w) and multiplication

Az, v) (y,w) = (zy — vw,zw+ yv+ v X W)

where we have used vector addition, dot product, cross product, and
scalar multiplication familiar from vector geometry.

Let {,7, k} denote the standard basis of units in R3. Show that the
mapping ¥: H — R x R3 given by 211 + 29i + 737 + 24k — (2, 222 +
z3j + z4k) is a one-to-one correspondence that is linear (¥(z + y) =

P(z) + P(y) for all 2,y € H) and multiplicative (¢¥(zy) = ¥(x)¥(y)).
Using the fact that H is a division ring, show that R x R? is a division

ring isomorphic to HL (You should establish symbolically that 1 carries
associativity, etc., over to R x R?. What is the principle applicable to
sets with one or more binary operations?)

EXERCISE 7.11. Verify the associative law on the set G = {1, &1,
%7, £k} of quaternions using formula 7.1. Show that G is a non-abelian

group.
EXERCISE 7.12. a) Check that the subset

p={(5 &)1esec]

of My(C) is a division ring,.
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b) Show that the mapping T: H — D given by

. . T+ Tv—-1 z3+z1vV-1
e smiea = (5507 210V

is a ring isomorphism.

c) Show that det T(g) = ||g|| and T(g*) = T(q)T where AT denotes
the complex transpose.of matrix A.

EXERCISE 7.13. Prove that the center of H'is isomorphic with the
field R.

EXERCISE 7.14. Let F be a field. Define the ring of polynomials in
one indeterminate F[z] as follows.

a) Let 2% 21,22 ... | z", ... denote the basis elements of an infinite

dimensional vector space V over F. Let F[z] be thé set of all finite linear
~ combinations of these denoted by 37, a;x', if a, # 0 and possibly

one or more a; = 0 (i < n), or 0. An element aoz® + - + a,2" in

" Flz] is called a polynomial of degree n. Show that F[z] inherits an
addition from V' such that F[z] is an abelian group and deg(f + g) =

max{deg(f),deg(g)} where deg(f) denotes the degree of a polynomial

f.
b) Define a multiplication first on the basis elements: z'z/ = z'*7.
Extend this multiplication to F'[z] distributively and letting coefficients

commute past the powers of z. Show that this gives

m+n

m n
Yo'y bal =3 gat
=0 Jj=0 k=0

where Cp = Zf-_-o aibk_,- (CO = aobo, T = a0b1 + albo, ) Show that -

deg(fg) = deg(f) + deg(g) (for all f,g € Fz]).

c) Show that F[z] is an integral domain and identifiable via an iso-
morphism with the polynomial in the Laurent series ring F((z;id)) :=
F((z)). Applying Exercise 7.9, its field of fractions is denoted by F(z)
and called the field of rational functions. Show that the field of frac-
tions F(z) is isomorphic with the subfield {fg~! | f,g9 € Flz],g # 0}
in the field F((z)).
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EXERCISE 7.15. Use an infinite vector space with basis as in Exer-
cise 7.14 to define the skew Laurent series ring F((z; 0)) over field F and
automorphism ¢: F — F (cf. Proposition 7.3). Prove that F((z;0)) is
a ring without zero divisors.

EXERCISE 7.16. Given a ring R, associate the set U(R) = {z € R |
Jy € R: 2y = 1 = yx}. Show that U(R) is a group (called the group
of units of R).

EXERCISE 7.17. Let M,(R) denote the set of n x n matrices over
an arbitrary ring R, and show that M,(R) is a ring.

EXERCISE 7.18. Check that congruence modulo n is an equivalence
relation on Z.

EXERCISE 7.19. Check the distributivity of multiplication over ad-
dition in Z,.

EXERCISE 7.20. Prove that if a and b are relatively pume then
there exists m and n such that am + bn = 1.

EXERCISE 7.21. Let o be an automorphism of the division ring R,
and z a nonzero number in R. Show that o(z™!) = o(z)~1.



Chapter 8

Projective Planes over
Division Rings

In this chapter we introduce the projective plane over a division ring.
This will give us many examples of projective planes aside from the
ones we know already. Then we will also discuss various properties of
the projective plane corresponding to properties of the division ring.

Recall from Chapter 7 that a division ring has all the properties of
the real numbers except for commutativity of multiplication, ordering
and completeness. Now we define the projective plane over a divi-
sion ring, mimicking the analytic definition of the real projective plane

(p. 15).

DEFINITION. Let R be a division ring. We define the projective
plane over R, written P%(R), as follows. A point of the projective plane
is an equivalence class of tfiples P = (z1, 7, 23) where r1.22,%3 € R
are not all zero, and where the two triples are equivalent, (z,, 29, 23) ~
(7}, 2y, 23) if and only if there is an element A € R, X # 0, such that
2, = 2;) for i = 1,2,3. (Note that we multiply by X on the right. It
is important to keep this in mind, since the multiplication may not be
comimutative.)

A line in P?(R) is the set of all points satisfying a linear equation
of the form ¢;z1 + ¢2z2 + c3z3 = 0 where ¢;, ¢y, ¢3 € R are not all zero.
Note that we multiply here on the left, so that this equation actually

93
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has equivalence classes of triples instead of triples in its solution set.

Now one can check that the axioms P1-P4 are satisfied, and so
P?(R) is a projective plane (Exercise 8.10).

EXAMPLE 1. If R = Z, is the field of two elements, then P?(R) is
the projective plane of seven points.

EXAMPLE 2. More generally, if R = Z, for any prime number p,
then P?(R) is a projective plane with p?> 4+ p + 1 points. Indeed, any
line has p + 1 points, so this follows from Exercise 2.4.

ExaMpPLE 3. If R = R we get back the real projective plane.

THEOREM 8.1. The plane P?(R) over a division ring always satis-
fies Desarques’ Aziom PS.

Proof. -One could argue the same way as in the proof of Theorem
3.1if Ris a field. For the general case we apply Theorem 3.2. One
defines projective 3-space P3(R) by taking points to be equivalence
classes (zy,x2,Z3,2Z4), T;: € R not all zero, and where this is equiva-
lent of (z3), 22X, Z3A, 24A). Planes are defined by left linear equations,
Z'?:l c;r; = 0, and lines as intersections of distinct planes. Now it is
an exercise to check that the axioms S1-S6 are satisfied, so P*(R) is a
projective space (Exercise 8.7).

Then P?(R) is embedded as the plane z4 = 0 in this projective
3-space. and so P5 holds there by Theorem 3.2. O

n-DIMENSIONAL PROJECTIVE GEOMETRY

Define P*(R), n-dimensional projective space over an arbitrary di-
vision ring R, as the set of points (z,...,%ns1) in R™! subject to the
equivalence relation (zy,...,Zn41) ~ (Z1, .-+, Zne1) X = (T1A, ., Tap1 A).
n-planes or hyperplanes are the points satisfying left linear equations
like 7! ¢;z; = 0. k-planes are sets of points satisfying simultaneously
a system of n + 1 — k different left linear equations.

Notice that 1-planes are points, and 2-planes may be called lines.
Axioms for n-space are not hard to give: see [Seidenberg]. On can also
work analytically with P*(R). See [Samuel] or [Yale]. It is a relatively
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easy project to generalize section all the results in the next section to
Aut P*(R).

8.1 The Automorphism Group of P%(R) ..

~Now we will study the group Aut P*(R) of automorphisms of our pro-
jective plane. It may be helpful to read this section first to see what
it says for the real numbers, and secondly for what it says in the more
general case of division rings.

DEFINITION. An nxn matrix A = (a,;) of elements of R is invert-
ible if there is an n x n matrix B, such that AB = BA = I, the identity
matrix. B is called an inverse of A and denoted A~!. Note that, if we

“are working over a field-F', the invertible matrices are just the matrices

with determinant # 0. Over general division rings, determinants do
not make sense. '

PROPOSITION 8.2. Let ‘A = (a;;) be an invertible 3 x 3 matrix of
elements of R. Then the equations z!; = Z?ﬂ aijzj fori=1,2,3 define
an’ automorphism T4 of P*(R).

Proof. We must observe several things.

1) If we replace (zy,22,23) by (21, 22X, 23)), then (., }) is
replaced by (z) A, z5A, 25A), so the mapping is well-defined. We must
also check that 27,25, 2% are not all zero. Indeed, in matrix notation

a;; apz a I T
!

gy Q22 G23 2| = | Ty
. !

az; azz dasz Z3 I3

or in compact notation, Az = . But since A has inverse A~' we can
multiply on the left by A™!, and get * = A~'2’. Here we can appeal
to associativity of the ring M,(R) of square matrices over R (Exercise
. y . 00 .
7.17) by letting a column vector (gi) stand for the matrix (yl gg). So
Y3
if the z! are all zero, the z; are also all zero, which is not possible for a

point of P2(R). Thus T, is a well-defined map of P?(R) into P?(R).
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2) The expression ¢ = A~'# shows that T4-: is the inverse map-
ping to T4, hence T4 must be one-to-one and surjective.

3) Finally, we must check that T4 takes lines into lines. Indeed, let
(8.1) 1Ty + o + c3z3 =0

be the eqﬁation of a line. We must find a new line, such that whenever
(z1,22,03) satisfy this equation 8.1, its image (z},z5,25) lies on ghe
new line. Let A™' = (b;;). Then we have z; = L3, bi;z); for each .
Thus if (21, 22, z3) satisfy 8.1, then (z}, 25, 24) will satisfy the equation

3 .3 3
o] Z b]j:E; + ¢ Z szfE;- +c3 Z b3j(l?} =0

j=1 j=1 j=1

which is

3 . 3 3
. (Z C,'bil) ‘T,l + (Z Cibi2> x’z + (Z Cibig) lg =0
i=1 i=1 i=1

This is the equation of the required line. We have only to check that
the three coeflicients

3
(82) C_I.i = ZC{b,‘j (j = 1,2,3)
i=1
are not all zero. But this argument is analogous to the argument in (1)
above: The equation 8.2 represents the fact that

(61,02,63) . A_l = (C’nclzycla)

c1 €2

where (c;,¢2,¢3) = (g 0 Cg‘). Multiplying by A on the right shows
that the ¢; can be expressed in terms of the ¢;. Hence if the ¢} were all
zero, the ¢; would all be zero, which contradicts the definition of line
in P2(R).

Hence T4 is an antomorphism of P}(R). O

LEMMA 8.3. Let A and A’ be two invertible matrices. Then Ty and
T4 have the same effect on the four points P, = (1,0,0), P, = (0,1,0),
P; =(0,0,1), and Py = (1,1,1) tf and only if there isa p € R, p # 0,
such that A" = Ap.
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Proof. Clearly if there is such a pu, T4(P;) = Ty (B;) for i = 1,2,3,
and 4, by a-direct computation.

Conversely, suppose T4 = T4. We will then study the action of
T4 and T4 on four specific points of ]P?(R), namely (1,0,0), (0,1,0),
(0,0,1), and (1,1,1), i.e. P;, P,, P3, and P, respectively.. Give A and

A’ the usual coefficients a;; and aj;, respectively. Now

. 1 a1y
Ta(P)=A- (0) =‘(021)
0 as
1 aly 4
TA"(Pl) =A- (0) = (0’21) . . '
o , 0/ \aj o

Now these two sets of coordinates are supposed to represent the same "
- points of P?(R), so there must exist a A\; € R, A\, # 0, such that
ajy = anp)g, ahy = an A, and aj; = anA;. Similarly, applying T4 and
. T4, to the points P, and P3, we find the numbers A\; € R and A\; € R,
both # 0; such that .

. 1 . U __.
Ayp = alg)\g ay3 = (113/\3
] /
A9y = agz)\g Q93 = a23)\3
] ’

" Now apply T4 to the point P;. We find

1} an + dm + a3
A- 11| =1{asn +an+axy .
1 a3 +az + ass

Similarly for Ty:. Again, T4(Py) = T4(Py), so there is a number p # 0
such that T4 (Py) = T4(Ps)u. Now using all our equations we find

an( M — 1) + a2 Ao — ) + ar3(As —p) =0
a21(A1 = 1) + ag2(Ag — p) + ags(Az3 —p) =0
asi(A1 — p) + asa( Ao — p) + ags(Ag — p) = 0.

In other words, the vector (A\; — i, Ay — i, A3 — ) is sent into (0,0,0)
under the mapping A. Hence A\ = Ay = A3 = pu. (We saw this in the
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proof of Proposition 8.1: an ordered triple of numbers, not all zero,
cannot be sent into (0,0,0) by A. Hence A\; —p =0, A — =0, and
A3 —p=0)

So A’ = Ay, and we are done. [J

LEMMA 8.4. Let A € R, X\ # 0, and consider the matriz AI. Then
Thr is the identity transformation of P*(R) if and only if X is in the
center of R. Otherwise, Thp is the automorphism given by (xy, z2, x3) —
(o(z1),0(z2),0(x3)) where o is the automorphism of R given by x —
AzA~L. Le. o is an inner automorphism.

Proof. In general, Ty takes (1, Z2,23) to the point (Azy, Az2, Ax3).
This latter point also has homogeneous coordinates (Az;A~1; Az2A™t,
Az3A7!), which proves the second assertion. Take z; = z, 2 = 1,
z3 = 1. Then it is clear that A\Iis the identity automorphism of P?(R)
if and only if Az = z) for all z, i.e. A is in the center of R. O

DEFINITION. We denote by PGL(2, R) the group of automorphisms
of P?(R) of the form T4 for some invertible 3 x 3 matrix A. (Note that
if B is another invertible 3 x 3 matrix, then T4p = T4Tg. Also, Ty = id
and T;! = T4-1, so that PGL(2, R) is indeed a group.)

PROPOSITION 8.5. Let A and A’ be invertible matrices. Then
Ta = Ty if and only if there exists a non-zero A in the center of R
such that A" = A.

Proof. <= is clear. Conversely, if T4 = T, then by Lemma 8.3,
A" = AN = A-(\D). So Ty = Tanr, whence Tyyis the identity. By
Lemma 8.4, A lies in the center of R. O

The next theorem is fundamental to projective geometry. It says
the automorphisms of P2(R) are transitive on complete quadrangles.

THEOREM 86. Let A,B,C,D and A’, B',C', D' be two quadruples
of points, no 3 collinear. Then there is an element T € PGL(2, R) such
that T(A) = A, T(B) =B, T(C)=C', and T(D)=D'. IfRisa
field, T is unique.
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~ Proof. Let Py, Py, P3, P, be the four points (1,0,0), (0,1,0), (0,0,1);
and (1,1,1) considered above. Then it will be sufficient to prove the
theorem in the case A,B,C,D = Py, P;, P;, P,. Indeed, suppose we
can send the quadruple Py, P, P, Py into 'any other. Let ¢ send it
to A,B,C,D, and let ¢ send it to A', B, C’ D'. Then ¢! sends
ABCDmtoA’B’C’D' :

Let A, B,C, D have homogeneous coordinates (ay, az, a3), (b, ba, b3),
(c1,¢2,¢3), and (d;, dy, d3), respectively. Then we must find an invert-
_ ible 3 x 3 matrix (¢;;) and-numbers A, 4, v, p such that

CT(Py) = A, ie. ah =ty (i=1,2,3)

T(P) =B, ie. bip=1t, (i =1,2,3)

T(P3) C, ie v =ty (1=1,2,3)
( ) D, ie. d,p = t,l + t,z + t;3 (’i = 1,2,»3). :

_ Clearly it will be sufﬁc1ent to take p=1, and ﬁnd /\ Y 76 0 such that o

a4+ b+ v =d;
az)\ + bz,LL + CoV = d2
asA + b+ c3v = ds

LEMMA 8.7. Let 4, B,C be three points in P*(R), with coordinates
(a1, a9,a3), (by,ba,b3), and {c1,cy,c3), respectively. Then A, B,C are
not collmear if and only if (Z; Eg E;) is wnvertible.

‘Proof of lemma. The points A, B, C are collinear if and only if there
is a line, with equation say hyzy + hoxy + h3xz = 0, h; not all zero, such

“that this equation is satisfied by the coordinates of 4, B,C. We have
seen that the matrix A = (a;;) is invertible if and only if for each set of
numbers b = (b;), the set of linear equations corresponding to Az=b
have a unique solution .= A~'b. It follows that A is invertible if and
only if for b, = 0, the set of equations 3" a;;z; = b; has only a trivial
solution, i.e. € = 0 (<= is Exercise 8.3). Now our h; are solutions of
such a set of equations. Indeed

ap bl C1
(h1,ha,h3)- [ a2 by ca| =(0,0,0).
as b3 C3
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Therefore solutions h; don’t exist if and only if the matrix above is
invertible.

Proof of theorem, continued. In our case, A, B, C are non-collinear,
ay byer) . . .
hence by the lemma, (ao by cz) is invertible. Hence we can solve the
a3 b3 c3
equations above for A, u, v not all zero. Now we claim that ), i, v are

all # 0. Indeed, suppose with no loss of generality that A = 0. Then
our equations say that

b1u+c1u—d1 =0

b2U+CQV—d2 =0

by +csv —d3 =0

bierd
and hence (g: e 3;) is non-invertible, which is impossible, by the lemma,
C;
since B,C, D are not collinear. 7
So we have found non-zero A, i, v which satisfy the equations above.

We define t;; by the equations a;A = t;1, by = tj5, and ¢;v = t;3. Then
(ti;) is a matrix, which is invertible (again by the lemma, since A, B,C
are non-collinear!), so T, given by the matrix (t;;), is an element of
PGL(2, R) which sends P\, P, P3, P, to A, B,C, D.

For the uniqueness in the case of a field - F', suppose that T and
T’ are two elements of PGL(2, F) which accomplish our task. Then
by Proposition 8.3, 77 = T for some u € F—{0}, and hence give the
same element of PGL(2, F). O

Note that in general the transformation T is not unique. For ex-
ample, over the quaterﬁions H there are many nontrivial inner auto-
morphisms (Exercise 7.7); each will induce automorphisms fixing P,
Pg, P;, and A c e

PROPOSITION 8.8. Let ¢ be any automorphism ofIP’2(R) whzch leaves o
fized the four points Py, Py, P3, Py mentioned above. Then there is
an automorphism o € Aut R, such that ¢(z;,22,z3) = (o(x1), 0(22),

o(z3)).

Proof. We note that ¢ must leave the line z3 = 0 fixed since it
contains P, and P;. We will take this line as the line at infinity, and
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consider the affine plane z3 # 0: A = P?(R) — {z3 = 0}. (Refer to
Exercise 2.2.) ' - s

P;=(0,0,1)

P,=(1,L1

P, =(0,1,0) .

P,=(1,00)

Figure 8.1. The points P;-P; of the standard quadrangle.

Our automorphism ¢ then sends A into itself, and so is an auto-
morphism of the affine plane. We will use affine coordinates = = z,z3 ",
y = ryx3!. Then P, and P, refer to ideal points on lines of slope __O‘
and oo, respectively, while P; and P, receive affine coordinates (0, 0)
and (1,1), respectively. Since ¢ leaves fixed P, and P, it- will send
horizontal lines into horizontal lines, vertical lines into vertical lines.
Since ¢ leaves fixed (0,0) and (1,1), it leaves fixed the z-axis and the -
y-axis.

: P, ' .
(0,0(a)) - (o(a),0(a))
(0,0) (@,a)
— P

0,1) $===-AP, = (1,1

|

B -

P=(00) (1LO) (@0 (@,0  x

Figure 8.2. Definition of ¢.
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Let (a,0) be a point on the z-axis. Then ¢(a,0) is also on the z-
axis, so it can be written as (o(a),0) for a suitable element o(a) € R.
Thus we define a mapping o: R — R, and we see immediately that
o(0) = 0. Also o(1) = 1 since ¢ fixes the horizontal line y = 0 and
vertical line z = 1, therefore their intersection (1,0).

