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Abstract. We consider a repelling or parabolic periodic point @ on the boundary of a
simply connected n-periodic Fatou domain A for a rational map R : C — €. First we
define a rotation number for a, if there exists a periodic access to & in A. Secondly we
give a sufficient criterion for the existence of a periodic access to  in A, this generalizes
a theorem about the landing of external rays for polynomials, proved by Douady, and
Eremenko and Levin. Thirdly let ¢o : A — D be a Riemann map of A and define
Rp:=¢oR o¢p~! : D — D, then a periodic access to & from A corresponds to a
periodic point &’ € 3D for R,. We prove an inequality, which relates the multiplier of &
to the rotation number of o and the multiplier of a’. The essential idea of the proof is to
study the modulus of a non-trivial annulus in a torus. The inequality merges inequalities
obtained by Pommerenke, Levin and Yoccoz.

0. [Introduction

Let R : C — C be a rational map of degree d > 2. lteration of R gives a dynamical
system with orbits {zs}s>0, Zn+1 = R(z,). For a periodic point z € the minimal k ¢ N
with R¥(z) = z is the (exact) period of z and the number A = (R*Y'(z) is the multiplier
of (the orbit of) z. A point z is preperiodic if R'(z) is periodic for some ! > 0 and
strictly preperiodic if it is not itself periodic. The periodic point z is attracting if |A| < 1,
repelling if [A| > 1, indifferent if [A[ = 1 and rationally indifferent or parabolic if A is a
root of unity.

The Fatou set Fg for R is the set of points z € C, for which the family of iterates
{R"}n>0 forms a normal family in some neighbourhood of z. The Julia set Jg for R is the
complement of the Fatou set. The Fatou set is open, and we use the name Fatou domain
10 denote a connected component of the Fatou set. According to Sullivan’s theorem on
no wandering domains for rational maps [S], any Fatou domain A is preperiodic. Further
if A is periodic, then it is of one of the following types: (a) immediate attracted basin
for an attracting periodic point or (b) a component of the immediate attracted basin for a
parabolic periodic point or (c) a Siegel disc or an Arnold—Herman ring. The types (a), (b)
and (c) we call respectively hyperbolic, parabolic and rotation domains. Hyperbolic and
parabolic domains can be either simply connected or infinitely connected, while rotation
domains are either a disc or a ring (annulus). For a more profound account of the theory
of iteration of rational maps the reader may consult Blanchard [B] or Lyubich [Ly].
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1. Definitions and statement of theorems
Let R : € — € be a rational map and suppose A is a finitely connected Fatou domain
for R. An access (@, [¥]) in A (defined in §2) is periodic, if there exists m € N such
that ¥ and R™(y) define the same access in A. If (@, [y]) is a periodic access, we say
o is periodically accessible from A. Periodic accessibility of a from A clearly implies
that & and A are periodic. Note that a rotation domain cannot contain a periodic access,
because the dynamics on such a domain is biholomorphically conjugate to an irrational
rotation.

Suppose (e, [¥]) is a periodic access in A. Let  have peried k € N and let kg,
g € N be the period of (x, [y]). The equivalence class [¥] contains an arc y', the
center curve, with y' C R¥(y’) or Rk (p') C y' (see the Complement of Proposition
2.1). Henceforth we shall assume that y is such an arc. Also one finds that & is either
repelling or parabolic with multiplier a gth root of unity (Proposition 2.1).

The g curves y, R¥(y), ..., R4~ (y) have a natural cyclic order around o: let A be
a small closed disc centered at o, such that suitable restrictions of the g curves are arcs in
A from & to 3A intersecting only at c. The landing points of the arcs on 8 A have a cyclic
order. The cyclic order of the curves is this cyclic order. To see that the cyclic order
does not depend on the disc A one can use, e.g., the Jordan curve theorem. Number the
curves yp through ¥, in the counter-clockwise direction. Since R* is locally injective
at o, it preserves their cyclic order, thus there exist p € {0,...,¢ — 1}, (p, ¢) = 1 with

R¥) 2 Vijerymodq  (OF RE(Y) € Vyepmodq) F=0,...,9— 1.

We say the curves perform a p/g-rotation around « under iteration by R*, and that they
or their accesses form a p/g-cycle. (See also Goldberg and Milnor [G—M]).

Definition 1. A repelling or parabolic k-periodic point o has {combinatorial) rotation
number p/q, if there exists a periodic access (e, [¥]) in a simply connected Fatou domain
A and y performs a p/g-rotation around ¢ under iteration by RE.

The rotation number is well defined, if it exists. This is one of the consequences of
the following Theorem A. Remark also that there is no reasonable definition of rotation
number if A is, say the complement of a Cantor set. Suppose the two disjoint open finitely
connected sets Ay and Aj contains the accesses (a, [11]) and (=, [)2]) respectively. We
then say that (@, [y,]) is an exterior access for A; and vice versa.

THEOREM A. Let A be a finitely connected Fatou domain and let ¢ € dA. Suppose there
exist a qk-periodic access or exterior access (a, [«]) for A. If o is accessible from A
then:

(a) Every access to « in A is periodic with period gk.

(b) The period n of A divides gk.

(c) The number of accesses {(a, [y]) to « in A is finite.

One should compare Theorem A to the first statement in Theorem 2 and the statement
succeeding Theorem 2 in the paper of Pommerenke [Po] (see also [G-M]).

Rotation numbers arise naturally. For a parabolic period point the local dynamics is
homeomorphically conjugate to the composition of a rational rotation

2z z-expli2np/q), g>peNy, (pg)=1
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and a map of the form z = z - (1 + z") (see Camacho [Ca]). For such a point the
rotation number is p/g. For a repelling periodic point the existence of a rotation number
expresses that the local dynamics has the same topological properties as the composition
of a rational rotation and a dilation.

Let A be a periodic finitely connected Fatou domain and suppose « is a repelling or
parabolic periodic boundary point of A. Is & periodically accessible from A? We have
a partial but incomplete answer to this question. First, if A is a rotation domain, then as
noted above, & cannot be periodically accessible. Thus if « also has a rotation number,
then by Theorem A above « is not even accessible from A. Moreover it is still an open
question, if a rotation domain can have a periodic boundary point at all? Secondly, if 3A
is locally connected, in particular if Jp is locally connected, then o is always periodically
accessible from A (see [Po, Theorem 2]). Our partial answer is a generalized version
of the Douady landing theorem for polynomials, Corollary B.1. A. Eremenko and G.
M. Levin have proved the Dovady Landing Theorem for repelling periodic points of
polynomials with arbitrary Julia set, using a different approach (see [E-L]). It follows
immediately from our Theorems A and B, that the Douady landing theorem remains
valid for parabolic periodic points. This result has been obtained simultaneously and
independently by Milnor (see [M]) and the author.

THEOREM B. (Extended Douady landing theorem.) Let o be a repelling or parabolic
periodic boundary point of a simply or doubly connected Fatou domain A for R. The
point a is periodically accessible from A provided o does not belong to the closure ofa
non-periodic connected component of R™™(A) for any m > 0.

COROLLARY B.1. (Douady, 1987.) Let P be a polynomial with connected Julia set and
let & be a repelling or parabolic periodic point for P. Then a is the landing point of at
least one and at most finitely many external rays, all of which are periodic and defines
the same rotation number.

COROLLARY B.2. If the repelling or parabolic periodic point o belongs to the boundary of
the rotation domain A. Then a also belongs to the boundary of a non-periodic connected
component of R™™(A) for some m > 0.

Question. Can the closure of a strictly preperiodic component of the Fatou set for a
rational map contain a parabolic or repelling periedic point?

