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7 Abstract.
We define on an ordered semisimple symmetric space M = G/H

a family of spherical functions by an integral formula similar to the
Harish-Chandra integral formula for spherical functions on a Riemannian
symmetric space of non compact type. Associated with these spherical
functions we define a spherical Laplace transform. This transform carries
the composition product of invariant causal kernels onto the ordinary
product. We invert this transform when G is a complex group, H a
real form of G, and when M is a symmetric space of rank one.
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Abstract

We define on an ordered semisimple symmetric space M = G/H
a family of spherical functions by an integral formula similar to the
Harish-Chandra integral formula for spherical functions on a Riemannian
. symmetric space of non compact type. Associated with these spherical
functions we define a spherical Laplace transform. This transform carries
the composition product of invariant causal kernels onto the ordmar;y :
product. We invert this transform when G is a complex group, H a .
real form of G, and when M is a symmetric space of rank one.

Sommaire '

Sur un espace symétrique semisimple ordonné M = G/H nous
définissons une famille de fonctions sphériques par une représentation
intégrale semblable & la représentation intégrale de,Harish Chandra des
fonctions sphériques sur un espace riemannien symétrique de type non
- compact. Puis nous associons a ces fonctions sphériques une transfor-
mation de Laplace sphérique. Dans cette transformation le produit de
composition de deux noyaux causaux invariants a pour image le produit
ordinnaire de leurs transformées. Nous établissons une formule d’inversion
pour cette transformation lorsque G est un groupe complexe et H une
forme réelle de G, et lorsque M est un espace symétrique de rang un.

0. Introduction. — A semisimple symmetric space M = G/H is
said to be ordered if it carries a partial order which is invariant under the
action of G and infinitesimally generated, i.e. determined by the tangent
cone of the set of positive elements at the origin. If M is irreducible and
ordered then it is never Riemannian, i.e., H is non compact. Examples
are one sheeted hyperboloids.

A spherical function ¢ on the ordered symmetric space M is a function
defined on the positive part {r € M |z > 1H} of M which satisfies the
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~ functional equation

/H e(zhy)dh = o(z)p(y),

where ¢ is viewed as an H -bi-invariant function on G. Such functions
were first studied for special cases in [FV86], where they were used
to diagonalize certain integral equations with symmetry and causality
conditions.

_ In this paper we present a construction of spherical functions for general
semisimple ordered symmetric spaces, but in order to keep the necessary
background on the structure theory of those spaces at a minimum we
do not hesitate to restrict ourselves to certain representatives of locally
isomorphic spaces even though more general results can be obtained. In
the first four sections we describe the geometry of ordered symmetric
spaces to the extend we need in the sequel. In Section 5 we construct a
family of spherical functions parametrized by an open subset £+ia* C af ,
where a is a certain abelian subalgebra in g, the tangent space of M at
1H. The formula is similar to that for Riemannian symmetric spaces:

"'D’\(x)zv/ elp=M AT gp
H

As H is non-compact in this case, one needs to restrict both A and r.
In particular we have to assume that ¢ > 1H. Section 6 is devoted
to the study of the asymptotic behavior of ). We introduce the c-
function associated to the ordered symmetric space M. This function
is a product of two c¢-functions, one of them being the Harish-Chandra
c-function associated to a Riemannian sub-symmetric space contained in
M and the other a function constructed by an integral over a bounded
real symmetric domain. In Section 7 we relate the spherical functions to
H -spherical distributions associated with principal series representations
of G.

In Section 8 we introduce the spherical Laplace transform of invariant
causal kernels on M, and, what is the same, H -invariant functions on
the positive part. The Laplace transform is defined by

O = [ flaerr ANz

This integral does not converge for all A. If f has compact support modulo
H, then the integral converges for A € £ + ia*. We also introduce the
Abel transform of an invariant causal kernel, and show that the spherical
Laplace and Abel transforms are related by a classical Laplace transform.
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In the last two sections we present special cases for which we can actually
invert the spherical Laplace transform. For M of the form G¢ /GRr,
by using a formula of Delorme, we are able to invert both Laplace and
Abel transfoms. His formula also shows, that ¢(A\)"!p, has an a.nal} tic
extension to :a*. Let S be the semigroup

S={g€G|gH>1H).

We prove

THEOREM 9.7. —  Let M- be an ordered symmetric space of type
G¢c /GRr and let f be an H -invariant smooth function on S° -z, such
that flsena has compact support. Then there ezists a constant ¢ > 0 only
depending on normalization of measures such that, for a € S°N A,

4
c(zA)e -1/\)

In Section 10 we consider the symmetric space
M =50,(1,n)/SO4(1,n = 1), n > 2. Here we first invert the Abel"
transform by using the Riemann-Liouville transform and then by using
that we invert the spherical Laplace transform. ’

f(a) —-c/ L(F)(iN)p=ir(a)

The paper is organized as follows:

Causal structures
Causal symmetric spaces
Symmetric spaces of Olshanskii type

- W o =

"Ordered symmetric spaces

Spherical functions

Convergence of integrals and asymptotics

Spherical functions and H -spherical distributions

Invariant causal kernels and the spherical Laplace transform
. Inversion formula for spaces of Olshanskii type

10. Inversion formulas for spaces of rank 1

© 0N o o

1. Causal structures. — Let M be a differentiable manifold
of dimension n. A causal structure on M is a field of cones M >
z — Cp C T:M. The cone C, is assumed to be closed, convex,
proper (C; N —C, = 0), and with non-empty interior (i.e., generating
C, - C, = T, M). Furthermore the cone C; depends smoothly on z.
More precisely, for a family of open subsets U covering M, there exist
smooth maps

éu:U x R™ = T(M)
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with ¢y(z,§) € T;(M), a.nd there is a cone C in R" such that
C: = ¢u(z,C)

for z € U. A piecewise C!-curve 7:[a, ] = M is said to be causal, if, for
all ¢, the derivative 7(t) belongs to the cone C.y (the right derivative
if 4(t) has a discontinuity at t). The causal structure is said to be global
if there exists no non trivial closed causal curve. In that case one defines
a partial ordering on M in the following way: one writes z < y if there
exists a causal curve from r to y. For z,y in M, we define the interval
D(z,y), '

D(z,y)={ze M|z <z<y}

In general these order intervals are not closed, but in the case we will
consider they are even compact. The causal manifold is said to be globally
hyperbolic if the intervals are all compact.
Assume that M is a homogeneous manifold, i.e., M = G/H, where
G is a Lie group and H a closed subgroup. For ¢ in G we denote by ¢,
the map
£;:aH +— gaH.

The causal structure is said to be G-invariantif, forall ¢ € G,and z € M
Ce,(z) = dly(z)(C:).

Let 2, = 1H, where 1 is the unit in G. Then a G-invariant causal
structure is determined by the cone C;, in T; (M), which is invariant
under H, i.e., under the linear transformations d€y(z,), h € H.
To a global invariant causal structure on M, one associates the
semigroup
S={g€G|gz, >z}

One can easily see, that SN S™! = H. For more information on causal
structures on homogeneous spaces we refer to [La89).