The line z = y is sent into itself, because P; and P; are fixed. Since
vertical lines go into vertical lines, the point

(e,a) = (line z = y) N (line = =a)
is sent intp
(o(a),o(a)) = (line z = y) N (line z = o(a)).

Similarly, horizontal lines go into horizontal lines, and the y-axis goes
into itself, so we deduce that ¢(0,a) = (0,0(a)). Finally, if (a,b) is
any point, we deduce by drawing lines z = a and y = b that ¢(a,b) =
(a(a), o(b)).

Hence the action of ¢ on the affine plane is completely expressed
by the mapping ¢: R — R which we have constructed. -

Of course, since ¢ is an automorphism of A, it must send the z-axis
onto itself in a one-to-one manner, so ¢ is one-to-one and onto.

YA

(a,1) (o(a)l)
0,1 M

©.0) (@,0) ,0) (@+b,0)  (o(a+b),0) %
(o(a),0) (c(b),0)

Figure 8.3. o(a) + o(b) = o(a + b).
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Now we will show that o is an automorphism of R. Let a, b€
R—{0}, and consider the points (a,0), (b,0) on the z-axis. We can
construct the point (a + b,0) geometrically as follows:

1) Draw the line n joining (0, 1) and (b,0).
2) Draw the line r parallel to n through (a,1).

3) Intersect 7 with the z-axis. This is the point (a +
b,0) since r clearly has equation y = =b~'a + 1+ -
b~la. ' '

toTE
.

Now ¢ preserves joins, intersections and parallelism. Then ¢(r) ||
#(n), ¢(r) a line through (co(a), 1), and ¢(n) the line through (0, 1) and
(o(b),0). Hence, intersecting ¢(r) with the z-axis gives via construction
the point (o(a) + a(b),0). On the other hand, (a+b,0) is r intersected-
with the z-axis, so ¢(a + b,0) = (o(a + b),0) is ¢(r) intersected ‘with
the zr-axis (fixed under ¢). Hence,

o(a) + o(b) = a(a + b).
YA
(a,a)

(1,1) | P

b
»
X

00 (L0 (@0 (5,0 (ba,0)
Figure 8.4. o(b)a(a) = o(ba).

By another construction, we can obtain the point (ba,0) geometri-
cally from the point (a,0) and (b,0).

Assume a # 1 and b # 1.
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1) Join (1,1) to (b,0), call it o.
2) Draw a line p parallel to o through (a,a).

3) Intersect p with the z-axis. This is the point (ba,0)
since p has equation y = —(b—1)"1z+(b~1)"la+a.

¢ leaves (1,1) fixed, so by considering ¢(0) and @(p) we can argue as
before (Exercise 8.5):

o(ba) = o(b)o(a).
Hence ¢ is an automorphism of the division ring R.

Now we return to the projective plane P%(R), and show that the
effect of ¢ on a point with homogeneous coordinates {z;, z7, z3), is to
send it into (o(x,, ), 0(22), 0(z3)) as claimed.

Case 1. If z3 = 0, we write this point as the intersection of the
line 23 = 0 (which is left fixed by ¢) and the line joining (0,0,1) with
(z1,22,1). Now the latter point is in A, and has affine coordinates
(z1,z2). Hence ¢ transforms it to (o(z;),0(z2)), whose homogeneous
coordinates are (o(z;),0(z2),1). Therefore by intersecting the trans-
formed lines, we find

¢(zla Za, 0) = (0(131), 0'(172), 0)

Case 2. 13 # 0. Then the point (z;,z,,23) is in A, and has
affine coordinates z = 1;73", ¥ = 2923, So ¢(z,y) = (o(z),0(y)) =
(a(z1)o(x3) "t o(z2)o(z3) ). (o takes inverses to inverses by Exer-
cise 7.5.) ‘Therefore ¢(z,y) has homogeneous coordinates (o(z,), o(z2),
o(x3)) and we are done. [

Since the antomorphism ¢ which fixes the standard quadrangle,
turns out to depend on the division ring automorphism o, let us rename
it S, for the next proposition and thereafter.

PROPOSITION 8.9. The mapping Aut R — P*(R) given by o — S,,
where S, 1s described in the previous proposition, is an isomorphism of
Aut R onto the subgroup H of AutP?(R) consisting of those automor-
phisms which leave Py, Py, P3, Py fized.



8.1. The Automorphism: Group: of PX(R) =~ - , * 105

Proof. 1t is: onto by the previous propesition. To see. it is. one-
to-one, let ¢ and o' € Aut R and’ apply. Sy, Syr to (2,1,0).. Suppose
(o(z),1,0) is- the same point as (0'(z),1,0), then o(2) = 0( z); and’
g = ¢'. Glearly it-preserves the group-law. I

GENERATORS. Recall: that a: subset” A of a group- @ is. said: to-.
generate the subgroup: A if H is the:smallest-subgroup, containing Ai- .+ ¢
Then H: consists-enly of:products. of: powers:of elements in; A (Exercise
4.15). In:particular, two:subgroups Hi, H, are-saidito generate G if;
their- set-thieoretic union. Fj U Hj generates. G '

THEOREM. 8:10. The two-subgroups PGLE(2, R).and H: generate- Aut P*(R).
The intersection; K of RGL(2, R) and Hi is isomorphic to-the group-off
nner automorphisms. of R, Ihaut R.

Proof. Given: an: element "€ AutP?(R), we can find: an element
Tys € PGL(2, R) such. that Bu( ). = T(B;) for~i- =: 1, 2,3,4 by the
Fundamental: Theorem: Then T 4-1 » T fixes: B} sosthere-exists. 55. € H:
such that Ty-1oT = S,. ThenT = Ty S, which: shows.(most -strongly,)
that- thie subgroups: H and. PG E(2; R): generate AutP?(R):

An: element. T € PGE(2) R) U H fixes. the- points. Bf, ..., P4, and:
is-induced by an invertible- matrix. ¢ ie: T = Ta. By Lemma 83;
A = AEfor some A € R and, by Femma 8.4, T = S, where ¢-is:the
inner. automorpliism- g given by o(z) =z X7t O -

Aut:P2A(R)

N

PGL(2; R) H'=Aut;R.

/

K.=Inaut R

/\

Figure 8.5. Lattice diagram of key subgroups in Aut P?(R). This is: presumably a
theorem of von Staudt and the Basque Ancochea.
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We are now in a position to determine the automorphism group of
the real projective plane.

PROPOSITION 8.11. The identity automorphism is the only auto-
morphism of the field of real numbers.

Proof. Let o be an automorphism of the real numbers. We procee
in several steps. '

1) o(1) = 1 and o(a + b) = o(a) + o(b). Hence, by induction, we
can prove that o(n) = n for any positive integer n.

2)n+(-n) =0, s0 o(n)+ o(—n) =0, so o(—n) = —n. Hence o
leaves all the integers fixed.

3) If b # 0, then o(a/b) = o(a)/a(b). Hence o leaves all the rational
numbers fixed.

4) If z € R, then z > 0 if and only if there is an a # 0 such that
z = a®. Then o(z) = o(a)?, so z > 0 = o(z) > 0: Therefore
z <y = o(z) < o(y): o is order-preserving.

5) Let z € R — Q and suppose o(z) # z, so either z < o(z) or
z > o(x). Suppose z < o(z). By the Archimedean principle there
exists a rational number 7 such that * < 7 < ¢(z). Then r —z > 0,
which implies that o(r) — o(z) = r — o(z) > 0 by 4), or 7 > o(zx), 2
contradiction of the choice of r. Assuming o(z) < z leads to a similar
contradiction. Hence o{z) = z.

Thus o is the identity. O
THEOREM 8.12. PGL(2,R) = Aut P¥(R)

Proof. By Proposition 8.11, H = {1}. By Theorem 8.10 the sub-
group PGL(2,R) is then the whole automorphism group. O

THE FUNDAMENTAL THEOREM IN TWO DIMENSIONS

As a consequence of Theorems 8.6 and 8.12 we have the following
important theorem for the real projective plane:

THEOREM 8.13. Let ABCD and PQRS be two complete quadran-
gles in P*(R). Then there ezists a unique automorphism of P?(R) such
that T(A)=P.T(B)=Q,T(C)=R and T(D) = S.
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You will show in Exercise 8.9 that this theorem is not true in P2(C).
The problem with C is that it possesses a nontrivial field automorphism,
given by z — Z.

The Fundamental Theorems of chapters 5 and 8 are generalized to
‘n-dimensional real projective spaces in more advanced textbooks (such
as [Samuel]) as follows:

Given two ordered sets, X, and Xo, of n + 2 points of P*(R) in
general position' there is a unique automorphism of P"(R) sending X .
tnto X,.

8.2 The Algebraic Meaning of Axioms P6
and P7

Now we obtain precise answers for when the axioms P6 and P7 ‘l{old in
a projective plane P?(R).

THEOREM 8.14. Fano’s Aziom P6 holds in P*(R) if and only if the
characteristic of R is not 2.

Proof. Using an automorphism of P2(R), we reduce to the question
of whether the diagonal points of the standard quadrangle P, Py P3Py,
(1,1,0), (1,0,1), and (0, 1,1), are collinear (cf. Proposition 5.3). Since
R may not be commutative, we may not use determinants, but must
give a hands-on proof.

Suppose they are collinear. Then they all satisfy an equation c;z; +
CaTo + czx3 = 0, with the ¢; not all zero. Hence ¢; +¢3 =0,¢; +¢3 =0,
and ¢y +¢c3 =0. Thus ¢; = —¢9, ¢ = —¢3, ¢p = —¢3, 50 2¢3 = 0. So
either ¢; = 0, in which case ¢; = 0, ¢; = 0, a contradiction, or 2 = 0,
in. which case the characteristic of R is 2.

Now suppose the characteristic of R is 2. Then (1,1,0), (1,0,1),
and (0, 1, 1) satisfy the equation z;+z,+1z3 = 0 of a projective line. O

"Non+1 are co-(n — 1)-planar.
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THEOREM 8.15 (HILBERT). The Fundamental Theorem P7 holds
in the projective plane P?(R) over a division ring R if and only if R is
commutative.

Proof. First let us suppose that P7 holds. We take 3 = 0 to be the
line at infinity, and represent an element.a € R as the point (a,0) on
the z-axis. If (a,0) and (b,0) are two points, we construct the product
of a and b as in the proof of Proposition 8.8, then reverse the order,
and apply Pappus’ Theorem.

Suppose with no loss of generality that a # 0,1 and b # 0,1. By
inspection, one finds that the equation of the line joining (1,1) and
(b,0) is x + (b — 1)y = b.” Hence the equation of the line parallel to
this one, through (a,a) is z + (b — 1)y = ba, so that the point we have
constructed is (ba,0).

YA
C=(,b)
B =(a,a)
A=(11)
i
i
! .

00 (@0 C=(@0 B =00 A'=(ba,0) *
Figure 8.6. Geometric construction of multiplication.

To get the product in the other order, we reverse the process, by
drawing the line through (1,1) and (a,0), and the line parallel to this
through (b,b). This line has equation z + (a — 1)y = ab. Refer to the
point labels above! AB' || BA’ and BC' || B'C. Now the affine version
of Pappus’ Theorem implies that AC' || A’C' (why?). Whence A'C has
equation z + (a — 1)y = ab. Then A’ = (ba,0) satisfies this equation,
whence ab = ba, and R is commutative.
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Before proving the converse, we give a lemma.

LEMMA 8.16. Letl, A, B,C, and {'; A', B', €' be two.sets, each con-
sisting of a line, and three non-collinear points, not. on the line, in.
P?(R). Then there is an automorphism ¢ of P2(R) such that-¢(¢) = ¢,
and $(A) = A', §(B) = B', $(C) = C".

Figure 8.7.

Proof. Let X = ¢.AC and' Y = ¢.BC, and' define similarly X' =
¢.AC', Y = ¢.B'C', then 4,B,X,Y are four points, no three col-
linear, and similarly for 4’ B!, X' Y’  so by Theorem 8.6 there is an
automorphism ¢ of P?(R) sending A4, B, X,Y into A", B, X', Y'. Then
clearly ¢ sends ¢ into ¢ and C into C". A

Figure 8.8.
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Proof of theorem, continued. Now assume we have a field F. It
will suffice to prove that Pappus’ Theorem holds in P?(F). Indeed,
Pappus’ Theorem implies the Fundamental Theorem (P7) as we saw in
Exercises 6.14-6.16.

With the usual notation let P = AB’.A'B, R = BC'.B'C, and let
¢" be the line PR. We may assume that X = ¢.¢' does not lie on ¢".
(If it did, take a different pair P,Q or @, R. If all these three pairs
lie on lines through X, then P, @, R are already collinear, and there is
nothing to prove.) Let Y = AR.¢'. Then Y is not on ¢’, and 4, X,Y
are non-collinear. Hence by the lemma, we can find an automorphism ¢
of P?(F) taking " to the line z3 = 0, and taking A, X,Y to the points
(1,1), (0,0), (1,0), respectively.

Then we have the situation of Figure 8.6 again (why are BC' and
CB' vertical lines?), where we wish to prove AC' || A'C. But this
follows from the commutativity of . O

8.3 Independence of Axioms

We are now in a position to show that among the axioms P5, P6, P7, the
only implication is P7 = P5 (Theorem 6.3). We prove this by giving
examples of projective planes which have all relevant combinations of
axioms holding or not.

EXPLANATIONS

1) The projective plane of seven points 77 has P53, not
Pe6, P7.

2) The real projective plane P*(R) has P5, P6, P7.

3) The Moulton plane has not P5, P6 (Exercise 6.6),
not P7.

4) Let H be the division ring of quaternions. Then
P?(H) has P5, P6, not P7 (because char. H = 0
= P6, and H noncommutative = not P7).

5) Let K be a noncommutative division ring of char-
acteristic 2. Then P?(K) has P5, not P6, P7.
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P1:P4 P5 P6

Moulton
plane

" Figure-8.9: Projective planes and axioms P5-P7.

Notice a-couple of things from the diagram. Axioms P5 and P6-are
independent: this means that neither of the implications P5 = P6or
P6 = P5 are true. Axioms P6.and P7 are independent as well. There
is an example of a projective plane that is neither Fano nor Desargue-
sian: it is called the free projective plane on thie 7; configuration with
one extra point (see [Hartshorne, p. 17-19]). ' '

EXERCISES:

EXERCISE 8.1.. In the real projective plane, we know that there-is
an automorphism. which will: send any. four points, no three collinear,
into any four points, no three collinear. Find: the coefficients a;; of an
automorphism with. equations

'L"i = ai1T1 + A2l + Q323 1 =1,2,3:

which sends the points 4’ = (0,0,1), B'= (0,1,0), € = (1,0;0); D=
(1,1,1) into A’ = (1,0,0); B! = (0,1,1), C" = (0,0,1), D' = (1,2
respectively.

EXERCISE 8.2. a) Let R be a division ring. Show that the Carte-

sian product R? with lines of form {(z,y) | y = mz + b} and {(z,y) |
z = a} (for each a,m,b € R) is an affine plane we denote by A%(R).

b) Complete A%(A) to obtain a projective plane S.




112 Chapter 8. Projective Planes over Division Rings

c) Adapt Proposition 2.2 and its proof to show that P2(R) is the
projective plane S.

Hint. Why does a collinearity-preserving one-to-one correspondence (a
collineation) force one geometry to be a projective plane if the other is so?

EXERCISE 8.3. Let R be a division ring and A € M,(R). Let z
denote the n x n matrix

Z1 0o - 0
T 0o - 0
z, 0 - 0

Suppose that Az = 0 = & = 0 where 0 denotes the zero n x n
matrix. Show that A is invertible.

EXERCISE 8.4. Let o be an automorphism of a division ring R.
Check that the mapping S, : P?(R) — P?(R) defined by S, : (z1, 25, 73)
+ (a(z1),0(z2),0(x3)) is an automorphism of projective planes.

EXERCISE 8.5. Provide the details in the proof that o(ba) = o(b)
o(a) on p. 103.

EXERCISE 8.6. Complete the details of P?(F) = Pappus’ The-
orem in Hilbert’s Theorem.

EXERCISE 8.7. Prove that P3(R) as defined on page 94 is a projec-
tive 3-space, i.e. satisfies S1-S6.

EXERCISE 8.8. If F'is a field, re-do Exercise 5.2 in the projective
plane P?(F). You will now have defined cross ratio for Pappian planes.

EXERCISE 8.9. In P2(C) consider the standard quadrangle P, P, P; P;.
Find two automorphisms of the projective plane P%(C) fixing the stan-
dard quadrangle (sending P; — P;, 7 = 1,2,3,4). Compare with Theo-
rem 8.14.

EXERCISE 8.10. Prove that axioms P1-P4 are satisfied in P%(R),
the real projective plane defined by homogeneous coordinates.



Chapter 9

Introduction of Coordinates
in a Projective Plane

In this-chapter we ask the question, when.is a projective plane-7 iso-
- morphic to a projective plane of the form P?(R), for some division ring
R? Stated in other words, given 7 can we find a division ring R, and
assign homogeneous coordinates (z,z2,23), ; € R, to points of m,
such that the lines are given by linear equations? ‘

A necessary condition for this to be possible is that 7 should:satisfy
Desargues’ Axiom, P5, since we have seen that P?(R) always satisfies
P5 (Theorem 8.1). And: in faet we will see that Desargues’ Axiom is a
sufficient. condition that m is coordinatizable on the basis of a division
ring.

We will begin: with a simpler problem, namely the introduction of
coordinates in an. affine plane A. One approach: to-this problem! would.
be the following: Choose tliree non-collinear points-in A, and call themr
(1,0), (0,0), (0,1). Let ¢ be the line through- (0, 0). and (I, 0).. Now: take
R to be the set of points on ¢, and. define addition and multiplication in
R via the geometrical constructions given in the proof of Proposition
8.8. Then one would have to verify that R'is a division ring, i.e. prove
that addition is commutative and associative, that multiplication is
associative and distributive, etc. The proofs involve some rather messy

done in [Seidenberg], chapter 3.
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diagrams. Finally one coordinatizes the plane using these coordinates
on ¢, and prove that lines are given by linear equations.

A

0,1

Y

0,0 (1,0)

Figure 9.1. One method of coordinatizing.

However, we will use slightly more high-powered techniques, in the
hope that our work becomes less onerous. -Recall our work with central
dilatations and translations in chapter 1: we will begin by studying the
group theory of dilatations and what implications Desargues’ Theorem
has.

" Let A be an affine plane. Recall that a dilatation of A is an auto-
morphism sending each line onto a parallel line. A dilatation different
from the identity map on A could have either 0 or 1 fixed point (Propo-
gition 1.6): if it has no fixed points, it is called a translation, if it has
one fixed point, a central dilatation. However, the identity is considered
a translation for practical reasons.

We have proved in chapter 1 that the set of dilatations, as well as the
subset of translations, is closed under composition of maps, contains all
inverses, and possesses the identity element, or mapping. The next two
propositions are just re-statements of Proposition 1.5 and 1.9 in group-
theoretic terms — with one group-theoretic definition intervening.

PROPOSITION 9.1. The set of dilatatations, Dil A, is a group under
composition. (And Dil A is a subgroup of AutA.)

DEFINITION. Let G be a group. A subgroup N is said to be normal
if
tNzT'CN  (VzeQ),
ie.z € Gand y € N implies zyr~! € N.
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The kernel of a homomorphism is a normal subgroup (Exercise 9.1).
Every subgroup of an abelian group is normal. A nermal subgroup N
-of any group G has equal right and left cosets, and ‘the set of cosets
gets a natural group structure (Exercise 9.2)

PROPOSITION 9.2. The set of translations, Tran A, s a normal
subgroup of Dil A.