A polynomial-like mapping (see Douady and Hubbard [D-H-3]) of degree d is a triple
(U, U’, 1), where U’ CC U are open subsets of C, conformally equivalent to discs and
f :U" = U is a proper holomorphic mapping of degree d. The filled Julia set of f
is Ky := {z € U'[f"(z) € U’ ¥n = 0}. Two polynomial-like mappings (U, U, f) and
(V, V', g) are said to be hybrid equivalent, if there exist open neighbourhoods $2; and
2, of Ky and K, respectively, and a quasi-conformal homeomorphism & : 2r - 2,
such that ®o f = go® and 3P = 0 ae. on K r- We shall make use of the following
theorem.

THE STRAIGHTENING THEOREM. ([D-H-3, Theorem 1].) Any polynomial-tike mapping
(U, U', f) of degree d is hybrid equivalent to some polynomial P of degree d.
Furthermore if Ky is connected, the polynomial P is unique up to affine conjugation.
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In the following we shall consider only polynomial-like mappings (U, v, f) for
which K is connected (or equivalently X, contains all the critical points of f). Then
U'\K; and U\K[ are annuli and the restriction f| : U'\K; — U\K; is a covering map
of degree d. The notion of rotation number naturally extends to include repelling and
parabolic periodic points for f in the Julia set J; := 3K,. Also a hybrid equivalence
between polynomial-like mappings preserves repelling and parabolic periodic points and
their accesses. The following is an immediate corollary of The Straightening Theorem
and Corollary B.1.

COROLLARY B.3. Let (U, U’, f) be a polynomial-like mapping with Ky connected and
let a be a repelling or parabolic periodic point. Then there is at least one and at most
finitely many periodic accesses (a, [y]) in U\K;, all of which define the same rotation
number. Furthermore if ® is a hybrid equivalence between f and a polynomial P, then
o and ® () have the same rotation number.

Let A be a n-periodic, simply connected, hyperbolic or parabolic Fatou domain and
let ¢ : A — D be a Riemann map. Then the map Ry = ¢o R” =g~ is the restriction to
D of a finite Blaschke product. Furthermore ¢ induces a 1-1 correspondence between the
periodic accesses in A and the periodic points for R, in S! (Complement of Propasition
2.1). Let (&, [¥]) be a periodic access in A and let ' be the corresponding periedic
point for R,. The multiplier A’ > 1 of &’ depends neither on the choice of ¢, nor on the
choice of representative of the p/g-cycle of the access (e, [¥]). We call it the conjugate
multiplier corresponding to (a, [y]) or to the p/g-cycle of (a, [¥])-

For o € C and W C C a Borel subset let Area(W, p,) denote the area of W with
respect to the conformal metric p, := |dz|/|z — a|. Let U be a Borel subset of C. The
following limit if it exists, is called the logarithmic density of U at &

R Area((U n A(av 81 r))| pﬂ)
B := lim
5-0  Area(A(w,§8,r), Pa)

where r > 0 and A(e, 8,r) = [z € Cl5 < |z — a| < r}. The lograrithmic density of
U, whenever it exists, is a conformal invariant, which satisfies 0 < B < 1 and which
does not depend on r. Levin has proved in [L}], that any domain U with U € AU has
a logarithmic density at 0. Let « be a repelling k-periodic point and suppose (e, [v])
belongs to a p/qg-cycle of periodic accesses. Choose r so small that Rk is injective on
D{c, r). Let U be the union of the g connected components of Fp N D(w, r) containing
the g germs of curves in the p/g-cycle of y. The set U has a logarithmic density B at e
([L] or Proposition 4.3). We call B the opening area of the p/g-cycle of (a, [¥]). The
opening area gives a measure of the ‘angular’ space (opening) taken up by the p/gq-cycle

of (&, [¥D.

THEOREM C. (The PLY-inequality for a periodic point.) Let R : C — C be a rational
map and suppose o is a repelling periodic point with rotation number p/q and multiplier
A e C\ID. Let A,..., Ay be conjugate multipliers corresponding to distinct p/q-cycles
of periodic accesses 1o o and let 0 < B < | be the sum of the opening areas of those
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plg-cycles. Then there exists a logarithm L € H;. of A, i.e. exp(L) = A such that:
2sind

I |l
2N
q Zl-—_-l (log).;)
where 8 is the angle berween 2rri and L — (p/q)2ni.

To produce his inequality Pommerenke [Po] worked with a sufficiently high iterate of
R, (in fact at least R*?) fixing both o and its accesses. In this way the rotation number
p/q never appears with other than the trivial value 0/1. His inequality is thus really an
inequality for A%. When we keep track of the rotation number, it corresponds to knowing
which of the g rcots of A9, & is. Also Pommerenke did not have the logarithmic density
factor B, which was found by Levin [Le]. Finally Yoccoz [Y] introduced the rotation
number, but worked only with polynomials.

Theorem D and its Corollaries D.1, D.2 provides uniform estimates for multipliers,
suitable for parameter space study. In fact Yoccoz was led to his inequality,
Corollary D.1, by the desire to estimate the size of the limbs of the Mandelbrot set.

IL-{p/q)-2mi|<B.

THEOREM D. (The PLY-inequality for a hyperbolic or parabolic domain.) Let A be a
simply connected n-periodic, hyperbolic or parabolic Fatou domain. Then there exisis a
constant M, depending only on the restriction R® : A — A such that for any periodically
accessible boundary point a € 8A, with period k € N, multiplier ) € C\ID and rotation
number p/q, there exists a logarithm L € H; of A, with

IL — (p/q)2mi| < 2506

N M,

where @ is the angle between 2mi and L - (p/q)2ri, and where N is the number of
cycles of periodic accesses to a represented in A. Moreover if A is hyperbolic, then
M, < (logd + D), where d is the degree of the restriction R" : A = A and D is the
maximal hyperbolic distance in A between the attracting fixed point for R® in A and its
pre-images in A,

CoRroLLARY D.1. (Yoccoz, 1987.) Let P be a polynomial of degree d, with connected
Julia set. Let o be a repelling periodic point for P, with period k € N, multiplier > € C\D
and rotation number p/q. Then there exists a logarithm L € W, of A, with

IL - (p/qy2i] < X508 100 g,

where 8 is the angle between L — (p/q)2mi and 2xi, and N is the number of cycles of
periodic rays landing at a.

CoROLLARY D.2. Ler (U, U, f) be a polynomial-like mapping of degree d, with
connected filled Julia set. Denote by m the modulus of the annulus U\K;. Let o be
a repelling periodic point for f, with period k € N, multiplier 4 € C\D and rotation
number p/q, then there exists a logarithm L € H,. of A, with

2ksin@ dm
L - il < —
IL = (p/q)2xi| = N (logd + 2m) ,

where 0 is the angle between L — (p/q)2ni and 2ri, and N is the number of cycles of
periodic accesses (u, [y]) in U\K;.
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Levin has proved a version of Corollary D.2 in his paper. His version being without
rotation number and with the factor K logd instead of (logd + dn/2m), where K is
the smallest possible constant of quasiconformality for a hybrid eguivalence between
(U, U’, f) and a polynomial. Douady has encouraged us to give an inequality in terms
of the modulus of the annulus U\K}, as the number X is not well controlled, at the
present stage of the theory.

Remark. Geometrically the inequalities indicate that the appropriate logarithm L of A is
contained in the disc with center r -2 p/q and radius r, where r is the right-hand side
of the inequalities divided by 2sin8. Hence A € exp(D(r +i2np/q, r)) (see Figure 1).

exp exp(D(r+i2npig.r))

4 _ - i 4

i2rplg

FiGuRE 1.