2. Causal symmetric spaces. — The results of this section are
taken from [01a90]. The earliest reference to the objects studied is [0182].
Let (G,H) be a symmetric pair, i.e., G is a connected Lie group, H is
a closed subgroup, and there exists an involutive automorphism 7 of G
such that

(G"). CHCG,

where G™ = {g € G| 7(g9) = g}, and (G"), is the identity component in
G". As in the introduction we let M = G/H. Let g and h be the Lie
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algebras of G and H and dénote the differential of 7 also by the same
letter. Then

h={Xeg|r(X)=X}.
Let
a={X €g|r(X)=-X}.
The tangent space at z, of M can be identified with q. In this
identification dfn(z,), h € H corresponds to Ad(h). Therefore an
invariant causal structure on M is determined by a cone C in q with
the properties v
- C 1s closed, convex, proper, generating
- C is Ad(H)-invariant.
To see that the cone field gH +— (df,)( :ro)(C ) is smooth we choose
a zero neighborhood U C q such that Exp : X — expX -z, 1s a
diffemeorphism of U  onto V := Exp(U). Let ¢ € G. Then ¢,v is
defined by ‘

$qv(9EXpX,Y) = (dlg exp( \)) 1,)Y), X eU,Y €q.

Assume that G is semisimple with finite center. Let 6 be a Cartan
involution of G commuting with 7. Let K be the corresponding rnammal
compact subgroup of G. Its Lie algebra is given by ‘

t={X eg|b6X)=X]}.

Define
p={Xeg|oX)=-X} 4

Let qo be the space of Ad(H N K')-invariant vectors in q. There exists in
q a cone C with the properties
- C is closed, convex, proper
- C is Ad(H)-invariant
if and only if qo # {0}.

Assume further that (g,h) is irreducible, i.e., there is no non-trivial
ideal in g which is invariant under 7. If qo # {0}, then one of the
following cases occurs:

Case (1) dimqo =1, qo CqN€t
Case (2) dimqo =1, qo C qNp.
Case (3) dimgo = 2.

In Case (1) let C be a cone in q which is closed, convex, proper, and
Ad(H)-invariant, then C is generating and C°N(qN¢&) # @, where C°
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denotes the interior of C, or equivalently C N¢ # {0}. This defines on
M an invariant causal structure which is not global. In fact, if X, is a
non-zero element of qo, then the curve ¢t — Exp(tX,) is causal and closed.

In Case (2) let C be a cone in q which is closed, convex, proper, and
Ad(H)-invariant, then C is generating, and C°N(qNp) # @. We will
see below that in this case the associated causal structure is global and
globally hyperbolic.

In Case (3) we have qo = qo Nt + qo N p and each of these subspaces
of qo has dimension 1. There are four invariant causal structures on M,
two of which are global and globally hyperbolic whereas the others are not
global.

We consider a few examples, for a complete classification see [()laQO].

Case (1)

(i) Let G be a connected simple group, then G can be considered as a
symmetric space, the group G x G acting on G by (a,b)-z = azb™'. The
corresponding involution is 7(a,b) = (b,a). There exists a biinvariant
causal structure on G if and only if the Lie algebra g of G is Hermitean,
i.e., & has a non-trivial center. If G has finite center, this causal structure
is not global.

(ii) The symmetric spaces SU(p, q)/SO,(p,q) for p > 1,4 > 2. Let as
usual

SU(p’ q) = {a e SL(n’ C) l aTvaqa = lp)q}’
with n = p + ¢, and where

(L O
(5 2)
Let su(p,q) be the Lie algebra of SU(p,q). Define 7 by 7(e) = a =
15,4(a7)"1,,, a € SU(p,g). Then H = G = SO,(p,g), b = so(p.q)
and

q={X €su(p,g) | X = -X}.
Let 6(X) = —X* be the usual Cartan involution on su(p,q). Then

AT=A4,D"=D, TTA+TrD =0, A,Dreal}.

Let Ci be the cone in qN& such that A > 0 and D < 0. Then the closure
of the convex hull of Ad(H)C is a closed, convex, proper and generating
H -invariant cone in q such that C°Né = C} # 0.

(ii1) The symmetric space SO,(2,n —1)/S0,(1,n — 1) for n > 3. Define
the involution 7 as conjugation by 1; ,. Then H =G} ~ 50,(1,n - 1).
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The bilinear form —B|q, B the Killing form on so(2,n — 1), defines a
Lorentzian form on q. Each component of the light cone {X € ¢q |
—B(X,X) > 0} defines an SO,(2,n — 1)-invariant causal structure on
the Lorentzian manifold SO,(2,n — 1)/SO,(1,n — 1) which is not global.

Case (2)

(iv) Let b be a simple Hermitean Lie algebra, G a connected complex Lie
group with Lie algebra g = h¢ and assume that the conjugation 7 of g
with respect to § can be lifted to G. Then q = th and, if H = (G"),,
then H N K is a maximal compact subgroup of H. We have q¢ = i3,
where 3 is the center of & = h N ¢. These symmetric spaces M = G/H
were first studied by Olshanskii, and we will call them symmetric spaces
of Olshanskii type.

(v) The symmetric spaces SL(n,IR)/SO,(p,q) for p+g¢=n,p> 1,4 > 2.
Here the involution 7 is given as for SU(p,q) by

T(a) = lp,q(.a_.] )Tlp,q

and the invariant cone in q is given by Ad(SO,(p,q))Cp where Cp' is the

0), A and D

cone in q N p consisting of matrices of the form ( 0 D

symmetric, A>0, D<0and TrA+ Tr D =0.

(vi) The Lorentzian space SO,(1,n)/SO,(1,n — 1) for n > 3. This space
is treated in Section 9 of this paper.

Case (3)

(vii) The symmetric space SL(2,IR)/SO(1,1) 2 SO,(1,2)/S00(1,1). Here
M is a hyperboloid with one sheet in IR®. :

(viii) The symmetric spaces Sp(n,IR)/GL(n,IR).
(ix) The symmetric spaces U(n,n)/GL(n, C).

A semisimple symmetric space equipped with a global causal structure
will be said to be ordered.

Assume that there exists in pNq a non-zero vector X, which is invariant
under Ad(H N K) and such that the projection on every irreducible
component is non-zero. Then it can be shown, see [Ola90], that the
centralizer of X, in g equals ENH P pNg. Thusif a is maximal abelian
in pNgq, then X, € a and a is maximal abelian in p. Furthermore we
may assume that the eigenvalues of ad(X,) are 1,0,—1. Let

g=@ + 8o +8-1
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be the corresponding eigenspace decomposition. Then go =tNhdpnq.
As (@i, 9;] C @i+j, 1,7 = 0,1,-1, it follows, that g4, are abelian algebras
and [go,9+1) C gz .