9.1 The Major and Minor Desargues’ Ax-
ioms |

Now we come to the question of existence of translations and dilata-
tions, and for this we will need Desargues’ Axiom. In fact, we will find
that these two existence problems are-equivalent to two affine forms-of
Desargues’ Axiom. In -this we see yet another example where an axiom
about some configuration is equivalent to a geometric property of the
;plane. Desargues’ Axiom is-equivalent to saying -that our geometry has
enough automorphisms in .a sense which will become clear from the
theorems. ’ N

A4. (THE MINOR DESARGUES' AXIOM) Let £,m,n be
three distinct parallel lines. ‘Let 4, A’ € ¢, B,B' €
m,.and C,C' € n. Assume AB || A'B’ and AC ||
A'C'. Then BC || B'C". -

A t A’

Figure 9.2. Two triangles in the affine plane that are perspective from an ideal
point.
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REMARK. If our affine plane A is contained in a projective plane
7, then A4 follows from P5 in 7. Indeed, ¢, m,n meet in a point O on
the line at infinity Z,.. Our hypotheses state that P = AB.A'B’ € £,
and Q = AC.A'C' € (.. So P5 says that R = BC.B'C' € {,, i.e.
BC || B'C' in A.

THEOREM 9.3. Let A be an affine plane. Then the following state-
ments are equivalent:

1) The aziom A4 holds in A.

i) Given any points P, P’ € A, there exzists a unique
translation 7 such that 7(P) = P'.

~ Proof. i) == ii). We assume A4. If P = P, then the identity is
,!;Hé only translation taking P to P’ so there is nothing to prove.

Now suppose P # P'. We will set out to construct a translation 7
sending P to P’ '

Step 1. For any pair of distinct points X and X' in A, we define
a translation 7xx: of A — ¢, where ¢ is the line X X', as follows: for
Y & ¢, Y’ is the fourth corner of the parallelogram on X, X', Y, and we
set TXXI(Y) =Y

Figure 9.3. Parallelogram construction of Y.

Step 2. Consider the effect of two parallel transformations 7pp and
7Qq- Suppose Q & PP'. If 7pp/(Q) = @', then for any R ¢ PP', and
R ¢ QQ', we have Tpp/(R) = 7oo/(R). Indeed, define R’ = 7pp/(R).
Then by A4, QR || Q'R', so by the parallelogram construction R’ =
g (R).

Step 3. Starting with our two distinct points, P and P’ and @ ¢
PP, take Q@ = 7pp/(Q). We can now define 7 to be 7ppr or 1¢,
whichever happens to be defined at a given point, since we have seen
that they agree where they are both defined.
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Figure 9.4.

Step 4. Note that if R is any point, and 7(R) =.R’, then 7 = Tgp
whenever they are both defined. This follows as before.

Step 5. Clearly 7 is one-to-one and onto (Exercise 9.3). If X, Y, Z
are collinear points and sent into X', Y’ Z' by 7, then Y’ = 7y x(Y)
and Z' = 1xx/(Z). So it follows immediately from the definition of
Txx that X', Y’ Z' are collinear. Hence 7 is an automorphism of A.
One sees immediately from the construction that it is a.dilatation with
no fixed points, hence is a translation, and it takes P to P'.

The uniqueness of 7: if 7’ is any translation sending P to P’, then
7'7~1 has a fixed point and is the identity. So 7 = 7. ,

(i) == (i). We assume the existence of translations, and must
deduce A4. Suppose we are given ¢,m,n, A, A", B, B',C,C’, as in the
statement of A4. Let 7 be a translation taking A into A’. Then 7(B) =
B’ since AB || A’B' and AA’ || BB’ (Exercise 1.11). Similarly 7(C) =
C'. Hence BC || B'C’ since 7 is a dilatation. O

PROPOSITION 9.4. (Assuming A4) Tran A is an abelian group.

" Proof. Let 7,7’ be translations. We must show that 7' = 7'7. -

Case 1. 7 and 7' translate in different directions. Let P be a
point. Let 7(P) = P', 7'(P) = Q. We are assuming P, P', and @) are
not collinear. Then 7(Q) = 77/(P) and 7/(P') = 7'7(P) are both found
as the fourth vertex of the parallelogram on P, P',Q, hence are equal,
so 77" = 7'7. (So far we -have not used Axiom A4.)

Case 2. 7 and 7' are in the same direction. By Theorem 9.3 there
exists a translation o in a different direction (Axiom A3 ensures that
there is another direction). Then

v = 7(7'o)e™t = (r'o)ro™ = 1'(oT)0 ™"



118 Chapter 9. Introduction of Coordinates in a Projective Plane

by an application of case 1, since 7 and 7'¢ are in different directions.
Then since 7 and o are in different directions we may transpose the
symbols within parentheses, so

17 = 1'roc™! = 'T. O

DEFINITION. We say a group G is the semi-direct product of two
subgroups H and K, and write G = H x K, if

SD1. H is a normal subgroup of G.
SD2. HnK = {1}.
SD3. H and K together generate G.

PROPOSITION 9.5. G = H x K = that every element g € G
-can be written uniquely as a product g=hk, he H, ke K.

Proof. Note that hkhiky = h(khik~1)kk, is of the form W'k’ (h €
H, k' € K) since H is a normal subgroup of G. Any element in G may
be written as a product of elements from H and K by Axiom SD3,
which can be thus put in the form h'%k’.

Uniqueness follows from the observation: hk = hiky = h7'h =
kik™' = hi'h=1=kik~'bySD2,soh=h;and k=k,. O

DEFINITION. Let O be a point in A, and define Dil o(A) to be the
subset of Dil A consisting of those dilatations ¢ such that ¢(0O) = O.
It is trivial to see that Dilo(A), the set of central dilatations fixing O,
is a group.

PROPOSITION 9.6. (Assumz'ng‘A4) Dil A is the semi-direct product
of Tran A and Dil o(A).

Proof. We agree that Tran A and Dil o{(A) are subgroups of the
group Dil A. We need to check the three axioms SD1-SD3.

1) We have seen that Tran A is a normal subgroup of Dil A,

2) If 7 € Tran A N Dil p(A), then 7 has the fixed point O and must
be the identity.
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3) Let ¢ € DilA. Let @ denote ¢(O). By Theorem 9.3 there
is a translation 7 such that 7(O) = Q. Then 77'¢ € Dilo(4), so
¢ = 7(771¢) shows that Tran A and Dil o(A) generate DilA. O

A5. (THE MAJOR DESARGUES’ AXioM). Let O, A, B, C,
A' B',C' be distinct points in the affine plane A, . |
and assume that O, A, A’ are collinear,:O, B, B are . ¢
collinear, O;C,C" are collinear, AB || 4'B’, and
AC || A’C'. Then BC || B'C".

Figure 9.5. Major Desargues’ Axiom.

Note that this statement follows from P35, if A is embedded in .a -
projective plane . ‘

THEOREM 9.7. The following two statements are equivalent in the
affine plane A. '

i) The aziom A5 holds in A.

i) Given any three points O, P, P', with P #£0, P' #
O, and O, P, P’ collinear, there exists a unique di- -
latation o of A, such that 6(0) = O and o(P) = P'.

Proof. The proof is entirely analogous to the proof of Theorem 9.3,
. s0 the details will be left to the reader. Here is an .outline:

i) = 1i). Given O,P,P', as above, define a transformation
®o,p.p', for points @ not on the line ¢ containing O, P, P’ as follows:
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do.rp(Q) = Q', where @ is the intersection of the line OQ with the
line through P, parallel to PQ.

Q@

Figure 9.6. Dilatation.

Now, if ¢o pp(Q) = Q', one proves using A5 that ¢o pp agrees
with ¢o g o (defined similarly) whenever both are defined. Hence one
can define ¢ by

¢0‘P,PI(X) if X eOP
dooo i X €0Q.

Then 0(0) = O and o is well-defined everywhere. Next show that if
o(R) = R', R# O, then ¢ = ¢o g g, Wherever both maps are defined.
Now clearly o is one-to-one and onto. One can show easily that it takes
lines into lines, so is an automorphism, and that XY || ¢(X)o(Y) for
any X,Y, so o is a dilatation. The uniqueness follows from Corollary
1.7. :

i) = ). Let O,A,B,C, A, B',C’ be given satisfying the hy-
pothesis of A5. Let ¢ be a dilatation which leaves O fixed and sends
A into A’. Then by the hypotheses, o(B) = B’, and ¢(C) = C'. It
follows from the fact that ¢ is a dilatation that BC || B'C'. O

o(X)= {

We make a little diversion into the relationship of axioms A4 and
A5 with the next proposition.

PROPOSITION 9.8. A5 = A4.

Proof. Indeed, let us assume we have an affine plane A satisfying
A5. Let P, P' be two points. We will construct a translation sending
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£ into P’, which by Theorem 9.:3 shows that A4 holds, since P, P' are
arbitrary. If P = P, we can take the identity, so assume from the start
that P # P’

L

-0 P

e \e

Figure 9.7. A5 == Ad.

Let @ be a point not on PP, and let @’ be the fourth vertex of the
parallelogram on P, P’,Q. Let O be a point on PP’, not equal to P
or P'. Let o, be a dilatation which leaves O fixed, and sends P to P’
(which exists by Theorem 9.7). Let 01(Q) =Q". Then P'.Q',Q" are
collinear. Again, by Theorem 9.7 there exists a dilatation gy leavmcr P’
fixed, and sending Q" to @'.

Now consider 7 = 0y0;. Being a product of dilatations, it is itself
a dilatation. One sees easily that 7(P) = P' and 7(Q) = Q'. Now any .
fixed point of 7 must lie on PP’ and on QQ' (because if X is a fixed
point XP || XP' == X,P, P collinear, and similarly for -@). But
PP’ || QQ'. so T has no fixed points. Hence 7 is a translatlon sendmg
Pinto P'. O

REMARK. A projective plane is called a translation plane if, upon
removing any line, .the resulting affine plane satisfies the Desargues’
Axiom!minor. Translation planes have been an active area ‘of research
in recent memory..

9.2 Division Ring Number Lines

Now we come to the construction'of coordinates in an affine plane A
satisfying axioms A4 and A5. Our program is to construct the following
objects:
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1) a division ring R;

2) coordinates for the points of A so that A is in one-
to-one correspondence with the set of ordered pairs
of elements of R;

3) equations for an arbitrary translation and an arbi-
trary dilatation of A in terms of coordinates;

4) linear equations for the lines in A.

This will prove that A is isomorphic to the affine plane A2(R) (with
(3) a convenient bonus).

In the course of these constructions, there will be about a hundred
details to verify, so we will not attempt to do them all, but will give
indications, and leave the trivial verifications to the reader.

g L
0 1

Figure 9.8. The number line.

Fix a line £ in A, and fix two points on ¢, call them 0 and 1. Now
let R be the set of points of £.

Let a € R, (i.e. if a is a point of £). By A4 and Theorem 9.3, there
is a unique translation that takes 0 into a. Similarly, using A5 and
assuming a # 0, let o, be the unique dilatation of A which leaves 0
fixed, and sends 1 into a.

Now we define addition and multiplication in R as follows. If a,b €
R, define

(9.1) a+b=71,7(0) = 7(b).

Since the translations form an abelian group, we see immediately that
addition is associative and commutative:

(a+b)+c=a+(b+c)
a+b=b+a.

ince Ty = id we see that 0 is the identity element. Let —a = 7,1(0): this
is clearly the inverse of a. Thus R is an abelian group under addition.
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Translations are equal if they agree on one point, so

(9.2) Tass = Ty dorall a,b € R.

Now we define multiplication as follows: first, 0 times anything is
0. Second, if a,b € R, b #0, we define

(9.3) ab = op{a) = o404(1).
Now since the dilatations form :a group, we see immediately that
(ab)c = a(bc),

that @1 ='1-a = afor.all a, and that g; (1) = a™" is a multiplicative
inverse. Therefore the -nen-zero.elements of R form a group under
multiplication. Furthermore, we have-the formulae (for b # 0)

(9.4) Tab = OpTo0;

(95) Tab = Op0q,

the top-equation follows by checking it on-0; the hottom on:0-and 1.

It remains to-establish the distributive laws in R. The left distribu-
tive law is much tharder than ‘the right, ;perhaps because -our definition
of multiplication is :asymmetric. First consider (a+:bje. If ¢ = 9,
{a+b)c =0 =ac +bc. If ¢ # 0, we use formulas 9.4 and ‘9.2, and - find
Tlatble = OcTapp07 ' "= OTa 0. = 07007 0cTh07H = TacThe = Tactbe-
‘Now applying both ends -of this-equality to the point 0,.we have

a+b)c = ac +be.

Before proving the left distributive law, we'must-establish alemma.
For .any line m in A, «denote the -group .of translations in-the direction
of m by Tran ,,(A), i.e. those translations 7 € Tran A such that either
7 =1d or PP'|| m for all P (where 7(:P) =F").

Let m, nbe lines in A (which may ‘be the same). Let 7" € ‘Fran...(A)
and 7" € Tran ,(A) be fixed translations, different from the identity,
and let o be a fixed point of A. We define a'mapping ¢:-Tran ,,(A) —
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Tran ,(A) as follows. For each 7 € Tran,(A), 7 # id, there exists’
by Theorem 9.7 a unique central dilatation o leaving o fixed such that
o(7'(0)) = 7(0). Then 7 = o7'c~! since both 7 and g7'c~! are trans-

lations that agree on 0. Now using o define ¢ by
(9.6) o(t) = o0t
Check that 07”0~ ! is a translation in the direction of n (Exercise 9.5).

LEMMA 9.9. ¢: Tran ,(A) — Tran,(A) is a homomorphism of
groups. :

Proof. We need to show that ¢(m72) = ¢(m1)¢(7e) for all 7,1 €
Tran,,(A). There is a subtlety in this since ¢ depends on the argument.
We distinguish two cases.

m 10)=P 1,00

Figure 9.9. o, stretches P’ into 71(0).

Case 1. m }f n. Replacing m and n by lines parallel to them, if
necessary, we may assume that m and n pass through o. Let 7'(0) = P’
and 7"(0) = P". Let 7* be the unique translation which takes P’ into
P". Then

™ =171

" If 11,7 € Tran »(A), let 01, 02 be the corresponding central dilatations,
ie. 7, = o707t (i = 1,2). Then ¢(ny) = oy7"07 = oy7'm0oy! =
017’01‘1017*01‘1 =T 017*0{1 = 177, where we define 77 = alfr*al’l.
Similarly, ¢(7;) = 7275, where 73 = o0y7*0;". If 03 is the dilatation
with center 0 such that 72 = o37'03 1 we get by a similar calculation
that ¢(7,72) = 172 75, Where 7§ = 037%03 .
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So we have
d(nm) =nimem; and. ¢(m)d(m) = TiTa e TITS.

Let @ := ¢(1172)(0) and. R := ¢(11)d(72)(0). Now ¢(7172) and ¢(71)p(m2)

are ‘both translations in the m direction. Then o; @ and: R are collinear.

But 75 and 7{7; are both translations in the 7* direction, so.7;72(0); @ . . :
w1l

and R are collinear. Hence @ = R. It follows that. d(nT?) = O(T1)0kT3).
Case 2. m || n. Let 7/,7" € Tran,,(A). Take another line P
not parallel to m, and- take 7" € Tran ,(A). Define ¢, : Tran (&) —
Tran (A) using 7' and 7", and define ¢, : Tran ,(A) — Tran ,(A) using
7" and: 7"

Then ¢ Yot (Exerc1se 9.6): But 9, ¢, are homomorphlsms by

Case 1. Hence, qb is-a homomorphism. ]

Now. we-can- prove the left distributivity law as follows. Consider
Ala + b). In the lemma, take m=n=4¢ 0 =0, 7’ = 7, 77" = 7». Then
¢ is the map of Tran,(A) — Tran(A) w hich sends 7, into Ty, for
any a. Indeed; by equation (9.4) 7;.= g,10.}, 50 ¢(7,) = g, ot =
Tra. By the lemma ¢(7,7) = ¢(7.)d(7) (f01 all'a, b € R), whence
¢(Ta+b) = Q(-Ta)(f)(’l'b) by~equation (92) Heénce: T,\(a+b) = T\a ™ = T/\a+,\b
Evaluating both translations at 0, we get by equation (9.2)

Xa +b) = a+ Ab.

This. completes the proofrof

THEOREM 9.10: Let A be an affine plane satisfying azioms A4 c:md."‘

A5. Let € be a line of A,. let 0,1: be two points of €, let R be the set”of
points of £, and define + and - in R’ as given in Equatzons 9.1 and 9.3
above. Then R is a division 7mg :

9.3 Introducing Coerdinates in A

We are now re>ady to introduce coordinates in A. We have already-fixed
aline ¢ in A, and two points 0;1 oni'&: On the basis of-these: choices we

#
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defined our division ring R. Choose another line, m, passing through
0, and fix a point 1’ on m.
m
P =(a,b)

0 1 (a,0)

Figure 9.10.

For each point P € ¢, if P corresponds to the element ¢ € R, we
give P the coordinates affine coordinates (a,0). Thus 0 and 1 have
coordinates {0,0) and (1,0), respectively.

If P € m, P # 0. then there is a unique dilatation ¢ leaving O fixed
and sending 1" into P. o is of the form o, where a = o(1) € R. So we
give P coordinates (0, a).

Finally, if P is a point not on £ or m, we draw lines through P,
parallel to £ and m, to intersect m in (0.b) and ¢ in (a,0). Then we
give P the coordinates (a, b).

One sees easily that in this way A is put into one-to-one correspon-
dence with the set of ordered pairs of elements of R. We have yet to
see that lines are given by — this will come after we find the equations
of translations and dilatations.

We investigate the equations of translations and dilatations. First
some notation. For any a € R, denote by 7. the translation which takes
0 into (0,a). Thus 7 is the translation which takes 0 into 1', and for
any a € R, a #0,

-1
a

(9.7) 7. = 0,70

This follows from the definition of the point (0,a). Furthermore, it fol-
lows from equatino (9.7) and Lemma 9.9 that the mapping ¢: Tran ,(A)
— Tran ,(A) defined by 7, — 7. is a homomorphism, and hence we
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have the formulae, for any a,b € ‘R,

(9.8) Tovs = TuT

(9.9) Tl = opTioy !, 4

the bottom formula (9.9) coming from applying o,-on the left,.and o, 1
on the right of Equation 9.7 and recalling (9.5).

PROPOSITION 9.11. Let 7 be a translation of A, and suppose that
7(0) = (a,b). Then T takes an arbitrary point Q@ = (z,y) into Q' =

(z';y') where
jz'=z4a
W=y+b-

Proof. Indeed, let 7o be the translation taking 0 into Q. Then
Tog = TzT,. Also 7 = 7,7 So #(Q) = T7(0) = TaTyTLT,(0) =
TGTITI;T;(O) = Ta+1Té+y(0) = (l +ay+ b) 0 ‘
PROPOSITION 9.12. Let 0 be any dilatation of A leaving 0 fixed.
Then ¢ = g, for some a € R, and o takes the point @ = (r,y) into

Q' = (z',y'), where '
Jz' =zxa
L yl P ya

Proof. Again write 7og = 7.7,. Then, using equations (9.2) and

0(Q) = 0a7.7,(0) = ga7:7,0; ()

= 0,70, aa'ry’aa—l('O) = Toa " Tya(0) = (70, y0). m]

THEOREM 9.13. Let A be an affine plane satisfying A4 and AS5.
- Fiz two nonparallel lines ¢, m in A, and fiz points 1 € ¢ and 1' € m,
* different from 0 := {.m. Then assigning coordinates as above, the lines
in A are all linear equations of the formy = mz + b, m,b € R, or
z=a, a € R. Thus A is isomorphic to the affine plane A*(R). . '
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Proof. By construction of the coordinates, a line parallel to ¢ will
have an equation of the form y = b, and a line parallel to m wil have
an equation of the form z = a.

Now let r be any line through 0, different from ¢ and m. Then r
must intersect the line z = 1, say in the point @ = (1,a) (a € R).

s |

Figure 9.11. Assigning a linear equation to r.