2. Proof of Theorem A

Accesses. For completeness we shall briefly summarize the main definitions and results
concerning accesses. An introduction to accesses can be found in the monograph by
Goluzin [G].

Let U < C be an open connected subset. A boundary point & € aU is said to be an
accessible boundary point of U, if there exists a curve y : [0,1] — U with y =«
and y(]0, 11) € U. Such a curve y is said fo access a. Suppose further that I is finitely
connected, i.e. the complement of U has a finite number of connected components. Two
curves yp and y; accessing o are termed equivalent, iff for any neighbouthood A of «,
there exists a curve k& : [0,1] &> AN U with x(0) € ¥ and (1) € ¥1- An access to
@ in U is a pair (o, [¥]), where « is an accessible boundary point of U and [y] is an
equivalence class of curves in U accessing a. A crosscut in U isan arc ¢ : [0, 1] - U
such that ¢(0) and ¢(1) are distinct boundary points of U and ¢(J0, 1[) € U.

THEOREM. Let U C C be an open set isomorphic to D and let ¢ : U — D be a conformal
equivalence, then:

(2) for each access (a, [y]) there exists a unique point o € S! such that Jor each
Yy elylooy'(s) >’ ass — 0,

(b) Two distinct accesses in U correspond to two distinct points in S'.

(c) The set of points in S' corresponding to accesses in U is dense in S\,
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Proof. [G, p. 37; Theorem 1]. This proof works if U is bounded in C. In the general
case one can apply Mébius transformations and a square root on U to obtain a bounded
subset of C. O

If U is finitely connected, but not simply connected, the conclusions of Theorem 1 still
hold, provided we substitute for I an open bounded subset of C, conformally equivalent
to [/, with analytic Jordan curves as boundary components. For a discussion of this case
see [G, pp 205-208], which treats the doubly connected case and shows the idea for the
general case.

Suppose U is an open connected subset of C. Define two curves yp, ¥ accessing
o € aU from U, to be homotopy equivalent, if there exists a homotopy of ¥ to
through curves accessing ¢ from U. It is an easy exercise to show that if U is also finitely
connected, then the two notions of equivalence of accessing curves are equivalent.

Linearizing maps. Let f be & holomorphic map defined in a neighbourhood of a point o.
Suppose « is a fixed point for f with multiplier A, i.e. f(@) =, and f'(@) =A. fa is
repelling, i.e. [A] > 1, then there exists a local linearizing parameter ¥ : D(r) — A(r),
for f at o, i.e. ¥ is univalent with ¥ (0) = ¢ and

fod(z/i) =y(z), VzeD(). (2.1

Imposing the extra condition yr'(0) = 1, determines the germ of yr at 0 uniquely and we
denote by A(t) the sets (ID(¢)), for 0 < ¢ < r. If o is parabolic, i.e. A = exp(i2wp/q),
{p.q) = 1 and if f is not of order g, i.e. f9 = Id, then there exists an integer v > 1
such that the multiplicity of o as a fixed point for f9 is vg 4 1. We can suppose
wlog that @ = 0 and thus f9(z) = z(1 + z"9) + O(z**!) conjugating by a linear map,
if necessary, There exists a system of 2vg Fatou coordinates for f around O: for r
sufficiently small and 0 £ j < vg there exist neighbourhoods A;, Q; of the segments
10, re!*2//*2] and ]0, re'*2/+1%/¥9] respectively, and biholomorphic maps, local Fatou
coordinates, ¥, : A; — H., ¢; : €5 — H,. with:

floy ' @a-)=y;'@2), VzeH_ (2.2)

giofH =) +1, Yz eQ, .3)

where Hy = {z|0}(z) 2 0}. The germs of the local linearizing maps v; and ¢; are
unique up to post-composition with translations, here we take germ of say ¢; to mean
the restriction to any sectorial neighbourhood with positive opening angle to both sides
of a semi-open segment ]0, 1e"@/+0/¥1} 0 < ¢ < r. The domains of ¥, and ¢; are, on
the contrary, not unique. Each A; and £2; has opening angle 7 /vg towards 0 centered at
exp(im2j/fvg), resp. exp(im(2j + 1)/vq) i.e. the boundary of say Aq is a Jordan curve
k:[0,11 = C, x(® = k(1) = 0, which emanates from O in the direction tangentially
to exp(—im/2vq) and returns to O tangentially to the direction exp(ix/2vg). The local
Fatou coordinates have univalent extensions to domains A} D A; resp. 2; C §2; having
twice the opening angles and being centered on the same axes. Furthermore the A} and
§2; can be chosen so that Kj C f9(A))U10) and f9(Q}) C ;U{0) (sec [DH-2, expose
IX]).
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Periodic accesses. We shall show some fundamental properties of periodic accesses. We
remind the reader that if A is a simply connected n-periodic Fatou domain for R and
¢ : A = D is a Riemann map, then the Blaschke product R, whose restriction to I is
Ry =¢oR"c¢~!, is called a conjugate map for R” on A. Note that trivially a periodic
access corresponds under ¢ to a unique periodic point for R, in S!. Among other things
Proposition 2.1 shows that the injective map from the set of periodic accesses in A o the
set of periodic points for R, in S' is also surjective, Also Proposition 2.1 can be viewed
as a generalization to simply connected parabolic and hyperbolic domains of ([D-H-1
Proposition 2, pp 70-72]}). Parts of Proposition 2.1 have been proved by Pommerenke
([Po, Theorem 1] in a different terminology). One should note however that the last
statement in Pommerenke’s theorem is not true, as the example P(z) = z% + 1/4 shows.
The proof we present here is due to Sullivan, Dovady and Hubbard. An access (o, [¥])
is called preperiodic if there exists a I > 0 such that the access R'(a, [y]) is periodic.
The point « is then preperiodic and is said to be preperiodically accessible. For brevity
we shall use the notation [, =]0,r], r > Q.

PROPOSITION 2.1. Let A be a simply connected n-periodic parabolic or hyperbolic Fatou
domain for R, with conjugate map Ry. Let o' € S' be a (pre)periodic point for Ry. Then
o' corresponds to a (pre)periodic access (&, [y]) of A. The periodic points in the orbit of
o are either repelling or parabolic. If parabolic and of period k, their common multiplier
is an (nk'/ k)th root of unity, where k' is the eventual period of o'.

Proof.

Case 1. o' is periodic under R, with period k' € N. The multiplier A’ of o' is real
and satisfies A’ > 1, because R5(D) = D, Ry(S') = S' and D is either a parabolic or
hyperbolic domain for R,. We distinguish two subcases, first if A’ = 1, then D and A
are connected components of the immediate attracted basins for parabolic points o’ and
o for Rs and R respectively. Let ¢p : Q¢ C D — HL be a local Fatou coordinate for
Ry. Define pp 0 Iy — Dby pe(t) = ¢o_l(— logt) and ¥ = @' o Py. Then (1) = o
and Y (f) = « as t — 0. We define y,:(0) = «. Then y, defines an n periodic access
to o, corresponding to ¢’. To conclude the subcase we note that the snail Lemma [M,
13.2] implies that (R")' (o) = 1. Thus the multiplier of & is an nk’/kth root of unity,
since the period &' of o equals 1.