Let b be an abelian Lie algebra and V a finite dimensional semisimple
b-module. We use the notation

Vao:={veV|VXeb: X -v=a(X)}, a€b’,
A(V,b):={a€b*|a#0,V, #0},

V() :=PVa, TCAV,b), V':=V,,
a€l

o(T) := % 3 (dimVa)a.
a€l

Let A = A(g,a) and A¢ = A(go.a). Let
Az ={a € A(g,0) | ga Conr }.
In the root system A we choose a positive system AY such that
At = AT uA,
with A a set of positive roots in Ag. One obtains in a the two cones

cmax = {X €a|Vae A; : oX) <0},

»*
Cmin = Cmax>
and in q the closed convex H -invariant cones Cpax and Cpin such that

Cmax N a= Cmax,

Chin N @ = Cmin-

Set n = g(A%), ny1 = g(Ax1) = g1, o = (AF), p = p(AY),
p1 = p(B1) and po = p(AF). Moreover we let Ny = exp(ny) and
N4, = exp(ni;). Finally we set Gy = Kpexp(pNq) with Ko = R NH.
Then Gy is a group, Zg(X,s)o C Go C Zg(X,) and the Lie algebra
of Go is go. Moreover, n = ng @ ny is a semidirect product of Lie
algebras with n; an ideal and N = NyN; a semidirect product of groups
with N, abelian and normal. We note that 7(N) = §(N) = N and
T(N]) = G(Nl) = N_l =N1 since a - pﬂ q.

3. Symmetric spaces of Olshanskii type. — In this section we
specify our notation from the last section to the symmetric spaces of
Olshanskii type. The notation is the same as in Example (iv).
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Let h be a simple Hermitean Lie algebra and g = h¢ its complexifi-
cation. Let G be a connected complex Lie group with Lie algebra g such
that the conjugation 7 of g with respect to § can be lifted to G, and let

H be a subgroup of G with Lie algebra b,

(G™) CHCG.

Let C be a cone in :h with the properties
- C is closed, convex, proper, generating,

- C 1s Ad(H)-invariant. _
Theé cone C defines an invariant causal structure on M = G /H which is
global. The associated semigroup S is given by

S =exp(C)H

and S is homeomorphicto C x H (cf. [O181), Theorem 3.5). Moreover M.
- with this causal structure is globally hyperbolic (cf. [Fa91), Théoreme 4).
We can choose an element Z, € 3(¢ N h) defining a complex structure on
- H/HNK , where 3(2N}) is the center of #Nf which is one dimensional since
h is Hermitean and simple. Let X, = —iZ,, then ad X, has eigenvalues
0,41. Thus our notation is related to. the classical one, see [He78] or
[Wo72], by

Go = K¢, “il"P.," Ni, = P%,

- Now G/(GoN1) = K/(K N H) is a compact Hermitean sy mmetrlc space
Y. Let yo = 1(GoN;). The orbit D = H -y, CY isthe Borel realization
" of the non-compact Hermitean symmetric space H /(K N H). We assume
now that C = Cpez.-

THEOREM 3.1. — [OI81). Define T := S~ = exp(—Crmax)H . Then
= {g€ G| ¢(D) C D}.
I’ ={geG|g(D)c D}
COROLLARY 3.2.

S C NAH.

Proof. — Let g € T', then gy, € Hy,, or ¢ € HGoN;. We write the
Iwasawa decomposition of Gy,

Go = RKyAN,
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‘and since Ky C H and NgN; = N we have g € HAN and gl € NAH.
0

4. Ordered symmetric spaces. — We now describe the ordered
symmetric spaces which we will use and fix the notation. For the proofs of
the structure theoretic results we refer to the forthcoming book [OH92].

Let (g,h) be a symmetric pair, with g semisimple, associated with the
involution 7. Let G¢ be a linear connected complex Lie group with Lie
algebra g¢ . We assume that 7 can be lifted as a holomorphic involution
of G¢ , and that the conjugation ¢ of g¢ with respect to g can be lifted
to an antiholomorphic involution of G¢. Let G = (G¢)j. Define the
c-dual Lie algebra

g=h+iq=(gc)”’

and the c¢-dual Lie group
G =GY¢.

We let H = GNG®. Then (G7), C H C G7. Let as before M = G/H.
" The subspace & = hNE+ i(q N p) is a maximal compact subalgebra of
a. Let K¢ be the maximal compact subgroup of G¢ with Lie algebra g°,
then G°/K¢ is a Hermitean symmetric space of non-compact type.

We assume that there exists in p N q a non-zero vector X, which is
Ad(H N K)-invariant and such that the projection onto each irreducible
factor is non-zero. Thus the space qo of K N H-invariant vectors is
non-zero for each irreducible factor. By Section 1 there exists an H-
invariant regular cone C C q defining a causal structure on M such that
C°N(pNgq)# @. Furthermore X, belongs to the center of . In fact,
let (- | -) = —B(-,6(-)) be the usual inner product on g coming from the
Killing form. Then, for X € pNgq,

([Xo, X] | [Xo,X]) = (X | [Xo,[Xo, X]]) = 0

since [X,,X] € €nh. Thus we have [X,,X] = 0.
If (g,h) is irreducible then there are two possible cases:
Case (1) g° is not simple, then M is a symmetric space of Olshanskii

type.
Case(2) g° issimple, then G ¢ /G* is a symmetric space of Olshanskii

type. The orbit of G in G¢ /G® is isomorphic to M.

From this, Theorem 3.1 and Corollary 3.2, we have (see [01390], Theorem
6.3.2)

THEOREM 4.1. — M is an ordered symmetric space which is globally
hyperbolic. Let S be the associated semigroup, then S = exp(C)H.
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We have H C N_;GoN;, and we define D as the H-orbit of the
basepoint in G/GoN;. Then D is the “Borel realization” of H/RK, where
Ky = Go N H= Go N K. Define

Q={ﬁ€N..1 |ﬁ‘GoN1€D},

Q=expD, DCn_,,

then D is the “Harish Chandra realization” of H/Ky. Let D¢ be the

Harish-Chandra realization in (n_;)¢ of the Hermitean symmetric space '

- G°/K*. Then D = D¢ Nn_;. Therefore D and 2 are bounded domains.
- We have (see [OlaQO] Sectlon 6.4)

THEOREM 4.2. — Deﬁne [:= 571 = exp(—Crax)H, then
I'={geG|g(D)C D}

For g € T°, ¢(D) C D and g(D) is relatively compact inD. Furthermore
SCNAH and S = Hexp(cmaz) :

On the Lie algebra level g decomposes as
S g=n+a+h,

and the map
N xAxHS3(n,a,h)—naheG

is a dlﬁ'eomorphasm onto an open subset of G. From this it follows that
the map
Nxa—- M,

(n,X)— nexp X - z,,

is a diffeomorphism of N x a onto the open set NAz,. For z in this set,
z=nexpX - z,, welet
Az) =

Sometimes we will use the notatxon ay(z):=exp A(z). As A and apy are
right H-invariant we can view them as functions on NAry; C M. Note
that the map A is essentially the same as the Poisson kernel for the open
H -orbit of 1Py, defined in [Ola87] (see Section 4).

The following theorem due to Neeb (see [Ne91], Proposition IV.17 and
Corollary IV.18) will be crucial in the proof of the convergence of various
integrals over H.