Now if P is any other point on r, different from 0, there is a unique
dilatation o, leaving 0 fixed and sending @ into P. Hence P will have
coordinates £ = 1- A, y = a - A. Substituting = for A, we find the
equation of r is y = axz.

Figure 9.12. Assigning an equation to s.

Finally, let s be a line not passing through 0, and not parallel to ¢ or
m. Let r be the line parallel to s, passing through 0. Let s intersect m
in (0,b). Then it is clear that the points of s are obtained by applying
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the translation 7, to the points of 7. So if (X,a})) is a point of r (for
z = A), the corresponding point of s will be z = A+0= A, y =al+b,
by Proposition 9.11. So the equation of ris y = ax +b6. O

REMARK. If ¢ is an arbitrary dilatation of A, then o can be written -
"~ as To', where 7 is a translation, and ¢’ is a dilatation leaving 0 fixed
(cf. Proposition 9.6). So if 7 has equations 2/ = z+ ¢, ¥ = y + d;.and.
o' has equations =’ = za, ¥’ = ya, we-find that ¢ has equations

' =za+c
¥y =ya+d

- THEOREM 9.14. Let 7 be a projective plane satisfying P1-P5. Then
there is a division ring R such that 7 is isomorphic to P*(R), the pro-
jective plane over R.

Proof. Let €y be any line in 7, and consider the affine plane A =
7~ €p. Then A satisfies A4 and A5, hence A = A?(R), by the previous
theorem. But 7 is the projective plane obtained by completing the-
affine plane A, and P?(R) is the projective plane that completes the
affine plane A?(R) (Exercise 8.2), so the isomorphism above extends to

“show 7 = P*(R). O

hanging from the early chapters, about the correspondence between
affine planes and projective planes. We saw that an affine plane A
could be completed to a projective plane S(A) by adding ideal points
and an ideal line. Conversely, if 7 is a projective plane, and £y a line in
7 then m — €, is an affine plane, by Exercise 2.2.

What happens if we perform first one f)'ro"cess and then the other?
Do we get back to where we started? There are two cases to consider.

NIlfrisa projectivevplane, ¢ aline in 7, and 7—¢ the corresponding
affine plane, then one can see easily (Exercise 2.2)- that S(m — {) is .
isomorphic to 7 in a natural way.

2) Let A be an affine plane, and let S(A) = A U {, be the corre-
sponding projective plane. Then clearly S(A) -4, = A. But what if ¢;
‘is a line in S(A) different from {7 Then in general one cannot expect
S(A) — ¢, isomorphic to A.
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However, if we assume that A satisfies A4 and A5, then S(A)—¢; =
A. Indeed, S(A) = P?(R), for some division ring R, and we can always
find an antomorphism ¢ € Aut P?(R), taking ¢ to ¢, (see Proposition
8.2). Then ¢ gives an isomorphism of S(A) — ¢; and A.

EXERCISES

EXERCISE 9.1. Prove-that the kernel of a homomorphism of groups
is a normal subgroup.

EXxERCISE 9.2. In this exercise you will assist in the definition of
factor group G/N obtained from a group G and normal subgroup N.
‘Asaset G/N = {gN | g € G}, the set of left cosets of N in G. (Beware
that the same coset may go under different names: gN = ¢g'N so long
asg g e N)

a) Show that for each g in G the right coset g equals the left coset
of g: i.e. gN = Ng.

b) Show that the following formula defines a group operation on
G/N:

(gN)(g'N) = gg'N.

Where must you use normality of N?

¢} If G is a semidirect product of N with another subgroup K, i.e.
G =N x [\, find an isomorphism showing G/NV = K.

EXERCISE 9.3. Let A be an affine plane in which A4 holds, and
let P, P' be two distinct points in A. Define the mapping 7: A — A
taking P into P’ by the parallelogram construction. Refer to the proof
of Theorem 9.3. Prove that 7 is an automorphism of A.

EXERCISE 9.4. Give a rigorous proof of case 2 in the proof of
Proposition 9.4.

ExXERCISE 9.5. Prove that 07”0~ in equation (9.6) is a translation
in the direction of n.
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EXERCISE 9.6. Prove that ¢ = 1, 'in -case 2 of ‘the proof of
Lemma 9.9.

EXERCISE 9:7. Let 7 be a.Desarguesian plane. Theorem 9.14 tells
us that we may coordinatize points in 7-by selecting a line ¢, and
coordinatizing the affine plane A= 7 — €;. A may be coordinatized by
selecting nonparallel lines ¢; and €5 -in A, .0 .= {14y, 1 € {1, ' €y,
R = {points on-¢;}, + and - defined in section-9.2, and.proceeding as
in section 9.3. ‘

a) Show how to assign-coordinates (x1, 2, 23) to each point of .

b) Show how to assign a linear equation Y°3_,-c;z; ='0'to-each line
in 7. :

EXERCISE 9:.8. 'Is the homomorphism ¢: Tran,,(A) — Tran ,(A)
actually an isomorphism of groups? :

EXERCISE 9.9. In section 9.2 we let .R be the set of :points on a
line ¢ in A, where two points are designated 0 and 1. Addition and
multiplication :are defined by means-of translation along-f.and central
dilatation fixing ‘O (cf.-equations (9.1) and (9.3)). Suppose m is'aline
in" A intersecting ¢ in 0. Take R' to be the set of points-with .0 and a
point 1’ to be-chosen in ‘R’ —{0}. ‘Define addition ‘by .translations along
m and-equation (9.1), multiplication by central dilatations fixing-0 and
:equation (9.3). Then R and R' are division rings.

a) Show that they are.isomorphic rings: R'> R'.

i) If m were parallel to.£, 0' and 1’ arbitrary points:in m. show:that
R=ER. .

-¢) Show that R = R’ with no restriction.on m.

s
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Chapter 10

Mobius Transformations and
Cross Ratio

10.1 Assessment

Let us pause for a moment to see what we have done and where we are
going. We have been: studying the subject of projective geometry frOm
two points of view, the synthetic and tlie analvtic.

The synthetic approach to planar projective geometry starts with
points and lines satisfying axioms P1-P4. We make definitions like
automorphism and complete quadrangle, proceeding in logical steps
and proving theorems. Eventually we add axioms P5, P6.and.P7 as.we
need. them. For example, we add P6 when we need harmonic points,
and P5 when we need to show the well-definedness of the harmonic
conjugate. We added PT7 in order to make the group PJ(¢) of conjective
projectivities precisely 3-transitive, and prove Pappus’ Tlieoren.

" The analytic approach to projective geometry starts from an: alge-
braic object like the reals, complex numbers or any division ring R or
field F. Then we defined P?(F) as nonzero ordered triples of F:elements
with the equivalence relation (z;,z2,23) ~ (1, Z2,23)), and lines as
linear equations. We defined cross ratio,! a certain group of auntomor-
phisms, viz. PGL(2,F), using 3 x 3 matrices, another group using field

Lcf. Section. 5.3, Exercises 5.2, 5.8, 8.8
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automorphisms of F, and proved a fundamental theorem telling that
these two subgroups together generate Aut P%(F). In addition, two or-
dered sets, @; and Q,, of four points in general position have a unique
automorphism of PGL(2,F) transforming Q; into Q.

In the last two chapters we have tied these two approaches together,
by showing that a Desarguesian projective plane is isomorphic to P%(R)
for a division ring we can construct, and conversely a P?(R) satisfies
Axiom P5. Additionally, we showed that axioms P6 and P7 in our
synthetic development are equivalent to algebraic statements about R
in our analytic development on P?*(R). For example, every Pappian
plane is of the form P?(F), and is Fano iff Char (F) # 2.

In this chapter and the next, we continue to tie up our two ap-
proaches. Among the loose ends that are left are to give an analytic
interpretation of the group of conjective projectivities PJ(€), which we
have so far studied only from the synthetic point of view. This is what
we do in this chapter. In the next chapter, we give a synthetic inter-
pretation of the subgroup PGL(2,F) of automorphisms of a Pappian
plane, which so far we have only studied from the analytic point of
view. As a bonus of this interpretation, we prove Ceva’s Theorem, a
basic theorem in advanced Euclidean geometry.

10.2 The Group of Mobius Transforma-
tions of the Extended Field

Let F be a field. and let 7 = P%(F) be the projective plane over F. Then
7 is a Pappian plane (which, you will recall, has Desargues’ Axiom).2
Let ¢ be the line z3 = 0: simplify the homogeneous coordinates for
points on £, (x7.25,0), by writing just (2, z2).

We have studied in our synthetic development in chapter 5 and 6
the group PJ({) of conjective projectivities on £. Now we will define
another group PGL(2,F) of transformations of ¢ into itself, and will
prove it is equal to PJ(¢).

2We stick to the commutative case for simplicity. Much of this section is valid
over division rings — with a great deal of effort.
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In the same spirit as section 8.1, we define a transformation T4
of ¢ onto itself for each nonsingular matrix A = (25). Recall that
nonsingularity of A is equivalent to the condition det A = ad — bec #0.
Now T4(zy,22) = (2}, 25) where

z] =.ax; + by
xh = cxry + dzs,

or in vector notation Ty(x) = Ax= 2.

Clearly, for each nonzero scalar A in F, Th4 = T4 since Tha(z) =
A’ = & because we are working in homogeneous coordinates. Now if
we wanted, we could work our way through a 2 x 2 variant of section
8.1, proving that T4 is a one-to-one correspondence of ¢ with itself,
whose inverse is T4-1 (Exercise 10.1). Moreover the set {Tx: ¢ — (|
X is a 2 x 2 nonsingular matrix} forms a group (Exercise 10.2). Two
matrices A and B define the same transformation, i.e. T4 = Tp, if and

“only if there is a nonzero A € F: B = AA (Exercise 10.3). In addition,
given three distinct points X;, X5, X3 and another ‘triple Y}, Y2, Y3 we
may find one and only one matrix system {\A | A € F-{0}} such that
Ta(X;) =Y; (i =1,2,3): this you may do in Exercise 10.4. In analogy
with section 8.1, we have

DEFINITION. The group of transformations of - into itself of the
form T4 defined above, where A is a 2 x 2 nonsingular matrix over F,
is denoted by PGL(1,F).

In carrying out our program of proving PGL(1,F) = PJ({), we find
it more convenient to introduce the inhomogeneous coordinate = =
x1/22 on €. Note that 22 puts the points (z,z7) of ¢ in one-to-one
correspondence with the exterided field F-U {oo}, which we denote by
F..: the notation oo corresponds to the single point (z;,0), i.e. “o0 =
z1/0”. (No special meaning should be given to co here.)

By dividing the expressions for zj with that for 2} above it is appar-
ent that the group PGL(1,F) is the set of transformations T4: z+ 2’
where
, ar+b

T =C(L'+d (aabycedE]F,ad—-bc#.O).
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In addition T4(00) = ¢ and Ta(—%) = oo if ¢ # 0, and T4(00) = 00
if ¢ = 0. Such transformations of the extended field are called Mdbius
transformations or fractional linear transformations, and recur through-
out mathematics. You will recall seeing Mobius transformations of Cy
in section 6.1. The next proposition is proven just like Lemma 6.4.

PROPOSITION 10.1. The set of Mébius transformations of Fs, form
a group under composition: i.e. PGL(1,F) is a group. Moreover, if
a,b,c and a, 3,7y are two triples of distinct elements of Fo,, then there
is a unique transformation Ty in PGL(1,F) which sends a, b, ¢ into «,
B, and vy, respectively.

Proof. Exercise 10.6. O

PROPOSITION 10.2. The group PGL(1,F) of Mébius transforma-
tions is generated by the sets I, J, K of Mébius transformations of
three kinds:

I={TA A=, ‘;),aelF}
J={TB B=(g ?),aE]F—{O}}
I\"={TC c= ((1’ (1))}

REMARK. In symbols, PGL(1,F) = (/U J U K). The transforma-
" tions in I are translations with equation ' = z4a. The transformations
in J are central dilatations. Sets [ and J are in faet subgroups. The
only transformation in K is called inversion, an order 2 element.

Proof. We start with a transformation T'(z) = ‘C‘;Id" where ad —bc #

0. There are two cases to consider: ¢ =0 and ¢ # 0.

If c =0, then d # 0. Let T{(z) = 3z,50 T} € J. Let Tj(z) = z + &,
so Ty € I. Then Tj(T{(z)) = %5 = T(z). We have disposed of this
case.

If ¢ # 0, we can in fact work out that

T(z) =(T1 Ty > T3 - Ty)(x)
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where

You will be asked to verify‘this in Exercise 10.2.

Note that 7}, Ty € I, T,,Ts € J and T3 € K, so I, J, and K
generate the group of Mobius transformations. [

10.3 PJ(¢) = PGL(1,F)

PRroPOSITION 10.3. .Each of the translations in A, central dilata-
tionsdilatation in J and the inversion.in:K in the ¥obius transforma-
tions of Fo, is a projectivity of € (z3 = 0) to-itself. Hence, PGL(1,F) C
PJ(¢). .

Proof. We must exhibit each of the special Moébius transformations
as a composition of perspectivities within P(F). Remove the'line z; =
0 as-the line at oo of the affine plane with coordinates x = z;/x,-and
y = x3/%s (cf. Exercise 2.2 and Proposition 2.2). Then the line-¢ is
y =0, i.e. the z-axis. : T

X3/ %

1) (a,)

¢ xy*‘:\il'xz

i w

Figure 10.1. ..: 2o = 0. ' = z + a as a projectivity.

Case I. We must show the transformation T z — z + a to 'be a
projectivity.
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Consider
Aa)
A

This projectivity sends (z,0) to the ideal point W lying on the line
connecting (0,1) and (z,0), i.e. of slope —1. Now the line of slope —1
through (a, 1) intersects the z-axis, ¢, at (z + a,0). Hence z is sent to
z+ aon f, soTris equal to this projectivity.

y V y=x
A

(1,1)

.
> x

(@,00\ (5,0) (0x,0) X

w

Figure 10.2. z' = az as a projectivity.

Case J. Consider the transformation T;: z — ax (a # 0). We claim
Ty coincides on £ with the projectivity

SIE

where V is ideal point on the vertical lines and W the ideal point on
the line through (1,1) and (a,0). You will be asked to verify the details
of Ty being this projectivity (Exercise 10.7a).

Case K. The transformation 7' = é is a product of three perspec-
tivities

You will be asked to check that (z,0) is sent to (2,0) in Exercise
10.7b.
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l A - .
ol w0 (x,O\ .

Figure 10.3. Inversion as a projectivity.

In conclusion, every Mobius transformation T is a projectivity of
¢ into itself, since T is a product of transformations in case I, J, and
K. O '

THEOREM 10.4. In a Pappian plane w with line [ the group of
projectivities of € into itself is isomorphic to the group of Mébius trans-
formations on the extended field F associated with 7:

PJ(¢) = PGL(1,F).

Proof. We have seen in Propesition 10.3 that PGL(L.F) C PJ(¢),
where ¢ is line x3 = 0 in P?(F). We establish the reverse inequality.

Let 3 € PJ(¢), and suppose ¢ takes the points 0, 1 and oo (or
(0,3), (1, 2,) and (x1,0) in homogeneous coordinates on ¢)into X, Y,
and Z, respectively (and projectively, of course). Now by Proposition
10.1, there exists a Mdbius transformation 7 taking 0, 1,00 into X, Y, Z,
respectively, and Proposition 10.3 establishes that T" is a projectivity.
‘By the Fundamental Theorem, T = 1 since their values on three points
agree. This completes our proof for the line £. O

Now given the lines £ and ¢, in 7 it is a general fact that PJ(¢) and
PJ(¢') are isomorphic as groups. For let ¢ be any perspectivity from ¢
onto ¢. Define a map ¢: PJ(¢) — PJ(¢') by

a— dadt.
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You will be asked to show in Exercise 10.4 that i is a group isomor-
. phism. (Since ¢ is an arbitrary perspectivity, with no clear alternative,
PJ(¢) and PJ(¢'), though isomorphic, are not canonically so.) This
shows the grouplof conjective projectivities to be an invariant of the
projective plane, and removes the special nature of our computation
with 23 = 0. s

REMARK. Notice that our assumption of commutative scalars was
put to full use in the form of the Fundamental Theorem. [Frankild-Kromann]
investigates what is the case over a divisionring R: Mobius trans-
formations (suitably defined) still form a group, they are still gen-
erated by translations, dilatations, and inversion, and we still have
PGL(1, R) = PJ(¢). However, the Fundamental Theorem is only true
. up to inner automorphism of R.

10.4 Cross Ratio: a Projective Invariant

. We have seen in the exercises that cross ratio is a projective invariant
of P?(R): however, this was done using special properties of the reals
like the existence of trigonometric functions.

Now cross ratio is clearly definable over any field IF (cf. Exercise 8.8),
since we need -only subtract, divide and multiply in order to compute
cross ratio. We will see in this section that cross ratio is also a projective
invariant in P?(F). Indeed the next theorem states that PJ(£) is the
group of permutations of points on ¢ that preserve cross ratio.

First, we give the definition of cross ratio in this more general set-
ting. Let a, b, ¢, and d be four distinct points given in inhomogeneous
coordinates for the line ¢, z3 = 0; i.e. a,b,¢,d € Fy,

DEerINITION. The cross ratio is defined by

a—c b-

a—d b—-c’

Rx(a, b, c, d) =

if none of a,b,¢c,d = o0o. In case one of a, b, ¢, or d = oo we set
Rx(a,b;¢,d) = dlfa—OO),ad(lfb—OO)bd(lfC— o0), and $=£
(if d = 00).
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DEFINITION. By a transformation of ¢ into itself that preserves
cross ratio, we mean a one-to-one correspondence ¢ — ¢ sending each
X € ¢ into X' € £ such that

Ry(4, B; C, D) = Ry(A', B;C', D)

for every quadruple of points A, B, C, D-in €. It is clear that the set of-
cross ratio preserving transformations of £ into itself is a group. under
composition of functions, which we denote by R(¢).

THEOREM 10.5. Let F be a field, and € the line x; = 0 in P*(F).
Then the group of Mébius transformations (on the inhomogeneous coor-
dinates Fo, for ) is equal to the group of permutations of { that preserve
cross ratio: : :

PJ(€) = R(0).

Proof. We first wish to prove that PJ(¢) € R(f). Now given a
projectivity T': ¢ A ¢ we have shown in Theorem 10.4 and its proof that
T is a Mobius transformation of the inhomoegeneous coordinates for ¢.
In"Proposition 10.2 and its proof we saw how: to factor 1" into a product
of translations, central dilatations and inversions of F.

It remains to show that T € R(¢) by showing that each of the three
- types of generating Mobius transformations.preserve: cross ratio..,.

Case 1. If T(xz) = z + A, translation by A (and T(oc) = o0), we
easily compute cross ratio of primed image points:

a+A=(c+A) b+r—(d+X) o .

Ryla', b ¢ d) = . ,
@b, d) a+A—(d+X) b+A=(c+A)

which is cleax'ly equal to Rx(a, b; ¢, d) (also in the case that one point is
00). .

Case J. If T(z) = Mz (and T(o0) = o00) where A € F—{0}, the
transformed points satisfy '

X=X MNo—Ad
optoa gy — .
Rx(a’, 05, d) = S0 0 e

which again is clearly equal to Ry(a,b;¢,d) (also in case one point is
00).
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Case K. If T(z). = 1 (T(00) = 0, T(0) = 00) we compute cross
ratio of T'(a) = d’, etc. to be
1-1 21 gbed |
c—a d—b-
= - . = R .
d—a C—b X(a’)b)cvd)

Rx(a',b';c',d') = E . 'E . %_% = c—b = Rx(oo,b;c,d),
fa=0,
bed -2 ¢ d—b
PRl gy 2276 d d - _ . = : .
RX(a:b1c7d)_de %__‘1; d c—b Rx(O,b,C,d)

The other cases proceed along the same line (Exercise 10.8).

This establishes that PJ(¢) C R(¢).