Next we suppose A’ > 1 and thus & is repelling. Let ¥ : D(r) — A(r) be a local
linearizing parameter for R‘,‘\' ata’ and let £ = D(r)NHL.. Composing with multiplication
by some number in S', if necessary, we can suppose that ¥(X) CD. Letx: [, =
be given by «(¢) :=¢. Then ¥t € I, : M - x(¢t/A') = x(1). Let yor : I, — A denote the
arc ¢! oy ok. Then R¥" (v (t/A)) = yu (1), ¥t € I,. For use in the non-periodic case,
Case 2, we also define the arc ¥ = ¢ o ¥ : I, = D. Note that trivially 7,/(1) = o as
t = 0. (See Figure 2.)

Letw=¢ 'oy(T) and o' = ¢~ o (Z/A") C w. Then the restriction R™ : o' -
is biholomorphic and thus expanding with respect to the hypetbolic metric on w. There
exists L > O such that d(z, R"*'(z)) < L for all z in say yo ()0, r/2)'), where d{-, -}
denotes distance with respect to the hyperbolic metric on w. This is because of the
expansiveness of R" and the invariance of ¥, under R"™'. Any limit point of yy (1)
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for t — 0 is a fixed point of R"™, because yy(t) = 8w as ¢ — 0 and the Euclidean
diameter of the hyperbolic ball of fixed radius L around z tends to 0 as z approaches
the boundary. Thus y, converges to a fixed point « for R™' | since the fixed points of
R™ are isolated and the limit points of yy (¢) for + = 0 form a connected set. Define
v (0) = o, then clearly y, defines a periodic access to o corresponding to o and « is
either repelling or indifferent. If « is indifferent, then the snail Lemma [M, 13.2] implies
that (R"'Y (&) = 1. Thus the multiplier of o is an nk'/k-root of unity, where k is the
period of . This completes the periodic case.

K(r)

FIGURE 2.

Case 2. The point o is strictly preperiodic. Choose m € N such that g’ := R} (') is
periodic for R,. Consider the periodic arcs y : I, — D and yp : I, = A from the
periodic case above. Taking r smaller if necessary, there exists a unique lift 7 : [, — D
of yp : I, — D to R} with yx(s) tending to o’ as s — 0.

Let ¥o := ¢ o ¥y : I, > A, then Vs € I, : R™ o yp(5s) = yp(s). From the
periodic case we know that, ¥ (s) converges to a periodic point § as s — 0. Hence it
follows from the theorem of analytic continuation that y,(s) tends to a single point o,
a pre-image of 8 under R™™ as 5 — 0. If we define y,(0) = a, then clearly y,+ defines
a preperiodic access 1o « cotresponding to o' O

Complement of Proposition 2.1. The Riemann map ¢ defines a natural bijective map
between the set of (pre)periodic accesses in A and the set of (pre)periodic points for R,
in S'. Furthermore let {, [¥]) be an m-periodic access of A. Then [y] contains an arc,
the center curve, yy : [0, r] & A Ula} with R (3p) C yor oF Yo C R™(yy).

The periodic arcs of the above complement and their preperiodic pre-images in A
can be viewed as generalizations of rational external rays of polynomials: suppose the
periodic point @’ for R,, corresponding to the curve y, in the above complement, is
repelling. Then y, extends to a curve defined on all of R4 U{0} by use of the periodicity
R¥"(yw (¢ /X)) = (1), Vt € I,. The extended curve converges, as the parameter tends
to oo, to an attracting periodic point zg in A, if A is hyperbolic, or a parabolic periodic
point zg € 8A, if A is parabolic. If Ry(z) = z¢, then y is aray, i.e. y = @10, a'D.

A continuous map f : 8! = §' will be called vaguely expanding if, for any periodic
point xg for f, say of period m € N, there exists a neighbourhood w € S' of xo such
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that
Vxew: d(xg,x) < d(xo, f"(x)),

where d(-, ) denotes distance with respect to the standard metric on S'. For a parabolic
or hyperbolic domain A the restriction to 8! of the conjugate map is vaguely expanding.

LEMMA 2.2. Let f : 8! — 8! be vaguely expanding and let xq € S'. Let {x,,)%_, be the
sequence of iterates of xp, i.e. X, = f"(xq) for all m > 0. Suppose the sequence is a
monotonous sequence in some sub-interval I C S'. Then xy is prefixed under f.

Proof. Since the sequence {x,}5" , is a monotonous sequence in a subinterval / of
S!, there exists a point xoo € 1 such that x,, — X as m — oo. The point xo is
a fixed point for f, since f is continuous. If there exisis an I € N with x; = X,
then xp is prefixed by f. If not, then the x,, come arbitrarily close to x,, and for each
l € N:xy) € [x;, x6] € 1. This contradicts that f is vaguely expanding. Hence x is
pre-fixed. O

Proof of Theorem A. First we show that any interior access of A to ¢ is periodic. To
this end we shall assume wlog that o, A and (o, [x]) are fixed by R. Let (&, [¥]) be an
access in A. Choose a representative y, of [y] and for each [/ € N let the curve y be
given by y = R o yy. Further for each I € Ny let x; be the point in §! corresponding
to (&, [1]). Then Rp(x;.y) =x; foralll e N,

Suppose (o, [1]) is not preperiodic, then for I € Ny the curve y; neither belongs
to [x] nor to [yy] for any ! € Ny with I # I'. Furthermore R fixes the (exterior or
interior) access (&, [x]) of A and R is injective on a small neighbourhood of o. Hence
the curves {y}{2, are distributed monotonically around «. But then the sequence {x;)72,
is a monotonous non-preperiodic sequence in one of the two open sub intervals of S'
bounded by xp and x;. This contradicts Lemma 2.2, since R, is vaguely expanding.
Hence the access (e, [y]) is preperiodic. Finally any preperiodic access (o, [10]) is
periodic, because R is locally a homeomorphism at o,

Next we easily deduce statements (a), (b) and (c). The map R* fixes the (exterior or
interior) access (o, [¢]). Let (o, [y]) be any (interior) access of A to a. If (@, [y]) is
not fixed by R, then it can never be a periodic access of A, since at o the map R*¢
is locally injective and fixes (a, [¢]). Thus the period of (&, [y]) divides the period of
(@, [x]). Exchanging the roles of » and « we also find that the period of («, [«]) divides
the period of (e, [¥]), thus the two periods are equal. This proves (a) from which (b)
immediately follows. According to (a) every access to o from A is gk-periodic. In
addition every gk-periodic access to @ in A comresponds to a unique gk/n-periodic point
for R in S'. There is a finite number of such points. This proves (c). O

3. Proof of Theorem B
Moduli and Grétzsch inequalities. We shall need the notion of moduli of quadrilaterals
and annuli together with two Grétzsch inequalities. We shall only give the facts needed
here. The interested reader can find more details in [L-V].

A quadrilateral is a triple (Q, ¢}, ¢2) consisting of a simply connected open subset
@ of € and two disjoint boundary arcs ¢; : [0,1] = 30, i = 1,2, which have the



On the Pommerenke-Levin—Yoccoz inequality 795

following properties: (a) The sets 8 @\c;(]0, 1[} are connected. (b) No peint of ¢;(j0, 1[)
is an accumulation point of 3Q\c;(J0, 1[). Whenever it is clear what the boundary arcs
are they will be omitted. We let I"g denote the set of rectifiable curves in Q, connecting
the two boundary arcs (i.e. curves y :]a, b[— Q admitting a continuous extension with
y(a) € ¢) and y (b) € cz). For an annulus A C € we let T4 denote the set of rectifiable
curves in A connecting the two boundary components of A. A quadrilateral (Q', ¢}, ¢5)
is a subquadrilateral of the quadrilateral (@, c|, ¢2), if @' € @ and the boundary arcs
¢} and ¢, are subarcs of ¢; and c; one in each. Subquadrilaterals of an annulus A are
defined likewise.