THEOREM 4.3. — If a € exp(cmax), T E€ NNNAH, then
A(a'-lﬁa) - A(-ﬁ) € Cmin
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and
A(ﬁ) € —Cmin-
The following fact will be used later on. Let Wy be the Weyl
group associated with the root system Ag. It can be identified with
Ny (a)/Zy(a) and the cone cmax can be reconstructed from the Weyl

chamber
a'={X€a|Va€A+, a(X) < 0}

using W,
(4.1) Cmax = Woa_
5. Spherical functions. — We come to the proper subject of the

paper. Let M = G/H be an ordered symmetric space as in the last
-section. We assume that the ordering is associated with the cone Cmax,

S = exp(Cmax)H.

A spherical function is a function ¢ defined on the interior S5° of S such
that for all z,y € S°,

H>hm— p(zhy) € C

is integrable, and

/H e(zhy)dh = o(x)e(y),

where dh is a Haar-measure on H. We remark here that we will use
the same normalization of measures as in [He84], p.449, and [Ola87]. By

Theorem 4.2. hz € S C NAH for h € H and z € §. Thus ay(hz) is
defined. For X € a%, let pa be the function defined on S° by

(5.1) 99,\(13):/ e(P—A,A(h:))dh=/ aH(h:L‘)p_’\dh,
H H

provided the integral converges. Here a* = eMX) for a = expX € A
and A € af;. Let £ be the set of A in a* such that, for all z in S,
h — ay(hz)?~> is integrable over H . For the proof of Theorem 5.2 below
we need a lemma:

LEMMA 5.1. — Let M = Zy(A) then M = Zg(A) and M 1s

compact.
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Proof. — As a is maximal abelian in p it follows that Zy(A) =
Zrau(A) C Zy(A). Furthermore Zy(A), = Zx(A), as a is maximal
abelian in q. Let ’

F:= K Nexpg, 1a.

Then every element of F' has order 2 and thus F C G". Furthermore
F C Gm. It follows that F C H. As in [KnZu82}, p. 400, it follows, that
Zk(A) = F(Zr(A))o C H and the claim follows. 0

THEOREM 5.2. — For Re) € £, the function py 13 spherical.
Proof. — For g € NAH one writes |
g =nag(g)h(g),
‘with n € N and h(g) € H. We prove first
(652) an(2y) = an(z)an(h(@)),

for z,y € NAH such that zy € NAH . Notice that in this case h(z)y is
alsoin NAH . Let z = nyap(z)h(z) then: '

ry = njag(r)h(z)y
= nyap(z)nzay(h(z)y)h(h(z)y)
= nzag(z)ag(h(z)y)h(k(z)y),

with n3 =n;(ap(z)n2ag(z)™?) € N. Therefore
ap(zhy)?™ = ap(2)P~*ap (h(z)hy)*~>
- for z,y € §°. By integrating with respect to h one obtains
| entehyyrdh = anayeau).
H
Now by replacing z by h'z, integrating with respect to h' and using .

Fubini’s theorem to change the order of the integrations we see that ¢y
is spherical. 0

PROPOSITION 5.3. — Let p € a*. Then p € € if and only of
/ ag(k)PT#dk < o,
ANNAH '
and, for Re\ € &,
wa(z) =/ aH(k.r)”"‘dH(k)”+’\dk.
KNNAH : : _
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For Re) € £, the spherical function @y is continuous on S°.

This shows that the convergence of the integral defining ¢a(z) only
depends on A and not on z, a remark which will be used in Section 8.

Proof. — We use the following fact which follows from Lemma 5.1
above and Lemma 1.3 in [Ola87]. A function f on H is integrable if and
only if f(h(k))an(k)?# is integrable over K N NAH , and

(5.3) / f(h)dh = / f(h(k))ay(k)z"dk.
: H KNNAH _
Therefore, for Re ) € £,
ox@= [ anlkeyan(tp k.
KNNAH

Let z € S° g = z7' € I%. By Theorem 4.2, g(D) C D. Let
L=RKNNAH. Since L™1/G(N, is contained in D, then gL=1/GyN,
is contained in D, or gL™! ¢ HGyN, = HAN, and Lz is a compact
set contained in HAN. For a compact set B C S%, y € a*, there are
constants a,b > 0 such that

Vke L, a <ap(kz)?* <b.

Therefore ¢ € € if and only if |

/ ay(k)PH*dk < oo,
KnNNAH

By the dominated convergence theorem of Lebesgue, this shows that. for
Re ) € £, the spherical function ¢, is continuous on S°. [

COROLLARY 5.4.
{pea*|Vae Ay, (p+p,a)<0}CE.

Proof. — Assume that, for all @« € Ay, (p+ p,a) < 0. Then. by
Lemma 4.1 in [01a87], the function g — ay(g)?** is continuous on G.
Therefore it is bounded on the compact set A N NAH , hence integrable

over AN NAH. 0

By considering the orbit Mg = G¢ -z, in M one obtains an imbedding
of the Riemannian symmetric space My = Go/Kp in M. Every element
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r in NA -z, can be written z = njy with n; € N, and y € My in a
unique way. We write
z = nyy(z).

For g € Gy, an(g) coincides with the Iwasawa projection relative to the
Iwasawa decomposition Go = NgAAR of the reductive group Gy. Thus
Yy € My can be written in a unique way as

y = noay(y)z,.
Then, for £ in NAz,, ,
an(z) = ay(y(z)).

Furthermore, for k in K,

y(kz) = ky(z),

since N; is normalized by K. By integrating first with respect to A in
the integral defining the spherical function ¢, we obtain

o) = [ ([ entistreyear) a,

where dh is a suitably normalized H -invariant measure on Ko\H. The
spherical functions for the Riemannian symmetric space Mg are given by

P2y) = / an(ky)***odk.

Ko

~ Therefore we have proved

THEOREM 5.5.
ex@) = [ o alu(ha))dh
Ko\H

The Weyl group Wy associated with the root system Qg is the Wevl
group for the Riemannian symmetric space Go/Ky. As wp; = p; for
all w € Wy, the Weyl group invariance of the spherical functions in the’
Riemannian case yields

COROLLARY 5.6. — For w € Wy we have pux = pa.

6. Convergence of integrals and asymptotics. — To study the
convergence set £ and the asymptotic behaviour of the spherical function
@ we will carry the integral defining ¢ to an integral over NN NAH .
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__PROPOSITION 6.1. —  Let Q C N_; be as in Theorem 4.1. Then
NNNAH = Ny - Q.

Proof — By definition of Q and Go = KoAN, we get
QGoN; = HGoN; = HAN.

Therefore @No = NNHAN . Thus NN\NAH = NoQ-1. As 67X = —X
for all X € n_; and HGyN, is 6r-stable it follows that Q7! = Q. (]

We consider the following integral for A € ag,

(6.1) a(N) = [ an(m)+Adm.

Let
chin = {X € 0" | VX € cmin, A(X) > 0}

min

be the dual cone of ¢pjn In a*. We also define
o = {\ea*|Vae AL, (&) >0}
PROPOSITION 6.2. — The integral defining co()\) converges if Re A+
pPE Chin-
Proof. — Since Q is bounded, it is enough to prove that

n - ap ()P
is bounded on 2. By Theorem 4.3 A(7) € —cmin, therefore
Re(p + A, A(T)) <0,

"and
Ie(p+A,A('ﬁ))l <1 D

THEOREM 6.3. —  The domain of convergence £ of the integral
defining the spherical function @ 1s given by

E={r€a"|ca()) < o0}.