Conversely, suppose ¢ € R(¢). Let a = ¢(0), b = ¢(1), ¢ = (o)
and generally z' = ¢(z). By hypothesis Rx(a, b; ¢, z') = Rx(0, 1; 00, T),

ie. ,
a—c b-—1z 1-2z

a-1z b-c -z
Suppose for the moment that a, b, and ¢ # co. Upon solving for z’ in
three steps we have

' (1) zla—c)b—2')=(z - 1)(a—2")(b-¢)

(2) =z(a—c)b+z(c—bla+aldb-c)=azxz —bzz' +(b—c)z'

a=b
EC(E +a
azby 41

[

(3) z' =

Since %{—gc - a‘;T‘: = 5"—‘—%)_%'—"1 # 0 as F-elements, we conclude that ¢

. s 0 o bes’ ool
is a M6bius transformation. If a = co = ¢(0), we get =5 = =2, so
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gl = —~(b— )=t + b= =t=b which is also a Mébius transformation.
You will be asked to check the other cases in Exercise 10.8.

Hence, ¢ € PJ(¢) and so PJ(¢) = R(¢). O

NoOTE. In the spirit of calling F**! / ~ projective n-space over F, where
(Tr, . Tug1) ~ (T2, -, Tap A), we call F? /'~ the projective line over F,
~ denoted by P!(F). We saw that the line ¢ with-inhomogeneous. coordinates
could be viewed as the extended “number line” F... Note there is nothing
special about r; = 0: in the first instance, we see that 2o = 0 or z; = 0
may replace £ and still be put in a canonical one-to-one correspondence with
F.. Now any line m may be transformed to ¢ by a projective collineation,
defined in the next chapter, which puts m in one-to-one correspondence with
F.. (only up to a Mdbius transformation since there will be more than one
projective collineation transforming m into £). This has two consequences.
One is that any line in P?(F) is-projectively equivalent to-the projective line
over F. The other is that cross ratio-is definable for every line and the last
theorem, Theorem 10.5, is valid for any line in P*(F). ‘

Xnel
A ,
N ¥

Figure 10.4. Stereographic projection of the n-sphere S" intoR" U {co}.

In case F = R or C the projective line over F has certain well-
known topoelogical models. The projective line over the reals is a circle
and the projective line over the complex numbers is a sphere (or Rie-
mann sphere), both of which can be seen by stereographic projection in
dimension 2 and 3, respectively, from the “north pole”. north pole of
sphere. Under this mapping, the “north pole” of the sphere corresponds
to 0o.
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These identifications are useful for putting functions on the circle
in one-to-one correspondence with functions of two homogeneous vari-
ables.

It is shown in a course in complex analysis that the group of
Méobius transformations of the Riemann sphere is equal to the group
of orientation-preserving, conformal (i.e. angle-preserving) one-to-one
transformations of the Riemann sphere onto itself. These are automat-
ically infinitely differentiable at all points éxcept one, where a “simple
pole” takes place. This provides a fourth interpretation of the same
group PJ(¢) in the case F = C. :

EXERCISES

EXERCISES 10.1-10.4 provide alternative demonstrations of Proposi-
tion 10.1, and may be done by adapting the proofs of Propositions 8.2,
8.5 and Theorem 8.6 to 2 x 2 nonsingular matrices over a field F.

EXERCISE 10.1. Let £ be the line z3 = 0, A a nonsingular 2 x 2
matrix, and T4 the ansformation © = Az. Show that T4 is a one-to-
one correspondence of £ into itself, with inverse given by 7T 4-1.

EXERCISE 10.2. Show that the set {T4: ¢ — ¢ | det A # 0} is a
group under composition.

EXEeRCISE 10.3. Show that T4 = Tpg: € — ¢ if and only if there
exists A\ € F— {0} such that A = AB.

- EXERCISE 10.4. Let X, X7, X3 and Y}, Y;, Y3 be two triples of points
on ¢, no two of which are equal. Show that there is a unique matrix 4
up to scalar such that T4(X;) = Y; fori =1, 2, and 3.

EXERCISE 10.5. Tn section 8.1 we chose to work with PGL(2,R)
using homogeneous coordinates and 3 x 3 nonsingular matrices. This
is in direct contrast to our use of inhomogeneous coordinates F,, and
Mobius transformations in section 10.1. In this exercise you will see
what youn obtain if you pass to inhomogeneous coordinates in a study
of PGL(2.F) for some field F.



10.4. Cross Ratio: a Projective Invariant 145

a)- Starting. with the transformation T4 € PGL(2,F) where A =
(ai;) and det A:+# 0; show- that. T4 is~given by~

. an® + ay:+ ag ,_ anT+ apy + ax

) S .
a3 %+ a3y-+as3 a3 + azy+ ass.

in the inhomogeneous: coordinates = = 1/x3, y = z2/23.
) Show. that the-ideal point-en.the affine plane x3 = 1. correspond-
ing-to.slope m is sent to

o =3 + Maiy Cy_ Q21 + A

"~ agtmap’ 7 ez +magp
How.is this:to be interpreted if-m.=-00?"

EXERCISE 10:6. Prove that PGL(1, F) is.a:3-transitive-group: refer
to-the- statement of Proposition. 10:1; and- the proof:of Lemma 6:4:.

EXERCISE. 10:7. Let ¢ be-the line z3 = 0<in. P?(F), which-is-madeé
to correspond to-thie x-axis in the affine coordinates y=x3/13, T =
z1/2s.

a) Consider. the projectivity

as-in the-proof: of: Propesition: 10.3; where-V is: the ideal point. on.the
y-axis and: W is- the ideal. point: on the-line through (1;1) and (a,0)
where a:#-0: Show. that (x,0) is sent to.(az, 0).

* b) Consider the-projectivity

¢,

~~
8
It
<
>N <

where V is the same-as-in a). Show that the projectivity sends (z,0)
iito(2,0).
EXERCISE 10.8. Let ¢ be a cross ratio preserving: transformation

of Foo. Let a = ¢(0), b = <;'>(1) and ¢ = ¢(00). Suppose that one of b
or ¢ is co. Show that ¢(z) = z' is a MObius  transformation. -
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EXERCISE 10.9. A linear transformation 7 of a vector space V is
called an involution if 72 = idy. Suppose V is a 2-dimensional vector
space over a field F. Show that every invertible linear transformation
T:V — Vs, up to a scalar multiple, either an involution or is the
product of two involutions.

Hint. What does Exercise 6.7 say for linear transformations?

EXERCISE 10.10. Show that the set of Mobius transformations of
F., can be mapped injectively to a subset of P3(F).

EXERCISE 10.11. Suppose f: F, — F, sends harmonic quadru-
ples into harmonic quadruples. Moreover, suppose f(0) =0, f(1) =1
and f(oo) = co. Prove that f restricted to F is a field automorphism.



Chapter 11
Projective Collineations

In this chapter :we -develop the synthetic-theory .of projective-collin-
eation. In-general, .collineation:is.a synonym or -automorphism.of -a
projective.plane, because lines are sent=into:lines.

:DEFINITION. 'Let £ be.a line-of the-projective plane-7. ‘An auto-
-morphism ¢: 7 — =, £ = {, is called -a projective collineation if ¢
restricted:.to £ is a.projectivity:

d)_l(t»(’ A ¢,

‘Now this definition-will probably seem wvague on a:first:reading, ‘for
cotld not ¢ be .projective-on ¢ but:fail:to be .on some ‘other-line? “We
-will-see.in the;next proposiition‘that this is:not-the case.

"PROPOSITION 11.1. Lét ¢-be a projective collineation:of . Then
Jor any line m, ¢|,, is a projectivity.

Prodf. -Assuming ¢|,.is - projectivity, ¢ A ', we wish+to show.that
@|m: m-— m’ is a.projectivity as-well. iLet P*be a point.not on ¢ or m.

Let p:-m — {-bethe perspectivity m £ £. Let B.€ m and p(B) = A.
Then A, B.and P are collinear,-and so.are their image points, A’, B’
and -P"-under our automorphism ¢. Clearly A'.€ ¢’ and :B" € m'.

147
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P

Figure 11.1. ¢|,, is a projectivity.

Now consider the mapping ¢|seped™}|,, of m’ into ¢. This mapping
sends B’ into A’ and therefore coincides with the perspectivity 7: m/ %’
¢'. Then

T=leoped m

Multlplymg both sides of the equation from the right by ¢|m, and from
the left by 7!, we arrive at

¢|m =771 ¢|l °p.

Since ¢|, is a projectivity and 77! as well as p are perspectivities, this
exhibits ¢|n, as a projectivity. O

The simplest example of a projective collineation is the identity. We
will next study two key examples of projective collineations, called ela-
tions and homologies. We will prove that if 7 is a Pappian plane, then
any projective collineation is a composition of at most three elations
and two homologies. Finally, we will be able to show that if 7 = P?(F)

where F is a field, then the group of projective colhneatlons is precisely
PGL(2,F).

For now, let us just apply our knowledge gained from chapter 10 to
note that an automorphism ¢ that fails to preserve cross ratio will fail
to be a projectivity. From chapter 8 we know that an automorphism
of F gives an automorphism of P%(F). Since complex conjugation, z —
Z, does not preserve cross ratio, complex conjugation will induce an
automorphism of P?(C) that is not a projective collineation (Exercise
11.1).
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11.1: Elations and' Homologies-

It follows fromr the fact that projective: collineations' transform every
line projectively that the set of projective. collineations: formr a group;
denoted by PC(x), within the group of:automorphisms-of a projective
plane 7. As promised; we turn to the study of-elations and.-liomologies.!

DEFINITION. An-elation is an automorphism-¢ of m.that:leaves
fixed each-point. P of some-line-¢, called the- azds, but fixes no other-
points of

afP) =P = Pel

We have seen something, like-an:elation before: If we remove from 7
the line ¢, we-are léft:with: an affine: plane A as in* Exercise-2:2. We will: -
now show: that a|a is-a translations différent from: the - identity: Indeed- -
weneed only show: a, is a-dilatationtsincera has-no-fixed: points-outside
of the removed line- £. Then: given: P, Q"'€. A~ we* must-show- that the:
transformed:points. P, Q' lie on- a line:parallel ‘to: PQ!: Suppose. PQ:
intersects- ¢ in'.the. point: W in: w7 Then:. P, Q. and:-W- are’ collinear: -
Since* a(W") = W, it follows that P/, Q" and- W are- collinear. Since® -
pencils of parallels in:A are pencils of-lines on’ points-oft?, we*arrive:at
PQ || P'Q'. Thus-an:elation’ restricts to a dilatation of A mdeed ala
is a-translations since: it has no-.fixed: points. '

Conversely, it is-easy- to- see thata: translations gives- an+elationcv.
of the completed: plane: by defihing; a(X?) = X-on: eachiideal point” X
(Exercise 11.2); :

PROPOSITION: 11127 Let 7. be (my‘p'rojectihw plane: The: elations:
with-azis-, together with the:identity transformations formsa:group:€(€).-
under composition, itself.a: subgroup: of PC(m).. Also; £(€) = TraA:

Proof. Since’ an- elation: is- the' identity” projectivity on-its axis, it
is a: projective- collineation: It is-easy to'seerthat*ifras 3 € £(¢), then:
o Bt € £(0), so E(€) is argroup: (Exercise '11.3). Now- the’ foregoing
discussion has shown: how. to associate a-translation: to each: elation;
and vice versa. This bijection is-in fact a group isomorphism (Exercise
11.4). O

UThis terminology is due to Sophus Lie (1842-1899).
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If o is an elation with axis £, then we have noted that ol is a
translation. Recall that for any P,Q € A, PP' || QQ'. Let PP'.{ = X.
We call X the center of the elation . In the real affine plane X would
be the direction of the translation al,.

Although £(¢) is a group, one should not suppose that all elations
taken together form a group. For if o and § are elations with different
axes, { and m, there is no reason to suppose that a8 is an elation.
Exercise 11.5 asks you to find a “counterexample” in the 7 point plane.

However there is something we can say about all elations. It will
turn out that, with the addition of Axiom PS5, the two subgroups £(¢)
and £(m) of Aut(w) are isomorphic in a very special way: they are
conjugate subgroups, a group-theoretic concept we now define.

DEFINITION. Let G be a group. Let H and K be subgroups of G.
H and K are called conjugate subgroups, if there is an element g € G
such that the map

h— ghg™

is an isomorphism of H onto K. This is sometimes denoted by K =
gHg™!. Note that symmetrically one has H = g~'Kg.

PROPOSITION 11.3. Letw be a Desarguesian plane. Then the groups
of elations £(£) and £(m) are conjugate subgroups in Aut (w).

Proof. We pick an automorphism ¢ that sends ¢ into m (cf. Theo-
rem 8.6). Then the mapping

ar poaed? (a € E(8))

is an isomorphism of £(¢) onto £(m). Indeed, pa¢~! fixes P if and only
if P € m, so ¢ag™t € £(m). That the mapping is a group isomorphism
is a routine exercise in group theory (Exercise 11.6). The converse is
proved in Exercise 11.7. O

We now turn to the other type of projective collineation — homol-
ogy — which turns out to be closely related to central dilatation of the
affine plane.
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DEFINITION. A homology of the projective plane 7 is a projective
collineation « of 7 leaving a line ¢ pointwise fixed -and fixing; precisely
one other point O in 7 —¢. « is said to be the homology with azis ¢ and
center O. The set of homologies with axis £ and center O is-a group
~denoted by H(¢,0). The set of homologies together with elations,all
with axis ¢ but of arbitrary center on or off ¢, is a group-denoted by

H(0).

PROPOSITION 11.4. Lét w be a Desarguesian:plane. Then H(€) is
a semi-direct product of its subgroups E(¢).and H(¢, O).

.Proof. :Let m — ¢ be the affine plane A. A satisfies the major and
‘minor:Desargues’ Axioms as noted in chapter 9. The -mapping -

a v ala

is. an isomorphism of H(¢)-onto Dil-A sending H(¢,©)-onto the group

of central dilatations Dil 5(A) and sending £(¢) onto Tran A: ‘this claim
follows from -Proposition 11.2 and the precedingdiscussion. .In Propo-.

- sition 9.6°it was shown that Dil A is the semi-direct product of the nor-
mal, abelian subgroup Tran-A and any one of its subgroups Dil olA)
for O € A Biit-group-isomorphism preserves a semi-direct product
structure. You will be asked to check the details in Exercise 11.8. O

11.2 The Fundamental Theorem of Pro-
jective Collineation

PROPOSITION 11.5. Let 7 be a Desarguesian plane. ‘Let A, B,C,’D
and A',B',C', D' be two quadruples of points, no three .of which are
collinear. Then one can find a product ¢ of elations and homologies
such that §(A) = A', ¢(B) = B, $(C) ='C"' and ¢(D) =D’

Proof. The proof proceeds in five steps as we-show that, in veneral
¢ is a product of three elations and two homologies.

1. Choose a line ¢ not .incident with either 4 or A’. Since 7 is

Desarguesian, it follows from Theorem 9:3 that there is-a translation:.
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of the affine plane 7 — ¢ which sends A into A’, and as we have seen in
the last section this gives an elation a;: # — 7 with axis ¢ such that
ai(A) = A'. Denote oy(B) = By, a;(C) = Cy and ay(D) = D;.

2. Since a; will be the first in a product of elations and homologies,
we now wish to fix A" and send B, into B' as a second step. We can do
this by choosing a line m incident with A’ but not incident with either
Bl or B'.

As before there exists a unique elation oy with axis m such that
az(B;) = B'. Note that a3(A’) = A’ since A’ is on the axis. Denote
az(Cy) = C; and ay(D;) = Ds.

3. This time apply Theorem 9.3 to transform C, into C' by an
elation a3 with axis A'B’. Note that there is no problem with this, .
since C' ¢ A'B' and C ¢ AB by hypothesis, so

0307(C) = C3 & 030,(A) U azey(B) = A'B,

since a;, oz are collineations. So far a3 °ay - transforms A, B, C into
A, B',C’, respectively and, denoting a3(D;) = D;, D transforms into
Ds.

4. In the last two steps we will fix A, B’,C’ and transform Dj; by
two homologies into D'.

B c
Figure 11.2. Transforming Dj into D' in two steps.
Let Dy = A'D;3.B’'D'. Now in the affine plane m# — B'C’, in which
the major Desargues’ Axiom holds, we find by Theorem 9.7 a (unique)

central dilatation [5'4 holding A’ fixed and sending Dj into Dy, for A’
D3 and Dy are collinear points, none of which lie on B'C' (why?). So
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if 4 denotes -the-homology with axis B'C" and center A’ corresponding
to ,@4, then ﬂ4(A,) = AI, ,Bq(BI) = “Blv7 ﬂ4(0l) = -,a'lld ﬁq(Dg) = ID_4.
5. This time .apply Theorem 9.7 to ‘get an homology G5 with axis
A'C', center B', such that f5(D,) = D'. There is no ;problem doing
, sthis, because B’, D4 .and ' are .collinear points, none of which:lie-on
A'C" (why?). ‘
In conclusion, ¢ = B o 84 o.ti3 « ap o @y transforms A,:B,.C,D into
A B |C', D', respectively. 'O

ILEMMA 14.6. Let 7 ‘be a ‘Pappian plane. ‘Let.g -be a projective col-
lineation of , which leaves fized four points A, B, C .and D, no three
of which are collinear. Then ¢ is the identity transformation.

Proof. "Let -¢ -denote the line BC. Since ¢(B) = B .and ¢(C) =C,
¢ sends £ into -itself. Indeed, ¢, is.a-projectivity .of £ into itself, since
¢ is a-projective .collineation.

A C

Figure 11.3. Threefixed points.on ailine.

" ‘Since ¢ alsofixes A4.and D, it follows that & := AL isfixed by &.
Whence, ¢|¢: BFEC & :BFC,so ¢|; =:id,bythe Fundamental Theorem
(cf. chapter 6).

Let A denote the affine pplane © — €. Since -¢ {fixes -each point .on
£, we have -seen :in the discussion preceding Proposition 11.2:that ¢|a
is a dilatation. But ¢[, thas the :two fixed points A and D. Hence,
@la =idaby Prop031t10n 1:6. Putting @|a =.ida and ¢|, =.id, together
-we .conclude that ¢ = -

‘We now come to the Fundamental Theorem :of Projective {Colline-
ation.
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THEOREM 11.7. FUNDAMENTAL THEOREM OF PROJECTIVE COL-
LINEATION. Let w be a Pappian plane. If A,B,C,D and A'",B',C', D’
are two quadruples of points, no three of which are collinear, then there
is a unique projective collineation ¢ such that ¢(A) = A', ¢(B) = B',
#(C)=C"and (D)= D'.

Moreover, the group PC(r) is generated by elations and homologies.

Proof. In Proposition 11.5 we proved that ¢ could be chosen to be
a product of elations and homologies. Since each elation and homology
is a projective collineation, it follows that ¢ € PC(x).

We are left with proving uniqueness. Suppose ¢, are two pro-
jective collineations transforming A, B,C, D into A', B’,C', D', respec-
tively. Then ¢-9~! € PC(x), and ¢ - ¢! fixes A', B', C' and D'. We
may apply Lemma 11.6 to get ¢ o ™! = id,, so ¢ = ¥, which gives
uniqueness. ) : .

Finally, it is clear that given n € PC(w), n will coincide with a
product of elations and homologies on four points in general position.
By an application of the previous lemma, 7 is then the product of
elations and homologies. Whence, the union of the subset of elations
with the subset of homologies generates PC(7). O

11.3 PC(r) = PGL(2,F)

At this point we are in a position to realize our program of giving a
synthetic interpretation to PGL(2,F).

THEOREM 11.8. Let F be a field, and let 7 = P*(F), the projective
plane over F. Then

PC(r) = PGL(2, F).

Proof. We first show that elations and homologies are representable
by matrices.