Definition 3.1. A quadrilateral (@', ¢}, c3) is said to be contained in the quadrilateral
{Q. c1. c3), if there exists a connected component T of @NQ' such that any curve y € 'y
has a restriction pja € T with y(a, b[) C T. The quadrilateral (@', ¢}, ), is said
to be contained in the annulus A, if the above properties are satisfied with (@2, ¢y, ¢2)
replaced by A. The set T is called a torso of Q' with respect to @ (resp. A). (Torsos
are not in general unique, as Figure 3 shows.)

o

o« N\ L\
NN
U, Ua

U

C

FiGure 3. The quadrilateral (@', ¢}, c3) is contained in the quadrilateral (Q, <1, €2). The sets U, Uz and U
are torsos of ' with respect to @, Uy is not.

Let Q be a quadrilateral. For a conformal Borel(-measurable) metric p on @ let 1,(-)
denote arclength with respect to p and Area(Q, p) denote the area of Q with respect
to p. A metric p is called admissible for T'p, if p is a conformal Borel metric on
Q and I,(y) = 1 for all y € I'p. The modulus of Q is a conformal invariant of
QO defined by mod(Q) := inf{Area(Q, p)|p admissible}. Suppose @ has modulus m,
then there exists a univalent map ¢g from Q onto the rectangle 10, m{x]0, i[, such
that ¢ extends to a homeomorphism between @ union its boundary arcs and the
rectangle union its horizontal boundaries. The map ¢g is called a canonical map on
Q and it is extremal in the following sense: mod(Q) = Area(Q, |¢;|) < Area(@Q, p),
where p is any other admissible metric on Q. The admissible metrics on an annulus
A € C is defined analogously, while the modulus is defined by (mod(A))~! :=
inf{Area(Q, p)| o admissible}.

A canonical map on an annulus A is a conformal equivalence ¢4 : A = A(ry, r2),
where A(r;,r2) ;= {z € Clr; < |z| < r2).

LEMMA 3.2. (Grétzsch.) Let Q be a quadrilateral containing the family of quadrilaterals
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{Qj)jes. Suppose there exists a family of corresponding disjoint torsos {T;);e;, then:
2 mod(Q;) < mod(Q).
jelt
Equality is attained if and only if each @, isa subquadrilatercil of O, whose image, under
the canonical map ¢g on Q, is a rectangle and UjE ; E; =0

Proof. Let ¢g be a canonical map on Q and let p := |¢,(z)| be the extremal admissible
metric on Q. For each j € J let g; be the conformal Borel metric on @;, which equals
p on T; and is zero elsewhere. Then p; is an admissible metric on Q; and

> mod(Q)) < ) Area(Qy, pj) = ) Area(T}, p) < Area(Q, p) = mod(Q).

jel jel jel
Equality is attained in the first inequality if and only if each p; is equal to |¢}|, where
¢; is a canonical map on @;, this yields the first condition. Finally equality is obtained
in the last inequality if and only if the last condition of the Lemma is fulfilled. (|

LEMMA 3.3. (Grotzsch.) Let A be an annulus containing the family of quadrilaterals
{Q))jes. Suppose there exists a family of corresponding disjoint torsos {T})je;, then:

1
;modcgn = )]

Equality is attained if and only if each Q; is a subquadrilateral of A, whose image, under
the canonical map @ on A, is a sector bounded by two radial segments and | ) it Q; =A.

Proof. The proof is a simple copy of the proof of Lemma 3.2, 0

LEMMA 3.4. Letr €]0, [ and o € S'. Let Q be any quadrilateral with Q € D*\D(c, r),
separating 0 from D(c, r} N D in D and whose boundary arcs are subarcs of §'. Then

mod (Q) < = +log(4/n)

Proof. We can assume ¢ = 1 wlog. The pre-images of @ under z — z2 are two
disjoint quadrilaterals conformally equivalent to Q. They are sub-quadrilaterals of the
quadrilateral, whose set is D\(D(—1, r/2) UID(1, r/2)), since the norm of the derivative
of z 1=+ 22 is bounded by 2 on ID. The latter quadrilateral is conformally equivalent under
z > (1+2)/(1-2) to a subquadrilateral of the quadrilateral, @' := HL.N(D(4/r)\D(r/4))
whose boundary arcs are the segments of i «+ R on its boundary. Hence we obtain:

2mod(Q) < 1 log(d/r)>. O

Let U and W be open simply connected subsets of €, such that U isomorphic to D
and the boundary of W is a Jordan curve y : §' —» €. Suppose W intersects U, but
does not contain U/ and let b € U\W. Let X be a connected component of W N U.
Then there exists a unique subarc ¢ of y with ¢ € 3X, such that ¢ is a crosscut in
U separating X from b (look at ¢(X), where ¢ : / — D is a Riemann map). Let w
denote the unique connected component of U\c containing X. The triple (X, ¢, w) will
be called a W piece of U with respect to b. Usually the point b will be omitted, when
it is clear from the context which point is meant,
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Proof of Theorem B. Let A be a periodic Fatou domain and let @ € dA be a repelling
or parabolic periodic point for R. Assume that @ does not belong to the closure of a
non-periodic connected component of R=™{A) for any m > 0. Taking a sufficiently high
iterate of R, we can suppose that both A and « are fixed by R. Then by assumption o
belongs to the closure of no other connected component of RY(A).

We shall suppose A to be simply connected. The other case of A being doubly
connected and thus an Arnold—Herman ring can be treated analogously. Let¢p: A — D
be a Riemann map and let R, be the conjugate map on A.

Let A’ be the subset of A given by the following. If R, is hyperbolic we can assume
wlog, that 0 is a fixed point for R,. Choose a disc D(r), 0 < r; < 1, which contains
all the critical values for R, in D. Define A’ := ¢~'(D(r})). If R4 is parabolic we can
assume wlog, that 1 is a parabolic fixed point for R,. Choose a horor disc with root at
1, {1 —ry,n), 1/2 < r < 1, containing all the critical values of R, in I and define
A = ¢~/ (D(1 —ry, n)). Finally if A is a Siegel disc let A’ be the center of the Siegel
disc. Let

A= AN RTY(A\AD,

then A” C A\A’ and the restriction R, : A” = A\A’ is a covering map.

Consider first the case where ¢ is repelling with multiplier A. Let v : D(r) — A(r) be
a local linearizing parameter for R at«. Choose T €]0, r[ so small that AT)NA’ =@ and
no connected component of R™!(A) different from A intersects A(t). This is possible,
because A’ is a compact set not containing o and there is only a finite number of other
(non-periodic) connected components of R-1(A) none of which has & in its closure,

Let Upo be a connected component of A(t) N A. The set Ugg has a unique pre-
image Uy, ,, under R™ in A(z/|\|™) for each m € N. Let (Up 4, Cmt. @m i) be the unique
A(r/|A]") piece of A containing Up », for I € {0,...,m}. Then for each m we have
nested sequences Uppm C ... C Uno and @pnm C ... C @mo. We shall show the
following:

Claim. 3m,m’' € N, m # m’ such that U, g = Upr p.

Proof of Claim. Tt suffices to find m, m’ € N such that U, o N U,y g 7 0, since both sets
are connected components of the same set A(t) N A. We remark that the claim then is
trivial for a Siegel disc. The idea of the proof in the hyperbolic and parabolic cases is
based on the following trivial observation. Given an N x N chessboard the modulus of
a row is N? times that of a column.