Proof. — By Proposition 5.3 we know that A € £ if and only if
k +— ay(k)?** is integrable over K N NAH. For z € G we use the
Iwasawa decomposition G = NAK for defining a(z) € A and k(z) € K
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by z € Na(z)k(z). By Lemma 1.3 in [Ola87] this is the case if and only
if 7 ay (k(’ﬁ))p+)‘a(ﬁ)2p is integrable on N N NAH and in that case

/ ap (k)P dk = / an(k(7))P+*a(R)2Pdn.
KNNAH NANAH ,

By Proposition 6.1 N N NAH = NoQ. It is also obvious that dn =
_dﬁodﬁl. Thus since ,

e (k@) = an(m)a(m)" |

and
/_ a(ﬁo)zpdﬁo = 1,
Ny
we obtain
/ an (k)P dk = /_ an(k(m))PH a(m)?Pdn
KNNAH NNNAH .
= /_ ap(R)Pra(@)Pdn
Nof
- / ap(R)PHAdn
Q
= cq(A)
as qH(x) = a(z),for £ € Go. . i
COROLLARY 6.4. ' '
-pt+ Cr\;xin c £.
PROPOSITION 6.5. — For Re) € ci; ne,

/_ ap(R)P*dR = co(M)ea(N),
NANAH

where

co(A) = /_ ap (o)t A
Ny

is the c-function of the Riemannian symmetric space Go/Ko .

Proof. — One uses once more ay(To7T1) = ay(o)an (h(70)71), and
notices that h(7g) € Ko. For ko € Ky, an(komy) = ay (ko kg?'),
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and the measure di; is KAy -'ifnvariant. This proves the claim since
(IH(ﬁo)p1 =1. :

PROPOSITION 6.6. — For a in ANS®,

pa(a) = a#™ / ag(a™'7ia)P ay(R) AR,

NNNAH

Proof. — First we notice that for all f € L'(H) right M -invariant we
have

/ f(h)dh = /_ £ (h(R)) ap(m)*odn
H H

NNNA

by Theorem 4.5 in [01a85] or by [0la87). The proposition now follows
since 7

A(h(R)a) = A(Ria) — A(R)
=loga + A(a™'Tia) — A(R). 0

LEMMA 6.7. — Let Q be a compact set in Q, and let A € a*. There
ezist positive constants Mi(Q,\) and M2(Q, ) such that

]\l](Q,/\)e(A’A(%)) < (A AFo)) < A,Iz(Q,/\)e(A,A(Fo))

for M1 € Q, Mo € No.

Proof. — Using the Iwasawa decomposition Go = NyARy, one writes
Mg = ng exp A(7g)ko, where ko = h(729) € Ko, and we have

A(ﬁoﬁl) = A(-ﬁo) + A(koﬁl)
= A(7io) + A(komr kg ')

Notice that ko7, ko_l € Ad(K,)Q =: @, which is a compact set in 2. Let

My(Q,)) = _inf eMAG)

T €Q:
My(Q,)) = sup eMAFE), 0
TmEQ
Let A_ = exp(a™) (cf. Section 4) and introduce the notation a — oo

to mean that a € A_ and for all a € AT we have lima® = 0.
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THEOREM 6.8. — Assume Rel € a; NE. Then

lim a*~#px(a) = co(N)ea ()

Proof — Form€ N,

lim A(a"'Ra) =0,

a— oo

thus by Proposition 6.3 and Proposition 6.6 it suffices to show that one
can apply the dominated convergence theorem of Lebesgue. For 0 < 6 <'1
we set ' ' :

A(6)={a€ A |Va € A, a® < 6},

w= U a”?Qa.

aEA'(é)

By Theorem 4.2 a~Qa is relatively compact since a™' € I If a® < b°
for all & € A*, then ba~! €T and a™!Qa C b~1Qb. It follows that w is
relatively compact in Q. From Lemma 6.7 it follows that, for y =Rel,
‘m=T"non;, a € A(é)a

|e<p—A,A(a"ﬁa))| < Mo(m,p — #)e<p—u,A(a"Foa))_
- There exists ¢, 0 < ¢ < 1, such that

P(; —-E;l € al.’
Using the properties | |

A(mp) € —ta
A(a'ﬁo ) A(Tlo) . E

for a € At (cf. [He84], p. 439), one shows that
(1 = poy Ala="Ti0a)) = (1 — €){p Ala™ Ti0a)) 2 (1 = £){1, AlTo).
It follows that

Ie(p—»\,A(a"ﬁa))e(p+>\,A(ﬁ))| < My(@,p— p)e<eu+p,A(Fo))e(u+p,A(h(ﬁo)Fl))

and the function on the right hand51de is integrable over Ng x . In fact
for ko € I\o,
A(}Coﬁ]) = A(ko_ﬁl kO ) i
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and

/e(u+p,A(koﬁ1k;1))d7—zl =/ elutr A g
Q - Q

Furthermore, for p € a%,

/ e(#+Po,A('ﬁo))d‘ﬁo = co(p) < 0. 0

No

In a completely analogous way we obtain
(6.1) lim e*=0 X, (aexptX,) = @3-, (a)ea (),

forac Aand Ae&.
From (6.1) and Corollary 5.6 we deduce the following corollary using
the Wp-invariance of the c-function ¢q for Go/Ko

COROLLARY 6.9.

ca(sA) = ca(A)
for all s € Wy.

7. Spherical functions and spherical distributions. — The
spherical functions ¢, are related to H -spherical distributions associated
with principal series representations of G. More precisely we will show
that ¢, is the restriction to 59 of a H -spherical distribution ©.,.

We start by giving some definitions and results (cf [Ba88], [61287)).
Recall that M denotes the centralizer of A in H which is also the
centralizer of A in K (Lemma 5.1). For A € ag let (ma,Ix) be the
representation of the principal series induced by the character man — a
of the minimal parabolic subgroup MAN,

Iy = {f €C%(G) | f(zman) = *~*f(2)},
m(9)f(z) = fg™"2).

The formula

(fnf) = [ AR

defines an invariant pairing on Iy x I_x. Let £x be the function defined

on G by
Ex(9) =0, if g ¢ HAN,

Ex(han) = a*~°.

20



LEMMA 7.1. — For Re) € £, the functio.n kv E_x(k) 1s inte_(;yrable
over K. If f € I then h — f(h) is integrable over H and

/ F(R)E-r(k)dk = / f(h)dh.
kK H

Proof. — For g€ HAN,

E(g) = an(g™1 )y,

Therefore the first statement follows from Propositin 5.3. For k €
K N HAN, by writing -

k'l = nay (k" HA(k™Y),

we obtain
Fk)E-a(k) = an(k™ PP F((k7)7).