Let ¢ be the line z3 = 0, and P the point (1,0,0) on £. Then 7 — ¢
is the affine plane A consisting of points with coordinates z3 # 0. The
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.affine coordinates -of ‘A are as usual

T = ;’131/1173
y = 2/

‘Now an elation -of 7 ‘with .axis £ and center P is a translation of A, -and
-conversely. Perhaps :the simplest-example of a translation ala is

¥=xr4a
o =
Yy = Y,
with homogeneous coordinates
iL‘ll ‘=1 +ar3
Th= Iy

T4 ="T3.

Whence.the elation a: ™ — 7-is Tepresented :by the -matrix

o= o

with @ € F; i.e. @ = alx) = Az is-the equation defining a. Thus
a €:PGL(2,F). :

If 3.is any.other élation, with axis m and-center @, we.can always
find a nonsingular 3 x 3 matrix X-such that the.induced ‘automorphism
Tx-of 7 sends ¢ into m -and P-into Q (cf. Theorem:8.6). Then B and
Tx - a Tx! are two.automorphismsboth -fixing: each ‘point:on-line m.
Now the.center of Tix - a « Tx" may be computed.as:follows: -since

Tx'(R) U o(Tx'(R)).6.= P,
it follows by applying Txto both sides:of the. incidence equation :that
‘R L‘J.T.Xaﬁ;l(fR).m =.Q.

Hence, Tx - & o'T,}l ‘has center Q, so Tix o o Tx' = (3. But a=Ty4,s0
B = Txax-1 (B is represented by XAX ! with-X a transition matrix). 4

.
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Hence, each elation of m is representable by a matrix that may be
obtained from A by a change of basis.

Thus every elation is in PGL(2,F). Now consider a homology v
with axis z; = 0 and center (1,0,0) off the axis. In the affine plane
ry # 0 with affine coordinates © = z2/z;, y = z3/x1, ¥|a is a central
~ dilatation ‘with center (0,0), hence a stretching in some ratio % # 0. It
will have equation in homogeneous coordinates

.'L"l =TI
! L
x5 = kzo
/ L
z3 = kz3,

i.e. v = T¢ where

100
C=]0 &k 0f.
0 0 &k

As before, any other homology 6 has a matrix similar to C, i.e. there
exists Y € GL3(F) such that § = Tycy—1 (Exercise 11.9).

Hence, every elation and homology, and indeed every product of
such, are of the form T4 for some 3 x 3 nonsingular matrix A over F.
So by Theorem 11.7,

PC(r) C PGL(2, ).

We finish in what is by now a standard way.? Let T € PGL(2,F).
Let A, B, C, D be a quadruple of points in general position, and suppose
T(A)=A,T(B)=B',T(C)=C'"and T(D) = D'. Now A',B',C', D’
is also a quadruple in general position since T is a collineation. By
the Fundamental Theorem of Projective Collineation, there exists a
unique 3 € PC(m) such that g(A4) = A, g(B) = B, 3(C) = C'
and S(D) = D'. But we have shown in the paragraphs above that
B € PGL(2,F). So we have 8,T in PGL(2,F), having the same values
on the quadruple A, B, C, D in general position, so by Theorem 8.6 we
have 3 = T since F is a field. So

PGL(2, F) C PC(). O

2You might cover the rest of the paragraph and try it as an exercise.
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11.4 Ceva’s Theorem

In thi$ section we prove an important .theorem in advanced Euclidean
geometry known as Ceva’s Theorem.? “We will make full -use of our
.projective theory of cross ratio.and projective .collineation -in.order to
-prove a generalization.of Ceva's Theorem:to-Pappian;planes,:In.another, ., . “p
direction, the interested reader can-see an application of.our theory \of §
projective collineation :to matrices and determinants in Exercise 11 10

iFigure 11.4. :Ceva's configuration.
i t=3 b Ao

THEOREM 11:9. Let m be the Fappian, Fano plane w =PYF),F @
jfield of :characteristic # 2. iLet ABC e a trigngle in w, and € «a line
{different from AB, BC, .or AC. Denote the points. of.zznteqsectzon iby

U =L AB
V =dBC
W o= 0.CA.

Let E, F.and G be arbitrary points on BC, AB, and AC, mespectively.
“Then the lines BG, AE .and:CF -are concurrent if and .only if the cross

3 After -Giovanni Ceva (c. 1647-1736). .If we are given a itriangle _ABC with a
-point D in general position, the lines AD, BD; and -CD are named cevians-in his
honor.
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ratios satisfy

(11.1)  Re(A, B; F,U)R(B,C; E,V)Rx(C, A;G, W) = —1.

Proof. By the Fundamental Theorem we can carry A, B,C to the
standard points Py, P, P3 by a projective collineation a: we could even
carry a fourth point in general position to P; if we needed to. Since
o restricted to each line is a projectivity, it follows from Theorem 10.5
(suitably extended in Exercise 11.11) that a preserves cross ratio.

Let A = (1,0,0), B = (0,1,0) and C = (0,0,1) without loss of
generality. Assume the line ¢ has equation az; + bz, + czz = 0. Let
E =(0,a1,b1), F = (az,b2,0) and G = (a3,0,b3) be arbitrary points
on BC (r; =0), AB (23 = 0), and AC (z, = 0), respectively. Then

U =(.AB = (~b,a,0)
V =¢.BC = (0, —c, —b)
W = (.CA = (—c,0,a).

Computing cross ratios, we get

Rx(A, B; F,U) = Ry(00,0; az/by, —bfa) = — L2
a2/b2
RX(C: A;G, W) = Rx(O0,0;b;;/a;;, —a/c) = — a/c
bs/as
and
c/b
RX(BC,E, V) = Rx(O0,0;al/bh —C/b) = — .
al/bl

Equation 11.1 becomes after simplification

b] b2a3 = a1a2b3 .

The equations of lines BG, AE and CF, the lines we wish to show
concurrent, are easily computed as follows. Line BG has the equation

Ty T9 I3
0 1 0
as 0 bg

= baz1 — azxy; = 0.
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Line AF has equation b1z ~ ayz3 = 0, and line CF has equation
—byz; + axy = 0. Now the lines BG, AE and CF are concurrent iff

b3 0 —as
‘ 0 —bl a, | = b1b2a3 - a1a2b3 =0.
—-bg . 25 0

Hence equation 11.1 holds iff thelines BG,"AE-and CF are concurtent:
The special cases arising from a, b, ¢; by, by or az =0 are left to the
reader (Exercise 11.12). O :
We recall the notation AB for the signed length of the line segmeént
AB in the Euclidean plane.

THEOREM 11.10 (CEvA’'s THEOREM). Suppose ABC is a trian-

P

gles in the Fuclidean plane, and E, F and G are points on BC, 4B

and AC, respectively. Then AE, CF dnd GB are concurrent iff
2 AR BL Gy |
(11.2) FB EC GA

Proof. Let ¢ be the line at oc for the real affine plane in the previous

theorem. If W is an ideal point in the completed Euclidean plane, then -

RX(Z= U VW) = Lz—t (which is positive if V" is between Z and U, and
negative if U’ is between Z and V). Now equation (11.2) follows from

equation (11.1). O

Figure 11.5. The altitudes of a triangle.

COROLLARY 11.11. The altitudes of a triangle are concurrent.
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Proof. Label the points of a triangle ABC and the base of each
altitude E, F,G as in the figure. If ~ denotes similar triangles, then
the right triangles ' :

, i CG _BC

AAEC ~ ABGC S0 5C - CA

AF CA

. and BE  AB
ABEA~ ABFC so ﬁ =—BE

Multiplying the three equations above together we obtain equation 11.2.
Hence, altitudes BG, AE and CF are concurrent by Ceva. [

It is rather remarkable that one can prove this Euclidean using
projective techniques. In the exercises you may similarly show that
medians and angle bisectors of a triangle are concurrent (Exercise
11.13).

EXERCISES

EXERCISE 11.1. Find an example of an automorphism of P?(C)
which is not a projective collineation. Justify.

EXERCISE 11.2. Let A be an affine plane, and S be its comple-
tion to a projective plane (chapter 2). Show that a translation 7 of A
(chapter 1) may be extended to an elation « of S by defining

X if X €ly

o) = {T(X) if X € A

EXERCISE 11.3. Show that the set £(¢) of elations with axis ¢ forms
a group under composition of mappings 7 — 7.
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“EXERCISE 11.4. Show:that Tran A = £({) as groups, if £ is a:line
in a projective plane m, and-A .is the affine plane 7.~ ¢ (cf. ‘Exercise
2.2). : '

‘EXERCISE 11.5. ‘Refer to Figure 4.2 and:the proof of Proposition
4.5. Find two elations, o and 3, of the T-point plane 77 such that a- g
is not an elation.

EXERCISE :11.6. -Let "H be a subgloup of a group G Show that for
. an arbitrary. g-in- G

a) the set gHg‘1 = {ghg ! l h € H} is.a subgroup of ;.

b)-the. mapping ¢: h glzg (h € H)is ahomomorphism ¢: H—
gHg™

-c) ¢ is a bijection between H.and gHg™'.

Note that gHg™! and"H are conjugate subgroups.

~EXERCISE 11.7. Suppose 7:is:a projective-plane sat-isfyihg P5. Given
¢ € Aut () and the group-of elations’€(() with axis ¢, show that the .
conjugate subgroup oE(() ~! is the group.of elations:£(¢')-with axis
¢ = ¢(6). ’ ‘ -

EXERCISE 11.8. Show in detail-that, | . =

a) if G =:H %K, ¢:.G 5:G', o(H) :=H'. oK) := K’ sthen
G =iH' % ' (ef.chapter 9, semi-direct;product).

b) H(l) = E(€)x H{£:O) (cf. Proposition.114).

*EXERCISE 11.9. Let 7 = P*(F), F asfield. “Show that any-homology
‘6 7 — w.can berepresented by a.matrix similar (in the technical 'sense
. . 00
of linear algebra) to the matrix C= (-§ ! (1)) (a €F).

EXERCISE 11.10. Prove that

a) any invertible 3 x' 3 matrix Y- over a field ]F is-a:product of five
special matrices: 'Y =.C5Cy; A3 A4 .where.Cs and . C; are similar to
C, and Aj, A;, A; are similar to A in the proof of Theorem 11.8.

b) Suppose a function D: M3(F) — F mapping.the set of 3 x 3
madtrices into F satisfies the two conditions - , .
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D1. If A, B are two 3 x 3 matrices,

D(AB) = D(A)D(B)

D2. Foreacha € F, let C(a) = (ggg) Then D(C(a)) =
a.

Show that D is the determinant; i.e. D(X) = det(X) on every 3x 3
matrix X.

EXERCISE 11.11. Let # = P}(F), F a field. Settle a question left
hanging since Theorem 10.5 by defining cross ratio on any line m in =
and extending Theorem 10.5 to arbitrary lines.

EXERCISE 11.12. Let 7 = P%(F), F a field of characteristic # 2.
Let A = (1,0,0), B = (0,1,0), and C = (0,0,1). Assume ¢ is a line
with equation az; + ¢z = 0.

a) Show that Theorem 11.9 holds true in this case, too. Why must
a#0and c #07

b) If one of a or b = 0, show that Theorem 11.9 is still true. Dispose
of the outstanding cases in the proof of Theorem 11.9.

¢) What can go wrong in characteristic 2?

EXERCISE 11.13. Let ABC be a triangle in the Euclidean plane.
a) Prove that the medians of ABC are concurrent.

b) Prove that the angle bisectors of ABC are concurrent.

EXERCISE 11.14. Prove Menelaus’ Theorem:

Given a triangle ABC in the Euclidean plane and points U, V and
W on BC, AC, and AB, respectively, then U, V and W are collinear
iff

EXERCISE 11.15. Suppose ABC is a triangle in the Euclidean plane,
and X and Y are midpoints of the sides AB and BC, respectively. Show

that XY || AC.
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EXERCISE 11:16. :Let F,tbe a finite field -with ¢ élements. "(It'is
shown in a full year algebra course'that.q is-necessarily a!power of a
prime and F, is unique up to isomorphism.) ‘The finite projective plane
P?(F,) is called the projective plane of order g. Determine the number
of projective collineations of the: projeétive plane of order g.

:EXEREGISE 11.17. A line-in general position will intersect a com--» -3
plete quadrangle in six- points called an involutory hezxad or a quadran- i ; # %

gular set. ‘Défine.a-projective invariant of-ordered six-tuples‘on.a line
such:that the six points form a quadrangular set if and only ‘if your
-invariant is —1. '

‘Hint. Use equation (11.1)-and Figure 1.4 as a starting. point.



Appendix

Independent Studies in
Projective Geometry

Projective geometry leads naturally to the study of algebraic geometry,
non-Euclidean geometry or foundations. of geometry. We would like to
leave the student with an approach to each of these subjects. Informa-
tion and references are provided in four appendices which we hope will
inform- the reader enough to profit from an independent investigation. .
For example, we believe each of the four topics suitable, for a project at-
Roskilde — that is to say — suitable for a semester’s investigation by
a group of students, who focus on- a.suitably broad preblem. enjoying
the guidance of a professor and writing a joint report at the semester’s
end. "

Appendix A is about conics. and B about Bezout’s Theorem. Both
are topics at the beginning of a typical course in algebraic geometry,
and might interest the reader in looking further into algebraic geometry
(e.g. [Reid]). We have considered conics in: the real projective plane in
several places in the text and exercises; in A we then give an easily
understood synthetic definition of conic that permits its study in any
Pappian plane. . . C

Having Bezout’s Theorem in one’s geometry is the natural justifi-
cation for assuming each pair of lines meet in one point. In a projective
plane over an algehraically closed field, two algebraic curves of degree
m and degree n meet in mn points (with multiplicity)..
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In appendix C we place a metric on the real projective plane and
delve a little into the resulting elliptic geometry. Elliptic and spheri-
cal geometries are locally the same, globally different by the presence
of axiom P1 in the first. In both these geometries triangles have in-
ternal angles that sum to more than 180°. The hyperbolic geometry,
where triangles have internal angles summing to less than 180°, has
an incidence geometry represented by the Klein model in the projec-
tive plane — we will define this, too. Bolyai’s Theorem says that the
Law of Sines, suitably defined, holds for the Euclidean, spherical and
hyperbolic geometries: [Hsiang] gives a unified proof.

In appendix D we take up the evident question after a reading of
chapter 9: are there sensible coordinates for a projective plane without
Desargues’ Theorem? It turns out that any projective plane 7 is coor-
dinatized by a ternary ring R. The stronger the geometric axioms we
put on 7, the stronger the algebraic axioms we get on the generalized
ring R. For example, suppose a projective plane 7 satisfies a modified
version of P5:

P5*. Let 4BC and A'B'C' be two triangles in 7 and O a
point such that AA’, BB', and CC’ meet at O. Let
P = AB.A'B', Q@ = AC.A'C' and R = BC.B'C".
Assume that O lies on PQ. Then R lies on PQ.

Figure A.1. The configuration of P5.

Such a 7 is called an alternative plane. Then 7 is isomorphic to
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a projective plane over an alternative division ring, like the Cayley-
Graves octonions. -
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Appendix A

Conics

In this appendix we will give five different definitions of a conic. Each
will be a different aspect of the same figures we are all familiar with —
the circle, ellipse, parabola.and hyperbola. Several of the- definitions
will lead to. generalizations of the ordinary cenic to. finite geometry,
complex geometry. or other specializations of a field F. The challenge
for you is to show the equivalence of some or all of the definitions,
over the course of several weeks or months. We include a sketch of the
proofs of several'implications and mention several important projective
theorems vou should obtain along the way. Finally, a set of exercises
at the end will be helpful in illuminating the text.

In the Euclidean plane, a first notion is a circle since it is the locus
of all points equidistant (at some fixed radius) from a point. As a

second step, conic is naturally defined as.a figure obtained from a circle

by applying a series of finitely many eentral or parallel projections. in
Euclidean space (and ending up in the plane of the original circle):

DEFINITION 1 (DESARGUES). A conic is the locus of points in &

plane obtained from a circle after a finite number of projections in

space.

According to Exercise 5.9 one can deduce from this. definition a
sensible cross ratio of four coconic points, say. points A, B, C, D: on
conic . Rx(A, B;C, D) is defined to be Ry(AP, BP;CP, DP) for any
fifth point P on I': Exercise 5.9:shows the choice of P in the cross ratio

169
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of four lines concurrent at P to be irrelevant. Thus
Rx(AX,BX;CX,DX) = constant ifXel-{A,B,C, D}

Indeed the converse is not hard to prove, either (cf. Exercise A.2).

DEFINITION 2 (M. CHASLES). Suppose A, B, C, D are points in a
plane such that no three are collinear. A conic is the locus of points
A, B,C, D and fifth varible point X such that

Re(AX,BX;CX,DX) =k (k#0,1).

Given two points A, B on a conic I" a projectivity between pencils
at A and B, 7: [4] & [B], may be defined as follows: given X € T,

7: AX — BX.

That leaves only the small detail of the tangent lines to I at A and
B (why?). 7 sends AB into the tangent line b at B, and sends the
tangent a at 4 into AB. Now why is the one-to-one correspondence a
projectivity? Basically because it is a cross ratio preserving transfor-
mation of pencils: just apply Definition 2 to four coconic ponts! It is
not hard to prove that Definition 3 below is equivalent to Definition 2
in the Euclidean plane.

DEFINITION 3 (J. STEINER). Let 7 be a projectivity between pen-
cils of lines centered at points 4 and B. Suppose 4 # B and 7 is not
a perspectivity. A conic I is the locus of points €.¢ where 7: £ { €.

Definition 3 fits very well into our synthetic development of pro-
jective geometry. Thus we have here a natural definition of conic in
any projective plane. However, it appears that 4 and B play some
special role on I, whereas the truth is that for any two points C and
D on T in a Pappian plane there is a projectivity o: [C] A [D] such
that ' = {X | 0: CX A DX}: we might suggestively summarize this
by writing I' = ['(A4, B;7) = I'(C, D; ¢). Since three points and their
values determine a projectivity in a Pappian plane, we might write this
as I' = I'(4,B;C, D, E), where A, B,C,D, E are five distinct points
and 7 is determined from AC, AD,AE 5 BC,BD,BE.

At this point, you should prove
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THEOREM A.1 (PASCAL’'S THEOREM). Let [ be a conic, and A, B,
C, D, E points on I'. Given a sixth point F' in the projective plane, con-
sider the hezagon ABCDEF. Suppose no three vertices are collinear.
Then F € T if and only of AB.DE, BC.EF and CD.AF are collinear.

~ You may essent.ially copy the proof of Pappus’ Theorem in chapter

6 to obtain. the proof of =, if you assume = L(A,C; 7). . .

Now you should attempt to-show that you may cyclically permute

the points in T’ = F( 4, B; C, D, E); thus showing I" not to be dependent
on A and B.

Definition 3 also suffers from the .drawback of not being visibly
self-dual. If you dualize Definition 3, you would obtain something you

could call a line-conic, the envelope of lines through projectively related -

points on ¢ and €. You have already seen an instance of the dual of
Definition 3.in Exercise 5.6. If you define a point-conic to be a conic
with its tangent lines (their definition?), and include the contact points
(their definition?) in line-conic, it is possible to prove that point-conics
are line-conics, and. line-conics are point-conics. This is what is meant
when we say conic is a self-dual concept. So dualizing Pascal's Theorem
gives a theorem stating roughly: ’

THEOREM A.2 (BRIANCHON). Opposite vertices of a hexagon in-
scribed in a conic join in three concurrent lines. .

) This theorem was discovered around 1806 while Pascal’'s Theorem
predated it by-as much as 167 vears. It was in fact Brianchon’s Theotem
that gelled the Principle of Duality in the minds of Poncelet, Gergonne
and others: see [Bell].

Let us cast about for a self-dual definition of conic. In Exercise

A.3 you can associate.to a point P, away from a conic I, the line p.

obtained as.the locus of the variable point Z on a -secant ¢ such that
H(X,Y; Z, P), where {X,Y}=0In¢ ‘

We call the line p the polar of P, and P the pole of p. Points on I'
receive their tangent lines as poles.