For each m € N and each ! € {1,...,m} let Q,,; be the quadrilateral, whose set
iS @Wp -1 \@n, and whose boundary arcs are ¢p - and c,y. Then for each m € N
the m quadrilaterals {Qy ]2, are disjoint (look at the corresponding images under the
Riemann map ¢ on A). Furthermore the quadrilateral Q,, ) is contained in the annulus
A(TI\A(z/|r]). Let T, be the connected component of U,,,D\Tr/ll_l), with ¢ as a
boundary arc. Then 7, is a torso of Oy, with respect to A(r)\m. (see Figure 4.)

Suppose the claim is false, so that the sets {U/, g)m>0 are mutvally disjoint. Then the
torsos {7, )m-0 are mutually disjoint. The Grotszch’s inequality for quadrilaterals in an
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FIGURE 4.

annulus, Lemma 3.3, then yields

1 2w
< =
,§,“‘°"‘Qm-" = mod(A) _ Tog A’

On the other hand mod(Q,,;) = mod(Qm-t4+1.1), because R'~! maps Q,; biholo-
morphically to Qm-t+1,1, (@m-t+11 C A’ is simply connected and R : A” » \A’ is a
covering map).

Our strategy will be to estimate in two different ways the modulus of the ‘big’
quadrilaterals (wp 6\ m+ Cm,0 Cm.m) &nd obtain a contradiction, when m is sufficiently
big. We start by transferring the quadrilaterals tc ID using ¢: A — D,

For each m € N and for each I € [1,...,m} let ¢(Qun,s) be the quadrilateral in D
conformally equivalent to Q. under ¢. Then the boundary of the underlying set is a
Jordan curve consisting of the two arcs ¢(cmi—1), ¢(cm,t) and the two complementary
arcs Gy 1, by 1, which are subarcs of S'. Let P, be the quadrilateral (¢ (Qum.1), Gty bm s)-
Further for each m € N let P, be the quadrilateral in D, whose boundary arcs are on S'
and whose remaining boundary consists of the two curves ¢(cn, 0) and ¢{cn, m). Then
the m quadrilaterals, P, j,..., Py m, are disjoint subquadrilaterals of the quadrilateral
P,., hence:

(3.1)

m m o~
od(Pn) > AP} = 2 o0 ~ 2 mod(O1 )’ >
mod(P,,) = ’gl:mo (Prs) ; mod(Cn)) ; mod(Q;,) G2

where we have used mod(Qn ) = mod(Qp—1+1,1) and mod({P,, ;) - mod(¢(Qp 1)) = 1.
We use (3.1}, (3.2) and the Cauchy-Schwarz inequality, to obtain a lower bound for
mod(P,,)

. Ioglli( )( 1 )
od(Py) = d e
mod(Fu) 2 ;g rnod(Q; )~ 2x ;mo (@r1) j; mod(Q;,1)

2
. m loglll.
- 2

6.3
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To obtain an upper bound for mod(P,) we proceed as follows. For m € N let §2,, be
the connected component of D\¢(cp, ), which does not contain 0. Then Ry maps 2,41
biholomorphically to $2,,. Choose z) € 8! and ry > 0 such that (B(z;, rg) D) € $2; and
let z,, be the unique point of £2,,, which is mapped to z; by R;’". Then £2,, contains
the ‘semi’-disc D N D(zp, ro/M™') where M = max|R)(z)| for |z| < I, and the
quadrilateral P, is contained in D*\ID(z,,, ro/M™-1). Thus P, satisfies the requirements
of Lemma 3.4 with o = z,, and r = ro/M™'. Lemma 3.4 yields

log(M) 1 4
mod(P,) <m - +;log(m—M). (3.4)

The two bounds (3.3) and (3.4) can both be true only up to a certain m € N, since
one is linear and the other is quadratic in m. Thus if the claim is not true we obtain a
contradiction.

We can assume m > m'. Let ! := m —m’, then U,; € A(t/|A) N Upg and Up,
is mapped biholomorphically to Up g = Uno by R!. Let J 1 Ung — Uy, denote the
corresponding local inverse. Choose zg € Uy, 0 and let 2, 1= f(z0) € Upyt C Upo. Let
y : [0,1] = Up,p be a curve with y(0) = zp and y(1) = z;. We extend y to a curve
7:RU[0} = Upousing f:fort > 11let j €N be such that t — j € [0, 1] and define
() := f/(y{t — j)). Then p(t) = a as t — co and y defines an /-periodic access to
o,

This concludes the proof of the case o is repelling. In the other case where o
is parabolic, we have to distinguish two subcases, namely the subcase when A is a
connected component of the attracted basin of o and the subcase, where it is not. The
first subcase is an immediate consequence of the existence of Fatou coordinates, even if
we drop the second assumption in our theorem. The second subcase can be handled by
essentially the same method as that used in the proof of the case « is repelling. We will
therefore only point out the differences.

We can suppose that each attracted petal is fixed by R, and thus is mapped inside
itself. Then also each repelled petal has a vnique pre-image inside itself. Forthermore
we can suppose, by assumption, taking smaller petals if necessary, that (a) A is the only
connected component of R~!(A) which intersects the repelled petals (by assumption A
is fixed by R), and (b) the repelled petals do not intersect A’.

Let Ag be a repelled petal, which intersects A and let A;, A, be the two neighbouring
attracted petals, then A N Ay is contained in Ag\(4; UA,). Let f : Ag — Ag denote a
local inverse of R and for each m € N let A, := f™(A¢). Then the boundary of each
Ay is a Jordan curve, Let @ be the quadrilateral, whose set is 4g\(4, U 4; U 4,) and
whose boundary arcs are the segments of 84, and 34, on the boundary of Q.

Let Uy be a connected component of AgN A, Let (Un t, Cmt. ) be the Ay piece
of A, which contains f™(Upg), formeNand! € {0,...,m}. From here and onwards
the proof is identical to the proof in the repelling case, except that the right-hand side of
equation (3.1) is substituted by mod(Q) in this case. O

Corollary B.l is an immediate consequence of Theorem B, once we note that for
a polynomial the attracted basin of infinity is connected and center curves of periodic
accesses in A{oo) are external rays.
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4. Proof of Theorems C and D
Our proofs of Theorems C and D are based on a Gritszch inequality for non-trivial
annuli in a torus. Let T be a torus isomorphic to C/T, where " ;== L - Z @ 2ni - Z,
L € H, and let T1 : C — T denote the corresponding universal covering. Note that also
T ~ C*/(z — Az), where L = exp(L). To emphasize the dependence on L we often
write T, for T. Also we let I, : C* — T, denote the corresponding projection.

Suppose ¥ : [0,1] = T, «(0) = «(1) is a non-trivial (i.e. not homotopic to a
constant) Jordan curve in the torus T and let [x] denote the homotopy class of « in
T. A metric p on T is called admissible for [«], if it is a conformal Borel metric and
I,{x") = 1 for all ¥ € [x). The modulus of (T, k) is a conformal invariant, defined
by mod(T, ¥} = inf{mes(T, p)|p admissible). The modulus can be explicitly calculated,
and it satisfies a Grétszch inequality (Lemma 4.1).

Given L, there exist p,q € Z, (p, g) = 1 such that any lift £ of « to IT satisfies

#(1) = #(0) + gL — p2i.

We shall suppose that either g > 0 or 4 = 0 and p = 1, changing the orientation of «
if necessary, Further if ¢ > 0 then adding 2xi to L, changes p to p 4 ¢. Thus for a
suitable choice of L we have p € {0, ...,¢ —1}. We callo = gL — p2xi the associated
segment and the number p/g normalized as above the (combinatorial) rotation number
of k. The associated segment and the rotation number are homotopy invariants of x.
Furthermore if two non-trivial Jordan curves in T are disjoint, then after a change of
orientation of one of them if necessary, the two curves are homotopic. Note that if g > 0,
then the preimages of « under Iy : C* — T =T, are g arcs from 0 to co performing a
pP/g-rotation around 0 under multiplication by A.