By formula (5.3) the second statement follows. : | 0

For Re ) € £ the linear form
f o (f6os) = / F(kVE_x(k)d
‘ K

defines an element of I',, the dual of I). This element still denoted by
€~ is H-invariant. The function A — £_5 € I' , has a meromorphic
continuation for A € af. For .f € CX(G), 7\(f)r € I., where
7y denotes the contragredient representation of 7_5. One defines, for
fecEo), a o
Ox(f) = (FA()Er,E-).

Then O, is an H -spherical distribution on G : it is an H -biinvariant '
distribution and there exists a character y» of the algebra ID(M) of
invariant differential operators on M such that

DOy = xA(D)O,, D € D(M).
THEOREM 7.2. — If Re) € £, and if supp(f) C S, then

0:(f) = /G f(z)oa(z)dz.
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’}’robf. — If Re({A = p,a)) >0, for @ € A4, then £, is a continuous
function on G (cf Lemma 4.1 in [0la87)), and for f € CX(G), 7\(f)éx

is the continuous function given by
M) = [ fen 2

Assume that supp(f) C S°. For x e ' = S, 27 1.supp(f) C S C NAH
(Theorem 4.2), and

7r'A(f)éx(-‘r)=/Gf(y)aH(af“y)”‘*oly-

This integral is defined and analytic for A € a . Therefore, by Lemma
7.1,if Red € £,

GA(f)=L(/Gf(y)ay(hy)”;*dy)dh~

If = Re ),
/H /G F@)laz (hy)P~* dydh = /G F@)low(y)dy < oc,

since i, is continuous on S° (Theorem 5.3). By Fubini’s theorem, it
follows that

Ox(f) = /G F(¥)oa(y)dy. i

8. Invariant Volterra kernels and the spherical Laplace
transform. — We recall some definitions and results from [Fa91]. Let
M = G/H be an ordered semisimple symmetric space. A causal kernel
or Volterra kernel on M is a function on M x M which is continuous on
{(z,y) | £ > y} and zero outside this set. We compose two such kernels
F; and F, via the formula

Fy o Fy(z,y) =/ Fi(z,2)F;(z,y)dz,
M

where dz is an invariant measure on M. This definition makes sense
because M is globally hyperbolic. With respect to this multiplication
the set V(M) becomes an algebra, called the Volterra algebra of M. A
Volterra kernel is said to be invariant if

F(gz,9y) = F(z,y), Vg€GQG.
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The space V(M)! of all invariant Volterra kernels is a commutative
subalgebra of V(M) by [Fa91], Théoréme 1. An invariant kernel is
determined by the function '

‘f(x)=F(z,xo), T € M.

The function f is continuous on S - z,, H-invariant and supported on
S * zo, -
S-zo={zeM]|z>z,}.

Conversely if f is an H -invariant continuous function on § - z,, we can
define an invariant Volterra kernel F by, for a,b € G,

F(a-zo,b-2,)= f(b"'a-z,), if b 'a € S,

= (0, otherwise.

With this identification the product ¢ corresponds to the ‘convolution’
frofi@ = [ A 20,
. JG/H

- So the algebra V(M)* becomes the algebra of continuous H -invariant
functions on S - r, with the above ‘convolution’ product.’

The spherical Laplace transform of an invariant Volterra kernel F is
defined by ‘ '

LF()\) = / F(z,1,)ep~ AN dr = f F(z,z,)ap(r)~*dx,
M . M
- whenever the integral converges. Note here that F(z,z,) # 0 only for

T > z,,i1e,for x € S/H. The corresponding formula for the H -invariant
function on S -z, that we will use in the following is

LfN) = /M f(:r)e(".""\’A(I))d:c = /M f(z)ap (z)P~Adz.

' Let D(f) be the set of A for which the integral converges absolutely. -

PROPOSITION 8.1. — Let fi, f, € V(M) be invariant causal kernels.
Then D(fr)ND(f2) CD(fiof2). For A € D(fy)ND(f2) we have

L(f °f2)(/\) = Lfl(’\)‘cf2(’\)'

Proof. — We will only prove the second statement as the first one
follows in the same way noticing that

/ lflofz(x)ay(:r)P—»\lde/ lfll°lf2|(1)a}1(1‘.)p_ne)‘dx,
M M
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Let g € S then a change of variables z' = g~ 1z togéther with (5.2) yields

/M F(g™ )an () dz = an(g)* L.

Now we calculate using Fubini’s Theorem

ciofdN = [ [ fla7a)fale - zo)dlgH)an(a)ds

=Lfi(A) /M falg - zo(z)an(g)?~*d(gH)
LHNLE). I
0

Next we want to compute the spherical Laplace transform using “polar
coordinates”, i.e., the decomposition HAH . For that we use the fact that

the map
H/M x A” 3 (hM,a) — ha-z, € 5° -z,

is a diffeomorphism onto a dense open subset and S -z, \ HA™ - z, has
measure zero. In what follows we may also replace A~ by expcy,,, and
notice that the map is now a w,-covering, where w, is the order of the
Weyl group Wy. Define

§x)= [] Gh{e, X)), X €a”
a€—-At

and N
6(a) = é(loga), a € A~

where mg is the multiplicity of the root a. Replacing the Cartan
involution by 7 in the proof of [He84], Theorem 1.5.8, one can prove the
following integration formula

(8.1a) /S/H f(z)dz = C/H /a_ f(hexp XH)6(X)dX dh
(8.1b) =c/H . f(haH)é(a)dadh,

where ¢ is some postive constant depending only on the normalization
of the measures. Since the above map is a diffeomorphism onto a dense
open subset, whose complement has measure zero, this does hold for every
integrable function f on S -z,.
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PROPOSITION 8.2. —  Let ¢ >.0 be the constant defined above. Let
f:§-x9g — C be continuous and H -invariant. If A € D(f) then ¢, ezists
and

LN =c [ fla)px(a)s(a)da.

A-

Proof. — By the above it follows that
/ |f(a)ap (ha)?~*|6(a)d(hM)da) < oo.
H/MxA- ‘ .

By Fubini’s theorem h +— ag(ha)?~* has te be integrable for almost all
a € A~. By our remark after Proposition 5.3 this shows that ¢y exists.
The Proposition now follows from (8.1). 0

We now calculate the spherical Laplace transform in “horospherical
coordinates” and relate it to the Abel transfom. For that we need the
following integration formula (see Theorem 1.2 in [Ola87]).

LEMMA 8.3. — Let f € LY(M) such that f is zero outside NA-z,.

e /M f(m)dm = /N A f(na--xo)a"”dadn.

We now define the Abel tmrisform.Af:_A — C of an H -invariant
function' f on S -z, by

A(f)(a) = a=* /,\ f(na)dn,

whenever the integral exists.

LEMMA 8.4. — Let f be a continous H -invariant function on Sz,
(extended by zero outside S - z,) such that n — f(na) is integrable on
N for alla€ A. Let L C cmqr be the convez hull of log(Supp(fisna)).
Then

log (Supp(Af)) C L + cmin-

Proof. — Let X € ¢maz, X # 0 and let conv (WyX) be the convex
hull of Wy - X. Then the convexity theorem of Neeb ([Ne91], Theorem
IV.14) states that ‘

A(H exp X) = conv (WoX) + cmin-
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Let nowfa € A be such tha?f‘ Af(a) #0. Then'we can find n € N,heH
and b € Supp(f|sna) such that

na-x, = hb- z,.