The assignment -of pole to. polar, polar to pole, with respect to.

a conic, is an example of a polarity. A polarity is a ene-to-one cor-

respondence between points and lines of a projective plane, respecting,
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incidence: thus a polarity sends ranges into pencils, pencils into ranges,
and complete quadrangles into complete quadrilaterals, etc. Moreover,
one assumes of a polarity that it sends each range of points into a pencil
of lines projectively. One generalizes terminology to say that a polarity
sends A to its polar a, and sends a line b to its pole B.

p

Figure A.1. The pole p of P with respect to a conic F.

A polarity has the property that if it sends a into A, then it sends
A into a. We say A and B are conjugate points, and a.b conjugate
lines of a polarity T if B € a and A € b (and by convention T(B) = b,
T(A) = a). So a point X is self-conjugate if X € z. A polarity is
termed hyperbolic if it has at least one self-conjugate point. Then one
can show that every line but one has exactly two self-conjugate points.
Self-conjugate lines are similarly defined, and their theory is dually
developed.

DEFINITION 4 (VON STAUDT). A conicis the locus of self-conjugate
points of a hyperbolic polarity.

If we add the envelope of self-conjugate lines to this definition — as
we add the lines to the vertices of a projectively defined triangle — we
will obtain a self-dual definition of conic. Showing Definitions 3 and 4
equivalent will then complete the program of understanding self-duality
of conic within our synthetic development, as well as add much to your
understanding of conics. You will want to prove some basic theorems
as possible stepping stones to proving Definition 3 equivalent to 4; we
list them below (and do Exercises A.4 and A.5 as well).
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THEOREM A.3 (VON STAUDT). Given a polarity, there exists.aself-
polar triangle and a unique self-polar pentagon. (An odd polygon is said
to be self-polar-if each vertex is transformed into the opposite side.)

THEOREM A.4 (CHASLES). Given a polarity, a triangle-and its.po-
lar triangle, if distinct, are in perspective.

THEOREM A.5 (DESARGUES’ INVOLUTION-'FPHEOREM). Suppose
"PQRS is.a complete quadrangle in a Pappian plane and-€ a line not
-passing ‘through -either -P,-Q, R or S. -If a:conic through P;Q,R,S
meets €, it«does so -in-a pair of points X, X' of an invohition 7. .i.e.,
X, X" €T implies.that 7: X A X', %= id.

We now ask, what happens in field coordinates? "You-should show
that a polarity of P?(F) is represented by a symmetric matrix. Then
you can-establish from . Definition -4 the.equivalence of the next

‘DEFINITION 5. A .conic is the'locus of points X = (], 1'-2,>;Lj3‘)'s'uc‘h
that .

XCX" =0,
Cil'.T% +‘622'.'Ifg + C33I§ + 2¢o3Tox3 -+ 2¢317371 + 2¢19xy39 =0,
for some symmeétric matrix €= (c¢;;) with-nonzero determinant.

In the real projective plane-you-should show that:every.conic:trans-
forms under :an-automorphism to

XZ=Y2

See [Reid] for more on the equivalence of conics, and .quadratic forms,
their classification, and the fact that a conic isdsomorphic with a:pro-
jective line. ’
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EXERCISES

EXERCISE A.1. Suppose that four concurrent lines ¢y, €y, €5 and £,
in the coordinatized Euclidean plane have slopes my, mg, ms and my,
respectively. Show that the cross ratio

m;y —m my —m
Rx(l1, 0; b3, 0y) = — 3/’ .

mo — M3 mo — -m4'

Hint. Use Exercise 5.8.

EXERCISE A.2. Consider the four points A = (1,0), B = (-1,0),
C =(0,1), D = (0,=1) in the Euclidean plane, and a variable point
P = (x.y) such that

Rx(PA,PB; PC,PD) = —1.

Compute the locus of points satisfying this equation.

EXERCISE A.3. Refer to Exercise 5.12 and Figure 5.14. Let { be a
secant line through P and intersecting circle C at Z and W',

a) Prove that if Y = 4, 45.¢, then H(Z,W:Y, P).

b) Prove that ZX B4, is a right angle.

EXERCISE A4, Let 4, B.C be distinct points on a conic I'. Let

a.b.c be tangents of I' at 4. B. C. respectively. Show that 4AB.c. AC.b
and B(C'.a are collinear.

Hint. Apply Chasles’ Theorem.
EXERCISE A.5. Given a polarity, a line ¢, and A € ¢, associate to

A the point A’ = a.£. Show that 4 — A’ defines an involution of ¢ (cf.
Exercise 6.7).

EXERCISE A.G6. Let 7 be a finite projective plane of order ¢q. Show
that the number of conics is ¢° — ¢°.



Appendix B

Algebraic Curves and
Bezout’s Theorem

~ An algebraic curve in the affine plane A%(R) is thie locus of points (1. y)
satisfying a polynomial equation in two.variables and real coefficients,

flr.y) =0

Algebraic curves we have seen. so far-include points, (z — a)?+ (y —
b)? = 0; lines, ar+by+c = 0; trlalwles (ax+by+c)a'z+by+c)(d"z+
b"y + ¢") = 0; and conic sections; ax? + by + cxy+ dr+ey+f =0
(with certain degenerate conics ocurring for some choices of a, b ..., f).

Algebraic curves we have not vet seen include elliptic curves, a
cubic curve of the form

y? = f(a):= 1%+ az® + br +

where the 1oots of f( z) are distinet (complex) numbers. It has recently
been shown that Fermat’s Last Theorem, which the reader may know
to be actually a long-standing conjecture about the triviality of the set
of rational solutions to the equation,

x?l +yn —

where integer n > 3, may be reduced to a plausible conjecture about the
group of rational points on an elliptic curve with rational coefficients:
for further information, see [Silverman-Tate] and [Rubin-Silverberg].
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AY X4

Y

-
_

¥2 = x(x+1)(x-2) y2 = (x+D(x2-2x+1.1)

Figure B.1. Two elliptic curves.

Naturally, there are many other algebraic curves, f(z,y) = 0, of
higher degree, the degree being defined to be the highest sum of powers
t+ j present among the monomial z'y! occurring in f(z,y).

In the projective plane P2(R) there is the corresponding notion of
algebraic curve. These are also the zeros of polynomials like in the
affine case. just with the difference that the polynomials be homoge-
neous polynomials of three variables in order to assume consistency
with the definition of point as a line in R® through (0,0,0). A polyno-
mial F(X,Y,Z) is called a homogeneous polynomial of degree d if and
only if F satisfies for each ¢

F(tX,tY, tZ) = t'F(X,Y, Z).

This implies that F(X,Y,Z) be a sum of monomials X'Y?Z* where
i+ j+k =d,dfixed. Define then a projective algebraic curve of degree
d as the locus of points with homogeneous coordinates (X, Y, Z) such
that

F(X,Y,Z)=0.

An algebraic curve in P}(R), say F(X,Y, Z) = 0, corresponds to an
affine algebraic curve, f(z,y) = 0, by dehomogenization (with respect
to a variable, say Z), a process you will recognize from switching a
line to its affine coordinate equation. One simply sets Z = 1, letting
f(z,y) = F(x,y,1). For example, the conic X? + Y? — Z? = 0 takes
either the form of a circle, 2492 = 1, or of a hyperbola, 7% — 2% = -1,
if we dehomogenize with respect to Y.
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It can happen that much information is lost in dehomogenization.
In an extreme example, F(X,Y,Z) = Z = 0 should dehomogenize to
1 = 0, which should be interpreted as the line at infinity of the affine
plane Z # 0. So we need to think of the affine curve corresponding to
a projective curve as the curve F(x,y,1) = 0 together with the ideal
points (X, Y,0) satisfying £(X,Y,0) = 0. For example, F(X,Y,Z) =
X?-¥Y?4 7Z? = 0 dehomogenizes. to the affine algebraic eurve f(z,y) =
2 ~ y? + 1 together with the ideal points (1, +1,0).

To an affine algebraic curve

(x,y) = Za, i y =0
of degree d, we make correspond the projective curve
F V7Y — riyej gd—i=j _
F(X,)Y,Z) =) a;X'Y/Z47 =0.
~ This correspondence is called homogenization and is clearly inverse to
dehomogenization in the sense that a one-to-one correspondence is set

“up between affine and. projective algebraic curves that do not contain
the line Z = 0.

It may be of great value to transform one algebraic curve of degree
d to another by a projective collineation. For example. the curve

C: X2 42Y2 4327 42 \Y+7\Z+4)Z—O .

transforms to (X')? +(Y')? +(Z')? = 0, which clearly has no solutions:
since projective collineations — in fact we used X' = X + Y + Z,
Y' =Y+ Z, Z' = Z — are invertible, we conclude there is no solution
to the first equation, cither.

Ay

=X

2 = x2(x+1) C, y2=x3

Figure B.2. Singularities at (0,0).

-t
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The curves above, C;: y*~2°—2? = 0and C;: y? —2% = 0, as well as
their homogenizations C,: Y?Z - X®*~X%2Z =0and C;: Y2Z - X3 =0,
are said to have singularities at the point (0,0) or (0,0, 1), because all
their partial derivatives vanish at these points. For example,

3 A y
Sy(YZ-X - X?) =2Y 2|01y =0
(0,0,1)

An algebraic curve with no singularities is said to be smooth.

Algebraic curves may be defined in an entirely similar way over a
general field. Smoothness carries over, too, in spite of the seeming use
of limit and e-§ arguments with a notion of distance implicit. Since
we deal only with polynomials, we can define partial differentiation
formally by % X"Y*Z7 =nX""1Y*Z7, etc:

B.1 Intersection Theory of Algebraic Curves

We can now investigate how many points of intersection there are be-
tween two projective algebraic curves of degree mandn. f m=n=1
and the lines are different, we know there is only one answer (unlike
the affine case): one point.

If m = 1 and n = 2, we can run into the following difficulty:
ifCi: X —Y =0and C: X? —Y?2 = 0, then C; N C, contains an
infinite number of points — in fact, the whole curve ;. Indeed C; is
the union of two lines, one of them being C;. The way to circumvent
such a nuisance is to remark that, like unique factorization of integers
into primes. polynomials may be factored into irreducible polynomials
(of degree 1 or more, and homogeneous in the projective case). For
example, > —Y? = (X +Y)(X —Y). We now insist that we look only
at pairs of curves with no common component, i.e., no one polynomial
occurs in both factorizations into irreducible polynomials.

Now another obvious occurrence when m = 2 and n = 1 is that the
line and conic might miss one another entirely. For example C;: X 24
Y2 - 272 =0and C;: X —3Z = 0. Although C; N C; contain no real
points, if we allow complex solutions, i.e., we consider C; and C, as
curves in P*({), then we get two solutions, viz. (3, +i+/8, 1).
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“Yet anothér sort of-example-is’ the foliowing: €% Y — Z’=-0rand:,

Cy: X? + Y¥ —Z%-=:0: This is-a circleé and.one-of:its-tangent: lines-
when we-homogenize-with- respect>to- Z.' It is: certain: that C;. N €y =
{(0;1,1)}, but perhaps (0;1,1) should: count: twicet After:allii if- we-
substitute ¥ — Z. = Otin" X? + (Y- — Z)(¥* +-Z) =0y we-get-X? =
0! ands we wouldisay- Xt = 0:¢is a root ‘of multiplicity.2-(is¢:,, also. a,
root” of the-derived: polynomial): Multiplicity-in-intersection: theory-is.
captured- by -the notionrof intersection-multiplicity* al- a common point-
P; denoted by-I(€,.N €3, PY). Its definition is technical; involving rings
called:local rings, and postponed: until: the exercises where we-look.only:
at the affine plane: a liighly recommended reference for beginnners. is-
[Silverman-Tate, appendix- A}.

Let it suffice-to:say:that I(C, N €;,.P)-==1.if:C; and C; intersect

transversally at- P. Im affine-terms, this means-that- P'is a nensingular -

point for: both*curves and their ‘tangents-span. the plane-as in: Figure
Bi.vv?);" -

c, Cz

Figure B:3. Left: Transversal intersection. Right: non-transversal intersections.

We are now ready to state the definitive- theorem. in the subject;.
Bezout's Theorem. for real algebraic curves viewed in; P*(C).

THEOREM. B.1 (BEzouT's THEOREM). Let C)' and Cy be projec-
tive algebraic curves with no- common components. Then

ST L€iNC,, P) = (dégC)(deg Ca).
PeCiNCa ’

In particular, if C, and Cy are smooth with only transversal intersec-
tions, then #(Cy N Cy) =(deg C1)(degCy). In all other cases,

#(€1 NCz) < (degCr)(deg Cy).
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A proof of Bezout’s Theorem has been broken into a series of easy
exercises in [Silverman-Tate]: we recommend the student focus in this
project on the meaning of Bezout’s Theorem, its proof, its applications,
and its history. The student should see [Reid] for a special proof of .
Bezout’s Theorem in case degC, = 2 = degC,.

Bezout’s Theorem is very powerful. For example, let ts apply it to
two curves C; and C, both of degree 2. If we moreover suppose that
both are conics and have five points in common, no three of which are
collinear, then Bezout’s Theorem tells us that C; = C;. Moreover, it
is possible to prove the following theorem when d; = d» = 3 using
an argument that identifies the set of cubic curves with P9(R) (see
[Silverman-Tate]).

THEOREM B.2 (BACHARACH-CAYLEY THEOREM). Let C; and C»
be projective algebraic curves of degrees d; and d,, without common
components. Suppose that C; and C, intersect in didy points. Let D be
a projective algebraic curve of degree dy + do — 3. If D passes through
didy — 1 points of C; N Cy, then it passes also through the remaining
point of C; N Cy.

Let us apply the Bacharach-Cayley Theorem and Bezout’s Theorem
to prove (one half of) Pascal’s Theorem. The following proof would in
principle be valid in P?(F) for any field F (of characteristic # 2) since we
can replace R and C with F and its algebraic closure® in the statement
and proof of Bezout’s Theorem and the Bacharach-Cayley Theorem.

THEOREM B.3 (PASCAL’S THEOREM). Let C be a smooth conic
and A,B,C,D, E,F siz distinct points on C. Let A= AB.DE, R =
BC.EF and S = CD.AF. Then Q, R and S are collinear.

Demonstration. Consider the cubic curves (not irreducible!) C, =

ABUCDUEF and C; = BCUDEU AF. All nine ponts 4, B,C, D, E,
F,Q,R, S lie on C; and C;. Let Cy3 be the cubic curve defined by

03=CU672.

see [Kaplansky, p. 74-76] for a proof that any field F has an algebraic closure
in which degree n polynomials all factor into linear factors.
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Now C; contains eight of the points above; viz., A, B, C, B, E, F, @
and R. By the Bacharach-Cayley Theorem, C; contains S,-too. Where
on C3-is S? If § € C, the line AF intersects C in three distinct points
in contradiction of Bezout’s T heorem We cenclude that S € QR,
demonstrating collmearltv ‘ ‘

Figure B.1. Pascal’'s Theorem.

EXERCISES

EXERCISE B.1. Find the well-known formula for solution x of Ax2+
Bx 4+ C = 0 by applving a projective transformation (projectivity) .of
the pIOJeCtl\e line.

‘Hint. Muyltiply b\ 44 -and complete the square

‘EXERCISI-_: B.2. Let R be a ring. An.ideal I.in R is.a set such that
1. z,yel = xz—-yel.
12. z € R,ﬂy» €l = zyelandyz €l

Check that
a) I is a ring in itself, though possibly without 1.

h) I is a normal subgroup in R under +..
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c) The set of cosets R/I gets a well-defined multiplication as follows:
(a+Db+I)=ab+ 1.

d) R/I is a ring. ‘

ey If f: R — S is a homomorphism of rings, which is surjective,
then Ker(f) is an ideal in R. :

fyR/Rer(f) = S. - ‘

EXERCISE B.3. Let R be a commutative ring. A subset T of R is
said to be multiplicative if 1 € T and a,b € T implies ab € T. An ideal
P in R is said to be a prime ideal if ab € P implies a € Por b € P.
Show that 7

a) P is a prime ideal if and only if R — P is a multiplicative set.

b) If R is the ring of integers, ideals are of the form (n) = {ng|q €
Z}, and prime ideals of the form (p), p a prime number.

EXERCISE B.4. This exercise generalizes an earlier exercise on form-
ing the field of fractions. Given a multiplicative subset T of a ring R,
we form the ring of fractions of R by T as follows. In R x T define a
relation by
(T7 t) ~ (7‘,1 tl)

if there exists an element ¢, in T such that
t(t'r —tr') = 0.

a) Check that ~ is an equivalence relation.

b) Denote the equivalence class of (r,t) by 7, and the set of these
by Rr. Define a multiplication in Rp by

(r) 'y _rr

t)\t)

Check that multiplication is independent of representative chosen for
the equivalence class.

¢) Define addition in Ry by the rule

r 7 _ t'r + tr'

t
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Check that addition is ‘well-defined and ‘Rr is-a ring.

d) Check that ‘the mappmg f: R — RT, 7 — /1 is a:homomor-
‘phism.

e) Let S be another multiplicative subset of R:and § C 7. ‘Define
a natural'mapping B, —Rr.

EXERCISE-B.5. An‘ideal M in.a commutative riig R is-said to be
mazimal if K ideal, M C K C Rimplies:ik =M or:h = R.

a) Prove that if M is a maximal-ideal, then M is a prime ideal.

b) R/M is a field. '

¢) P is a primeideal if-and :only if=R/P. has no zero divisors.

-d) One can form the ring of fractions of R by ‘R — M, «hich ‘s
traditionally. denoted by Ry;. '

e)If R = FIX,Y]. P = (X) {\f[feR} (X1
{Xfi+Yfo]| fi, fo € R}, then P isprime it not ma\lmal and M is
‘maximal.

Let Cy: fi(z,y) = 0 and C;: fa(x,y) =0 be tiwo:affine algebraic
curves with-no common factor. So fi.f; € TFlx,y]. thepolynomial ring
over -an alfrebralcalh closedfield -F in:'two indeterminates. Suppose
P-€ C; NC,. Let R be the commutative ring F[.X, Y], which is in fact
an integral ‘domain. ‘Form its field -of fractions-# idenotedhy F(X;Y")
and- called the field -of rational functions of X and'Y . In R there is-a
maximalideal M(P) = {f(z,y) | f(P) =0}: check this. Then the ring
of fractions. Ry py := Op.is called the docal ring of P. ‘

, Check that- Op is a subring of A" vie the map you ‘defined iin- Bide.
“Check that the map

Slzy)  f(P)

EARtk 2 ANINA Gl

9(z,y)  -g(P)

defines .a homomorphism of Op onto F with kernel

JP)
oP) - 0} |

Mp = {fEOp
)
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Now-let (fi, f) be the ideal in Op generated by f3/1 and f5/1 in Op:
le.

s ={LL 4 BL  f per g.g € R m(P)}.
The intersection multiplicity of C; and C, at P is
. Op
G NGy, P) =dim | ———
Gnep) ((fl,f»)

where the right hand side is just the dimension of a vector space, since
the field F acts like scalars.

EXERCISE B.6. Compute I{(C;NCy, P) = 1 whereC;: 2 =0,Cy: y =
0 and P = (0,0).



Appendix C
‘Elliptic Geometry

Euclidean:geometry. has-taught. us that planar. geometry is- especially
fertile in the presence of a notion of distance between points. and an
angle between lines. You will recall seme of the important. theorems
in Euclidean geometry: the Law of Cosines, the Law of Sines. and the
theorem- which states that the sum of interior angles of a triangle is 7
radians. For the convenience of the reader we state these theorems in
equations (C.1) and (C.2) below: '

(C1) Law of Cosines: a® = b*+ ¢* — 2bc’cos A
(C.2) | Law of Sines: sind _ sin B sinC
) aw _ _n g _sih

Figure C.1. Left: Angles and lengths-of general triangle. Right: oo+ 8+ v = w.