As above let [T : € — T be a universal covering of the torus T. Let p be a flat
metric on T, i.e. p = 1.(5), where 5 is a flat metric (proportional to the Euclidean) on
C. For U a Borel subset of T the quotient, Area(U, p)/Area(T, p), does not depend on
the choice of flat metric p on T, we call it the relative flar area and denote it by rfa(l/}.

LEMMA 4.1. Let T be a torus and let k be a Jordan curve in T with rotation number p/q,
g > 0 and associated segment o. Let (A;);es be any family of disjoint annuli homotopic
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tox inT. Denote by B := }_,,1fa(A;) < | the relative flat area of the family, then

2m siné

> mod(4)) < Bmod(T, k) = B
Ty qlo|

where 8 is the angle between o and 2mi. Furthermore, equality is attained if and only if
the sets T1"1(A;) are straight strips in C parallel to o.

Proof. Let I1: C — T be a universal covering and let ¢ be the flat metric M1.(1/|c|)
on T. Then p is admissible for both T and A;, j € J. Further mod(T, ¥) = Area(T, p)
by the standard length-area argument. We get

2w siné

D “mod(Aj) < ) Area(A;, p) = BArea(T, p) = B = Bmod(T, x).

jed jel o]

Equality is attained if and only if the restriction of p to each A; is the extremal (or flat)
metric on A;, that is the last condition of the theorem is fulfilled. a

Let R : € > C be a rational map. Suppose o € Jp is a repelling k-periodic point
with multiplier A € C\D and rotation number plq. Let v : D(r) — A(r) be a local
linearizing parameter for R* at . Further let [y : A*(r) — T, denote the projection
given by ITg := [T, o =1, where A*(r) := A(r)\[e}, so that Tz o R* = M.

Suppose («, [¥]) is a periodic access in the Fatou domain A. Let U be the unique
connected component of A(r) N A, which contains the germ of y, i.e. ¥(J0, €]) for some
e>0andlet V:= Um20 x9my=1(U). Then A2V = V, since U C RM(U).

LemMMA 4.2. Let (o, [yo]) and (o, [11]) be rwo distinet periodic accesses to . Let Uy, U,
and Vp, V) be the corresponding sets as above. Then UgnUy =@ and Vo NV, = 8.

Proof. If Up NU; # B, then Uy = U, because they are both connected components of
the same set. Let «p : [0, 1] — Up be a curve with xo(j) € y; for j =0,1. Frme N
define x, : [0, 1] = Up by &, = R744" (i), where we take the branch of R, which
fixes &. Then the «,, connects y, and y, in Uy and converges to ¢ contradicting that yp
and y,; define distinct accesses, Next assume that VoN V) # @ and let z € VpN V). Then
¥ (z/A"™) € Up N Uy, for some m sufficiently large, because V; = UnxpA9™ ¢~ 1(U))
and V; = V; /A9, But then Uy N U, 5 @ contrary to the first part of the Lemma. O

Let I/’ be the union of the ¢ connected components of A(r) N Fp containing the
g germs of the curves in the p/g-cycle of y. Let X’ > 1 be the conjugate multiplier
corresponding to the p/g-cycle of (o, [v]) and define A := [p(V) = NU") =
(V) e T,

PROPOSITION 4.3. The set A is an annulus in T, of modulus 7 {log )" and the set U’ has a
logarithmic density at « equal to the relative flat area of A in Ty, in particular the opening
area of the p/q-cycle of {a, [y]) is well defined.

Proof. We have A = IT,(V) = V/(z — A42), because MV =V and (AM/V)NV =0
for j=1,...,g — 1 by Lemma 42. Let ¢ : A — D be a Riemann map and let
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Rj be the conjugate map of R" on A, where n is the period of A. Then X' is
the multiplier of the repelling, &'-periodic point o' € S' corresponding to the access
(a, [¥]). Let ' : D) — A'(¢) be a local linearizing parameter for Rf\' at o with
Y'(HL. ND{t)) € D. We can suppose ¢p{(U} C A'(¢), decreasing r if necessary. Define
Wiy '(U) > DO NH, by W = ()" e o . Then W is univalent and satisfies
the relation W(z/A%) = W(z)/A'. Thus ¥ extends to a univalent map from V into
H,. We shall prove that ¥ is onto. Let w € H,, it suffices to find m = 0 such
that w(A'y"™ € W(V), because of the relation W(z/A9) = W(z)/\'. Likewise we
can suppose |w| < ¢. Let 9 :J0, [w|] — H, be the arc y,(f) = rw/|w|. Then the
arc ¥ = ¢ oy oy converges to o, when the parameter tends 1o O (see the proof
of Proposition 2.1). Thus it defines an access to o in A. Evidently y; € [y], as
y{t) = ¢ o y'(t) is the center curve of its access. In particular y(t) € U for ¢ small
and thus w(A)™™ = p(jw|(A)™™) € W~ 1(1)) C ¥(V) for m € N big, Let A’ be
the annulus H, /{(z > 1'z). Then W descends to a biholomorphic map between A and
A'. In particular A is an annulus and a simple calculation, which we leave to the reader,
shows that mod(A) = mod(A"} =/ log )’

To prove the second part of the Proposition, let B denote the relative flat area of the
annulus A in 7, Note that the set V' = U}’;; (A/V) has logarithmic density B at 0,
because V' = l'li'l(A) and (IM,).(1/Iz) is a flat metric on Ty. Let W' = y~'(U") C
V' nD(r). It suffices to prove that W’ has logarithmic density B at 0, by conformal
invariance of logarithmic density.

Let € > 0 be given, we can choose a compact subset K of A such that the relative flat
area of K is greater than B —¢. There exists a compact subset K of W' with l'l;,(l? Y2 K,
because X is a compact subset of A = T, (W’) and W' is open. Let ¢ = min{|z]|z Ky,
then IT, (W' N A(s/|r|, 5)) D K for all 0 < 5 < ¢, because A(s/|A|, 5) is a fundamental
domain for TT, and W//A C W', For 0 < § < ¢ write logt/§ = nlog|A] + & with
0 =& < log|A|. This gives us the estimate

Iz| H]

1 1

Area ((V’ﬂA(a,r)), l) Area ((W'ﬂA(&,r)}. l)
pd
Area (A(S. r), —) Area (A(&, r), —)

lz| |2

Area ((W' NAQE/ A", D), L)

Izl
Area (A(S. r), -I—)

=

|zl
2rnlog |A(B —¢€) - B—c¢

= 2r(logt/s+logr/t) — 1 logt/r

+ —_—

loge/s
as W' c V'. Since the first term tends to B and the last term tends to B — ¢, when &
tends to 0, and ¢ > O was arbitrary, we also deduce that the second term converges to
B. That is W' has logarithmic density B at 0 and so has U’ at a. O

Let & := [Tg(y), then « is a non-trivial Jordan curve in 73 and the proof of Proposition
4.3 above shows that « is the unique closed hyperbolic geodesic of the annulus A (¥
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is the center curve of its access), in particular A is homotopic to k. Also the rotation
number of x equals the rotation number p/g of .