This follows from the fact that Supp(f) = HSupp(f|sna). But from this
we get a = ay(hb) or

loga € A(Supp(f)) C L+ cmin. 0

By Lemma 8.3, Lemma 8.4 and the left N -invariance of ay(z)?~> we
get:

PROPOSITION 8.5. —  Let f be an H -invariant function on S - zg
and A € D(f). Then ‘

L= |

exp Cma::

a~*Af(a)da = LA(Af)(A),

where L4 18 the Euclidean Laplace transform on A with respect to the
CONE Cmax -

The Abel transform can be split up further according to the semidirect
product decomposition N = Ny Ny. Set

A1 f(go) = an(go)™ /N F(ng0)dn;

for go € Gog. Then obviously A; f is Ky-biinvariant and
Af(a) = a'p"/ A (f)(noa)dny.
Ny

Denote by A, the Abel transform with respect to the Riemannian
symmetric space Go/Ry. Then

Af(a) = Ao(A:1f)(a)

for all continuous, H -invariant functions f:5 - z¢ — C, whenever the
above integrals converge, and all a € A. Since it is well known how to
invert the transform A, at least for “good” functions, the inversion of
the Abel transform associated to the ordered space reduces to invert the
transform A;.
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PROPOSITION 8.6. — Let f:S-z9 — C be continuous, H -1nvariant
and such that the Abel transform ezists. Then its Abel transform 1is
wnvariant under Wy,

Af(sa) = Af(a) Va€ A,s € Wo.

Proof. — This follows from A; f(sa) = A; f(a), since Wy is the Weyl
group of Go/Kp. 0

COROLLARY 8.7.

(1) Lf(sA) = Lf(X) for all H -invariant functions f:5 - z'o — C and
s € Wy.

(11) @ar = for all s € Wy

Proof.

(1) This is an immediate consequence of Propositions 8.5 and 8.6.
(ii) As @) is continuous and H-invariant, we only have to show that
wala) = psa(a) for all a € A™. Let f € C°(A™). Then we can extend
f to a H-invariant function on S°-z, by F(ha-z,)= f(a-z,). Apply
Proposition 8.2 to F and notice that F|4- = f. The claim fol]ous now
from the fact that § vanishes nowhere in a~. 0

Thus the Laplace transform yields another proof of Corollary 5.6.

9. Inversion formulas for symmetric spaces of Olshanskii type.
- In this section we assume that M = G/H is a symmetric space of
~ Olshanskii type, G is a complex group, H a real form of G (cf. Section
'3). We will prove an inversion formula for the spherical Laplace transform
and for the Abel transform. By Theorem 7.2 ) is the restriction to S°
of an H -spherical distribution © . In the present case Delorme gave an
explicit formula for © ([De90), Théoréme 3), which can be stated in the
following way.

THEOREM 9.1. — Define A: A—= R by

Aa) = H lsh(a,log a).
a€-At

For w € W let e(w) be the determinant of w as a linear transformation
on a. Then, for A€ E+1a*, a€ S°NA

2#A+ E:wEM%E(w)a—WA

"Macas®a) Ala)’

with a constant v depending only on M.

(9.1) -pa(a) =
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In the special case G = GL(n, C), H = U(p, q), the preceding formula
has been proved by direct computation of the integral defining ¢ ([Fa87],
Théoreme 7). —

As Go/KNH = K¢ /K, the Harish-Chandra c-function for this space
is well known to be

co(N) = =0
HQEA: (A @)
cf. [He84], p. 432. This, Theorem 6.8 and the theorem of Delorme gives
us the c-functions related to M:

LEMMA 9.2. — Let 71 = v/7 and c()) = co(A)co(A). Then
Y 4!
() = =———r, co(d) = &=————.
V=amtar V=T

We also get
COROLLARY 9.3. —  The function

(A, a) = c(A)Toa(a)

eztends to a function on ag X S°N A, holomorphic in A and analytic in
a.

Denote by C*(H\S°/H) the space of H -biinvariant smooth functions
f on S§°,such that f|sens has compact support. We view these functions
also as H-invariant functions on M that are left H-invariant. Let
o =2#2%¢ ¢ being the constant in the integral formula (8.1a).

THEOREM 9.4. — Let f € C(H\S°/H) be such that Supp(f|sena)
18 contained tn a ball of radius R > 0. Then

Ao (X)L

extends to a holomorphic function on a% given by

(9.2) c AL = a / f(a)A(a)a™*da,
SnA
Furthermore for all N € IN there ezxists a constant Cn > 0 such that, for
A€ag,
(9.3) le(N) LA < On(1+ AN RN,
Proof. — Obviously the last statement follows from the formula for

c(A)71L(f)(A) by using classical estimates. It is clear that in the notation
of Section 8 we have

A(a)? = 6(a)
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since in this case all the multiplicities are two. Furthermore
A(w - a) = e(w)A(a), w € W.

By Proposition 8.2 and Theorem 9.1, for A € £ + ia*,

CWNTLfN) =a Y [ fla)A(a)e(a)a™ da

weWy A

= Z L_ f(wa)A(wa)a‘“”\da

wGWo

= / A(a)f(a)a"\da.
€XP Cmax .

The theorem now follows since the last integral is holomorphicin A. []

THEOREM 9.5. —  Let f be an H -invarient smooth function on
S°-2, such that f|sena has compact support. Then there exists a constant
c2 > 0 only depending on the normalization of the measures such that for
a€S°NA - _
fon OGN0 (@) dax
fla)=ex [ LANNe-n(@) g

Proof. —- By viewing f as a smooth function on A that vanishes
outside S° M A we can write (9.2) as

dA)TILF(N) = c1/ f(a)A(a)a™*da.
- Ja '
By the Fourier inversion formula for the abelian group 4 we get
(9.4)  cf(a)B(a) = / CiNLF(EN)aP d.

Now c(w)) = e(w)c(A) for all w € Wy, as follows easily from the formula
for the c-function. As L(f)(wA) = L(f)}(A), we now get:

8(@) [ LN o-ir(@) e
@ ) RPN =N

=c; Y e(w) / e(iN)TIL(f)(iN )™ dA

weW,

=‘c3|wo| (PN L(f)(iX)ar dA

a‘

= ¢4 f(a)A(a).
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Now ‘the theorem follows with c; = = ' 0

As ¢(M\)7! is a polynomial function on af it determines a differential
operator A on A given by

A = ¢(A)71a?,

ie, A = 47! H°€A+ H,, where H, is the coroot corresponding to «a,
(A,Hqa) = (A, a), interpreted as a differential operator on A.

THEOREM 9.6. — Let f € C°(H\S°/H). Then
cA(a)f(a) = AAf(a).