The real projective plane has a respectable distance geometry on it
as well: it is essentially the spherical geometry of the everyday expe-
rience of airline pilots! We use the sphere model of the real projective
plane, denoted by P? in this appendix. Let.S? be the unit sphere in

185
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R® centered at the origin O. A point P in P? stands for a set of two
antipodal points, +P, in §%. A line ¢ in P? is a great circle on S2.

The distance between two points P and @ in P? is defined to be
the acute angle in radians between lines OP and 0Q:

d(P, Q) = arccos | P~ Q).

Angles between lines is convertible to distance between points by a
choice of polarity (or what is equivalent, a conic or nondegenerate
quadratic form). Now the coordinates suggest a natural choice for the
polarity: send point

(A,B,C) v line £: Az + By+Cz =0.

Inversely, a line or great circle on S? is sent to its “north-south pole:”
the great circle through P and @ is sent to P x Q. Then the angles
between two lines a and b is the distance d(A, B) between its poles.
As a consequence the polar of a triangle XY Z with lengths a.b.c and
angle measures o, 3, 7 is the triangle zy> with lengths a, 3,y and angle
nmeasures a, b, c.

We are going to derive the Law of Cosines and the Law of Sines for
elliptic geometry and indicate in the exercises what the sum of internal
angles is in a triangle. We will note the Law of Sines to be one instance
of the great theorem of J. Bolyai (1802-1860). In his work on absolute
geometry J. Bolyai states the following theorem for a general triangle
in the spherical. Euclidean or hyperbolic planes (notation as in Figure
C.1, left):

sind _sinB _ sinC

®a ob ®c

where ®r denotes the arclength of a circle of radius r in each geometry
(2msinr, 2nr and 27 sinh r, respectively).

3

We suggest the following project: research the statement, history
and proof of J. Bolyai’s Sine Law, and then look at modern treatments
such as the unified proof in [Hsiang]. We recommend [Ryan] for a
modern textbook treatment of the basics of the Euclidean, spherical,
elliptic and hyperbolic planes.
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Figure C.2. Arclength &r = 2asinr on sphere.

THEOREM C.1 (Law OF COSINES). For an elliptic triangle ABC
with sides of length a, b, c and angle measures a, 3.~ the following equa-
tion holds: : '

(C.3) cosa = cosbcosc + sinbsinccos o

Figure C.3. A geodesic triangle on the sphere.

Proof. Do Exercises C.1, C.2 and C.3 in order.to establish the fol-
lowing advanced identity from vector analysis:

(C4) * (CxA)-(AxB)=(C-A)(A-B)—(C-B)A- A).

The left-hand side of (C.4) simplifies in" three steps:
||C % A =—(CxA)-(AxC)=—(C-A)?+(C C)A A)
= —cos’b+1 =sin?b, :

50
lA x B|® =sin¢,
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SO
(C x A)-(A x B) = —sinbsinccosa.

The right-hand side is just
(C-A)A-B)—(C-B)(A-A)=cosbcosc —cosa,
whence (C.3) follows from (C.4). O i

The Law of Cosines in Euclidean geometry may be recovered from
equation (C.3) by replacing cosx with 1 — :1:2/2 and smy with y, their
second degree Taylor polynomials.

COROLLARY C.2. For the elliptic triangle above with v = ‘r/2, the
following equations hold.

(C.5) cosc = cosacosb
(C.6) cosa = sin fcosa
(C.7) sinb = sincsin 3

Proof. Note that the Law of Cosines gives three equations for one
triangle; one of which is

cos ¢ = cosacosb + sin asin bcos .

But cosy = 0 when v = 7/2. whence (C.5).
The Law of Cosines applied to the polar triangle gives

cosa = cos 3 cos 5 + sin 3 sinycosa.
But siny = 1 when v = 7/2, whence (C.6).
Now apply (C.5) to (C.3), using cos?b = 1 —sin? b: we get
(C.8) cosasinb = sin ccos .
Apply (C.6) to (C.8) and cancel to get (C.7). O

THEOREM (.3 (LAW OF SINES). For an elliptic triangle (Figure
C.4),

sina _ sinf  siny
sina  sinb  sinc
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Figure C.4. Elliptic triangle with altitudes.

Proof. Let h be the length of an altitude from 4 to BC. By the .
corollary (€.7) we have

sinysinb = sin h = sin Fsinc.

Hence,
siny sind

sinc  sinb’

By dropping an altitude from B of length A’ as in Figure C'.4. you
similarly prove that
.siny - osina

— = —. a
sinc  sina

C.1 The Incidence Geometry of the Hyperbolic
Plane . '

Already in chapter 2 we saw the incidence geometry of the Euclidean
plane embedded in the real projective plane as a subgeometry (cf. Ex-
ercise 2.2). Tn the section just completed we noted that spherical and
projective geometry are locally identical — even in their metrical as-
pect. In this section we will give a simple and brief description of the
incidence geometry of the hyperbolic plane as a subgeometry of the real
projective plane.!

- .--1Ty, was these observations and others in which Arthur Cayley (1821-1895) ob-
tained various metrics from the cross ratio that led him to pronounce with char-
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Consider the subgeometry of points and lines within one connected
component of a conic in P?. One concrete example of such is the set
of points P = (z,y,2) € P? such that 22 + ¢> < 1 and z = 1. Lines
in this geometry {(z,y,1) | 22 + y? < 1} are simply the line segments
satisfying linear equations az + by + ¢ = 0. This is the Beltrami-Klein
model of the hyperbolic plane H?.

———

e

Figure C.5. Klein model: n and ¢ parallel lines; m and ¢ ultraparallel.

It is clear that two points in H? determine a unique line through
them. Unlike Euclidean and projective geometries, there is not 0 or 1
lines through a point P and parallel to (disjoint with) a line { such that
P ¢ ¢: there are infinitely many lines! We call all such lines m 3 P
such that m N € = 0 ultraparallel to £, except two; namely. the lines
n; and n, that intersect £ on the circle boundary which are said to be
parallel to (.

Figure C.6. Perpendicular lines £ and m in the Klein model.

acteristic enthusiasm metric geometry to be a part of projective geometry, and
projective geometry to be all of geometry.
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Figure C.6 below gives a construction for perpendicular lines in H?.
Otherwise one must exercise caution with the Klein model, since angles
and lengths are not faithfully represented. For example, a hyperbolic
line has in fact infinite length although ‘it is represented by a finite
chord in the Klein model. See [Ryan] for & faithful model of H?.

EXERCISES

EXERCISE C.1. Prove that for vectors u,.v, win R3:
(uxv)Xw—ux{(vxw) =(u v)w— (v wu
Hint. Use Exercise 7.10'and associativity of quaternionic multiplication.

Since triple product of vectors is a 3 x 3 determinant. it follows that (u x
v)-w=u (vxuw).

EXERCISE C.2. Use the previous exercise to prove that
(ux v)x w=(u wv—(v- wu.
EXERCIéE C.3. Use the preceding exercise to prove thét
(uxv) (vx w)= (u v)(v-w) = (v-v)(u- w).

EXERCISE €.4. -Compute the area of a lune of angle o on the
sphere, i.e. the shaded region in the figure. Show that the total area of
the elliptic plane is 27.

Hint. Double integration with spherical coordinates.

Figure C.7. Lune. -
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EXERCISE C.5. Show that the area of an elliptic triangle with in-
ternal angles o, 8,visa+ S +v— 7.

Hint. Use the preceding exercise and the partitioned lunes in the figure

below.

Figure C.8. Partitioned lunes.

EXERCISE C.6. Show that the altitudes of an elliptic triangle are
concurrent. Do the same with the medians and angle bisectors of an
elliptic triangle.

Hint. Use Theorem 11.9.
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"Appendix D
Ternéry Rings

In chapter 9 we essentially did the following: starting with an affine
plane satisfying the minor and major Desargues’ Axioms, A4 and A5.
respectively, and choosing a line with two preferred points, 0 and 1, we
proved the nine axioms of a division ring to be satisfied by the points
on { with operations - and +. Coordinatizing the projective plane with
axiom P35 by a division ring turned out later to be a detail in this
campaign.

In this appendix we are going to do the same thing to an affine plane
without axioms A4 and A5. We can no longer resort to translations and
central dilatations for our definitions of addition and multiplication. We
will see what algebraic conditions axioms A1-A3 lead to on a ternary
ring — an algebraic structure on the set of points on a “diagonal”
line, consisting of a ternary operation with several properties and from
which limited notions of addition and multiplication may be recovered.
Conversely, ordered pairs of coordinates from a ternary ring with lines
defined by the ternary operation form an affine plane. Then we take up
the interesting question of what extra conditions on the ternary ring
of an affine plane axiom A4 alone imposes. Indeed, as we add stronger

“axioms that c¢onverge to A5, we expect to see the ternary ring converge
to a division ring. o

The project we suggest in this appendix is to expand on what is
presented and experiment with geometric axioms and their algebraic
conditions on a ternary ring, or the converse. .You might add to your
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project by doing a small amount of scholarly investigation in the lit-
erature. The ternary ring is due to the 20*" century American mathe-
matician Marshall Hall: our source is [Blumenthal].

Let A be an affine plane. (We are assuming only axioms Al, A2, A3
listed in chapter 1.) We proceed to give A coordinates from a ternary
ring in several steps. ' ’

1) Select any point in A and label it O: call O the origin.

2) Using axiom A3 and A2, we can show that there exist three
distinct lines through O. Choose one and call it the x-axis, another to
“call the y-azis, and a third to call the diagonal. -

3) On the diagonal select a point I different from O. Refer to [ as
the unit point.

4) Let ' be an abstract set in one-to-one correspondence with the
set of points on the diagonal. We adopt the convention that points
are given capital letters, and, if the points is on O/, the corresponding
element in I" is the same letter in small case. The two exceptions are
O and I to which we make 0,1 € I correspond.

y-axis diagonal

Afa,a)

B(b,b) P
I
4 o [ x-axis
m

Figure D.1. Assigning coordinates to P. (£ || z-axis, m || y-axis.)

5) Let 4 denote any point on the diagonal, OI. We assign to A the
coordinates (a,a): to O and I, we assign (0,0) and (1, 1), respectively.

6) Let P be a point in A, not on OJ. By A2 there is a unique line
through P and parallel to the z-axis. This line must intersect OI at
some point, let us say B. Again, there is a line through P and parallel
to the y-axis: this must intersect the diagonal at a point A. Assign to P
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the coordinate (a,b). This:is an:unequivocal assignment -of coordinates
‘in a bijective correspondence between. I'-x I and ‘A.

7) We.assign.a slope-and y-intercept to-each line ¢ not.parallet to
the.y-axis. Call:the unique line through 7-and.parallel' to ‘the.y-axis
‘the -line of slopes. Let ' ‘be parallel to ¢ and passing through-O. ¢

will-intersect- the-line of slopes, say at'(1,m). We assign to { the slope:
m € T.dn addition, € will intersect-the y-axis, sat at the point (0:b): b-

is called the y-intercept of €. Note that b and m uniquely determine:a
line through (0, 6) and parallel to'thejoin of.O:and (1, m), indeed, the
‘line of slope.m and -y-intercept b.

y-axis

--diagonal

/ x:axis
o " " line of slopes

Figux'e'D':2: Slope and-y-intercept of a line in"A.

8) To each ordered triple, (a,m,;b) € T x T x'T. we are ‘going"to
assign a unique-element T(a. m.b) of T'.  This-will define a ternary ring
(I';T), i.e. aset T with ternary operation 7T x'T'x'T — T satisfying
five: properties, T1-T5 hélow.

The definition of T(a, m.b) is very simple. Consider the line with
slope m and y-intercept b: call it n. Let.’¢ ‘be the line through (a,0)
and parallel to the y-axis. Since .n has a-slope it is not. parallel to' the
y-axis and will intersect {-at.a.point: the:point will have coordinates of
the form (a,y). Assign T(a,m,b) ="y.

Note that-an arbitrary ‘point P(x,y) lies on n if and only "if ‘the
equation y = T(z,m,b) is-satisfied. Thus y = T(z,m,b)s an equation
-of the-line with slope m and y-intercept-b. (A line parallel to the y-axis
has equation of the form z = a.)
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y-axis

line of slopes
diagonal

0,b) (a,T(a,m,b))

/ (a,0) / x-axis

Figure D.3. Defining the ternary operation. (p || n.)
DEFINITION 1. A (planar) ternary ring (T, T) isaset T = {0,1,a,

b,c,...} together with a mapping 7: ' x I’ x ' — I such that T1-T5
are satisfied:

T1. Foralla,b,c€T,
T(0,b,¢c) =T(a.0.c) =c.
T2. Foralla €T,
T(a,1,0)=T(1,a,0) = a.
“T3. If m,m',b,b' € T and m # m’', then the equation
T(z,m,b) = T(z,m',b")

has a unique solution in I'.
T4. If a,a’,b,t/ € T, a # d', the system of equations

T(a,z,y)=0b
T(d',z,y) =V

has a unique solution.
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- T5. For all a,m,c €T, the equation
T(a,m,z) =¢

has a unique solution.

ExAMPLE 1. The set T with ternary operation defined-in steps-{(1)-

(8) is a ternary ring. T1 and T?2.are special.cases for thedines n or £. T3
is equivalent to the proposition that lines are either -parallel (and have
the same slope) or intersect in precisely -one point. T4 is equivalent to
Axiom A1l: through thedistinct points (a, b) and (a’. ') there is one and
only one line € of slope z and intercept y. T5 is equivalent to Axiom
A2: there is a unique line through (a,c) and parallel to -OM where
M = M(1.,m). Our use-of the word “equivalent” is not an accident:
a ternary ring (I'.T) defines on T x F an affine plane with lines given

by {(zy) | =a}and {(z,y) |y =T(x.m.b)} (YmbeT) Youwill

then be able to prove A1-A3 by reversing the reasoning above.

EXAMPLE 2. A division xing (R, +,-.0.1) is a ternary ring. Define
“T(a.m,b) = a-m +b. You should now check that properties T1-T5
are satisfied.

We continue by defining some limited notions of addition and mul:
tiplication.

D.1  Addition

We define a binary operation [ x I' — I' we call addition.and denote it
simply by (a,b) — a + b.- Define a+ b =T(a.1,b). Figure D.4 below
indicates how addition works on the diagonal.

DEFINITION 2. A loop is a set A with preferred element 0, and
binary operation @ such that properties L1 and L2 are satisfied.
Ll. a@0=a=00a (Va € A)

L2. a®b = ¢ uniquely determines any one of q, b c€A
whenever the other two are given,
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REMARK. There is a slight redundancy in the definition of loop:
where is it? Examples of a loop are (I, +,0) and any group (G, -, e).

Although (I, +,0) is a loop it is_generally neither true that it is a
group nor that + is a commutative operation. It is a fact that in the
presence of the minor Desargues’ Axiom ([, +, 0) is an abelian group.

y-axis
diagonal

(a,T(a,1,b) C=A+B

B(b,b)

X-axis

Figure D.4. Addition of diagonal points.

D.2 Multiplication

We define a binary operation on T" called multiplication and denoted
by (a,b) — a-b. Define a-b = T(a,b,0). Figure D.5 helow gives the
resulting construction of multiplication on the diagonal.

Now show that

1) (I' = {0}.-,1) is a loop.
2) A B=0Oifandonlyif A=00rB=0(A,B ¢ OI).
REMARK. We now have simple equations for certain lines in A:
y=zxz+b y=x-m,y=>5 z = a (Notice the change in left-
right convention from chapters 8 and 9.) It is in general not true that
T(z,m,b) = - m + b. This would be equivalent to the equation

T(x-m,1,b) = T(z,m,b).
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If such is the case for all ordered triples, T is said to.be linear. Another
outcome of assuming A4 is that T is linear.

y-axis

diagonal
Afa,a)

line.of slopes

(a,T(a;b,0)

[(a,_O) x-axis

4

Figure D.5. Multiplication of diagonal points.

The next theorem requires a brief definition and example to precede
it. You will be required to supply its proof with the help of the Exercises
D.2-D.4. : '

DEFINITION 3. A ternary ring (I'. T") is called a 1eblen- H"edd;’rblh‘n
system if and only if

“VWIL. ([.+.0) is an abelian group.
VW2, (T — {0},-, 1) is a loop.
VW3. 0a-0=0-a=0(VaeTl)
VW4. Right distributivity: (a+0b)-¢=a-c+b-c (for alk
a,b,c €T).

ExAMPLE. Consider an 8-dimensional real vector space with basis
{1 = e1,ez,...,eg}. We will define the non-associative algebra of oc-
tonions O on this vector space. Introduce multiplication on the basis
elements by letting le; = ¢; = e;1 for i = 1,...,8, ¢? = =1 fori > 2,
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and eje; = —eje; for 1 < i < j < 8. We also define

€2€3 = ey, €285 = €, €365 = €7, €4€5 = €3,

€c€4 = €7, €7€2 = €3, €g€3 = €,

with 14 more relations gotten by permuting indices, i.e: if e;e; = e
we Tequire eje, = e; and eye; = e;. Multiplication between general
octonions is obtained by using both distributive laws and now letting
the real numbers commute. The following is a mnemonic scheme for
octonionic multiplication.

e; €y €g
Figure D.6. Diagram for octonionic multiplication.
The octonions are an example of a Veblen-Wedderburn svstem.
(Why?) -

THEOREM D.1. An affine plane A satisfies A4, the minor Desar-
gues’ Ariom. if and only if A = T x I', where lines are given x = a and
y=T(r,m,b). and ([,T) is a Veblen-Wedderburn system.

EXERCISES

ExEeRCISE D.1. Give a synthetic proof for the existence of an affine
plane of nine points {A,B,C,...,I}. Coordinatize with P = {0,1,2}.
Assign slopes to each line ABC, etc. Evaluate T(2,2,2), T(1,2.1) and
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T(2,1,1). Write equations.for several lines. Does T'(z,m,b) =z-m+b
in this example?

EXERCISE D:2. Does the Moulton. plane satisfy A4?

Define a. vector in- A by an ordered pair A'B. Line AB-is the carrier

of the vector I];? If A= B, AB is a null . Define a relation-~ among -

vectors as follows:

N . iB= A = (= Dy or
AB~CD iff (4=C <= B=D, or
AB '€ D and: AC || BD.

EXERCISE DD:3. Show that ~ is a symmetric and reflexive relation.
Show = is a.transitive relation if:and‘only if- A4-holds in A.

Let AB and CD be two vectors (now assumed to bhe equivalence
classes of ). Define an addition as follows: if:B = C, AB+CD = AD.
1B # C, and @ denotes the-unique point: such that ﬁ)': D (in-the
presence of A4), then AB + CD = -l_Q

EXERCISE D.4. . Show that the set of vectors is-an abelian. group
under. +. Show by these means, or by means of translations, that
([, 4.0) is an abelian.group.

EXERCISE D.5. Show tliat. in the plesence of- A, the ternary op-
erator T is linear.

EXERGISE D:6: Sliow that. in-the presence of A4: multiplication.is
right-distributive over addition: CGomplete tlie remaining steps in the
proof.of the (Veblen-Wedderburn) Theorem.

EXERCISE D.7. Let:[F be the fieldiof nine elements in:Exercise 7.8:
Let A = F as sets. Prove that A is a Veblen-Wedderburn system.if the
ternary operation is defined. by

.am + b if'm.is a.square in F”

T(a,m,b) = {

‘adm + b if'm is not a square in F.
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The right-hand side should be interpreted as operations in the field F.
A square y in F has z € F such that y = z2. Prove that (A — {0},-,1)
is in fact a group.

EXERCISE D.8. Define a projective plane over A in the preceding
exercise. (denote it by P2) Show that Desargues’ Theorem does not
hold in P: an example of a finite non-Desarguesian plane.

EXERCISE D.9. Give coordinates to a general projective plane.
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