Proof of Theorem C. As above let @ be a repelling periodic point for R with rotation
number p/q, multiplier A € C\ID and period k € N. Suppose Ay, ..., Ay are conjugate
multipliers comresponding to distinct p/g-cycles of periodic accesses to a and let
By, ..., By be the opening areas of the same p/g-cycles. Let (o, [1i]),..., (@ [¥¥])
be periodic accesses to o representing the p/g-cycles and let A;, ..., Ay be the annuli
corresponding as above to the respective p/g-cycles of accesses. Lemma 4.2 implies that
the annuli are disjoint and thus homotopic to say ¥ = [Tg(y)) by the remark foliowing
Proposition 4.3. Since the rotation numbers of & and « are equal, there exists a logarithm
L of X such that the associated segment of « is gL — p2xi. Let B = Z}v:l B;, then we
get from Lemma 4.1

L 27 sing
Z <B -,
logh; = qlgL — p2xi|
where 8 is the angle between gL — p2xi and 2mi. This inequality is equivalent to the
inequality in Theorem C. a

Proof of Theorem D. Let a be a repelling k-periodic point, with rotation number
p/q and multiplier A € C\ID. Suppose further that & is periodically accessible from
A. Let Ay,..., Ay be the conjugate multipliers of the p/g-cycles of accesses 1o a
represented in A and let R, be a conjugate map on A. The map R, is a finite Blaschke
product, in particular it is holomorphic in a neighbourhood of the compact set S'. Let
M = max{|R)(z)llz € S'}. Then for each j = 1,...N, A; < M*9/", where n is the
period of A. Let M, = log M, then Theorem C lmplles that there exists a logarithm L

of A such that

L—EMJ

q

2sind < 2ksin@
N T =
q2 z_f:l ng lj qu

where 8 is the angle between L — (p/q)2ri and 2xi, This proves Theorem D. To prove
the bound on M,, when A is hyperbolic, we can suppose that 0 is an attracting fixed

point for R,. Then
k -4
=gz
l-[ 1 —ajz

where o € §', 4 is the degree of Ry, 1 < k is the degree of 0 as a fixed point and the
a; are the pre-images of O distinct from 0 itself. A direct calculation shows that
d=k

I+ |ayl
R <k+ .
. ;hlajl

My,

let r =max{lg;llj=1,...,d —k} then

1
My <1og|R)(2)| < logd + log 7 Sl logd + D,

where D := log((1 + r)/(1 —r)). This completes the proof, since D is the maximal
hyperbolic distance in D between O and its pre-images by R, and ¢ is a hyperbolic
isometry. g
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Corollary D.1 is an immediate consequence of Corollary B.! and Theorem D, because
oo is the only pre-image of co.

Before we prove Corollary D.2 we need to introduce the external map of a polynomial-
like mapping and we need some results in hyperbolic geometry. The external map shall
play the role of *flat’” model for the dynamics on U'\ K, similar to the role played by the
disc model in the simply connecled cases. The external map already plays a fundamental
role in the paper of Douady and Hubbard. We will however recall the construction in
the case of connecled filled-in Julia set, which is what we need.

Let f : U’ — U be a polynomial-like mapping with connected filled-in Julia set and
with mod(U\K;) = m. Let

¢ U\K; = W, =z € C|l < |z| < exp(2nrm)}

be a conformal equivalence with |¢(z)| — 1 as dist(z, K;) — 0. Set W, = ¢(U'\K[)
and define iy : W, — W, by h (2) := do fod~'(z). Then h, is a holomorphic d-fold
covering map. Let ¢ : z ~ 1/Z denote the inversion with respect to the unit circle S'.
Set W_ := {(W,), W’ :=[(W)) and let W := W, UW_US' and W' := W, UW’ US'.
By the Schwarz reflection principle h, extends to a holomorphic, expanding d-fold
covering map, the full external map, i : W' — W with A(S') = §' = 4~'(§'). The
restriction / : 8' — §' is a real analytic d-fold covering map of S', called the external
map or exiernal class of the polynomial like mapping (U, U7/, f). It satisfies |k'(z)| > 1,
vzeS§'.

Let Ap = 2/(1 — |z|*) and dp(-,-) denote the hyperbolic metric, respectively the
hyperbolic distance in b. Likewise for an open subset I/ C C isomorphic to I} let Ay
and dy (-, -) denote the hyperbolic metric, respectively the hyperbolic distance on U.

LEMMA 4.4, Let U C C be an open subset conformally equivalent to D. Then YR € Ry
and ¥z,,z2 € U withdy(z),z2) < R

Ay (zy)
< exp(2R).

0 (G2) P(2R)

Proof. Let ¢y, z; € U satisfy dy(z), 22) < R. Let ¢ : D — U be a conformal equivalence

with ¢(0) = z), and let x := ¢~'(zz). Then ¢’ satisfies the distortion theorem for

univalent functions on the unit disc, i.e.

1-]z| ¢'(2) 14 1iz|
Y. : .
€Dy S e | S Ty
We evaluate this inequality at x and multiply by Ap(0)/Ap(x) = 1 = |x|?, thus we obtain
(1 = |x)? P ¢'(x) - Ap(0) Au(zr) < (1+ |x])?
(1+|x1)* = [¢'(0) - Xp(x) Au(z2)| ~ (1 =¥
Since log((! + [x|)/(1 — |x])) = dp{0, x} = dy(z1. z2) < R the lemma follows. O

exp(—2R) <

PROPOSITION 4.5. Let h : W' = W = [z € Clexp(—2am) < |z| < exp(2rm)} be a
d-fold holomorphic covering map with h(8') = §' = k=" (8'). Then

d
vz eS': (@)l <dexp (ﬁ) .
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Proof. We shall first prove that
dr h'(z1)

dr
1. _ar CES
Vz), 22 €8 .cxp( Zm)s H(z) Sexp(zm). “.1

Let W' and W denote the sets exp~!(W') respective exp~!(W). Let & : W' — W
denote a lift of A, i.e. expof; = hoexp on W'. Then ﬁ(w + 27i) = h(w) + d2xi
and & is a conformal equivalence, in particular it is a hyperbolic isometry, and the
respective hyperbolic metrics satisfy Ag(w) = A.;‘;(ft(w))lfz’ (w)|. Since W = {w e C|
|R(w)| < 2wrm} we have Az(w) = 1/4m for all w € iR. Thus for any pair of points
21,72 € S', there exist wy, wy € iR with dg (wy, wy) = d(a(w)), h(wy)) < dr/dm
and exp(w;) = z; for j = 1,2. This estimate together with Lemma 4.4 gives

dn h{(z1) dn
exp ("2?) = | = P (EF) 5

since &'(w) = |A'(exp(w))| on iR. This proves (4.1). The integral over S! of |4'| equals
d2m, as h : S' — 8! is a d-fold covering map. Thus inf{|#'(z)}llz € S!} < d, which
combined with {(4.1) yields the Proposition. O

Proof of Corollary D.2. Let f : U’ — U be a polynomial-like mapping of degree d,
with K, connected. Any repelling periodic point for f is periodically accessible from
the ‘Fatou domain’ U\K, by Corollary B.3. Let o be a repelling, k-periodic point for
f with multiplier A € C\D and rotation number p/g. We may repeat the arguments
leading to Theorem D, replacing R by f, A by U\K; and R, by the external map h of
F, to obtain a logarithm L of A such that

R (wy)
' (wq)

2ksing

IL - (p/q)2xi| = log M,

where @ is the angle between L — (p/q)2ni and 2mi, N is the number of cycles of
periodic accesses (a, [y]) in U\K; and M = max([h'(2)|)z € S!). If we let m denote
the modulus of the annulus U\K}, then Proposition 4.5 applied to the full external map
of f shows that M < d exp(dx/2m). This completes the proof of Corollary D.2. O
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