Proof. — By Proposition 8.5 we have L(f)(A) = [, a™*Af(a)da. Thus

i Af(a) = / L() (e + iX)ar A

for all 4 € £. Now (9.3) shows that we are allowed to move the integration
path in (9.4) to get -

cf(a)A(a) = / ) cANTIL(F)(EN)aP dA

a

= [ i+ in) LU+ i+

a

Take p € £ such that < a,u ># 0 for all . Then, as c(u +1A)"! isa
non-zero polynomial, we get by (9.3)

VN, 3C(N), VA€ a*, |L(f)(u+i\)| < C(N)1 + |+ ix])~ N el

This shows that we are allowed to exchange the order of differentiation
with respect to a and integration. From this we get

AAf(a) = / L)+ iINAartrd)
= [ et iNTL Y+ N0ty

= cf(a)A(a). 0

10. Inversion formulas for spaces of rank 1. — In this section
we consider the symmetric space

M = S0,(1,7)/S06(1,n — 1) = SO(1,7)/S0(1,n = 1), n > 2.
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The involution 7 is given by

T(g) = ln,lgln,la

1, O
= (5 %),

The manifold M can be identified with the hyperboloid with one sheet
defined by the equation

where

—x3+x;"+...+x%=l,

‘w”ith the base point 1H identified with (0, ...,0,1).
Let C be the cone in g

={ (7 ?)

2 .2 2
Vg — V] —...=VUp3 20, vo20.

v € IR"}

defined by

This cone defines on M a global invariant causal structure, and, for the
corresponding ordering, z 2 y if and only if -

—Zoyo + T1y1t ...+ Tayn 21, To 2 Yo.
The Cartan involution 6 defined by
6(g) =(g7")"

commutes with 7, and

t
0]lteR},
0
cht 0 sht
A= ay = 0 l'n—l 0 tGIR, .
o= (3 e 3 e




Then . :
0 v' 0 ,
n=gy = v 0 wvllveR"'},
0 —v' 0

1+ 22 o7 2l
N={n(v)= v 1, v veR" !},
' 11 A T 1T

We identify ag with € by €3 z — —2a € a, and then p = —(n-1)/2.
We will give an explicit formula for the spherical function

oa(ar) = /H ay(hay)?~*dh.

If g =n(v)a;h then

t=A(g) =log(zn+z0),  an(9)’™> = (2 +20)"F 2,

if gH =(zy,...,x,). Note that

1 00
Ky=KNH= 0 £ O
0 01

hence we have A(hkgas) = A(ha,) for all kg € Ky. The space

0 8 0
b= 6 0 0})|feR
000

is a maximal abelian subspacein hNp and induces a Cartan decomposition
of H,

keSO(n—l)},

H = Ky B*K,,

where

chd shé 0
B={by=|shd ché 0
0 0 ln—l

Now it follows from [He84], Theorem 1.5.8 that

eem}, B* = {bs| 6 > 0}.

(10.1) B+ |
= / (cht +shtch 0)""%-)\ (sh 0)"’2 6.
0
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From .[Er53a] p. 155. we now get:
PROPOSITION 10.1. —  The integral converges for t > 0, Rel >
"—3 =—p—~1 and
LA - 253)
P(/\ + 251)(sht)3~?

(10.20)  px(ar) = Q:Z,(cht)

) _
.2b =on-? —A-2g=
(10.2b) 2 r( 5 ) TOTD (2¢cht)
A4 mH ) gnn 1
.ZF]( R P B h2)

where T' 13 the usual T -function, Q* is the usual Legendre function of
the second kind, 2 F) the hypergeomeiric function and v, s a constant
depending only on n.

In particular, for n = 2,

ea(a0) = Qy_s (cht),

“and, for n =3,

1 1
In this case ¢o = 1. (10.2b) then,glves
, _ -3
(10.3) , ca(A) =2 l"( 5 ) o1

The c¢-function 1 can also be computed by using the integral formula (6.1).
The subgroup N can be described as
v e R"! } .

o L4 gl o7 =3l
N={7k)= 1 v . 1,,;1' - —v .
zlvll vl 1—g]v|

The domain § is the unit ball Q = {7(v) | ||v|| < 1}. According to the
normalization of Proposition 6.6 we get

2n—1 ne1
(10.4) ca(}) = / (1= o]~ v,
: flvli<1 :

Wn-1

where w,_; denotes the volume of the unit sphere in IR" !, The integral
converges for ReA > 253 = —p -1, and

CQ(/\)=2n—2B( n;3’n;1)

=2n_2P<n-1)r(,\—ﬁ§é)‘_
2

T(A+1)
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The above formula for ¢, in terms of the hypergeometric function gives

COROLLARY 10.2. —  The function ca(A)"'pa(ar) eztends to a
function on a% X €Xpcmqz, holomorphic in A for Re A > —1 and aenalytic
in t.

An H-invariant function on { € M |z > 1H} can be written

f(I) = fﬁ(xn),

where f! is a function defined on [1,00[, and the corresponding invariant
causal kernel F' on M can be written, for z 2 y,

F(z,y) = f'(—zoyo + T1y1 + - - . + Tnyn).

Then the spherical Laplace transform of f takes the following form

o0

(10.5) L) = wnes / o (cht)f* (cht)(sh )" dt.
0

For computing the Abel transform of f we note that

f(n(v)acH) = F(cht - SllolPet)
and hence

Af(a) =7 | FH(ent = 5 ol e")d

llell<1—e=t

25}1-;' 1
= Wwn-1 / fH(cht ~ =r®)r"~24dr
0 2
t
= wn—_1 / fi(chT)(2cht —2ch ‘r)’"'g—3 sh rdr.
0

For inverting the Abel transform, we consider the Riemann-Liouville
transform

1 r
I, r=———/ s)(r — s)® 1ds
10 = 55g5 || 763 =9)
for o > 0. It satisfies the following properties (cf. [Er53b], Chapter XIII)

(10.6a) Inolg=1I,13, Va,B>0,

d

(10.6b) (E) Und)=¢ Ym=0,1,2,....
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Note that for t > 0

cnAf(ar) = InT-1¢(cht -1),
where ¢(r) = fi(r + 1), and ¢! = 2" wn_y. Now (10.6b) implies, for
n=2m+1,

(10.7a) | f(cht) =cp (g}%_t'-d(_it-) Af(ar),

and for n = 2m

(10.76) fY(cht) = cn\}_ ( htdt) / Af(a,)(cht - chr)"i shrdr

If p = Red > 233 then e #*Af(a;) is a Schwartz function. By
Proposition 8.5

Lf(u+ix);/ow e~ Me~H Af(a,)dt.

‘Thus | e ‘
Afta) = 5= [T LU+ Nt

Combined with (10.7) this gives the following theorem.
THEOREM 10.3. — Let f € C*(H\S°/H).

";3 . Then

f(a;) = fY(cht) = / L (F)u + w)n(t, u + iv)dy,

where A
_ (1 At
Yom+1(t, A) = Coam1 (shtdt) e

and

1 d\" t,\t -4
Yom(t, A) = Com (E—ta) ,/(; eM(cht —ch7)"2shrdr

for sustable constants C,.

Earlier versions of this theorem can be found in the literature. A
Laplace transform associated with the Legendre functions of the second
kind has been introduced in [CK72]. In [Vi80] this transform is related to
the harmonic analysis of the unit disc. A more general Laplace-Jacobi
transform associated with the Jacobi functions of the second kind is
studied in [Mi83].
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